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Abstract

Let Σn
k,d ⊂ Pn(n+3)/2 be the family of irreducible plane curves of degreen

with d nodes andk cusps as singularities. LetΣ ⊂ Σn
k,d be an irreducible

component. We consider the natural rational map

ΠΣ : Σ 99K Mg,

fromΣ to the moduli space of curves of genusg =
(n−1

2

)
−d−k. We define the

number of moduli ofΣ as the dimensiondim(ΠΣ(Σ)). If Σ has the expected
dimension equal to3n+ g − 1− k, then

dim(ΠΣ(Σ)) ≤ min(dim(Mg),dim(Mg) + ρ− k), (1)

whereρ := ρ(2, g, n) = 3n−2g−6 is the Brill-Neother number of the linear
series of degreen and dimension2 on a smooth curve of genusg. We say that
Σ has the expected number of moduli if the equality holds in(1). In this paper
we construct examples of families of irreducible plane curves with nodes and
cusps as singularities having expected number of moduli and with non-positive
Brill-Noether number.

1. Introduction

In this paper we compute the number of moduli of certain families of irreducible plane
curves with nodes and cusps as singularities. Let Σn

k,d ⊂ P(H0(P2,OP2(n))) := PN ,
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with N = n(n+ 3)/2, be the closure, in the Zariski’s topology, of the locally closed
set of reduced and irreducible plane curves of degree n with k cusps and d nodes. Let
Σ ⊂ Σn

k,d be an irreducible component of the variety Σn
k,d. We denote by Σ0 the open

set of Σ of points [Γ] ∈ Σ such that Σ is smooth at [Γ] and such that [Γ] corresponds
to a reduced and irreducible plane curve of degree n with d nodes, k cusps and no
further singularities. Since the tautological family S0 → Σ0, parametrized by Σ0, is an
equigeneric family of curves, by normalizing the total space, we get a family

S ′0

  @
@@

@@
@@

@
// S0

��

� � // P2 × Σ0

{{vvvvvvvvv

Σ0

of smooth curves of genus g =
(n−1

2

)
− k − d. Because of the functorial properties of

the moduli space Mg of smooth curves of genus g, we get a regular map Σ0 → Mg,
sending every point [Γ] ∈ Σ0 to the isomorphism class of the normalization of the plane
curve Γ corresponding to the point [Γ]. This map extends to a rational map

ΠΣ : Σ 99K Mg.

We say that ΠΣ is the moduli map of Σ and we set

number of moduli ofΣ := dim(ΠΣ(Σ)).

Notice that, when Σn
k,d is reducible, two different irreducible components of Σn

k,d can
have different number of moduli. We say that Σ has general moduliif ΠΣ is dominant.
Otherwise, we say that Σ has special moduli.

Definition 1.1 When Σ has the expected dimension equal to 3n + g − 1 − k and
g ≥ 2, we say that Σ has the expected number of moduli if

dim(ΠΣ(Σ)) = min(dim(Mg),dim(Mg) + ρ− k),

where ρ := ρ(2, g, n) = 3n− 2g − 6 is the number of Brill-Noether of the linear series
of degree n and dimension 2 on a smooth curve of genus g.

As we shall see in the next section, when g ≥ 2 and when Σ has the expected
dimension equal to 3n+ g − 1− k, the number of moduli of Σ is at most equal to the
expected one. This happens in particular if k < 3n. If k ≥ 3n, in general we have not
an upper-bound for the dimension of Σ and we cannot provide an upper bound for
the number of moduli of Σ, (see Lemma 2.2 and Remark 2.3). Moreover, by classical
Brill-Neother theory when ρ is positive and by a well know result of Sernesi when ρ ≤ 0
(see [18]), we have that Σn

0,d, (which is irreducible by [11]), has the expected number
of moduli for every d ≤

(n−1
2

)
. When k > 0 there are known results giving sufficient

conditions for the existence of irreducible components Σ of Σn
k,d with general moduli,

(see Propositions 2.5 and 2.6 and Corollary 2.7). In this article we construct examples
of families of irreducible plane curves with nodes and cusps with finite and expected
number of moduli. A large part of this paper is obtained working out the main ideas
and techniques that Sernesi uses in [18].
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In Section 2.1 we introduce the varieties Σn
k,d and we recall their main properties.

In Section 2.2 we discuss on Definition 1.1 and we summarize known results on the
number of moduli of families of irreducible plane curves with nodes and cusps. In
Theorem 3.5 we prove the existence of plane curves with nodes and cusps as singular-
ities whose singular points are in sufficiently general position to impose independent
linear conditions to a linear system of plane curves of a certain degree. This result is
related to the moduli problem by Lemma 3.2, Remark 3.4 and Proposition 4.1, where
we find sufficient conditions in order that an irreducible component Σ ⊂ Σn

k,d has the
expected number of moduli. If Σ verifies the hypotheses of Proposition 4.1, then the
Brill-Neother number ρ is not positive and Σ has finite number of moduli. Moreover,
by Lemma 4.6 and Corollary 4.7, for every k′ ≤ k and d′ ≤ d+k−k′, there is at least an
irreducible component Σ′ ⊂ Σn

k′,d′ , such that Σ ⊂ Σ′ and the general element [D] ∈ Σ′

corresponds to a plane curve D verifying hypotheses of Proposition 4.1 and so having
the expected number of moduli. Finally, the main result of this paper is contained
in Theorem 4.9, where, by using induction on the degree n and on the genus g of
the general curve of the family, we construct examples of families of irreducible plane
curves with nodes and cusps verifying the hypotheses of Proposition 4.1. In particular,
we prove that, if k ≤ 6 and ρ ≤ 0, then Σn

k,d has at least an irreducible component
which is not empty and which has the expected number of moduli. This result may
be improved and examples of families of curves showing that the condition k ≤ 6 is
not sharp are given in Remark 4.10. Notice that the previous theorem provides only
examples of families of plane curves with nodes and cusps with expected number of
moduli, when ρ is not positive. When the number of cusps k is very small, we expect
it is possible to prove the existence of irreducible components of Σn

k,d with expected
number of moduli, for every value of ρ. For example, from a result of Eisenbud and
Harris, it follows that Σn

1,d, (which is irreducible by [16]), has general moduli if ρ ≥ 2,
(see Corollary 2.7). In Theorem 4.11, by using induction on n we find that Σn

1,d has
general moduli also when ρ = 1. By recalling that, by Theorem 4.9, Σn

1,d has expected
number of moduli when ρ ≤ 0, we conclude that Σn

1,d has the expected number of mod-
uli for every ρ or, equivalently, for every d ≤

(n−1
2

)
− 1. We still don’t know examples

of irreducible components of Σn
k,d having number of moduli smaller that the expected.

2. Preliminaries

2.1 On Severi-Enriques varieties

We shall denote by PN = Pn(n+3)/2 the Hilbert scheme of plane curves of degree
n, by [Γ] ∈ PN the point parametrizing a plane curve Γ ⊂ P2 and by Σn

k,d ⊂ PN
the closure, in the Zariski topology, of the locally closed set parametrizing reduced
and irreducible plane curves of degree n with d nodes and k cusps as singularities.
These varieties have been introduced at the beginning of the last century by Severi
and Enriques. In particular, the case k = 0 has been studied first by Severi and for this
reason the varieties Σn

0,d are usually called Severi varieties, while for k > 0 the varieties
Σn
k,d are called Severi-Enriques varieties. We recall that every irreducible component

Σ of Σn
k,d has dimension at least equal to

N − d− 2k = 3n+ g − 1− k,
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where g =
(n−1

2

)
− k− d. When the equality holds we say thatΣ has expected dimension.

Moreover, it is well known that if k < 3n then every irreducible componentΣ of Σn
k,d has

expected dimension,(see for Example [23] or [25]). On the contrary, when k ≥ 3n, there
exist examples of irreducible components of Σn

k,d having dimension greater than the
expected, (see [25]). Moreover, we recall that Σn

0,d is not empty for every d ≤
(n−1

2

)
and

it contains in its closure all points parameterizing irreducible plane curves of degree
n and genus g =

(n−1
2

)
− d, (see [24], [25] and [1]). Often, we shall denote Σn

0,d by
Vn,g. While the proof of the existence of Vn,g is quite elementary and it is due to
Severi, the irreducibility of Vn,g remained an open problem for a long time and it has
been proved by Harris only in 1986. Later, by using the same techniques of Harris,
Kang has proved the irreducibility of Σn

k,d with k ≤ 3, see [11] and [16]. However, in
general, Σn

k,d is reducible and there exist values of n, d and k such that Σn
k,d is empty,

(see [25], [10], [20], [9] or Chapter 2 of [8] and related references). Finally, we recall
that, if Σ ⊂ Σn

k,d is a non-empty irreducible component of the expected dimension
equal to 3n + g − 1 − k, then, for every k′ ≤ k and d′ ≤ d + k − k′, there exists
a non-empty irreducible component Σ′ ⊂ Σn

k′,d′ such that Σ ⊂ Σ′. This happens in
particular if k < 3n. More precisely, it is true that, if Γ ⊂ P2 is a reduced (possibly
reducible) plane curve of degree n with k < 3n cusps at points q1, . . . , qk, nodes at
points p1, . . . , pd and no further singularities, then, chosen arbitrarily k1 cusps, say
q1, . . . , qk1 among the k cusps of Γ, k2 cusps qk1+1, . . . , qk2 among qk1+1, . . . , qk and d1

nodes p1, . . . , pd1 among the nodes of Γ, there exists a family of reduced plane curves
D → B ⊂ PN of degree n, whose special fibre is D0 = Γ and whose general fibre Dt = D
has a node in a neighborhood of every marked node of Γ, a cusp in a neighborhood
of each point q1, . . . , qk1 , a node in a neighborhood of each point qk1+1, . . . , qk2 and no
further singularities, (see [25], Corollary 6.3 of [9] or Lemma 3.17 of Chapter 2 of [8]).
To save space, we shall say that the familyD → B is obtained fromΓ by preserving the
singularitiesq1, . . . , qk1 andp1, . . . , pd1 , by deforming in a node each cuspqk1+1, . . . , qk2 and
by smoothing the other singularities.

2.2 Known results on the number of moduli of Σn
k,d

In order to explain the Definition 1.1, we need to recall some basics of Brill-
Noether theory. Given a smooth curve C of genus g, the set G2

n(C) of linear series g2
n

on C of dimension 2 and degree n, is a projective variety which verifies the following
properties:

(1) G2
n(C) is not empty of dimension at least ρ, if ρ(2, n, g) = 3n− 2g − 6 ≥ 0, (see

Theorem V.1.1 and Proposition IV.4.1 of [4]).

(2) Let g2
n be a given linear series, let H ∈ g2

n be a divisor and let W ⊂ H0(C,H)
be the three dimensional vector space corresponding to g2

n. Denoting by ωC =
OC(KC) the canonical sheaf of C and by

µo,C : W ⊗H0(C,ωC(−H)) → H0(C,ωC)

the natural multiplication map, also called the Brill-Noether mapof the pair
(C,W ), we have that the dimension of the tangent space to G2

n(C) at the point
[g2
n],corresponding to g2

n, is equal to
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dim(T[g2n]G
2
n(C)) = ρ+ dim(ker(µ0,C)),

(see [2] or Proposition IV.4.1 of [4] for a proof).

(3) Moreover, if C is a curve with general moduli (i.e. if [C] varies in an open set of
Mg), the variety G2

n(C) is empty if ρ < 0, it consists of a finite number of points
if ρ = 0 and it is reduced, irreducible, smooth and not empty variety of dimension
exactly ρ, when ρ ≥ 1, (see Theorem V.1.5 and Theorem V.1.6 of [4]). In the
latter case, the general g2

n on C defines a local Theorem 3.1 of [1] or Lemma 3.43
of [12]).

From (3), we deduce that, the Severi variety Σn
0,d = Vn,g of irreducible plane curves of

genus g =
(n−1

2

)
− d, has general moduli when ρ ≥ 0 and it has special moduli when

ρ < 0. When ρ < 0, and then g ≥ 3, by Definition 1.1, we expect that the image of
Vn,g into Mg has codimension exactly −ρ. Equivalently, recalling that, in this case,

dim(Vn,g) = 3n+ g − 1 = 3g − 3 + ρ+ 8 = dim(Mg) + ρ+ dim(Aut(P2)),

we expect that on the smooth curve C, obtained by normalizing the plane curve cor-
responding to the general element of Vn,g, there is only a finite number of g2

n mapping
C to the plane as a nodal curve. This is a well known result proved by Sernesi in [18].

Theorem 2.1 (Sernesi, [18])

The Severi variety Vn,g = Σn
0,d of irreducible plane curves of degree n and genus

g =
(n−1

2

)
− d has number of moduli equal to

min(dim(Mg),dim(Mg) + ρ).

What can we say about the number of moduli of an irreducible component Σ of
Σn
k,d, when k > 0? In this case we need to distinguish the two cases k < 3n and k ≥ 3n.

In the first case we have the following result.

Lemma 2.2

For every not empty irreducible component Σ of Σn
k,d, with k < 3n and g =(n−1

2

)
− k − d ≥ 2, the number of moduli of Σ is at most equal to

min(dim(Mg), dim(Mg) + ρ− k),

where ρ = 3n− 2g− 6 is the Brill-Neother number of moduli of linear series of dimen-
sion 2 and degree n on a smooth curve of genus g.

Proof. We recall that an ordinary cusp P of a plane curve Γ corresponds to a simple
ramification point p of the normalization map φ : C → Γ, i.e. to a simple zero of the
differential map dφ. If we denote by G2

n,k(C) ⊂ G2
n(C) the set of g2

n on C defining
a birational morphism with k simple ramification points, then G2

n,k(C) is a locally
closed subset of G2

n(C) and every irreducible component G of G2
n,k(C) has dimension

at least equal to ρ− k, if it is not empty. In particular, if F 2
n,k(C) is the variety whose
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points correspond to the pairs ([g2
n], {s0, s1, s2}) where [g2

n] ∈ G2
n,k(C) and {s0, s1, s2}

is a frame of the three dimensional space associated to the linear series g2
n, then every

irreducible component of F 2
n,k(C) has dimension at least equal to

min(8, ρ− k + 8).

Now, let Σ be one of the irreducible components of Σn
k,d and let [Γ] be a general point of

Σ. Then, if Γ ⊂ P2 is the corresponding plane curve and φ : C → Γ is the normalization
map, then the fibre over the point [C] ∈Mg of the moduli map

ΠΣ : Σ 99K Mg

consists of an open set in one or more irreducible components of F 2
n,k(C). In particular,

every irreducible component of the general fibre ofΠΣ has dimension at least equal to
min(8, ρ − k + 8). Moreover, if k < 3n then Σ has the expected dimension equal to
N − d− 2k = 3n+ g − 1− k, (see [25] or [23]). Finally, if g =

(n−1
2

)
− k − d ≥ 2, then

dim(Σ) = 3n+ g − 1− k = 3g − 3 + ρ− k + 8.

This proves the statement. �

Remark 2.3 The proof of the previous lemma still holds if k ≥ 3n but Σ has the
expected dimension. However in general, when k ≥ 3n, we don’t have a bound for
dim(ΠΣ(Σ)). Indeed, in this case the dimension of the general fibre of the moduli
map of Σ is still at least equal to ρ − k + 8, but Σ may have dimension larger than
3n + g − 1 − k. Anyhow, by the following proposition, every not empty irreducible
component of Σn

k,d has special moduli if k ≥ 3n.

Proposition 2.4 (Arbarello-Cornalba, [1])

Let C be a general curve of genus g ≥ 2 and let φ : C → P2 be a birational
morphism, then the degree of the zero divisor of the differential map of φ is smaller
than ρ. In particular, every irreducible component of Σn

k,d has special moduli if ρ =
3n− 2g − 6 < k.

A sufficient condition for the existence of irreducible families of plane curves with
nodes and cusps with general moduli is given by the following result.

Proposition 2.5 (Kang, [15])

Σn
k,d is irreducible, not empty and with general moduli if n > 2g − 1 + 2k, where

g =
(n−1

2

)
− d− k.

Actually, in [15], Kang proves that if n > 2g− 1 + 2k, then Σn
k,d is not empty and

irreducible. But from his proof it follows that, under the hypothesis of Proposition 2.5,
Σn
k,d has general moduli because the general element of Σn

k,d corresponds to a curve
which is a projection of an arbitrary smooth curve C of genus g in Pn−g, from a general
(n − 3)-plane intersecting the tangent variety of C in k different points. Another
result which may be used to find examples of families of plane curves with nodes
and cusps having general moduli is the following. Let grn be a linear series on C
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associated to a (r + 1)-space W ⊂ H0(C,L), where L is an invertible sheaf on C,
and let {s0, . . . , sr} be a basis of W , then the ramification sequence of the grn at p is
the sequence b = (b0, . . . , br) with bi = ordpsi − i. Choosing another basis of W , the
ramification sequence of grn at p doesn’t change. We say that the ramification sequence
of the grn at p is at least equal to b = (b0, . . . , br) if bi ≤ ordpsi − i, for every i, and we
write (ordps0, . . . , ordpsr − r) ≥ (b0, . . . , br).

Proposition 2.6 (Proposition 1.2 of [7])

Let C be a general curve of genus g, let p be a general point on C and let b =
(b0, . . . , br) be any ramification sequence. There exists a grn on C having ramification
at least b at p if and only if

r∑
i=0

(bi + g − n+ r)+ ≤ g,

where (−)+ := max(−, 0).

From Proposition 2.6, we easily deduce the following result.

Corollary 2.7

Suppose that k ≤ 3 and ρ = 3n−2g−6 ≥ 2k. Then Σn
k,d is not empty, irreducible

and it has general moduli.

Proof. By [16], the variety Σn
k,d is irreducible for every k ≤ 3 and d ≤

(n−1
2

)
−

k. Moreover, by using classical arguments, one can prove that Σn
k,d is not empty if

k ≤ 4 and d ≤
(n−1

2

)
− 4, (see, for example, Corollary 3.18 of chapter two of [8]).

Finally, by Theorem 1.1 of [21], by using the terminology of Proposition 2.6, under
the hypothesis k ≤ 3n − 4, in particular if k ≤ 3, the variety Σn

k,d contains every
point of PN corresponding to a plane curve Γ of genus g =

(n−1
2

)
− k − d such that

the normalization morphism of Γ has at least a ramification point with ramification
sequence (b0, b1, b2) ≥ (0, k, k). Then, by Proposition 2.6, if ρ ≥ 2k and k ≤ 3, the
moduli map of Σn

k,d is surjective. �

3. On the existence of certain families of plane curves with nodes and
cusps in sufficiently general position

As we already observed, we don’t have a complete answer for the existence problem
of Σn

k,d. In this section we are interested in a little more specific existence problem.
We shall prove the existence of plane curves with nodes and cusps as singularities
whose singular points are in sufficiently general position to impose independent linear
conditions to a linear system of plane curves of a certain degree.

Definition 3.1 A projective curve C ⊂ Pr is said to be geometricallyt-normal if the
linear series cut out on the normalization curve C̃ of C by the pull-back to C̃ of the
linear system of hypersurfaces of Pr of degree t is complete.
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From a geometric point of view, a projective curve C ⊂ Pr is geometrically
t-normal if and only if the image curve νt,r(C) of C by the Veronese embedding
νt,r : Pr → P(r+t

t ) of degree t, is not a projection of a non-degenerate curve living
in a higher dimensional projective space. We shall say that a curve is geometrically
linearly normal (g.l.n. for short) if it is geometrically 1-normal. Every such a curve C
is not a projection of a curve lying in a projective space of larger dimension.

The following result is proved under more general hypotheses in [5], Theorem 2.1.

Lemma 3.2

Let Γ ⊂ P2 be an irreducible and reduced plane curve of degree n and genus g with
at most nodes and cusps as singularities. Let t be an integer such that n− 3− t < 0,
then Γ is geometrically t-normal if and only if it is smooth. On the contrary, if
n − 3 − t ≥ 0, the plane curve Γ is geometrically t-normal if and only if its singular
points impose independent linear conditions to plane curves of degree n− 3− t.

We recall the following classical definition.

Definition 3.3 Let Γ ⊂ P2 be a plane curve of degree n with d nodes at p1, . . . , pd
and k cusps at q1, . . . , qk as singularities. Let φ : C → Γ be the normalization of Γ.
The adjoint divisor ∆ of φ is the divisor on C defined by

∆ =
d∑
i=1

φ−1(pi) +
k∑
j=1

2φ−1(qj).

Proof of Lemma 3.2. Let Γ be a plane curve as in the statement of the lemma. Then,
Γ is geometrically t-normal if and only if, by definition,

h0(C,OC(t)) = h0(P2,OP2(t))− h0(P2, IΓ(t))

where IΓ is the ideal sheaf of Γ in P2 and OC(t) := OC(tφ∗(H)), where H is the general
line of P2. By Riemann-Roch Theorem, Γ is geometrically t-normal if and only if

h0(C,ωC(−t))) = −nt+ g − 1 +
(t+ 1)(t+ 2)

2
− h0(P2, IΓ(t)), (2)

where g is the geometric genus of Γ and ωC is the canonical sheaf of C. On the other
hand, it is well known that

H0(C,ωC(−t)) = H0(C,OC(n− 3− t)(−∆)),

where ∆ is the adjoint divisor of φ, (see Definition 3.3 and [4], Appendix A). If n−3−t <
0 then h0(C,OC(n− 3− t)) = 0 and Γ is geometrically t-normal if and only if

h0(P2,OP2(t))− h0(P2, IΓ(t)) = nt− n2 − 3n
2

+ δ,

where δ =
(n−1

2

)
− g = deg(∆)/2. This equality is verified if and only if δ = 0, i.e. Γ

is smooth. If n− 3 ≥ t, h0(P2, IΓ(t)) = 0 and (2) is verified if and only if

h0(C,OC(n− 3− t)(−∆)) = h0(P2,OP2(n− 3− t))− δ.
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On the other hand, if ψ : S → P2 is the blowing-up of the plane at the singular locus
of Γ, denoting by

∑
iEi the pullback of the singular locus of Γ with respect to ψ and

by OS(r) the sheaf OS(rψ∗(H)), we have that

h0(C,OC(n− 3− t)(−∆)) = h0

(
S,OS(n− 3− t)

(
−
∑
i

Ei
))

= h0(P2,OP2(n− 3− t)⊗A)

where A is the ideal sheaf of singular points of Γ. �

Remark 3.4 Notice that, if an irreducible and reduced plane curve Γ of degree n with
only nodes and cusps as singularities is geometrically t-normal, with t ≤ n−3, then it is
geometrically r-normal for every r ≤ t. Indeed, if a set of points imposes independent
linear conditions to a linear system S, then it imposes independent linear conditions
to every linear system S′ containing S.

Theorem 3.5

Let Σn
k,d be the variety of irreducible and reduced plane curves of degree n with

d nodes and k cusps. Suppose that d, k, n and t are such that

d+ k ≤ n2 − (3 + 2t)n+ 2 + t2 + 3t
2

= h0(OP2(n− t− 3)) (3)

t ≤ n− 3 if k = 0, (4)
k ≤ 6 if t = 1, 2 and (5)

k ≤ 6 +
[n− 8

3

]
, if t = 3, (6)

where [−] is the integer part of −. Then the variety Σn
k,d is not empty and there exists

at least an irreducible component W ⊂ Σn
k,d whose general element corresponds to a

geometrically t-normal plane curve.

Remark 3.6 As we shall see in the next section, (see Proposition 4.1), the geometric
linear normality of the plane curve corresponding to the general element of an irre-
ducible component Σ of Σn

k,d, is related with the number of moduli of Σ. Another
motivation for the previous theorem has been the family of irreducible plane sextics
with six cusps. By [25], we know that Σ6

6,0 contains at least two irreducible compo-
nents Σ1 and Σ2. The general point of Σ1 corresponds to a sextic with six cusps on a
conic, whereas the general element of Σ2 corresponds to a sextic with six cusps not on
a conic. Note that, by the previous lemma the general element of Σ2 parameterizes a
geometric linearly normal sextic, unlike the general element of Σ1, which corresponds
to a projection of a canonical curve of genus four. Theorem 3.5, proves in particular
that, under a suitable restriction, (see inequality (3)), on the genus of the curve corre-
sponding to the general element of the family and, if the number of the cusps is small,
the variety Σn

k,d contains a not empty irreducible component whose general element
corresponds to a curve which is not a projection of an other curve, lying in a projective
space of larger dimension. We notice that the inequality (3) of the previous theorem
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can’t be improved. Indeed, if g =
(n−1

2

)
− k − d, then k + d > h0(P2,OP2(n − 3 − t))

if and only if g < 2tn−t2−3t
2 . On the other hand, by using the same notation as in

Theorem (3.5), if g < 2tn−t2−3t
2 , then, by Riemann-Roch Theorem, we have that

h0(C,OC(t)) ≥ tn− g + 1 >
t2 + 3t

2
+ 1 = h0(P2,OP2(t)).

On the contrary, inequalities (5) and (6) are not sharp, (see Example 3.7).

In the case of k = 0 and t = 1, Theorem 3.5 has been proved by Sernesi in [18],
Section 4. The case k = 0 and t ≤ n − 3 is already contained in [5]. To show
Theorem 3.5, we proceed by induction on the degree n and on the number of nodes
and cusps of the curve. The geometric idea at the base of the induction on the degree
of the curve is, mutatis mutandis, the same as that of Sernesi.

Proof of Theorem 3.5. Let t be a positive integer such that n−3−t ≥ 0 and letW ⊂ Σn
k,d

be an irreducible component of Σn
k,d. By standard semicontinuity arguments it follows

that, if there exists a point[C] ∈ W corresponding to a geometricallyt-normal curve with
only k cusps andd nodes as singularities, then the general element ofW corresponds to a
geometricallyt-normal plane curve. Moreover, if the theorem is true for fixedn, t ≤ n− 3,
k as in(5) or in (6) andk + d as in(3), then the theorem is true forn, t and anyk′ ≤ k and
d′ ≤ d + k − k′. Indeed, from the hypotheses (3), (5) and (6), it follows in particular
that k < 3n. By Section 2.1, under this hypothesis, for every k′ ≤ k and for every
d′ ≤ d+k−k′, there exists a family of plane curves C → ∆ of degree n, parametrized by
a curve ∆ ⊂ Σn

k′,d′ , whose special fibre is C0 = C and whose general fibre Cz has d′ nodes
and k′ cusps as singularities. The statement follows by applying the semicontinuity
theorem to the family C̃ → ∆̃, obtained by normalizing the total space of the pull-back
family of C → ∆ to the normalization curve ∆̃ of ∆. Finally, it’s enough to show the
theorem when the equality holds in(5), (6) and(3).

First of all we consider the case k = 0. We will show the statement for any fixed t
and by induction on n. Let, then t ≥ 1 and n = t+ 3. In this case the equality holds
in (3) if d = 1 = h0(P2,OP2). Since one point imposes independent linear conditions to
regular functions, by using Lemma 3.2, we find that every irreducible plane curve of
degree n = t+ 3 with one node and no further singularities is geometrically t-normal.
So, the first step of the induction is proved. Suppose, now, that the theorem is true
for n = t + 3 + a and let [Γ] ∈ Vn,g be a point corresponding to a geometrically
t-normal curve with a2+3a+2

2 nodes. Let D be a line which intersects transversally
Γ and let P1, ..., Pt+1 be t + 1 marked points of Γ ∩ D. If Γ′ = Γ ∪ D ⊂ P2, then
P1, ..., Pt+1 are nodes for Γ′. Let C → Γ be the normalization of Γ and C ′ → Γ′ the
partial normalization of Γ′, obtained by smoothing all singular points of Γ′, except
P1, ..., Pt+1. We have the following exact sequence of sheaves on C ′

0 → OD(t)(−P1 − ...− Pt+1) → OC′(t) → OC(t) → 0, (7)

where OC′(t) := OC′(tH) and H is the pull-back with respect to C ′ → Γ′ of general
line of P2. Since deg(OD(t)(−P1 − ...− Pt+1)) < 0, we get that

h0(D,OD(t)(−P1 − ...− Pt+1)) = 0
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and so
h0(C ′,OC′(t)) = h0(C,OC(t)) = h0(P2,OP2(t)). (8)

Now, by Section 2.1, we can obtain Γ′ as the limit of a 1-parameter family of irreducible
plane curves

ψ : C → ∆ ⊂ P(n+1)(n+4)/2

of degree n+ 1 = t+ a+ 4 with

a2 + 3a+ 2
2

+ n− t− 1 =
(a+ 1)2 + 3(a+ 1) + 2

2
= h0(P2,OP2(n+ 1− t− 3))

nodes specializing to nodes of Γ′ different from the marked points P1, ..., Pt+1. More-
over, one can prove that ∆ is smooth, (see [24] or [25]). Normalizing C, we obtain
a family whose general fibre is smooth and whose special fibre is exactly C ′, and we
conclude the inductive step by (8) and by semicontinuity theorem.

Now we consider the case t = 1, 2 or 3 and k as in (5) and in (6). Suppose the
theorem is true for n and let [Γ] ∈ Σn

k,d be a general point in one of the irreducible
components of Σn

k,d. Then, let D be a smooth plane curve of degree t if t = 1, 2 or
an irreducible cubic with a cusp if t = 3. By the generality of Γ, we may suppose
that D intersects Γ transversally. Let P1, ..., Pt2+1 be t2 + 1 fixed points of Γ ∩D. If
Γ′ = Γ ∪D, then P1, ..., Pt2+1 are nodes for Γ′. Let C → Γ be the normalization of Γ
and C ′ → Γ′ the partial normalization of Γ′, obtained by smoothing all singular points
except P1, ..., Pt2+1. By using the same notation and by arguing as before, from the
following exact sequence of sheaves on C ′

0 → OD(t)(−P1 − ...− Pt2+1) → OC′(t) → OC(t) → 0,

we deduce that

h0(C ′,OC′(t)) = h0(C,OC(t)) = h0(P2,OP2(t)). (9)

Now, by Section 2.1, we can obtain Γ′ as limit of a family of irreducible plane curves

φ : C → ∆

of degree n+ t with

d+ nt− t2 − 1 =
(n+ t)2 + (3 + 2t)(n+ t) + t2 + 3t+ 2

2

nodes specializing to nodes of Γ′ different to P1, ..., Pt2+1, and k+ t2−3t+2
2 cusps special-

izing to cusps of Γ. We conclude by (9) and by semicontinuity, as before. Now we have
to show the first step of the induction. For t = 1 the induction begins with the cases
(n, k) = (4, 1), (5, 3), (6, 6). Trivially, if n = 4 and k = 1 one point imposes indepen-
dent conditions to the linear system of regular functions. If n = 5 and k = 3 we have to
show that there are irreducible quintics with three cusps not on a line. A quintic with
three cusps is a projection of the rational normal quintic C5 ⊂ P5 from a plane gener-
ated by three points lying on three different tangent lines to C5. By Bezout theorem
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the three cusps of such a plane curve can’t be aligned. If n = k = 6, one can repeat
the classical argument used by Zariski, see [24] or Example 3.20 of Chapter 2 of [8].
For t = 2 we have to show the theorem for (n, k) = (5, 1), (6, 3), (7, 6), (8, 6), while
for t = 3 we have to show the theorem for (n, k) = (6, 1), (7, 3), (8, 6), (9, 6), (10, 6).
The case t = 2 and (n, k) = (5, 1) is trivial. When t = 2, n = 6 and k = 3 we have
that n − 3 − t = 1. To show that there exists an irreducible sextic with three cusps
not on a line, consider a rational quartic C4 with three cusps, (see Corollary 3.18 of
Chapter 2 of [8] for the existence). By Bezout Theorem, the three double points of C4

can’t be aligned. Then consider a sextic C6 which is union of C4 and a conic C2 which
intersects C4 transversally. By Section 2.1, one can smooth the intersection points
of C4 and C2 obtaining a family of sextics with three cusps not on a line. For t = 2,
n = 7 and k = 6 we argue as in the previous case, by using a sextic C6 with six cusps
not on a conic and a line R with intersects C6 transversally. Similarly for t = 2 , n = 8
and k = 6 and t = 3 and (n, k) = (6, 1), (7, 3), (8, 6), (9, 6), (10, 6). �

Example 3.7 Inequalities (5) and (6) are not sharp. To see this, we can consider the
example of curves of degree 10. We recall that we say that a plane curve is geometrically
linearly normal (g.l.n. for short) if it is geometrically 1-normal. Theorem 3.5 ensures
the existence of g.l.n. irreducible plane curves of degree 10 with k ≤ 6 cusps and nodes
as singularities. But, by using the same ideas as we used in Theorem 3.5, one can prove
the existence of g.l.n. plane curves of degree 10 with nodes and k ≤ 9 cusps. It is
enough to consider a sextic Γ6 with six cusps not on a conic and a rational quartic Γ4

with three cusps intersecting Γ6 transversally. We choose five points P1, . . . , P5 of
Γ4 ∩ Γ6. If Γ′

6 and Γ′
4 are the normalization curves of Γ6 and Γ4 respectively and C ′

is the partial normalization of Γ6 ∪ Γ4 obtained by normalizing all its singular points
except P1, . . . , P5, by considering the following exact sequence

0 → OΓ′4
(1)(−P1 − · · · − P5) → OC′(1) → OΓ′6

(1) → 0

we find that h0(C ′,OC′(1)) = 3. By using terminology of Section 2.1, the statement
follows by smoothing the singular points P1, . . . , P5 of Γ6 ∪Γ4, and by semicontinuity,
as in the proof of Theorem 3.5. The bound on the number of cusps of Theorem 3.5
can be improved also for t = 2 or t = 3. For example, Theorem 3.5 ensures the
existence of geometrically 3-normal curves of degree 12 with k ≤ 6 and nodes as further
singularities. But, by considering a geometrically 3-normal curve of degree 8 with six
cusps and a quartic with 3 cusps and arguing as before, we can find geometrically
3-normal irreducible plane curves of degree 12 with nodes and k ≤ 9 cusps.

4. Families of plane curves with nodes and cusps with finite and
expected number of moduli

Let Σ ⊂ Σn
k,d be an irreducible component of Σn

k,d. We want to give sufficient conditions
for Σ to have the expected number of moduli. Let [Γ] ∈ Σ be a general element,
corresponding to a plane curve Γ with normalization map φ : C → Γ. We shall denote
by ωC the canonical sheaf of C and by OC(1) the sheaf associated to the pullback to
C of the divisor cut out on Γ from the general line of P2.
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Proposition 4.1

Let Σ ⊂ Σn
k,d be an irreducible component of Σn

k,d and let [Γ] ∈ Σ be a general
element, corresponding to a plane curve Γ with normalization map φ : C → Γ. Suppose
that Σ is smooth of the expected dimension equal to 3n+ g − 1− k at [Γ]. Moreover,
suppose that:

(1) Γ is geometrically linearly normal, i.e. h0(C,OC(1)) = 3,

(2) the Brill-Noether map

µo,C : H0(C,OC(1))⊗H0(C,ωC(−1)) → H0(C,ωC)

is surjective.

Then Σ has the expected number of moduli equal to 3g − 3 + ρ− k.

Proof. The case k = 0 has been proved by Sernesi in [18], Section 4. We shall
assume k > 0. Let Γ be a plane curve verifying the hypotheses of the proposition. By
Lemma 1.5.(b) of [22], the hypothesis that Σ is smooth of the expected dimension at
[Γ] implies the vanishing H1(C,Nφ) = 0, where Nφ if the normal sheaf of φ. We recall
that, denoting by ΘC and ΘP2 the tangent sheaf of C and P2 respectively, then the
normal sheaf of φ is defined as the cokernel of the differential map φ∗ of φ

0 → ΘC
φ∗→ φ∗ΘP2 → Nφ → 0 (10)

By Theorem 3.1 of [13], the vanishing H1(C,Nφ) = 0 is a sufficient condition for the
existence of a universal deformation family

C
φ̃ //

π

��

P2

B

of the normalization map φ, whose parameter space B is smooth at the point 0 cor-
responding to φ, with tangent space at 0 equal to H0(C, Nφ). On the contrary,
by [3], p. 487, the Severi variety Vn,g = Σn

0,k+d of irreducible plane curves of genus
g =

(n−1
2

)
− d − k is singular at the point [Γ] and the universal deformation space

B of φ is a desingularization of Vn,g at [Γ]. Moreover, by Corollary 6.11 of [2], if
Bk = F−1(Σ) is the locus of points of B corresponding to a morphism with k rami-
fication points, then the tangent space to Bk at 0 is a subspace W of H0(C,Nφ) of
codimension k such that W ∩H0(C,Kφ) = 0, where Kφ is the torsion subsheaf of Nφ.
By [3], p. 487, it follows that, if

F : B → Vn,g

is the natural (1 : 1)-map from B to Vn,g, then the differential map

dF : H0(C, Nφ) → T[Γ]Vn,g

restricts to an isomorphism between W and the tangent space T[Γ]Σ to Σ at [Γ].
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We can now go back to the number of moduli of Σ. From the exact sequence (10),
by using that H1(C, Nφ) = 0, we get the following long exact sequence

0 → H0(C,ΘC) → H0(C, φ∗ΘP2) → H0(C,Nφ)
δC→ H1(C,ΘC)

→ H1(C, φ∗ΘP2) → 0 .

Recalling that the space H1(C,ΘC) is canonically identified with the tangent space
T[C]Mg toMg at the point associated to the normalization C of Γ, the coboundary map
δC : H0(C,Nφ) → H1(C,ΘC) sends the Horikawa class of an infinitesimal deformation
of φ to the Kodaira-Spencer class of the corresponding infinitesimal deformation of C.
So, δC |W is the differential map at the point 0 ∈ B of the moduli map ΠΣ ◦ F : Bk =
F−1(Σ) 99K Mg. Since the point [Γ] is general in Σ, and recalling the isomorphism
dF : W v→ T[Γ]Σ, we have that

the number of moduli ofΣ = dim(δC(W )).

Now, from the exact sequence (10), we have that

dim(δC(H0(C,Nφ)) = 3g − 3− h1(C, φ∗ΘP2).

Moreover, from the pull-back to C of the Euler exact sequence, we deduce the well
known isomorphism

H1(C, φ∗ΘP2) ' coker(µ∗0,C) ' (ker(µ0,C))∗

and we conclude that

dim(δC(H0(C,Nφ))) = 3g − 3− dim(ker(µ0,C)). (11)

Notice that the previous equality is always true, even if Γ doesn’t verify the hypothe-
sis (1) or (2) of the statement. Moreover, if Γ is geometrically linearly normal, i.e. if
h0(C,OC(1)) = 3, we have that

ρ = 3n− 2g − 6 = dim(coker(µo,C))− dim(ker(µo,C)).

When µo,C is surjective, ρ = −dim(ker(µo,C)) and

dim(δC(H0(C,Nφ)) = 3g − 3 + ρ = dim(B)− 8 = dim(Vn,g)− 8. (12)

Since the dimension of the fibre of the moduli map

ΠVn,g ◦ F : B 99K Mg

has dimension at least equal to 8 = dim(Aut(P2)), from (12) we deduce that the
differential map of ΠVn,g ◦ F has maximal rank at 0 and, in particular, we have that
dim((ΠVn,g ◦ F )−1([C])) = 8. Equivalently, there exist only finitely many g2

n on C. It
follows that there are only finitely many g2

n on C mapping C to the plane as a curve
with k cusps and d nodes. Then,

dim(δc(W )) = dim(ΠΣ(Σ)) = 3g − 3 + ρ− k. �
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Remark 4.2 Arguing as in the proof of the previous proposition, it has been proved
in [18] that, if Γ is a geometrically linearly normal plane curve with only d nodes
as singularities and the Brill-Noether map µo,C of the normalization morphism of Γ is
injective, then Σ = Σn

0,d has general moduli. If Σ ⊂ Σn
k,d and [Γ] ∈ Σ verify the hypothe-

ses of Proposition 4.1 but we assume that µo,C is injective, we may only conclude that
ΠVn,g ◦F is dominant with surjective differential map at [Γ]. So dim(Π−1

Vn,g
([C])) = ρ+8.

But this is not useful to compute the dimension of δC(W ) = δC(T[Γ]Σ). However, in
this case we get that

δC(T[Γ]Σ) + δC(H0(C,Kφ)) = δC(H0(C,Nφ)) = H1(C,ΘC).

Then, by using that dim(δC(H0(C,Kφ))) ≤ k and by recalling that if Σ has the
expected dimension then the number of moduli of Σn

k,d is at most the expected one
(see Lemma 2.2 and Remark 2.3), we find that

3g − 3− k ≤ number of moduli ofΣ ≤ 3g − 3 + ρ− k.

Remark 4.3 Notice that, if a plane curve Γ of genus g verifies the hypotheses (1) and (2)
of the previous proposition, then the Brill-Noether number ρ(2, g, n) is not positive and,
in particular, g ≥ 3. We don’t know examples of complete irreducible families Σ ⊂ Σn

k,d

with the expected number of moduli whose general element [Γ] corresponds to a curve
Γ of genus g, with ρ(2, g, n) ≤ 0, which doesn’t verify properties (1) and (2).

Lemma 4.4 ([5], Corollary 3.4)

Let Γ be an irreducible plane curve of degree n with only nodes and cusps as
singularities and let φ : C → Γ be the normalization morphism of Γ. Suppose that Γ
is geometrically 2-normal, i.e. h0(C,OC(2)) = 6. Then the Brill-Noether map

µo,C : H0(C,OC(1))⊗H0(C,ωC(−1)) → H0(C,ωC)

is surjective.

Proof. By Lemma 3.2, the curve Γ is geometrically 2-normal if and only if the scheme
N of the singular points of Γ imposes independent linear conditions to the linear system
H0(P2,OP2(n− 5)) of plane curves of degree n− 5. Since

H0(P2,OP2(n− 5)) ⊂ H0(P2,OP2(n− 4)),

N imposes independent linear conditions plane curves of degree n − 4, and, by using
Lemma 3.2, we get that h0(C,OC(1)) = 3, i.e. Γ is geometrically linearly normal. Now,
denote by IN |P2 the ideal sheaf of N . Notice that the curve Γ is geometrically 2-normal
if and only if the ideal sheaf IN |P2(n − 4) is 0-regular, (in the sense of Castelnuovo-
Mumford). Indeed, since h2(P2, IN |P2(n − 6)) = 0, the ideal sheaf IN |P2(n − 4) is 0-
regular if and only if h1(P2, IN |P2(n−5)) = 0. Because of the 0-regularity of IN |P2(n−
4), we have the surjectivity of the natural map

H0(P2, IN |P2(n− 4))⊗H0(P2,OP2(1)) → H0(P2, IN |P2(n− 3)),
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(see [17]). Finally, by the geometric linear normality of Γ, the vertical maps of the
following commutative diagram

H0(P2,OP2(1))⊗H0(P2, IN |P2(n− 4)) //

��

H0(P2, IN |P2(n− 3))

��
H0(C,OC(1))⊗H0(C,ωC(−1))

µo,C // H0(C,ωC)

are surjective and, hence, the Brill-Noether map µo,C is surjective too. �

Corollary 4.5

Let Σ ⊂ Σn
k,d be an irreducible component of Σn

k,d of dimension equal to 3n+ g−
1 − k, such that the general point [Γ] ∈ Σ corresponds to a geometrically 2-normal
plane curve. Then Σ has the expected number of moduli equal to 3g − 3 + ρ− k.

Proof. It follows from Proposition 4.1 and Lemma 4.4. �

In order to produce examples of families of irreducible plane curves with nodes
and cusps with the expected number of moduli, we study how increases the rank of the
Brill-Noether map by smoothing a node or a cusp of the general curve of the family,
(in the sense of Section 2.1).

Let Σ ⊂ Σn
k,d, with n ≥ 5, be an irreducible component of Σn

k,d, let [Γ] ∈ Σ be a
general point of Σ and let φ : C → Γ be the normalization of Γ. Choose a singular
point P ∈ Γ and denote by φ′ : C ′ → Γ the partial normalization of Γ obtained by
smoothing all singular points of Γ, except the point P . If ωC′ is the dualizing sheaf of
C ′ and

µo,C′ : H0(C ′,OC′(1))⊗H0(C ′, ωC′(−1)) → H0(C ′, ωC′),

is the natural multiplication map, we have the following result.

Lemma 4.6

If h0(C,OC(1)) = 3 and the geometric genus g of C is such that g > n− 2, with
n ≥ 5, then rk(µo,C′) ≥ rk(µo,C) + 1. In particular, if h0(C,OC(1)) = 3, n ≥ 5 and
µo,C is surjective, then µo,C′ is also surjective.

Proof. Let ψ : C → C ′ be the normalization map.

C
ψ //

φ   A
AA

AA
AA

A C ′

φ′

��
Γ

We recall that, if we set φ∗(P ) := p1 + p2 when P is a node and φ∗(P ) = 2φ−1(P )
when P is a cusp, then the dualizing sheaf of C ′ is a subsheaf of ψ∗(ωC(φ∗(P ))), (see
for Example [7], p. 80). In particular we have the following exact sequence

0 → ωC′ → ψ∗ωC(φ∗(P )) → CP → 0 (13)
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where CP is the skyscraper sheaf on C with support at P . From this exact sequence,
we deduce that

H0(C ′, ωC′) ' H0(C,ωC(φ∗(P ))).

Moreover, tensoring (13) by OC′(−1), we find the exact sequence

0 → ωC′(−1) → ψ∗ωC(φ∗(P ))(−1) → CP → 0 (14)

from which we get an injective map

H0(C ′, ωC′(−1)) → H0(C,ωC(φ∗(P ))(−1)).

On the other hand

h0(C ′, ωC′(−1)) = h0(C,ωC(φ∗(P ))(−1)) = g − n+ 3 (15)

and so
H0(C ′, ωC′(−1)) ' H0(C,ωC(φ∗(P ))(−1)).

Moreover, from the hypothesis h0(C,OC(1)) = 3, we have that

H0(C,OC(1)) ' H0(C ′,OC′(1)) ' H0(P2,OP2(1)).

Therefore, in the following commutative diagram

H0(C ′,OC′(1))⊗H0(C ′, ωC′(−1))
µo,C′

//

��

H0(C ′, ωC′)

��
H0(C,OC(1))⊗H0(C,ωC(−1)(φ∗(P )))

µ′o,C // H0(C,ωC(φ∗(P )))

where we denoted by µ′o,C the natural multiplication map, the vertical maps are iso-
morphisms. In particular,

rk(µo,C′) = rk(µ′o,C).

In order to compute the rank of µ′o,C , we consider the following commutative diagram

H0(C,OC(1))⊗H0(C,ωC(−1))
µo,C //

��

H0(C,ωC)

G
��

H0(C,OC(1))⊗H0(C,ωC(−1)(φ∗(P )))
µ′o,C // H0(C,ωC(φ∗(P )))

where the vertical maps are injections. Notice that, since we supposed n ≥ 5,
h0(C,OC(1)) = 3 and g > n − 2 ≥ 3, the sheaf OC(1) is special. We deduce that
C is not hyperelliptic and, chosen a basis of H0(C,ωC), the associated map C → Pg−1

is an embedding. On the contrary, the sheaf ωC(φ∗(P )) does not define an embed-
ding on C. Choosing a basis of H0(C,ωC(φ∗(P )) and denoting by Φ : C → Pg the
associated map, this will be an embedding outside φ∗(P ). If P is a node of C and
φ∗(P ) = p1 +p2, the image of C to Pg, with respect to Φ, will have a node at the image
point Q of p1 and p2. If P ∈ Γ is a cusp, then Φ(C) will have a cusp at the image point
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Q of φ−1(P ). The hyperplanes of Pg passing through Q cut out on C the canonical
linear series |ωC |. Moreover, if we denote by B ⊂ Pg the subspace which is the base
locus of the hyperplanes of Pg corresponding to Im(µ′o,C), then Q /∈ B. Indeed, B
intersects the curve C in the image of the base locus of

|OC(1)|+ |ωC(φ∗(P ))(−1)| := P(Im(µ′0,C)),

which coincides with the base locus of |ωC(φ∗(P ))(−1)|, since |OC(1)| is base point
free. Now, by (15),

h0(ωC(φ∗(P ))(−1)) = 3 + g − n = h0(C,ωC(−1)) + 1.

Then φ∗(P ) does not belong to the base locus of |ωC(φ∗(P ))(−1)|, and so

dim(< Q,B >Pg) = dim(B) + 1.

Finally, we find that

rk(µo,C) = rk(Gµo,C) ≤ dim(Im(G) ∩ Im(µ′o,C))
≤ g + 1− dim(< B,Q >Pg)− 1
= g − 1− dim(B)
= rk(µ′o,C)− 1.

�
Corollary 4.7

Let Σ ⊂ Σn
k,d be a non-empty irreducible component of the expected dimension

of Σn
k,d, with n ≥ 5. Suppose that Σ has the expected number of moduli and that the

general element [Γ] ∈ Σ corresponds to a g.l.n. plane curve Γ of geometric genus g such
that, if C → Γ is the normalization of Γ, then the map µo,C is surjective. Then, for
every k′ ≤ k and d′ ≤ d+k−k′, there is at least an irreducible component Σ′ ⊂ Σn

k′,d′ ,
such that Σ ⊂ Σ′, the general element [D] ∈ Σ′ corresponds to a g.l.n. plane curve D
of geometric genus g′ with normalization Dν → D and the Brill-Noether map µ0,Dν

surjective. In particular, Σ′ has the expected number of moduli.

Proof. Let Γ be the curve corresponding to the general element [Γ] of Σ ⊂ Σn
k,d. Since

by hypothesis Σ is smooth of the expected dimension at [Γ], by Section 2.1, for every
k′ ≤ k and for every d′ ≤ d + k − k′ there exists an irreducible component Σ′ of
Σn
k′,d′ containing Σ. In order to prove the statement, it is enough to show it under the

hypotheses k′ = k − 1 and d′ = d+ 1, k = k′ and d′ = d− 1 or d = d′ and k′ = k − 1.
If k′ = k − 1 and d′ = d + 1, then the statement follows by standard semicontinuity
arguments. If k = k′ and d′ = d− 1 or d = d′ and k′ = k− 1, the statement follows by
Lemma 4.6 and by standard semicontinuity arguments. �

The following lemma has been stated and proved by Sernesi in [18]. Actually,
Sernesi supposes that Γ has only nodes as singularities. But, since his proof works
for plane curves Γ with any type of singularities and, since we need it for curves with
nodes and cusps, we state the lemma in a more general form.
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Lemma 4.8 ([18], Lemma 2.3)

Let Γ be an irreducible and reduced plane curve of degree n ≥ 5 with any type
of singularities. Denote by C the normalization of Γ. Suppose that h0(C,OC(1)) = 3
and the Brill-Noether map

µo,C : H0(C,OC(1))⊗H0(C,ωC(−1)) → H0(C,ωC),

has maximal rank. Let R be a general line and let P1, P2 and P3 be three fixed points
of Γ ∩ R. We denote by C ′ the partial normalization of Γ′ = Γ ∪ R, obtained by
smoothing all the singular points, except P1, P2 and P3. Then h0(C ′,OC′(1)) = 3 and,
denoting by ωC′ the dualizing sheaf of C ′, the multiplication map

µo,C′ : H0(C ′,OC′(1))⊗H0(C ′, ωC′(−1)) → H0(C ′, ωC′),

has maximal rank.

Theorem 4.9

Let Σn
k,d be the algebraic system of irreducible plane curves of degree n ≥ 4 with

k cusps, d nodes and geometric genus g =
(n−1

2

)
− k − d. Suppose that:

n− 2 ≤ g equivalently k + d ≤ h0(P2,OP2(n− 4)) (16)

and

k ≤ 6 +
[
n− 8

3

]
if 3n− 9 ≤ g and n ≥ 6, (17)

k ≤ 6 otherwise. (18)

Then Σn
k,d has at least an irreducible component Σ which is not empty and such

that, if Γ ⊂ P2 is the curve corresponding to the general element of Σ and C is the
normalization curve of Γ, then h0(C,OC(1)) = 3 and the map µo,C has maximal rank.
In particular, when ρ ≤ 0, the algebraic system Σ has the expected number of moduli
equal to 3g − 3 + ρ− k.

Proof. Suppose that(17) holds. Then, by observing that

g ≥ 3n− 9 if and only if k + d ≤ h0(P2,OP2(n− 6))

and by using Theorem 3.5 for t = 3, we have that there exists an irreducible compo-
nent Σ of Σn

k,d whose general element is a geometrically 3-normal plane curve Γ. By
Remark 3.4, it follows that also the linear systems cut out on C by the conics and the
lines are complete. The statement follows from Corollary 4.5.

In order to prove the theorem under the hypothesis(18), we consider the following
subcases:

(1) 2n−5 ≤ g ≤ 3n−9, i.e. h0(OP2(n−6)) ≤ k+d ≤ h0(OP2(n−5)) and n ≥ 5,

(2) n− 2 ≤ g ≤ 2n− 7 and n ≥ 5,

(3) g = 2n− 6 and n ≥ 4.
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Suppose that (1) holds.By Theorem 3.5 for t = 2, we know that, under this
hypothesis, there exists a nonempty component Σ ⊂ Σn

k,d, whose general element is
geometrically 2-normal. We conclude as in the previous case, by Corollary 4.5.

Now, suppose thatg and n verify (2). We shall prove the theorem by induction onn
andg. Setg = 2n − 7 − a, with a ≥ 0 fixed. Suppose that the theorem is true for the
pair (n, g), with n ≥ 7. We shall prove the theorem for (n + 1, g + 2), observing that
g + 2 = 2(n + 1) − 7 − a. Let Γ be a g.l.n. irreducible plane curve of degree n and
genus g = 2n − 7 − a with k ≤ 6 cusps, d nodes and no more singularities. Let C be
the normalization of Γ. Suppose that the Brill-Noether map µo,C has maximal rank.
Let R ⊂ P2 be a general line and let P1, P2 and P3 be three fixed points of Γ ∩ R.
By Section 2.1, since k ≤ 6 < 3n, one can smooth the singular points P1, P2, P3 and
preserve the other singularities of Γ∪R ⊂ P2, obtaining a family of plane curves C → ∆
whose general fibre is irreducible, has degree n + 1 and genus g + 2. We conclude by
Lemma 4.8 and by standard semicontinuity arguments.

Now we prove the first step of the induction forn ≥ 7. If n = 7, we get0 ≤ a ≤ 2. Let
a = 0, i.e. g = 2n−7−a = 7. Let Γ be a g.l.n. irreducible plane curve of degree n = 7,
of genus g = n = 7 with k ≤ 6 cusps and nodes as singularities, such that no seven
singular points of Γ lie on an irreducible conic. To prove that there exists such a plane
curve, notice that, by applying Theorem 3.5 for t = 1, we get that, for any fixed k ≤ 6,
there exists a g.l.n. irreducible sextic D of genus four with k cusps and d = 6−k nodes.
Let R1, . . . , R6 be the singular points of D. Since the points R1, . . . , R6 of D impose
independent linear conditions to the conics, however we choose five singular points
Ri1 , . . . , Ri5 of D, with I = (i1, . . . , i5) ⊂ (1, . . . , 6), there exists only one conic CI ,
passing through these points. Let us set S =

⋃
I CI ∩D and let R be a line intersecting

D transversally at six points out of S. By Bezout Theorem, no seven singular points
of Γ′ = D∪R belong to an irreducible conic. Moreover, if D̃ is the normalization of D,
if Q1, . . . , Q4 are four fixed points of D ∩ R and D′ is the partial normalization of Γ′

obtained by smoothing the singular points except Q1, . . . , Q4, then, by the following
exact sequence

0 → OR(1)(−Q1 − · · · −Q4) → OD′(1) → OD̃(1) → 0 (19)

we find that h0(D′, OD′(1)) = 3. By Section 2.1, one can smooth the singularities
Q1, . . . , Q4 and preserve the other singularities of D∪R, getting a family of irreducible
septics G → ∆ whose general fibre Γ is a geometrically linearly normal irreducible
septic with k cusps and 8 − k nodes such that no seven singular point of Γ belong to
an irreducible conic. Let, now, C be the normalization of Γ and let ∆ ⊂ C be the
adjoint divisor of the normalization map φ : C → Γ. We shall prove that ker(µo,C) = 0.
Since Γ is geometrically linearly normal, we have that

h0(C,ωC(−1)) = h0(C,OC(3)(−∆))) = g − n+ 2 = 2.

Then, by the base point free pencil trick, we find that

ker(µo,C) = H0(C,ω∗C(B)⊗OC(2)),

where B is the base locus of |ωC(−1) = OC(3)(−∆)|. Let F be the pencil of plane
cubics passing through the eight double points P1, . . . , P8 of Γ and let BF be the base
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locus of the pencil F . Let Γ3 be the general element of F . Suppose that BF has
dimension one. If BF contains a line l, then, by Bezout theorem, at most three points
among P1, . . . , P8, say P1, . . . , P3 can lie on l and the other points have to be contained
in the base locus of a pencil of conics F ′. Using again Bezout theorem, we find that
the curves of F ′ are reducible and the base locus of F ′ contains a line l′. But also
l′ contains at most three points of P4, . . . , P6. It follows that there is only one cubic
through P1, . . . , P8. This is not possible by construction. Suppose that BF contains
an irreducible conic Γ2. By Bezout theorem, at most seven points among P1, . . . , P8

may lie on Γ2. On the other hand, since dim(F) = 1, there are exactly seven points
of P1, . . . , P8, say P1, . . . , P7, on Γ2 and the general cubic Γ3 of F is union of Γ2 and
a line passing through P8. Since, by construction, no seven singular points of Γ lie on
an irreducible conic, also in this case we get a contradiction. So the general element
Γ3 of F is irreducible. Using again Bezout theorem, we find that Γ3 is smooth and F
has only one more base point Q. We consider the following cases:
a) Q doesn’t lie on Γ;
b) Q lies on Γ, but Q 6= P1, . . . , P8;
c) Q is infinitely near to one of the points P1, . . . , P8, say Pî, i.e. the cubics of F have
at Pî the same tangent line l, but l is not contained in the tangent cone to Γ at Pî;
d) Q is like in the case c), but l is contained in the tangent cone to Γ at Pî.
Suppose that the case a) or c) holds. Thus B = 0 and

ker(µo,C) = H0(C,ω∗C ⊗OC(2)) = H0(C,OC(−2)(∆)).

By Riemann-Roch Theorem, h0(C,OC(−2)(∆)) = h0(C,OC(6)(−2∆)) − 4. One sees
that h0(C,OC(6)(−2∆)) = 4, by blowing-up the plane at P1, . . . , P8 and by using some
standard exact sequences. Suppose now that the case b) holds. Thus B = Q and

dim(ker(µo,C)) = h0(C,OC(−2)(∆ +Q)) = h0(C,OC(6)(−2∆−Q))− 3.

Also in this case one sees that h0(C,OC(6)(−2∆−Q)) = 3 by blowing-up at P1, . . . , P8

and Q and by using standard exact sequences. Finally, we analyze the case d). Let Φ :
S → P2 be the blow-up of the plane at P1, . . . , P8 with exceptional divisors E1, . . . , E8.
Let Q ∈ Eî be the intersection point of Eî and the strict transform C3 of the general
cubic Γ3 of the pencil F . We denote by Φ̃ : S̃ → S the blow-up of S at Q and by
Ψ : S̃ → P2 the composition map of the maps Φ and Φ̃. We still denote by E1, . . . , E8

their strict transforms on S̃, by C and C3 the strict transforms of Γ and Γ3 and by EQ
the new exceptional divisor of S̃. In this case we have that

Ψ∗(Γ) = C + 2
∑
i

Ei + 3EQ, Ψ∗(Γ3) = C3 +
∑
i

Ei + 2EQ.

Moreover, the divisor ∆ is cut out on C by
∑
iEi + EQ and the base locus B of the

linear series |ωC(−1)| coincides with the intersection point of EQ and C. So, we have
that

dim(ker(µo,C)) = h0

(
C,OC(−2)

(∑
i

Ei + 2EQ
))

= h0

(
C,OC(6)

(
− 2

∑
i

Ei − 3EQ
))

− 3.
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Moreover, from the following exact sequence

0 → OS̃(−1) → OS̃(6)
(
− 2

∑
i

Ei − 3EQ
)
→ OC(6)

(
− 2

∑
i

Ei − 3EQ
)
→ 0

we find that

H0

(
C,OC(6)

(
− 2

∑
i

Ei − 3EQ
))

= H0

(
S̃,OS̃(6)

(
− 2

∑
i

Ei − 3EQ
))
.

In order to show that

h0

(
S̃,OS̃(6)

(
− 2

∑
i

Ei − 3EQ
))

= 3,

we consider the following exact sequence

0 → OS̃(3)
(
−
∑
i

Ei − EQ
)
→ OS̃(6)

(
− 2

∑
i

Ei − 3EQ
)

(20)

→ OC3(6)
(
− 2

∑
i

Ei − 3EQ
)
→ 0.

By Riemann-Roch Theorem, we have that

h0

(
C3,OC3(6)

(
− 2

∑
i

Ei − 3EQ
))

= 1

and

h1

(
C3,OC3(6)

(
− 2

∑
i

Ei − 3EQ
))

= 0.

Moreover, by Serre duality we have that

H1

(
S̃,OS̃(3)

(
−
∑
i

Ei − EQ
))

= H1

(
S̃,OS̃(−6)

(
2
∑
i

Ei + 3EQ
))
.

From the exact sequence

0 → OS̃(−6)
(

+ 2
∑
i

Ei + 3EQ
)
→ OS̃(1) → OC(1) → 0 (21)

by using that the map H0(S̃,OS̃(1)) → H0(C,OC(1)) is surjective and that
h1(S̃,OS̃(1)) = 0, we find that

H1

(
S̃,OS̃(−6)

(
+ 2

∑
i

Ei + 3EQ
))

= H1

(
S̃,OS̃(3)

(
−
∑
i

Ei − EQ
))

= 0.
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Then, by (20),

h0

(
S̃,OS̃(6)

(
− 2

∑
i

Ei − 3EQ
))

= h0

(
S̃,OS̃(3)

(
−
∑
i

Ei − EQ
))

+ h0

(
C3,OC3(6)

(
− 2

∑
i

Ei − 3EQ
))

= 3

and ker(µo,C) = 0. The first step of induction forg = n = 7 andk ≤ 6 is proved.
We complete the proof of the first step of the induction, forn andg verifying (2). When

n = 7 and 1 ≤ a ≤ 2, the existence of a g.l.n. plane curve Γ follows from Theorem 3.5.
Using the above notation, h0(C,ωC(−1)) = 1 if a = 1 and h0(C,ωC(−1)) = 0 if a = 2.
In any case µo,C is injective. When n ≥ 8 and a ≤ n − 6 the theorem follows by
induction from the case n = 7. For n ≥ 8 and a = n − 5, we find that g = n − 2,
or, equivalently, k + d = h0(P2,OP2(n− 4)). In Theorem 3.5, we proved the existence
of geometrically linearly normal plane curves of degree n ≥ 8 and genus g = n − 2,
with nodes and k ≤ 6 cusps. For every such plane curve Γ, using the above notation,
the Brill-Noether map µo,C is injective since h0(C,ωC(−1)) = 0. The cases n = 5 and
n = 6 are similar.

Suppose now thatn and g verify (3). First of all we prove the theorem for
(n, g) = (4, 2), (5, 4), (6, 6). For n = 4 and g = 2, we find n = g + 2 and we ar-
gue as in the case n ≥ 8 and g = n − 2. Similarly, for (n, g) = (5, 4). For n = 6
and g = 6 in Theorem 3.5 we proved the existence of geometrically linearly normal
plane curves Γ with k ≤ 4 cusps and nodes as singularities. For every such a plane
curve Γ, denoting by C its normalization, we get that h0(C,ωC(−1)) = 2, i.e. the
linear system F of conics passing through the four singular points P1, . . . , P4 of Γ is
a pencil which cuts out on C the complete linear series |ωC(−1)|. We have two pos-
sibilities: either the general element of this pencil is irreducible or it consists of a line
containing exactly three singular points P1, P2, P3 of Γ and a line passing through P4.
In any case the base locus of F intersects Γ only at P1, . . . , P4 and the linear series
|ωC(−1)| has no base points. Then, by the base point free pencil trick , we find that
ker(µo,C) = H0(C,ω∗C ⊗ O(2)) = H0(C,OC(−1)(∆)), where ∆ ⊂ C is the adjoint
divisor of the normalization map C → Γ. By Riemann-Roch Theorem, we have that
h0(C,OC(−1)(∆)) = h0(C,OC(4)(−2∆)) − 3. By blowing-up at P1, . . . , P4, one can
see that h0(C,OC(4)(−2∆)) = 3, as we wanted.

Finally, we show the theorem under the hypothesis (3) for n ≥ 7, by using induc-
tion on n. In order to prove the inductive step we may use Lemma 4.8, exactly as we
did in the case (2). We prove the first step of induction. If n = 7 we have that g = 8.
On pages 337 and 338 we proved the existence of geometrically linearly normal plane
curves Γ of degree 7 and genus 7 with k ≤ 6, such that, if P1, . . . , P8 are the singular
points of Γ, then no seven points among P1, . . . , P8 lie on a conic. In particular, we
proved that, for every such a plane curve Γ, the general element of the pencil of cubics
passing through P1, . . . , P8 is irreducible and, if φ : C → Γ is the normalization of Γ,
then the Brill-Noether map µo,C is injective. Let C ′ be the partial normalization of
Γ which we get by smoothing all the singular points of Γ except a node, say P8. By
using the same notation and by arguing exactly as in the proof of Lemma 4.6, we get
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the following commutative diagram

H0(C ′,OC′(1))⊗H0(C ′, ωC′(−1))
µo,C′

//

��

H0(C ′, ωC′)

��
H0(C,OC(1))⊗H0(C,ωC(−1)(φ∗(P8)))

µ′o,C // H0(C,ωC(φ∗(P8)))

where µ′o,C is the multiplication map and the vertical maps are isomorphisms. We
want to prove that the map µo,C′ is surjective. By the previous diagram it is enough
to prove that µ′o,C is surjective. Since h0(C,ωC(φ∗(P8))) = 8 and

h0(C,OC(1))h0(C,ωC(−1)(φ∗(P8))) = 3(7− 7 + 3) = 9,

we have that dim(ker(µo,C′)) ≥ 1 and µo,C′ is surjective if dim(ker(µo,C′)) = 1. By
recalling that Γ is geometrically linearly normal, we have that, if Z is the scheme of
the points P1, . . . , P7 and IZ|P2 is the ideal sheaf of Z in P2, then in the following
commutative diagram

H0(C,OC(1))⊗H0(C,ωC(−1)(φ∗(P8)))
µ′o,C //

��

H0(C,ωC(φ∗(P8)))

��
H0(P2,OP2(1))⊗H0(P2, IZ|P2(3))

µ // H0(P2, IZ|P2(4))

the vertical maps are isomorphisms. Hence, it is enough to prove that the kernel of the
multiplication map µ has dimension one. Let {f0, f1, f2} be a basis of the vector space
H0(P2, IZ|P2(3)). Since the general cubic passing through P1, . . . , P8 is irreducible, we
may assume that f0, f1 and f2 are irreducible. Suppose, by contradiction, that there
exist at least two linearly independent vectors in the kernel of µ. Then, there exist
sections u0, u1, u2 and v0, v1, v2 of H0(P2,OP2(1)) such that the sections

∑
i ui⊗fi and∑

i vi ⊗ fi are linearly independent in H0(P2,OP2(1))⊗H0(P2, IZ|P2(3)) and{ ∑3
i=0 uifi = 0∑3
i=0 vifi = 0.

(22)

We can look at (22) as a linear system in the variables f0, f1, f2. The space of solutions
of (22) is generated by the vector

(u1v2 − u2v1, u3v0 − u0v3, u0v1 − u1v0).

In particular, if we set qi = (−1)1+iuivj − viuj , we find that fjqi = fiqj , for every
i 6= j. But this is not possible since f1, f2 and f3 are irreducible. We deduce that

dim(ker(µ)) = dim(ker(µo,C′)) = 1

and µo,C′ is surjective. The existence of a plane septic of genus 8 with k ≤ 6 cusps and
nodes as singularities, with injective Brill-Neother map, follows now by smoothing the
node P8 (in the sense of Section 2.1) and by standard semicontinuity arguments. �
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Remark 4.10 Notice that the conditions which we found in Theorem 4.9 in order that
Σn
k,d has at least an irreducible component with the expected number of moduli, are

not sharp, even if we suppose ρ ≤ 0. To see this, notice that in Remark 3.6 we proved
the existence of an irreducible component Σ of Σ12

9,0 whose general element corresponds
to a 3-normal plane curve. By Remark 3.4 and Corollary 4.5, we have that Σ has the
expected number of moduli.

Theorem 4.11

Σn
1,d has the expected number of moduli, for every d ≤

(n−1
2

)
− 1.

Proof. First of all, we recall that, by [16], Σn
1,d is irreducible for every d ≤

(n−1
2

)
− 1.

Moreover, from Theorem 4.9 and from Corollary 2.7, we know that Σn
1,d is not empty

and it has the expected number of moduli if either ρ ≤ 0 or ρ ≥ 2. Next we shall prove
that, if ρ = 1, then the algebraic system

Σn
1,d = Σn

1,(n−3)2/2−1

has general moduli. Equivalently, we will show that, if [Γ] ∈ Σn
1,d is a general point

and g =
(n−1

2

)
− 1 − d = 3n−7

2 , then, on the normalization curve C of Γ there are
only finitely many linear series g2

n with at least a ramification point. Notice that, if
g =

(n−1
2

)
− 1 − d = 3n−7

2 , then n is odd and n ≥ 5. We prove the statement by
induction on n.

If n = 5 then g = 4. Let C ⊂ P3 be the canonical model of a general curve of
genus four and let 2P +Q, with P 6= Q be a divisor in a g1

3 on C. This divisor is cut
out on C by the tangent line to C at P . The projection of C from Q is a plane quintic
of genus four with a cusp. This proves that Σ5

1,1 has general moduli.
Now we suppose that the theorem is true for n and we prove the theorem for

n+ 2. Let Γ ⊂ P2 be the plane curve with a cusp and (n−3)2

2 − 1 nodes corresponding
to a general point [Γ] ∈ Σn

1,
(n−3)2

2
−1

and let C2 be an irreducible conic intersecting Γ

transversally. By Section 2.1, the point [C2∪Γ] belongs to Σn+2

1,
(n+2−3)2

2
−1

. In particular,

however we choose four points P1, . . . , P4 of intersection between Γ and C2, there exists
an analytic branch SP1,..., P4 of Σn+2

1,
(n−1)2

2
−1

, passing through [C2∪Γ] and whose general

point corresponds to an irreducible plane curve of degree n + 2 with a cusp in a
neighborhood of the cusp of Γ and a node at a neighborhood of every node of C2 ∪ Γ
different from P1, . . . , P4. Moreover, S := SP1,..., P4 is smooth at the point [C2 ∪ Γ],
(see [8], Chapter 2). Let

Π : Σn+2
1,(n−1)2/2−1 99K M3(n+2)−7/2

be the moduli map of Σn+2

1,
(n−1)2

2
−1

. In order to prove that Π is dominant it is sufficient

to show that Π(S) = M 3n−1
2

. By Section 2.1, there exist an analytic open sets

Si ⊂ Σn+2
1,(n−3)2/2−1+2n−i,

with i = 1, 2, 3, such that

S0 := S ∩
(
P5 × Σn

1,(n−3)2/2−1

)
⊂ S1 ⊂ S2 ⊂ S3 ⊂ S.



344 Galati

Every Si, with i = 1, 2, 3, has
( 4
4−i
)

irreducible components, passing through [C2 ∪ Γ]
and intersecting transversally at [C2 ∪ Γ], (see [8], Chapter 2 or [25]). Moreover, the
general point of every irreducible component of Si, with i = 1, 2, 3, corresponds to an
irreducible plane curve Γi of degree n + 2 with a cusp in a neighborhood of the cusp
of Γ, a node in a neighborhood of every node of C2 ∪ Γ different from P1, . . . , P4 and
4 − i nodes specializing to 4 − i fixed points among P1, . . . , P4, as Γi specializes to
C2 ∪ Γ. Now, notice that the moduli map Π is not defined at the point [C2 ∪ Γ], but,
if S is sufficiently small, then the restriction of Π to S extends to a regular function
on S. More precisely, let C → ∆ be any family of curves, parametrized by a projective
curve ∆ ⊂ S, passing through the point [C2 ∪ Γ] and whose general point corresponds
to an irreducible plane curve of degree n + 2 of genus 3n−1

2 = 3(n+2)−7
2 with a cusp

and nodes as singularities. If we denote by C′ → ∆ the family of curves obtained
from C → ∆ by normalizing the total space, we have that the general fibre of C′ → ∆
is a smooth curve of genus 3n−1

2 , corresponding to the normalization of the general
fibre of C → ∆, whereas the special fibre C′0 is the partial normalization of C2 ∪ Γ,
obtained by normalizing all the singular points, except P1, . . . , P4. Then, the map Π|S
is defined at [C2 ∪ Γ] and it associates to the point [C2 ∪ Γ] the isomorphism class of
C′0. Similarly, if [Γi] is a general point in one of the irreducible components of Si, with
i = 1, 2, 3, then Π|S ([Γi]) is the partial normalization of Γi obtained by smoothing all
the singular points except for the 4− i nodes of Γi tending to 4− i fixed points among
P1, . . . , P4 as Γi specializes to C2 ∪Γ. It follows that, if we denote by Mj

3n−1
2

the locus

of M 3n−1
2

parametrizing j-nodal curves, then ΠS(Si) ⊆M4−i
3n−1

2

, for every i = 0, . . . , 4,

and ΠS(Si)  ΠS(Si+1). In particular, we find that

dim(Π|S (S)) ≥ dim(Π|S (S0)) + 4.

In order to compute the dimension of Π|S (S0) we consider the rational map

F : Π|S (S0) 99K M(3n−7)/2

forgetting the rational tail. By the hypothesis that Σn

1,
(n−3)2

2
−1

has general moduli

and hence F is dominant. Moreover, if C is the normalization curve of Γ, by the
generality of [Γ] in Σn

1,
(n−3)2

2
−1

, we may assume that C is general in M 3n−7
2

. We

want to show that dim(F−1([C])) = 5. In order to see this, we recall that, by the
hypothesis that Σn

1,
(n−3)2

2
−1

has general moduli, on C there exist only finitely many

linear series of degree n and dimension two, mapping C to the plane as curve with a
cusp and nodes as singularities. Let g2

n be one of these linear series, let {s0, s1, s2} be
a basis of g2

n and φ′ : C → Γ′ ⊂ P2 the associated morphism. If Q1, . . . , Q4 are four
general points of Γ′, then the linear system of conics through Q1, . . . , Q4 is a pencil
F(Q1, . . . , Q4). Let C2 and D2 be two general conics of F(Q1, . . . , Q4). We claim
that, if η : P1 → C2 and β : P1 → D2 are isomorphisms between P1 and C2 and
D2 respectively, then the points η−1(Q1), . . . , η−1(Q4) are not projectively equivalent
to the points β−1(Q1), . . . , β−1(Q4). In order to prove this, it is enough to prove
that there are at least two conics in the pencil F(Q1, . . . , Q4) which verify the claim.
Let D ⊂ P2 be a conic. If we choose two sets of points p1, . . . , p4 and q1, . . . , q4 of
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D not projectively equivalent on D, we may always find projective automorphisms
A : P2 → P2 and A′ : P2 → P2 such that A(pi) = Qi and A′(qi) = (Qi), for every
i. By construction, the conics C2 = A(D) and D2 = A′(D) belong to the pencil
F (Q1, . . . , Q4) and verify the claim. This implies that the partial normalizations C ′

and D′ of Γ′ ∪ C2 and Γ′ ∪D2, obtained by smoothing all the singular points except
Q1, . . . , Q4, are not isomorphic. Now, let C ′

2 be a general conic of F(Q1, . . . , Q4)
and let R1, . . . , R4 be four general points of Γ′, different from Q1, . . . , Q4. If D′

2 is a
general conic of the pencil F(R1, . . . , R4), then the partial normalization C ′ and D′

of Γ′ ∪ C ′
2 and Γ′ ∪ D′

2 obtained, respectively, by smoothing all the singular points
except Q1, . . . , Q4 and R1, . . . , R4, are not isomorphic. Indeed, since C is a general
curve of genus 3n−7

2 ≥ 7, the only automorphism of C is the identity. This proves that
dim(F−1([C])) = 5. In particular, we deduce that

dim
(
Π|S (S0)

)
= 3

3n− 7
2

− 3 + 5

and

dim(Π|S (S) ≥ 3
3n− 7

2
− 3 + 9 = 3

3(n+ 2)− 7
2

− 3. �

Remark 4.12 We expect that it is possible to prove that Σn
k,d has expected number of

moduli for every ρ also when k = 2 or k = 3. By Corollary 2.7 and Theorem 4.9, Σn
k,d

is not empty, irreducible and it has expected number of moduli for ρ ≤ 0 and ρ ≥ 2k.
In order to extend Theorem 4.11 to the case k = 2 and k = 3 one needs to consider a
finite number of cases.
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