A note on regular elements in Calkin algebras

VLADIMIR RAKOČEVIĆ 1

University of Niš, Faculty of Philosophy, Department of Mathematics Ćirila and Metodija 2, 18000 Niš, Yugoslavia

Received November 7, 1991

ABSTRACT

An element a of the Banach algebra A is said to be regular provided there is an element $b \in A$ such that a = aba. In this note we study the set of regular elements in the Calkin algebra C(X) over an infinite-dimensional complex Banach space X.

Let A denote a complex Banach algebra with identity 1. An element a in A is said to be regular provided there is an element b in A such that a = aba. We say that a is decomposably regular provided the b in the preceding equation can be chosen to be an invertible element in A. Let A^{-1} denote the set of all invertible elements in A. Set $\widehat{A} = \{a \in A: a \in aAa\}$ and $A^{\bullet} = \{a \in A: a^2 = a\}$. It is easy to see that

$$(0.1) A^{-1}A^{\bullet} = A^{\bullet}A^{-1} = \{a \in A : a \in aA^{-1}a\}.$$

For a subset M of A let δM and cl M denote, respectively, the boundary and the closure of M. Harte [8, Theorem 1.1] has proved that

$$(0.2) A^{-1}A^{\bullet} = \widehat{A} \cap cl(A^{-1}).$$

Let X be an infinite-dimensional complex Banach space and denote the set of bounded (compact) linear operators on X by B(X) (K(X)). The fact that K(X) is

¹ This research was supported by Science Fund. of Serbia, grant number 0401A, through Matematički institut

38 Rakočević

a closed two-sided ideal in B(X) enables us to define the Calkin algebra over X as the quotient algebra C(X) = B(X)/K(X). C(X) is itself a Banach algebra in the quotient algebra norm

(0.3)
$$||T + K(X)|| = \inf_{K \in K(X)} ||T + K||.$$

We shall use π to denote the natural homomorphism of B(X) onto C(X); $\pi(T) = T + K(X)$, $T \in B(X)$. Throughout this paper N(T) and R(T) will denote respectively the null space and the range space of T. Set $\alpha(T) = \dim N(T)$ and $\beta(T) = \dim X/R(T)$. An operator $T \in B(X)$ is Fredholm if R(T) is closed, and both $\alpha(T)$ and $\beta(T)$ are finite. The Fredholm operators $\Phi(X)$ constitute a multiplicative open semigroup in B(X), and by Atkinson's theorem [7, Theorem 3.2.8] we have

(0.4)
$$\Phi(X) = \pi^{-1} (C(X)^{-1})$$

The index of an operator T in B(X) is defined by $i(T) = \alpha(T) - \beta(T)$, if at least one of $\alpha(T)$ and $\beta(T)$ is finite. It is well known that $B(X)^{-1} + K(X) \subset \Phi(X)$, and that $T \in B(X)^{-1} + K(X)$ if and only if $T \in \Phi(X)$ and i(T) = 0 [1, Theorem 0.2.2 and Theorem 0.2.8]. In this note we study the set of regular elements in the Calkin algebra C(X).

Theorem 1

If X is a Banach space then

(1.1)
$$\widehat{B(X)} + K(X) = \pi^{-1}(\widehat{C(X)}).$$

Proof. Begin with the corresponding result for idempotents ([2, Lemma 1], [9, Lemma 1]):

(1.2)
$$B(X)^{\bullet} + K(X) = \pi^{-1} (C(X)^{\bullet}).$$

If $T^2 - T$ is compact then the only possible points of accumulation of its spectrum are 1 and 0: now if

(1.3)
$$P = \frac{1}{2\pi i} \int_{\gamma} (T - zI)^{-1} dz$$

with 1 inside and 0 outside γ disjoint from the spectrum of T then $P^2 = P$ and there are T', T'' in B(X) (given by contour integrals) with

$$(1.4) P = T'T = TT', I - P = T''(I - T) = (I - T)T''.$$

Evidently

$$(1.5) T - P = T(I - P) + (T - I)P = (T^2 - T)(T' + T'') \in K(X),$$

giving (1.2). If more generally $A - ABA \in K(X)$ then T = BA gives $P = P^2$ for which (1.4) holds: now

$$(1.6) AP(T'B)AP = AP^3 = AP \in \widehat{B(X)} and A - AP \in K(X). \Box$$

Note that the corresponding result for "decomposable regularity" fails: if $T \in B(X)$ is Fredholm with non zero index then

(1.7)
$$\pi(T) \in C(X)^{-1} \subseteq C(X)^{\bullet}C(X)^{-1}$$
 but $T \notin B(X)^{\bullet}B(X)^{-1} + K(X)$;

however

Theorem 2

If X is a Banach space then

(2.1)
$$B(X)^{\bullet}\Phi(X) + K(X) = \pi^{-1}(C(X)^{\bullet}C(X)^{-1})$$

and

(2.2)
$$\widehat{B(X)} \cap cl \Phi(X) + K(X) = \pi^{-1} (\widehat{C(X)}) \cap cl C(X)^{-1}.$$

Proof. By (0.4) it follows that $B(X)^{\bullet}\Phi(X) + K(X) \subset \pi^{-1}(C(X)^{\bullet}C(X)^{-1})$. To prove the second inclusion of (2.1), suppose that $T \in \pi^{-1}(C(X)^{\bullet}C(X)^{-1})$. From (1.2) and (0.4), it follows that there are $E \in B(X)^{\bullet}$, $S \in \Phi(X)$ and $K \in K(X)$ with T = ES + K. This completes the proof of (2.1).

The inclusion 'C' of (2.2) follows from (0.4). To prove the second inclusion of (2.2), suppose that $A \in \pi^{-1}(\widehat{C(X)} \cap \operatorname{cl} C(X)^{-1})$. From (1.1) it follows that there are $B \in \widehat{B(X)}$ and $K_0 \in K(X)$ with $A = B + K_0$. Since $\pi(A) = \pi(B) \in \operatorname{cl} C(X)^{-1}$ then there is (A_n) in $\Phi(X)$ for which

(2.3)
$$||B - A_n + K(X)|| \longrightarrow 0 as n \to \infty.$$

Given $\varepsilon > 0$, choose n such that $1/n < \varepsilon/2$ and $||B - A_n + K(X)|| < \varepsilon/2$. It follows that there is $K \in K(X)$ such that $||B - A_n + K|| < ||B - A_n + K(X)|| + 1/n$. Set $B_{\varepsilon} = A_n - K$. It is clear that $B_{\varepsilon} \in \Phi(X)$ and $||B - B_{\varepsilon}|| < \varepsilon$. \square

Rakočević

From (2.1) and (2.2), together with (0.2), it follows that

(2.4)
$$\widehat{B(X)} \cap cl \Phi(X) + K(X) = B(X)^{\bullet} \Phi(X) + K(X)$$

We can be more precise:

Theorem 3

If X is a Banach space then

(3.1)
$$\widehat{B(X)} \cap cl \, \Phi(X) = B(X)^{\bullet} \Phi(X).$$

Proof. Suppose that $A \in \widehat{B(X)} \cap cl \Phi(X)$. Now there are A' in B(X) and B in $\Phi(X)$ such that A = AA'A, A' = A'AA' and $I + (B - A)A' \in B(X)^{-1}$. From (0.4) it follows that there are \overline{B} in B(X) and K in K(X) such that $B\overline{B} = I + K$. Set $A'' = A' + (I - A'A)\overline{B}(I - AA')$. Now A = AA''A, and from (0.4) and the proof of (0.2), we have that $A'' \in \Phi(X)$. Thus

(3.2)
$$\widehat{B(X)} \cap cl \Phi(X) \subset \{ A \in B(X) : A \in A\Phi(X)A \}.$$

Further, if $A \in A\Phi(X)A$ then there exists an operator S in $\Phi(X)$ such that A = ASA. Again, from (0.4) it follows that there are S_1 in B(X), K_1 and K_2 in K(X), such that $SS_1 = I + K_1$ and $S_1S = I + K_2$. Thus $ASS_1 = A + AK_1$, which implies that $AS(S_1 - AK_1) = ASS_1 - ASAK_1 = ASS_1 - AK_1 = A$. Since $AS \in B(X)^{\bullet}$ and $S_1 - AK_1 \in \Phi(X)$, it follows that

(3.3)
$$\left\{ A \in B(X) \colon A \in A\Phi(X)A \right\} \subset B(X)^{\bullet}\Phi(X).$$

By [6, Theorem 5.2] we have that $B(X)^{\bullet}\Phi(X) \subset \widehat{B(X)}$. Further, if $A \in B(X)^{\bullet}\Phi(X)$ there are P in $B(X)^{\bullet}$ and C in $\Phi(X)$ such that A = PC. Set $A_n = (P + (I - P)/n)C$, $n = 1, 2, \ldots$ Now $A_n \to A$ as $n \to \infty$, and $(P + (I - P)/n) \in B(X)^{-1}$, $n = 1, 2, \ldots$ Thus $A_n \in \Phi(X)$, which implies that

(3.4)
$$B(X)^{\bullet}\Phi(X) \subset \widehat{B(X)} \cap cl \Phi(X).$$

Thus (3.1) follows at once from (3.2), (3.3) and (3.4). \square

Let us remark that from the proof of Theorem 3 it is easy to see that

$$(3.5) \qquad \left\{ A \in B(X) : A \in A\Phi(X)A \right\} = B(X)^{\bullet}\Phi(X) = \Phi(X)B(X)^{\bullet}.$$

Corollary 4

Let X be a Banach space and $A \in B(X)$. Then the following conditions are equivalent:

- $(4.1) A \in \delta \Phi(X),$
- (4.2) $A = PB, P \in B(X)^{\bullet} \setminus \Phi(X) \text{ and } B \in \Phi(X),$
- $(4.3) A = CQ, Q \in B(X)^{\bullet} \setminus \Phi(X) and C \in \Phi(X).$

Proof. By Theorem 3 and (3.5). \square

For any Hilbert space X, let $\dim_H X$ denote the Hilbert dimension of X, that is the cardinality of an orthonormal basis of X. We set $\operatorname{nul}_H(T) = \dim_H N(T)$ and $\operatorname{def}_H(T) = \dim_H R(T)^{\perp}$ for $T \in B(X)$. If X is a separable Hilbert space, then with connection according to Theorem 3 we have

Theorem 5

Let X be a separable Hilbert space. Then

(5.1)
$$\widehat{B(X)} \cap \operatorname{cl} \Phi(X) = \Phi(X) \cup \{T \in B(X): \operatorname{nul}_H(T) = \operatorname{def}_H(T) \text{ and } R(T) \text{ closed}\}.$$

Proof. By [3, Theorem 4 and Remark 5] we have that $cl \Phi(X) = \Phi(X) \cup cl B(X)^{-1}$. Further, by [5, Theorem 2.9] or [4, Proposition 1] if operator $T \in B(X)$ has closed range, then $T \in cl B(X)^{-1}$ if and only if $nul_H(T) = def_H(T)$. Hence, it follows that

$$(5.2) \widehat{B(X)} \cap cl \Phi(X)$$

$$= \widehat{B(X)} \cap (\Phi(X) \cup cl B(X)^{-1})$$

$$= \Phi(X) \cup (\widehat{B(X)} \cap cl B(X)^{-1})$$

$$= \Phi(X) \cup \{T \in B(X) : \operatorname{nul}_{H}(T) = \operatorname{def}_{H}(T) \text{ and } R(T) \text{ closed} \}. \square$$

Acknowledgements

I am grateful to Prof. Laura Burlando for helpful conversations. The author also thanks the referee for helpful comments and suggestions concerning the paper.

References

- 1. B. Barnes, G. Murphy, R. Smyth and T.T. West, *Riesz and Fredholm theory in Banach algebras*, Pitman Research Notes in Mathematics **67**, Boston, London, Melbourne, 1982.
- 2. B. Barnes, Essential spectra in Banach algebra applied to linear operators, *Proc. R. Ir. Acad.* **90** (1990), 73–82.
- 3. R. Bouldin, The essential minimum modulus, Indiana Univ. Math. J. 30 (1981), 513-517.
- 4. R. Bouldin, Closure of invertible operators on a Hilbert space, *Proc. Amer. Math. Soc.* 108 (1990), 721–726.
- 5. L. Burlando, Distance formulas on operators whose kernel has fixed Hilbert dimension, *Rendiconti di Matematica* 10 (1990), 209–238.
- 6. S.R. Caradus, *Generalized Inverses and Operator Theory*, Queen's Papers in Pure and Applied Mathematics **50**, Queen's University, Kingston, Ontario, 1978.
- 7. S.R. Caradus, W.E. Pfaffenberger and B. Yood, Calkin Algebras and Algebras of Operators on Banach Spaces, Dekker, New York, 1974.
- 8. R. Harte, Regular boundary elements, Proc. Amer. Math. Soc. 99 (1987), 328-330.
- 9. J. Prada, On idempotent operators on Frechet spaces, Arch. Math. 43 (1984), 179-182.