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ABSTRACT

In the present paper the problem of interpolation of bilinear operators is con-
sidered. It is shown that under certain conditions the theorem of bilinearity
holds.

1. Introduction

The aim of this paper is to prove some results on interpolation of bilinear operators
in the framework of Banach spaces.

Before introducing the main results we recall some notation from interpolation
theory (cf. [2], [3]).

A pair X = (X, X)) of Banach spaces is called a Banach couple if Xp and X,
are both continuously embedded in some Hausdorff topological vector space V.

For a Banach couple X = (Xp,X1) we can form the intersection A(X) =
Xo N X; and the sum X(X) = Xo + X;. They are both Banach spaces with the
natural norms

llzlla = max{|lz||xo, =[x, }

and

llzllz = inf{||lzo]lx, + [|z1]|x,: 2 = zo + 21}
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DEFINITION 1. Let X = (Xp,X1), Y = (Yo,Y1) and Z = (Z,Z)) be Banach
couples. T is said to be a bilinear operator from X x Y into Z (T € B(X x Y , 7)) if
T € B(X; xYi, Z;), where B(X; x Y;, Z;) is the space of bilinear bounded operators
from X; X Y; into Z; (i = 0,1).

DEFINITION 2. F is an interpolation functor on the category C of interpolation
couples of Banach spaces into the category of Banach spaces, if for any two Banach
couples X and Y, F(X) and F (Y) are -interpolation spaces with respect to X and
Y, i.e., for any operator T from X into ¥ we have T(F (X)) Cc F(Y).

For a given Banach couple X = (X, X;) and a quasi-concave function PRy —
Ry (where 1(s) < max(1,s/t)y(t) for all 5,2 > 0) we denote by Ay(X) the space of
all z € 3(X) which can be represented in the form

o0
Z z,, z,€ A(X) (convergence in X(X))

V==00
with

> 9(2) 7 max(|lz, [l x,, 2“2 lx,) < 00

V==

It is well known (cf. [9] for example) that Ay (X) is a Banach space with the
norm

<O

||$||¢=inf{ 2 ¥(@)  max(l|z 1 x,,2" 12|l x, ) : E Ty, zuGA(X)}

y=-o00 v=-—00

Furthermore A, is an interpolation functor.

In the present paper we would like to consider the followin g problem concerning
interpolation of bilinear operators. What conditions must be satisfied in order to
make the following statement come true: if T € B(X(X) x %(Y), %(Z)) then T €

B(Fo(X) x Fy(Y), F. 2(7)) where F; (i = 0,1,2) are some interpolation functors.

It seems unlikely that the statement holds for any lincar interpolation method.
Theorems concerning our problem are well known for the real and complex methods
(see [2], [4], [5], [7]).

The problem of interpolation of bilinear operators is interesting because of im-
portant applications in a general theory of Banach space. The widest application of
this problem can be found when F; = F (i = 0,1,2).

Using the technique developed in [5], we show in the present work that the
statement holds in two cases:
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1° Fo = Ay, F1 = F5 = F, where 9 stands for a special function generated by an
interpolation functor F.
2° Iy = M,, Fy, F; are any interpolation functors, which satisfy certain conditions
concerning duality, where ¢ is a specially constructed function.
Here and throughout the paper M, is an interpolation functor generated by any
function ¢ € ¢ in the following way:

- - K(s,t,z; X
My(X) = { € () lallg0 = sup ZXL20TZ) °°}’
31t>0 Q(s’t)
where ¢ denotes the class of non-vanishing functions ¢: R2 — R, which are non-
decreasing in cach argument and positive homogeneous of degree one, and
K(s,t,z;X) = inf{s”wollxo +t|z]|lx, cx =20+ :cl}

for s,t > 0.
Note that for any function ¢ € ¢ the following holds:

¢(s,1t) < max(s/u,t/v)p(u,v)
for any s,1,u,v > 0. This implies that
*) o(s,1) = ini0 max(s/u,t/v) ¢(u,v)

for any s,1 > 0.

2. Results

It is well known that results on interpolation of bilinear operators obtained by com-
plex as well as real methods have interesting applications in the theory of Banach
spaces. It seems natural and important to research and define new interpolation
functors for which the theorem of bilinearity holds. Some contribution in this re-

search may be Theorem 1 and Theorem 2 generalizing some results obtained by
A. Favini [5].

Lemma 1

Let F' be an interpolation functor and let

1]

‘i’F'(s’t) = sup{ F(X)=F(Y).* ”T”Xo—‘yo <8, ”T”-Xx—*yl <t Yv? € a}
for all s,t > 0. If X = (Xo, X1) is any Banach couple, then
lell ey < (s~ t7") max{slz|l x,, tll2llx, }

for z € A(X) and s,t > 0.
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Proof. Let X = (Xo0,X1), Y = (Yo, Y1) = (sXo N1X1,5Xo N1X3), $,¢ > 0, and let
T =1d:Y — X, where the norm in space tA is defined by formula ||a||;4 = t|a|la-
For all z € A(X), we have
[Tl xo < 57" max{lzllsxy, lzllex, } = s7"2lve,
”T‘T”XJ < t~! max{“a“”-?xo’ ”z”tX] } = t—IH‘””Yr
From definition ¢g(s,t) we have ”T”F(V)—»F(Y) < p(s~L L),
Now by the simple calculation we obtain
”T"’“F(Y) = II‘””F(T) < I7| ““"”F(?) < pr(s™,t7) ”-"'”F(?)
= cpp(s‘l,t‘l)max{s||z||xo,t||a:||X,} forz € A(X). O

Remark. Tt is easy 1o show that ¢p(s,t) = s1=%%° for the complex interpolation
functor of Calderén F = [-]0, 0 < 8 < 1, and that pp(s,t) =~ s1=%¢? in the case of
Lions-Peetre functor F' = (')a,p’ 0<0<1,1<p< 0.

The proof of the following lemma is similar to the proof of Theorem 3.5.2(b) in
[2] (for the sake of completeness we give a proof).

Lemma 2
Let F be an interpolation functor. Then

Ap.(X) C F(X)
for any Banach couple X, where () = 1/pp(1,t71) fort > 0.

Proof. By Lemma 1 it follows that
(1) el ey < @ult) (2,23 )

for every z € A(X) and all t > 0, where J(t,z;X) = ma.x{||z||xo,t||:c||xl}. Now
fix € > 0 and take z € A, (X). Then z = 3°%° __ 'z, (convergence in L(X)) with
z, € A(X) and

o0

Y 0u() 712", 2,X) < |2l +e.

V=—00

This implies that

oo
(2) Z “zqu(Y) < llzlfe. +€

v=-—00

by (1). In consequence Xz, is convergent in F(X), thus in 3(X). Soz = Y oo T
and thus, by (2)

el < lelle.- O
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Theorem 1

Let F be an interpolation functor and let X, Y, Z be Banach couples. If T €
B(Z(X)x (Y),2(Z)), then T is a bounded bilinear operator from A, (X)x F(Y)
into F(Z), where ¢ = pF.

Proof (cf. [5]). For a fixed € A(X) put Sz(y) = T(z,y) for y € T(Y). By
assumption it follows that S;:Y — 7 and

”Sx(y)”zl. <M; ”"””X- ”ZI”Y,, t=0,1

for some constants M; > 0.
Since F" is an interpolation functor, S;: F(Y) — F(7) and

”Sr”F(V)_.F('Z') < o(Mollz]l xo, Mzl x,)-
llence
(3) ”Szlllr(?)_.p(’z') < M o(||zll xo, 2] x1),

where M = max(Mp, M;). On A(X) we put the norm

| Szyll o
||m||=max{ sup le@ o ||¢_}

yeF(Y) M”JIII"(Y)

= ma.x{ 8= ”F(y)_.r(z)v ”"'”so-}

From (3), we have

el < max{@(llellxo, Iallx,)s llolle ] for = € ACK).

Note that if z € A(X), then z = 3°°° ___z,, where z,, = z and z, = 0 for v # n.
This yields

l2lle. < @u(2M) 712" 2;X) = ¢(1,27") max{|lz||x,,2" ||zl x, }-

Since ¢ € ®, we obtain

(4) e(llzllxo, llxllx,) < @(1,27") max(||zlx,, 2" |l x,)-
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From (4) and the definition of the norm in A, (X) we get
lall < e (27) 7 I(2%, 2 X)

for all z € A(X). Thus it follows that if we show, that the completion A = (A, ||- D
is contained in X(X), then in the same way as in the proof of Lemma 2 we obtain
that A,_(X) C A. Now we will show that A C %(X). The necessary and sufficient
condition for this is (see [1]): if Cauchy sequence {z,} in (A, ||-]|) converges in ()
to 0, then ||z,|| — 0in (A,]|-||). We have

llll = max{M~"p(z), ||2||,. }

for z € A(X), where p(z) = || S, ||P(Y)_+r(z)

Now suppose {z,} is a Cauchy scquence in (A, ]+ 1) which converges to 0 in
Z(X). Then {z,} is a Cauchy sequence in Ap.(X), 50 z, = 0in A,_(X), by the
continuity of embedding A%(X) into X(X). “urthermore {S.} = {Sa:,.} is a Canchy
sequence in B(F(Y), F(Z)).

Thus ||Sn - .5'” T =1Z) 0 for some 9, so

I|T($n,:l/) - Sy”l,-(f) —0

for all y € I(Y). 'Fhis yields T(z,,y) — Sy in %(Z). So § = 0. In conscquence
leall 0.

For all z € A(X), ||lz]lz < ||z|lo.- On the other hand, from the definition of
| -1, we get ||lzliz > [|z|l. for all z € A(X). Since A(X) is dense in A as well as in
Ay (X), we have

Ap.(X)=A

isometrically. Thus, by the definition of || - ||, it follows that

1520z, < el
ver(@) Mlvlire, -

In consequence

holds for all z € A(X) and y € F(Y). Since A(X) is dense in A, (X) the proof is
finished. O

Before showing the second theorem we introduce one more definition (cf. [3]).



Some remarks on interpolation of bilinear operators 101

DEFINITION 3. The space X' dual to the intermediate space X of Banach couple X
is defined by X' = (A(X), ]| |lx)*, where Y~ stands for the topological dual space
of Y.

By X' we denote a Banach couple (Xg,X7). The following formula holds (cf.
[2], Theorem 2.7.1 or [3], Proposition 2.4.6)

(**) (X) = AX)

with equality of norms.

For a Banach space X containing X¢ N X7 the closure of Xy N X in X will be
denoted by X°. A Banach couple (X§, X?) is denoted by X

If I is an interpolation functor, then F© is an interpolation functor defined by
I°(X) = F(X)° for any Banach couple X.

Theorem 2

Let X, Y, Z be Banach couﬂlgs and let Fy, I\ be interpolation functors. If
T € B(X(X) x Z(V),2(Z)), [+(X") = F(X) and Fo(Y') C F(VY, then I’ is a
bounded bilincar operator from I{(X) x F)(Y) into MY(Z), where ¢ = pF,.

Proof. Let [ € Z{ N Z}, f # 0 be fixed. For z € A(X), we define the functional f,
on A(Y) by

[=(y) = [(T(z,y))

for y € A(Y). We have

| fo()| < 1Sl

T(z9) , < MLz 12T el v, G = 0,1).
Thus, it follows that f; € Y/ N Y and
W fzlly: < SNz (IT Nzl x. (2= 0,1).
Now we define a lincar operator S from Xp N X, into Yy NY{ by Sz = f;. Then
ISzl < Il 1Tl el for = € ACK) (i=0,1).
Hence there exists an extension S;: X? — Y/ of § satisfying

(5) ”Si”x?—»,yl! < llz ATl (2 =0,1).
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Since o = S1 = 5 on A(X), we extend S to S from X+ X)intloY) +Y/ ina
natural way:
-.STZ = So:to + Sl.’L'j_

for z € L(X) where z = zo + 73 is _any representation of z with z; € Xj;, i=0,1.
Then by (5) it follows that §: X° — V" with

(6) 151l o ys <

(i = 0,1).

Hence, by assumption FO(YO) = Fo(:‘(—) and interpolation, we have
S:Fo(X) = (V) C Iy (Y.

The closed graph theorem yields

(M) ”-§‘””F.(?y < C”-S-z”n,(?')

for some C > 0 and any z € Fy(X). Thus from the definition of the function @, (6)
and (7) it follows that

(8) ||§a:||p.l(7), < CM‘P(”f”Z’ ) ”f”z‘)”:"'”po('k‘)
for any z € FO(X) where M = max ||T||; (i =0,1).
Since § = S on A(X) and
: T(z,
Iellngzy = sup AR, T
vea® Wln@)  yeam Wlnm
for z € A(X), we conclude (f € Z4 N 7! is arbitrary) by (8) that
|/(T(2,9))|

rezsnz; ([l z,

for any z € A(X) and y € A(Y).
Now observe that by (*) and (**) it easily follows that

o) 7S CMlel o, Il vy
1

K(s,t,z;?) |f(z)|
|2]lp,00 = sUp —m="-1L = su
O a0 @(s,1) rezynz; (| fllzy: 11 fllz;)

for any z € A(Z). This yields by (9) that
”T(ﬂ’a’.‘l)”Mg(f) < CM”-"’”Fg(T) ”?l”F;’(?)

and the proof is finished. O



Some remarks on interpolation of bilinear operators 103

Remark. In (3] (cf. also [6] and [9]) some results on duality of interpolation functors
are given. In particular it is shown that, under the general condition, Fy(X)' =
FO(T) for any Banach couple X, where Fy (resp. Fy) stands for the minimal or
maximal method of interpolation. Note also that there is quite a large class of
interpolation functors satisfying F (7(-0) = F(X) for any Banach couple X (cf. [6),
Lemma 2).

3. Further remarks

It is equally important as researching new interpolation functors to study the form
functors which are already known. The next theorem shows that a very strong
condition must be imposed on generations functions so that the bilinear thcorem
will hold. It will be shown on example of Ovchinnikov’s interpolation functors.
Recall that Ovchinnikov in [8] constructed the lower (the upper) method of

interpolation ¢, (resp. ¢,) depending on parameter ¢, ¢ € ®. The method ¢, may
be defined as follows:

w(X) = {Ta¢;T: (loos€oo(27™)) — 7}, where a, = {¢(1,2")}>

n=—o0"

The space p¢(X) is equipped with the norm

lall = tnf {max(Zllep o I Tllew (2w ,): Tt = 7 }.

From the result proved in [8] (cf. also [9]), it follows that if E = (Ep, E|) is a
couple of Banach lattices with the Fatou property, then

(10) ve(E) = u(E) = ¢p(Eo, In),

where @(Ey, Ey) is a Calderén-Lozanovskii space of all functions z such that |z| =
Lp(|:co|,|:1:1|), where z9 € Fy, 1 € E;. A norm on (£, Ey) may be defined by
lzll, = inf{max(||zol|zo. ll21lle,) : l2| = (|zol, |24]) }.

Proposition 1

Suppose the bilinear theorem holds for the interpolation functor ., with @
strictly concave and ¢(t,1) — 0 as t — 0. Then there exist C > 0 such that

e(st, 1) > Co(s, 1) p(t,1).
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Proof, From (10) it is easy to show that if we put

(+) p(s,t) = tM ' (s/t)
if1 > 0and ¢(s,t) = 0 if t = 0 then for any measure space (2, 1)
(11) we(L1(p), Loo(p)) = Lu(p)

where Ly(pt) = {2 € Lo : [ M(|z|/A)dp < oo for some A > 0} is the Orlicz space.
It is well known that Lpas is a Banach space with the Luxemburg norm defined as
follows:

/|y = inf{,\ >0: / M(|z)/A) dp < 1}.
Q

Take X = ¥ = (Li(Reymi), Loo(Resm1)), Z = (La(RE,ma), Loo( Y, m2))
where my Eld my are Lebeigue measures on R, and ]R'i, respectively. Define the
map T: E(X) x X(Y) — %(Z) as follows
T(z,y)s,t) = (z @ y)(s,t) = z(s)y(t),  (s,t) € R}.
We have
I7e.5)lz, = [, o(6)w(0)] dms = el
+

for (z,y) € Xo X Yy. Furthermore
[T(2, )| 7, = supess{l=(s)y(2); (s,2) € B3} < llzllx, llylly:

for (z,y) € X; x Y;. Thus T is a bilinear bounded operator from X(X) x I(Y) into
%(Z). Now if we suppose that the bilinear theorem holds for (¢, then by (10) and
(11) it follows that for some C > 0

(12) ||T(f,_q) |LM(m2) < C”-f"LM(ml)”g”LM(ml)

for any (f,g) € Lyu(mi1) x Ly(m).
Taking f = x(q,u) and g = X(0,v)s Where x4 is the characteristic function of the
set A, we obtain by simple calculation that

||f®g”LM(m2) = 1/M™"(1/uv)

and
W llise(ma) = 1M ), lgllLg(may = 1/ M2 (1/).
From (12) it follows that
/M~ (1/uv) < C1/M7Y(1/u) 1/ M~ (1 /).
Thus the proof is finished by (+). O
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