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A note on regular elements in Calkin algebras
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ABSTRACT
An element @ of the Banach algebra A is said to be regular provided there is
an element b € A such that @ = aba. In this note we study the set of regular

elements in the Calkin algebra C'(X) over an infinite-dimensional complex
Banach space X.

Let A denote a complex Banach algebra with identity 1. An element a in A is said
to be regular provided there is an element b in A such that a = aba. We say that a
is decomposably regular provided the b in the preceding equation can be chosen to
be an invertible element in A. Let A~! denote the set of all invertible elements in
A. Set A= {a € A: a € aAa} and A® = {a € A: a® = a}. It is easy to see that

(0.1) AT'A* = A*A7 = {a€ Arta € aA7 a}.

For a subset M of A let § M and ¢l M denofe, respectively, the boundary and the
closure of M. Harte [8, Theorem 1.1] has proved that

(0.2) ATTA* = Ancl(A™Y).

Let X be an infinite-dimensional complex Banach space and denote the set of
bounded (compact) linear operators on X by B(X) (K(X)). The fact that K(X) is
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a closed two-sided ideal in B(X) enables us to define the Calkin algebra over X as
the quotient algebra C(X) = B(X)/K(X). C(X) is itself a Banach algebra in the
quotient algebra norm
(0.3) IT+ K(X)|| = Kel}l\’IEX)HT + K|

We shall use m to denote the natural homomorphism of B(X) onto C(X);
7(T)=T+ K(X), T € B(X). Throughout this paper N(T') and R(T") will denote
respectively the null space and the range space of T. Set «(T) = dim N(T) and
B(T) = dim X/R(T). An operator T € B(X) is Fredholm if R(T') is closed, and both
a(T) and B(T) are finite. The Fredholm operators ®(X) constitute a multiplicative
open semigroup in B(X), and by Atkinson’s theorem [7, Theorem 3.2.8] we have

(0.4) ®(X) =r"H(C(X)™")

The index of an operator T in B(X) is defined by i(T) = o(T) — B(T), if at least
one of a(T) and B(T) is finite. It is well known that B(X)™! + K(X) C ®#(X), and
that T € B(X)™! + K(X) if and only if T € ®(X) and #(T) = 0 [1, Theorem 0.2.2
and Theorem 0.2.8]. In this note we study the set of regular elements in the Calkin
algebra C(X).

Theorem 1

If X is a Banach space then

—_—

(1.1) B(X) + K(X) = =1 (C(X)).

Proof. Begin with the corresponding result for idempotents ([2, Lemma 1], [9,
Lemma 1]):

(1.2) B(X)* 4+ K(X) =r"YC(X)*").
If T? — T is compact then the only possible points of accumulation of its spectrum
are 1 and 0: now if

1

1. P =
(13) 271

/(T -z tdz

with 1 inside and 0 outside 7 disjoint from the spectrum of T' then P? = P and
there are T/, T" in B(X) (given by contour integrals) with

(1.4) P=TT=TT, I-P=T"I-T)=(I-T)T".



A note on regular elements in Calkin algebras 39
Evidently
(1.5) T-P=TUI-P)+(T-DP=(T*-TYT'+T") € K(X),

giving (1.2). If more generally A — ABA € K(X) then T = BA gives P = P? for
which (1.4) holds: now

(16)  AP(T'B)AP = AP*= AP € B(X) and A- AP ¢ K(X).O

Note that the corresponding result for “decomposable regularity” fails: if T €
B(X) is Fredholm with non zero index then

(1.7) w(T)eC(X)'CCX)*C(X)™ but T¢BX)B(X) '+ K(X);

however

Theorem 2

If X is a Banach space then

(2.1) B(X)*®(X)+ K(X)=r"1(C(X)*C(X)™)
and
(2.2) C BX)nd®(X)+ K(X) =1 (C(X)ndC(X)™).

Proof. By (0.4) it follows that B(X)*®(X) + K(X) C =~ }(C(X)*C(X)™*). To
prove the second inclusion of (2.1), suppose that T € #~1(C(X)*C(X)~!). From
(1.2) and (0.4), it follows that there are F € B(X)*, S € ®(X) and K € K(X) with
T = ES + K. This completes the proof of (2.1).

The inclusion ‘C’ of (2.2) follows from (0.4). To prove the second inclusion of

—_—

(2.2), suppose that A € 7~}(C(X) N el C(X)™!). From (1.1) it follows that there
are B € B(X) and Ko € K(X) with A = B + K. Since 7(A) = n(B) € / C(X)™!
then there is (A, ) in ®(X) for which

(2.3) ||B - A, + K(X)” — 0 as n — 00.
Given € > 0, choose n such that 1/n < /2 and ||B — A, + K(X)|| < €/2. It follows

that there is K € K(X) such that |B — A, + K|| < ||B — An + K(X)|| + 1/n. Set
B, = A, — K. Itis clear that B, € ®(X) and ||B - B,|| <e. O
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From (2.1) and (2.2), together with (0.2), it follows that

——

(2.4) B(X)Nel®(X)+ K(X)=B(X)*®(X)+ K(X)
We can be more precise:

Theorem 3

If X is a Banach space then

(3.1) B(X)Ncl®(X) = B(X)*®(X).

—

Proof. Suppose that A € B(X) N c/®(X). Now there are A’ in B(X) and B in
®(X) such that A = AA'A, A’ = A'AA" and [ + (B — A)A’' € B(X)~!. From (0.4)
it follows that there are B in B(X) and K in K(X) such that BB = I + K. Set

A"= A"+ (I - A'A)B(I — AA"). Now A = AA" A, and from (0.4) and the proof of
(0.2), we have that A” € ®(X). Thus

(3.2) B(X)Ncl®(X)C {A€ B(X): A€ AB(X)A}.

Further, if A € A®(X)A then there exists an operator S in ®(X) such that A =
ASA. Again, from (0.4) it follows that there are Sy in B(X), K7 and K, in K(X),
such that S5y =1+ Ky and 515 = I + K5. Thus ASS; = A + AK;, which implies
that AS(S1 — AKy) = ASS; — ASAK, = ASS; — AK; = A. Since AS € B(X)*
and 57 — AK; € (X)), it follows that

(3.3) {A€B(X): A€ A®(X)A} C B(X)*®(X).

By [6, Theorem 5.2] we have that B(X)*®(X) C B/(}). ‘urther, if A € B(X)*®(X)
there are P in B(X)® and C in ®(X) such that A = PC. Set A, = (P+(I-P)/n)C,
n=1,2,.... Now A, - Aasn — oo,and (P+(I = P)/n) € B(X) ', n=1,2,....
Thus A, € ®(X), which implies that

—

(34) B(X)*®(X) C B(X)Necl ®(X).

Thus (3.1) follows at once from (3.2), (3.3) and (3.4). O

Let us remark that from the proof of Theorem 3 it is easy to see that

(3.5) {A€B(X):Aec A®D(X)A} = B(X)*®(X) = &(X)B(X)".
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Corollary 4

Let X be a Banach space and A € B(X). Then the following conditions are
equivalent:

(4.1) A € §8(X),
(4.2) A=PB, PeB(X)'\®X) and B e &X),
(4.3) A=CQ, Qe B(X)*'\®X) and C € &(X).

Proof. By Theorem 3 and (3.5). O

For any Hilbert space X, let dimyg X denote the Hilbert dimension of X, that
is the cardinality of an orthonormal basis of X. We set nul g(7T') = dimg N(T') and
def g(T) = dimg R(T)* for T € B(X). If X is a separable Hilbert space, then with
connection according to Theorem 3 we have

Theorem 5

Let X be a separable Hilbert space. Then

—

(5.1) B(X)Ncl ®(X)
’ = ®(X)U {T € B(X): nul 4(T) = def x(T) and R(T) closed}.

Proof. By [3, Theorem 4 and Remark 5] we have that ¢/ ®(X) = ®(X)Ucl B(X)™'.
Further, by [5, Theorem 2.9] or [4, Proposition 1] if operator 7' € B(X) has closed
range, then T € ¢l B(X)~! if and only if nul g(T) = def g(T'). Hence, it follows that
B(X)n el (X)

= B(X)n (&(X)Uc B(X)™)

=&(X)U (B(X)nc B(X)™)

= ®(X)U{T € B(X): nul g(T) = def g(T) and R(T) closed }. O

(5.2)
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