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ABSTRACT

Let X1, C P +3)/2 pe the family of irreducible plane curves of degree
with d nodes andk cusps as singularities. Lef C X} ; be an irreducible
component. We consider the natural rational map

HE . Z -= Mg,

from 3 to the moduli space of curves of genps= (”51) —d—k. We define the
number of moduli oE as the dimensiodim(IT5;(X)). If X has the expected
dimension equal t8n 4+ g — 1 — k, then

dim(IIx (X)) < min(dim(My), dim(My) + p — k), (1)

wherep := p(2, g,n) = 3n—2g — 6 is the Brill-Neother number of the linear
series of degree and dimensior2 on a smooth curve of genys We say that

3 has the expected number of moduli if the equality holdélip In this paper

we construct examples of families of irreducible plane curves with nodes and
cusps as singularities having expected number of moduli and with non-positive
Brill-Noether number.

1. Introduction

In this paper we compute the number of moduli of certain families of irreducible plane
curves with nodes and cusps as singularities. Let ¥ ; C P(H O(P2, Op2(n))) := PV,

Keywords:Families of plane curves, number of moduli, nodes and cusps.
MSC2000:14H15, 14H10, 14B05.

319


textes4
collect


320 GALATI

with N = n(n + 3)/2, be the closure, in the Zariski’s topology, of the locally closed
set of reduced and irreducible plane curves of degree n with k cusps and d nodes. Let
Y C X§ 4 be an irreducible component of the variety X ;. We denote by Xy the open
set of ¥ of points [I'] € ¥ such that ¥ is smooth at [['] and such that [['] corresponds
to a reduced and irreducible plane curve of degree n with d nodes, k& cusps and no
further singularities. Since the tautological family So — >y, parametrized by g, is an
equigeneric family of curves, by normalizing the total space, we get a family

56 I SOC—> ]P’2 X 20

N7

2o
of smooth curves of genus g = ("51) — k — d. Because of the functorial properties of
the moduli space M, of smooth curves of genus g, we get a regular map o — My,
sending every point [I'] € £ to the isomorphism class of the normalization of the plane
curve I' corresponding to the point [I']. This map extends to a rational map

HZ Y- Mg-
We say that IIy, is the moduli map of X and we set
number of moduli of¥ := dim(IIx(X)).

Notice that, when Yhals reducible, two different irreducible components of Yk 4 can
have different number of moduli. We say that ¥ has general modulif 1Ty, is dominant.
Otherwise, we say that 3 has special moduli

DEFINITION 1.1 When ¥ has the expected dimension equal to 3n +¢g — 1 — k and
g > 2, we say that X has the expected number of moduli if

dim(IIx (X)) = min(dim(My), dim(My) + p — k),

where p := p(2,g9,n) = 3n — 2g — 6 is the number of Brill-Noether of the linear series
of degree n and dimension 2 on a smooth curve of genus g.

As we shall see in the next section, when g > 2 and when 3 has the expected
dimension equal to 3n + g — 1 — k, the number of moduli of ¥ is at most equal to the
expected one. This happens in particular if £ < 3n. If £ > 3n, in general we have not
an upper-bound for the dimension of ¥ and we cannot provide an upper bound for
the number of moduli of ¥, (see Lemma 2.2 and Remark 2.3). Moreover, by classical
Brill-Neother theory when p is positive and by a well know result of Sernesi when p <0
(see [18]), we have that X ;, (which is irreducible by [11]), has the expected number

of moduli for every d < (ngl) When k > 0 there are known results giving sufficient
conditions for the existence of irreducible components ¥ of X} ; with general moduli,
(see Propositions 2.5 and 2.6 and Corollary 2.7). In this article we construct examples
of families of irreducible plane curves with nodes and cusps with finite and expected
number of moduli. A large part of this paper is obtained working out the main ideas
and techniques that Sernesi uses in [18].
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In Section 2.1 we introduce the varieties Xy ; and we recall their main properties.
In Section 2.2 we discuss on Definition 1.1 and we summarize known results on the
number of moduli of families of irreducible plane curves with nodes and cusps. In
Theorem 3.5 we prove the existence of plane curves with nodes and cusps as singular-
ities whose singular points are in sufficiently general position to impose independent
linear conditions to a linear system of plane curves of a certain degree. This result is
related to the moduli problem by Lemma 3.2, Remark 3.4 and Proposition 4.1, where
we find sufficient conditions in order that an irreducible component ¥ C ¥f ; has the
expected number of moduli. If 3 verifies the hypotheses of Proposition 4.1, then the
Brill-Neother number p is not positive and ¥ has finite number of moduli. Moreover,
by Lemma 4.6 and Corollary 4.7, for every ¥’ < k and d’ < d+k—k', there is at least an
irreducible component X' C X}, ,, such that ¥ C ¥’ and the general element [D] € ¥’
corresponds to a plane curve Dyverifying hypotheses of Proposition 4.1 and so having
the expected number of moduli. Finally, the main result of this paper is contained
in Theorem 4.9, where, by using induction on the degree n and on the genus g of
the general curve of the family, we construct examples of families of irreducible plane
curves with nodes and cusps verifying the hypotheses of Proposition 4.1. In particular,
we prove that, if £ < 6 and p < 0, then E};d has at least an irreducible component
which is not empty and which has the expected number of moduli. This result may
be improved and examples of families of curves showing that the condition k£ < 6 is
not sharp are given in Remark 4.10. Notice that the previous theorem provides only
examples of families of plane curves with nodes and cusps with expected number of
moduli, when p is not positive. When the number of cusps k is very small, we expect
it is possible to prove the existence of irreducible components of Y 4 with expected
number of moduli, for every value of p. For example, from a result of Eisenbud and
Harris, it follows that X7 ;, (which is irreducible by [16]), has general moduli if p > 2,
(see Corollary 2.7). In Theorem 4.11, by using induction on n we find that X7 ; has
general moduli also when p = 1. By recalling that, by Theorem 4.9, Z’i 4 has expected
number of moduli when p < 0, we conclude that 2711’ 4 has the expected number of mod-

uli for every p or, equivalently, for every d < (";1) — 1. We still don’t know examples
of irreducible components of 2k 4 having number of moduli smaller that the expected.

2. Preliminaries

2.1 On Severi-Enriques varieties

We shall denote by PV = P"+3)/2 the Hilbert scheme of plane curves of degree
n, by [[] € PV the point parametrizing a plane curve I' C P? and by ¥, ¢ PV
the closure, in the Zariski topology, of the locally closed set parametrizing}educed
and irreducible plane curves of degree n with d nodes and k cusps as singularities.
These varieties have been introduced at the beginning of the last century by Severi
and Enriques. In particular, the case k = 0 has been studied first by Severi and for this
reason the varieties 2 ; are usually called Severi varieties, while for £ > 0 the varieties
¥}, are called Severi-Enriques varieties. We recall that every irreducible component
¥ of Zz’d has dimension at least equal to

N—-d-2k=3n+g—1—F,
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where g = (”51) — k —d. When the equality holds we say thak: has expected dimension.
Moreover, it is well known that if & < 3n then every irreducible componentof £} ; has
expected dimensiofisee for Example [23] or [25]). On the contrary, when k£ > 3n, there
exist examples of irreducible components of 2} 4 having dimension greater than the

expected, (see [25]). Moreover, we recall that 3 ; is not empty for every d < ("5") and
it contains in its closure all points parameterizing irreducible plane curves of degree
n and genus g = (";') — d, (see [24], [25] and [1]). Often, we shall denote Y0a by
Vin,g- While the proof of the existence of V,, , is quite elementary and it is due to
Severi, the irreducibility of V,, ;, remained an open problem for a long time and it has
been proved by Harris only in 1986. Later, by using the same techniques of Harris,
Kang has proved the irreducibility of ¥} ; with k < 3, see [11] and [16]. However, in
general, X7 ; is reducible and there exist values of n, d and k such that Xy ; is empty,
(see [25], [10], [20], [9] or Chapter 2 of [8] and related references). Finally, we recall
that, if ¥ C X, is a non-empty irreducible component of the expected dimension
equal to 3n + g — 1 — k, then, for every ¥/ < k and d < d + k — K/, there exists
a non-empty irreducible component ' C E”,’d, such that ¥ C Y'. This happens in
particular if & < 3n. More precisely, it is true that, if I' C P? is a reduced (possibly
reducible) plane curve of degree n with k& < 3n cusps at points ¢, ..., gk, nodes at
points p1,...,pq and no further singularities, then, chosen arbitrarily ki cusps, say
qi,-.-.,qr, among the k cusps of I', ko cusps qx,+1, - .., qk, among qg,+1,...,qx and d;
nodes pi,...,pq, among the nodes of I', there exists a family of reduced plane curves
D — B C PV of degree n, whose special fibre is Dy = I' and whose general fibre D; = D
has a node in a neighborhood of every marked node of I', a cusp in a neighborhood
of each point ¢1,...,qx,, a node in a neighborhood of each point g, +1, ..., gk, and no
further singularities, (see [25], Corollary 6.3 of [9] or Lemma 3.17 of Chapter 2 of [8]).
To save space, we shall say that the familyD — B is obtained fronT" by preserving the
singularitiesqy, . . ., gk, andpy, ..., pq4, , by deforming in a node each cugg 1, . . ., ¢x, and
by smoothing the other singularities.

2.2 Known results on the number of moduli of X} ;

In order to explain the Definition 1.1, we need to recall some basics of Brill-
Noether theory. Given a smooth curve C of genus g, the set G2(C) of linear series g2
on C' of dimension 2 and degree n, is a projective variety which verifies the following
properties:

(1) G2(C) is not empty of dimension at least p, if p(2,n,9) = 3n —2g — 6 > 0, (see
Theorem V.1.1 and Proposition IV.4.1 of [4]).

(2) Let g2 be a given linear series, let H € g2 be a divisor and let W C H°(C, H)
be the three dimensional vector space corresponding to g2. Denoting by we =
Oc(K¢) the canonical sheaf of C' and by

fio.c: W& H(C,we(—H)) — H(C,we)

the natural multiplication map, also called the Brill-Noether mapof the pair
(C,W), we have that the dimension of the tangent space to G2(C) at the point
[¢2],corresponding to g2, is equal to
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dim(T},2,G2(C)) = p + dim(ker(o,0)),

(see [2] or Proposition IV.4.1 of [4] for a proof).

(3) Moreover, if C' is a curve with general moduli (i.e. if [C] varies in an open set of
M,), the variety G2(C) is empty if p < 0, it consists of a finite number of points
if p = 0 and it is reduced, irreducible, smooth and not empty variety of dimension
exactly p, when p > 1, (see Theorem V.1.5 and Theorem V.1.6 of [4]). In the
latter case, the general g2 on C defines a local Theorem 3.1 of [1] or Lemma 3.43
of [12]).

From (3), we deduce that, the Severi variety 3 ; = Vi, 4 of irreducible plane curves of
genus g = ("51) — d, has general moduli when p > 0 and it has special moduli when
p < 0. When p < 0, and then g > 3, by Definition 1.1, we expect that the image of

Vn,g into My has codimension exactly —p. Equivalently, recalling that, in this case,
dim(Vy,4) =3n+g—1=3g — 3+ p+8 = dim(M,) + p + dim(Aut(P?)),

we expect that on the smooth curve C', obtained by normalizing the plane curve cor-
responding to the general element of V,, 4, there is only a finite number of g2 mapping
C' to the plane as a nodal curve. This is a well known result proved by Sernesi in [18].

Theorem 2.1 (Sernesi, [18])

The Severi variety Vy, g = Xy 4 of irreducible plane curves of degree n and genus

g = ("3") — d has number of moduli equal to

min(dim(M,), dim(Mg) + p).

What can we say about the number of moduli of an irreducible component ¥ of
2% 4> when k > 07 In this case we need to distinguish the two cases k < 3n and k > 3n.
In the first case we have the following result.

Lemma 2.2

For every not empty irreducible component ¥ of Yh g with k < 3n and g =

(";1) — k —d > 2, the number of moduli of ¥ is at most equal to

min(dim(M,), dim(My) + p — k),

where p = 3n — 2g — 6 is the Brill-Neother number of moduli of linear series of dimen-
sion 2 and degree n on a smooth curve of genus g.

Proof. We recall that an ordinary cusp P of a plane curve I' corresponds to a simple
ramification point p of the normalization map ¢ : C' — I, i.e. to a simple zero of the
differential map d¢. If we denote by G2 ,(C) C G7(C) the set of g7 on C defining
a birational morphism with &k simple ramification points, then G?hk,(C) is a locally
closed subset of G2(C) and every irreducible component G' of GEL +(C) has dimension
at least equal to p — k, if it is not empty. In particular, if ng(C) is the variety whose
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points correspond to the pairs ([g2], {s0, 51, 52}) where [¢2] € G’%’k(C’) and {so, 51,52}
is a frame of the three dimensional space associated to the linear series g2, then every
irreducible component of Fg x(C) has dimension at least equal to

min(8,p — k + 8).

Now, let 3 be one of the irreducible components of ¥, ; and let [I'] be a general point of
Y. Then, if I' C P? is the corresponding plane curve and ¢ : C' — T is the normalization
map, then the fibre over the point [C] € M, of the moduli map

HE . E -=> Mg

consists of an open set in one or more irreducible components of FfL +(C). In particular,
every irreducible component of the general fibreIlbf has dimension at least equal to
min(8, p — k + 8). Moreover, if k < 3n then ¥ has the expected dimension equal to
N—d—2k=3n+g—1—Fk, (see [25] or [23]). Finally, if g = (",') — k — d > 2, then

dim(X)=3n+g9g—1—-k=3¢g—-3+p—k+8.
This proves the statement. U

Remark 2.3 The proof of the previous lemma still holds if & > 3n but % has the
expected dimension. However in general, when k& > 3n, we don’t have a bound for
dim(IT5;(X)). Indeed, in this case the dimension of the general fibre of the moduli
map of ¥ is still at least equal to p — k + 8, but ¥ may have dimension larger than
3n + g —1— k. Anyhow, by the following proposition, every not empty irreducible
component of Y% 4 has special moduli if £ > 3n.

Proposition 2.4 (Arbarello-Cornalba, [1])

Let C be a general curve of genus g > 2 and let ¢ : C — P? be a birational
morphism, then the degree of the zero divisor of the differential map of ¢ is smaller
than p. In particular, every irreducible component of 2k ¢ has special moduli if p=
3n—2g—6<k.

A sufficient condition for the existence of irreducible families of plane curves with
nodes and cusps with general moduli is given by the following result.

Proposition 2.5 (Kang, [15])

2% g is irreducible, not empty and with general moduli ifn > 2g — 1+ 2k, where
_ -1
g=("y)—d—k.

Actually, in [15], Kang proves that if n > 2g — 1+ 2k, then X ; is not empty and
irreducible. But from his proof it follows that, under the hypothesis of Proposition 2.5,
Y 4 has general moduli because the general element of ¥ ; corresponds to a curve
which is a projection of an arbitrary smooth curve C of genus g in P"79, from a general
(n — 3)-plane intersecting the tangent variety of C' in k different points. Another
result which may be used to find examples of families of plane curves with nodes
and cusps having general moduli is the following. Let g/ be a linear series on C
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associated to a (r + 1)-space W C H°(C, L), where £ is an invertible sheaf on C,
and let {sg,...,s,} be a basis of W, then the ramification sequence of the g/ at p is
the sequence b = (by, ..., b) with b; = ord,s; — i. Choosing another basis of W, the
ramification sequence of g, at p doesn’t change. We say that the ramification sequence
of the g;, at p is at least equal to b = (bo, ..., b.) if b; < ord,s; — i, for every i, and we
write (ord,so, . ..,ordys, —r) > (bo, ..., by).

Proposition 2.6 (Proposition 1.2 of [7])

Let C' be a general curve of genus g, let p be a general point on C' and let b =
(bo, ..., by) be any ramification sequence. There exists a g, on C having ramification
at least b at p if and only if

T

dbi+g—n+r)4 <y,
=0

where (—)4 = max(—,0).

From Proposition 2.6, we easily deduce the following result.

Corollary 2.7

Suppose that k < 3 and p = 3n—2g—6 > 2k. Then X ; is not empty, irreducible
and it has general moduli.

Proof. By [16], the variety ¥} ; is irreducible for every k < 3 and d < (";1) -

k. Moreover, by using classical arguments, one can prove that X ; is not empty if
kE <4 and d < (";1) — 4, (see, for example, Corollary 3.18 of chapter two of [8]).
Finally, by Theorem 1.1 of [21], by using the terminology of Proposition 2.6, under
the hypothesis £ < 3n — 4, in particular if £ < 3, the variety X ; contains every
point of PV corresponding to a plane curve I' of genus g = (”;1) — k — d such that
the normalization morphism of I" has at least a ramification point with ramification
sequence (bg,b1,b2) > (0,k,k). Then, by Proposition 2.6, if p > 2k and k < 3, the

moduli map of X} ; is surjective. ([

3. On the existence of certain families of plane curves with nodes and
cusps in sufficiently general position

As we already observed, we don’t have a complete answer for the existence problem
of Xy ;. In this section we are interested in a little more specific existence problem.
We shall prove the existence of plane curves with nodes and cusps as singularities
whose singular points are in sufficiently general position to impose independent linear
conditions to a linear system of plane curves of a certain degree.

DEFINITION 3.1 A projective curve C' C P" is said to be geometricallyt-normal if the
linear series cut out on the normalization curve C' of C' by the pull-back to C' of the
linear system of hypersurfaces of P” of degree t is complete.
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From a geometric point of view, a projective curve C C P" is geometrically
t-normal if and only if the image curve 14,(C) of C' by the Veronese embedding
Vip o P" — (7" of degree t, is not a projection of a non-degenerate curve living
in a higher dimensional projective space. We shall say that a curve is geometrically
linearly normal (g.l.n. for short) if it is geometrically 1-normal. Every such a curve C
is not a projection of a curve lying in a projective space of larger dimension.

The following result is proved under more general hypotheses in [5], Theorem 2.1.

Lemma 3.2

Let T' C P? be an irreducible and reduced plane curve of degree n and genus g with
at most nodes and cusps as singularities. Let t be an integer such that n —3 —t < 0,
then I' is geometrically t-normal if and only if it is smooth. On the contrary, if
n —3 —t > 0, the plane curve I' is geometrically t-normal if and only if its singular
points impose independent linear conditions to plane curves of degree n — 3 —t.

We recall the following classical definition.

DEFINITION 3.3 Let I' C P? be a plane curve of degree n with d nodes at pi,...,pq
and k cusps at qi,...,qr as singularities. Let ¢ : C' — I' be the normalization of T
The adjoint divisor A of ¢ is the divisor on C' defined by

d k

A=Y 07 )+ 207 (4))-

i=1 j=1

Proof of Lemma 3.2. Let I' be a plane curve as in the statement of the lemma. Then,
I' is geometrically t-normal if and only if, by definition,

h?(C,0c(t)) = h°(P?, Op(t)) — h°(P?, Ip (1))

where Zr is the ideal sheaf of I' in P? and O¢(t) := O (t¢*(H)), where H is the general
line of P2. By Riemann-Roch Theorem, I is geometrically t-normal if and only if

(t+1)(t+2)

e ), @)

R(C we(—t)) = —nt+g—1+

where ¢ is the geometric genus of I and w¢ is the canonical sheaf of C'. On the other
hand, it is well known that

HO(C7 wC(_t)) = HO(Cv OC(n —-3- t)(_A))a

where A is the adjoint divisor of ¢, (see Definition 3.3 and [4], Appendix A). If n—3—t <
0 then h°(C,Oc(n — 3 —t)) = 0 and T is geometrically t-normal if and only if

n? —3n

KO (B2, Opa (t)) = hO (B, (1) = nt — ~—

+9,

where § = (";') — g = deg(A)/2. This equality is verified if and only if § = 0, i.e. T
is smooth. If n — 3 > ¢, hO(P2,Zr(¢)) = 0 and (2) is verified if and only if

R(C,O0c(n —3 —t)(=A)) = h°(P?, Op2(n — 3 — t)) — 6.
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On the other hand, if ¢ : S — P? is the blowing-up of the plane at the singular locus
of I, denoting by >, E; the pullback of the singular locus of I with respect to ¢ and
by Og(r) the sheaf Og(ry*(H)), we have that

W«IOCM—B—¢X—A»_JPQQOﬂn—3—ﬂ(—§:EO>

= hO(P%, Op2(n — 3 —t) @ A)
where A is the ideal sheaf of singular points of I'. O

Remark 3.4 Notice that, if an irreducible and reduced plane curve I' of degree n with
only nodes and cusps as singularities is geometrically ¢t-normal, with t < n—3, then it is
geometrically r-normal for every r < ¢. Indeed, if a set of points imposes independent
linear conditions to a linear system S, then it imposes independent linear conditions
to every linear system S’ containing S.

Theorem 3.5

Let X} ; be the variety of irreducible and reduced plane curves of degree n with
d nodes and k cusps. Suppose that d, k, n and t are such that

n?—(B+2n+2+t2+3t

d+k < 5 = h%(Op2(n —t — 3)) (3)
t<n-3ifk=0, (4)
kE<6ift=1,2 and (5)

n—381 ..
k§6+[—§{,ﬁt_& (6)

where [—| is the integer part of —. Then the variety Z}; 4 1s not empty and there exists
at least an irreducible component W C 227 4 Whose general element corresponds to a
geometrically t-normal plane curve.

Remark 3.6 As we shall see in the next section, (see Proposition 4.1), the geometric
linear normality of the plane curve corresponding to the general element of an irre-
ducible component ¥ of ng, is related with the number of moduli of ¥. Another
motivation for the previous theorem has been the family of irreducible plane sextics
with six cusps. By [25], we know that 2270 contains at least two irreducible compo-
nents 1 and Yo. The general point of 3 corresponds to a sextic with six cusps on a
conic, whereas the general element of 35 corresponds to a sextic with six cusps not on
a conic. Note that, by the previous lemma the general element of o parameterizes a
geometric linearly normal sextic, unlike the general element of 31, which corresponds
to a projection of a canonical curve of genus four. Theorem 3.5, proves in particular
that, under a suitable restriction, (see inequality (3)), on the genus of the curve corre-
sponding to the general element of the family and, if the number of the cusps is small,
the variety Y ; contains a not empty irreducible component whose general element
corresponds to a curve which is not a projection of an other curve, lying in a projective
space of larger dimension. We notice that the inequality (3) of the previous theorem
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can’t be improved. Indeed, if g = (";1) —k —d, then k +d > hO(P2, Op2(n — 3 — t))

2tn—t2—3t
==

if and only if g < On the other hand, by using the same notation as in

Theorem (3.5), if g < Qt"%ﬁf?’t, then, by Riemann-Roch Theorem, we have that

t2 + 3t

(C,Oc(t)) >tn—g+1> + 1= hY(P%, Op2(2)).

On the contrary, inequalities (5) and (6) are not sharp, (see Example 3.7).

In the case of K = 0 and ¢ = 1, Theorem 3.5 has been proved by Sernesi in [18],
Section 4. The case k = 0 and t < n — 3 is already contained in [5]. To show
Theorem 3.5, we proceed by induction on the degree n and on the number of nodes
and cusps of the curve. The geometric idea at the base of the induction on the degree
of the curve is, mutatis mutandis, the same as that of Sernesi.

Proof of Theorem 3.5. Let t be a positive integer such that n—3—t > 0 and let W C Yk
be an irreducible component of 2% 4- By standard semicontinuity arguments it follows
that, if there exists a pointC'| € W corresponding to a geometricaltynormal curve with
only k cusps and! nodes as singularities, then the general elemenrt/o€orresponds to a
geometricallyt-normal plane curve Moreover, if the theorem is true for fixed, t < n — 3,
kasin(5) orin (6) andk + d as in(3), then the theorem is true for, ¢t and anyk’ < k and
d < d+k—Fk. Indeed, from the hypotheses (3), (5) and (6), it follows in particular
that & < 3n. By Section 2.1, under this hypothesis, for every ¥’ < k and for every
d' < d+k—FK there exists a family of plane curves C — A of degree n, parametrized by
acurve A C Y a» whose special fibre is Cy = C and whose general fibre C, has d’ nodes
and k' cusps as singularities. The statement follows by applying the semicontinuity
theorem to the family ¢ — A, obtained by normalizing the total space of the pull-back
family of C — A to the normalization curve A of A. Finally, it's enough to show the
theorem when the equality holds(if), (6) and (3).

First of all we consider the case k = 0. We will show the statement for any fixed ¢
and by induction on n. Let, then ¢t > 1 and n =t 4 3. In this case the equality holds
in (3) if d = 1 = h%(P?, Op2). Since one point imposes independent linear conditions to
regular functions, by using Lemma 3.2, we find that every irreducible plane curve of
degree n =t + 3 with one node and no further singularities is geometrically ¢-normal.
So, the first step of the induction is proved. Suppose, now, that the theorem is true
for n = t+ 3+ a and let [I'] € V, 4 be a point corresponding to a geometrically
t-normal curve with “2‘%7‘”'2 nodes. Let D be a line which intersects transversally
I' and let Py,..., P11 be t + 1 marked points of T N D. If Y = T'UD C P?, then
Py, ..., P 1 are nodes for I". Let C' — T' be the normalization of I' and ¢’/ — I" the
partial normalization of I”, obtained by smoothing all singular points of I, except
Py, ..., P, 1. We have the following exact sequence of sheaves on C’

OHOD(t)(—Pl _"-_Pt—&-l) —>Ocl(t) —>Oc(7f) —>0, (7)

where O¢r(t) := Oc/(tH) and H is the pull-back with respect to C" — I" of general
line of P2. Since deg(Op(t)(—P; — ... — Piy1)) < 0, we get that

(D, 0p(t)(—Py — ... — Piy1)) =0
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and so
hO(C', Oci (t)) = hO(C, Oc(t)) = hO(IP’Q, Op2(t)). (8)

Now, by Section 2.1, we can obtain I as the limit of a 1-parameter family of irreducible
plane curves

10— A C P2
of degree n+ 1 =1t + a + 4 with

2 2
3a+ 2 12 +3(a+1)+2
a+2a+ ht 1 (a+1) +2(a+ )+

= hO(P?, Op2(n+ 1 —t — 3))

nodes specializing to nodes of I different from the marked points P, ..., Pry1. More-
over, one can prove that A is smooth, (see [24] or [25]). Normalizing C, we obtain
a family whose general fibre is smooth and whose special fibre is exactly C’, and we
conclude the inductive step by (8) and by semicontinuity theorem.

Now we consider the case t = 1,2 or 3 and k as in (5) and in (6). Suppose the
theorem is true for n and let [I'] € X} ; be a general point in one of the irreducible
components of 37 ;. Then, let D be a smooth plane curve of degree ¢ if t = 1, 2 or
an irreducible cubic with a cusp if t = 3. By the generality of I', we may suppose
that D intersects I' transversally. Let P, ..., P2, be t? 4+ 1 fixed points of I' N D. If
IY=TUD, then Pi,..., P2 are nodes for I". Let C'— T' be the normalization of T’
and C’ — T" the partial normalization of I, obtained by smoothing all singular points
except Pp,..., Ppy1. By using the same notation and by arguing as before, from the
following exact sequence of sheaves on C’

0= Op(t)(=P1 — ... = Pay1) = Ocr(t) — Oc(t) — 0,
we deduce that
hO(C', Oci(t)) = h°(C, Oc(t)) = h'(P?, Opa(t)). (9)
Now, by Section 2.1, we can obtain I as limit of a family of irreducible plane curves
¢p:C— A
of degree n + t with

(n+t)2+B+2t)(n+1t)+t2+3t+2

d4nt—t*—1=
+n 5

nodes specializing to nodes of I different to P, ..., P21, and k+ '52_# cusps special-
izing to cusps of I'. We conclude by (9) and by semicontinuity, as before. Now we have
to show the first step of the induction. For ¢ = 1 the induction begins with the cases
(n,k) = (4,1), (5,3), (6,6). Trivially, if n = 4 and k = 1 one point imposes indepen-
dent conditions to the linear system of regular functions. If n = 5 and k = 3 we have to
show that there are irreducible quintics with three cusps not on a line. A quintic with
three cusps is a projection of the rational normal quintic C5 C P° from a plane gener-

ated by three points lying on three different tangent lines to Cs. By Bezout theorem
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the three cusps of such a plane curve can’t be aligned. If n = k = 6, one can repeat
the classical argument used by Zariski, see [24] or Example 3.20 of Chapter 2 of [8].
For ¢ = 2 we have to show the theorem for (n,k) = (5,1), (6,3), (7,6), (8,6), while
for ¢ = 3 we have to show the theorem for (n,k) = (6,1), (7,3), (8,6), (9,6), (10,6).
The case t = 2 and (n,k) = (5,1) is trivial. When ¢ = 2, n = 6 and k = 3 we have
that n — 3 —t = 1. To show that there exists an irreducible sextic with three cusps
not on a line, consider a rational quartic Cy with three cusps, (see Corollary 3.18 of
Chapter 2 of [8] for the existence). By Bezout Theorem, the three double points of Cjy
can’t be aligned. Then consider a sextic Cs which is union of C4 and a conic Co which
intersects Cy transversally. By Section 2.1, one can smooth the intersection points
of C4 and Cs obtaining a family of sextics with three cusps not on a line. For t = 2,
n =7 and k = 6 we argue as in the previous case, by using a sextic Cg with six cusps
not on a conic and a line R with intersects Cg transversally. Similarly fort =2 ,n =38
and k=6 and t = 3 and (n,k) = (6,1), (7,3), (8,6), (9,6), (10,6). (]

EXAMPLE 3.7 Inequalities (5) and (6) are not sharp. To see this, we can consider the
example of curves of degree 10. We recall that we say that a plane curve is geometrically
linearly normal (g.l.n. for short) if it is geometrically 1-normal. Theorem 3.5 ensures
the existence of g.l.n. irreducible plane curves of degree 10 with k < 6 cusps and nodes
as singularities. But, by using the same ideas as we used in Theorem 3.5, one can prove
the existence of g.l.n. plane curves of degree 10 with nodes and £ < 9 cusps. It is
enough to consider a sextic I'g with six cusps not on a conic and a rational quartic I'y
with three cusps intersecting ['g transversally. We choose five points Pp,..., P5 of
I'yNTg. If T and Iy are the normalization curves of I'¢ and I'y respectively and C’
is the partial normalization of I'g U I'y obtained by normalizing all its singular points
except P, ..., Ps, by considering the following exact sequence

0— Op,(1)(=P1—+- = PF5) = Ocr(1) - O, (1) = 0

we find that h°(C’,Ocr(1)) = 3. By using terminology of Section 2.1, the statement
follows by smoothing the singular points Py, ..., Ps of I's UTl'y, and by semicontinuity,
as in the proof of Theorem 3.5. The bound on the number of cusps of Theorem 3.5
can be improved also for t = 2 or t = 3. For example, Theorem 3.5 ensures the
existence of geometrically 3-normal curves of degree 12 with £ < 6 and nodes as further
singularities. But, by considering a geometrically 3-normal curve of degree 8 with six
cusps and a quartic with 3 cusps and arguing as before, we can find geometrically
3-normal irreducible plane curves of degree 12 with nodes and k£ < 9 cusps.

4. Families of plane curves with nodes and cusps with finite and
expected number of moduli

Let ¥ C X} ; be an irreducible component of X ;. We want to give sufficient conditions
for ¥ to have the expected number of moduli. Let [['] € ¥ be a general element,
corresponding to a plane curve I' with normalization map ¢ : C — I". We shall denote
by we the canonical sheaf of C' and by O¢(1) the sheaf associated to the pullback to
C of the divisor cut out on I' from the general line of P2.
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Proposition 4.1

Let ¥ C X} ; be an irreducible component of X ; and let [['] € ¥ be a general
element, corresponding to a plane curve I' with normalization map ¢ : C — I'. Suppose
that ¥ is smooth of the expected dimension equal to 3n + g — 1 — k at [[']. Moreover,
suppose that:

(1) T is geometrically linearly normal, i.e. h%(C,O¢c(1)) = 3,
(2) the Brill-Noether map

Ho,C HO<Cu OC(I)) ® HO(C7 WC(—1>) - HO(C7 WC)
is surjective.

Then ¥ has the expected number of moduli equal to 3g — 3+ p — k.

Proof. The case k = 0 has been proved by Sernesi in [18], Section 4. We shall
assume k > 0. Let I' be a plane curve verifying the hypotheses of the proposition. By
Lemma 1.5.(b) of [22], the hypothesis that ¥ is smooth of the expected dimension at
[T] implies the vanishing H'(C, ) = 0, where Ny if the normal sheaf of ¢. We recall
that, denoting by ©¢ and Op2 the tangent sheaf of C' and P? respectively, then the
normal sheaf of ¢ is defined as the cokernel of the differential map ¢, of ¢

0—0c % ¢"Op: — Ny — 0 (10)

By Theorem 3.1 of [13], the vanishing H'(C, ) = 0 is a sufficient condition for the
existence of a universal deformation family

C*¢>]P’2

|

B

of the normalization map ¢, whose parameter space B is smooth at the point 0 cor-
responding to ¢, with tangent space at 0 equal to HY(C, Ny). On the contrary,
by [3], p. 487, the Severi variety V,, 4 = ¥, 4 of irreducible plane curves of genus
g = ("51) — d — k is singular at the point [I'] and the universal deformation space
B of ¢ is a desingularization of V,, , at [I']. Moreover, by Corollary 6.11 of [2], if
B, = F~1(X) is the locus of points of B corresponding to a morphism with & rami-
fication points, then the tangent space to B at 0 is a subspace W of HO(C’,N¢) of
codimension k such that W N H°(C, K,) = 0, where Ky is the torsion subsheaf of N.
By [3], p. 487, it follows that, if
F:B—V,,

is the natural (1: 1)-map from B to V}, 4, then the differential map
dF : HO(C, N¢) — Cr[l‘]vn,g

restricts to an isomorphism between W and the tangent space Tjr% to X at [I7].



332 GALATI

We can now go back to the number of moduli of ¥. From the exact sequence (10),
by using that H(C, Ny) =0, we get the following long exact sequence

0 — HY(C,0¢) — HO(C,¢*Op2) — HO(C,N;;) %S H(C,0¢)
— HY(C,¢*Op2) — 0.

Recalling that the space H'(C,©O¢) is canonically identified with the tangent space
Tic) Mg to M, at the point associated to the normalization C of I', the coboundary map
Sc : H(C,Ny) — HY(C,©¢) sends the Horikawa class of an infinitesimal deformation
of ¢ to the Kodaira-Spencer class of the corresponding infinitesimal deformation of C.
So, d¢|W is the differential map at the point 0 € B of the moduli map Iy, 0 F': By =
F~1(¥) --» M,. Since the point [I'] is general in %, and recalling the isomorphism
dF : W = Tin %, we have that

the number of moduli of = dim(éc(W)).
Now, from the exact sequence (10), we have that
dim (8¢ (H"(C, Ny)) = 39 — 3 — h'(C, ¢*Op2).

Moreover, from the pull-back to C of the Euler exact sequence, we deduce the well
known isomorphism

H'(C, ¢*Opz2) ~ coker(uy o) =~ (ker(po,c))*
and we conclude that
dim(6c(H(C,Ny))) = 39 — 3 — dim(ker(po c)). (11)

Notice that the previous equality is always true, even if I' doesn’t verify the hypothe-
sis (1) or (2) of the statement. Moreover, if I" is geometrically linearly normal, i.e. if
hO(C,0¢(1)) = 3, we have that

p = 3n— 2g — 6 = dim(coker(to,c)) — dim(ker(sio.c).
When g, ¢ is surjective, p = — dim(ker(u,,c)) and
dim(5c(H(C,Ny)) = 39 — 3+ p = dim(B) — 8 = dim(V},4) — 8. (12)
Since the dimension of the fibre of the moduli map
Iy, , 0o F: B --» M,

has dimension at least equal to 8 = dim(Aut(P?)), from (12) we deduce that the
differential map of Ily, o F' has maximal rank at 0 and, in particular, we have that
dim((Ily, , o F)~*([C])) = 8. Equivalently, there exist only finitely many g2 on C. It
follows that there are only finitely many g2 on C' mapping C to the plane as a curve
with k£ cusps and d nodes. Then,

dim(0.(W)) = dim(IIx(X)) =39 — 3+ p — k. O
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Remark 4.2 Arguing as in the proof of the previous proposition, it has been proved
in [18] that, if T' is a geometrically linearly normal plane curve with only d nodes
as singularities and the Brill-Noether map i, ¢ of the normalization morphism of I' is
injective, then ¥ = ¥ ; has general moduli. If ¥ C £} ;, and [I'] € ¥ verify the hypothe-
ses of Proposition 4.1 but we assume that Ho,C 18 injeétive, we may only conclude that
Iy, ,oF is dominant with surjective differential map at [I']. So dim(H‘_,nlg (IC)) = p+8.
But this is not useful to compute the dimension of d¢(W) = 5C(ﬂr]j)- However, in
this case we get that

5c(TinE) 4+ 6c(HO(C,Ky)) = 6c(HY(C,Ny)) = H'(C,O¢).

Then, by using that dim(éc(H®(C,Ky))) < k and by recalling that if ¥ has the
expected dimension then the number of moduli of X} ; is at most the expected one
(see Lemma 2.2 and Remark 2.3), we find that

39 — 3 — k < number of moduli of¥ < 3g — 3+ p — k.

Remark 4.3 Notice that, if a plane curve I' of genus g verifies the hypotheses (1) and (2)
of the previous proposition, then the Brill-Noether number p(2, g, n) is not positive and,
in particular, g > 3. We don’t know examples of complete irreducible families > C X7 ;
with the expected number of moduli whose general element [I'] corresponds to a curve
" of genus g, with p(2, g,n) < 0, which doesn’t verify properties (1) and (2).

Lemma 4.4 ([5], Corollary 3.4)

Let T be an irreducible plane curve of degree n with only nodes and cusps as
singularities and let ¢ : C' — I' be the normalization morphism of I'. Suppose that I'
is geometrically 2-normal, i.e. h°(C,Oc(2)) = 6. Then the Brill-Noether map

fo.c 2 H(C,0c(1)) @ HY(C,we(—1)) — HY(C,we)

is surjective.

Proof. By Lemma 3.2, the curve I' is geometrically 2-normal if and only if the scheme
N of the singular points of I imposes independent linear conditions to the linear system
H(P2, Op2(n — 5)) of plane curves of degree n — 5. Since

HO(P?, Op2(n — 5)) € H(P?, Op2(n — 4)),

N imposes independent linear conditions plane curves of degree n — 4, and, by using
Lemma 3.2, we get that h°(C, Oc(1)) = 3, i.e. T is geometrically linearly normal. Now,
denote by Zyp2 the ideal sheaf of N. Notice that the curve I' is geometrically 2-normal
if and only if the ideal sheaf Zyp2(n — 4) is O-regular, (in the sense of Castelnuovo-
Mumford). Indeed, since h? (IP’2,INUP2 (n —6)) = 0, the ideal sheaf Zyp2(n — 4) is 0-
regular if and only if ' (PZ,IN‘[@Q (n—5)) = 0. Because of the 0-regularity of Zyp2(n —
4), we have the surjectivity of the natural map

HO(P?, Iypp2(n — 4)) @ HO(P?, Op2(1)) — H°(P*, Iypp2(n — 3)),
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(see [17]). Finally, by the geometric linear normality of I, the vertical maps of the
following commutative diagram

HO(P?, Op2(1)) ® HO(P?, Iyp2(n — 4)) — HO(P?, Iy p2(n — 3))

i |

HO(C,0c(1)) ® H(C,we(—1)) HO(C,we)

are surjective and, hence, the Brill-Noether map p, ¢ is surjective too. O

Corollary 4.5

Let X C E’,;d be an irreducible component of Xk d of dimension equal to 3n+ g —
1 — k, such that the general point [I'] € ¥ corresponds to a geometrically 2-normal
plane curve. Then Y has the expected number of moduli equal to 3g — 3 + p — k.

Proof. It follows from Proposition 4.1 and Lemma 4.4. O

In order to produce examples of families of irreducible plane curves with nodes
and cusps with the expected number of moduli, we study how increases the rank of the
Brill-Noether map by smoothing a node or a cusp of the general curve of the family,
(in the sense of Section 2.1).

Let ¥ C X} 4, with n > 5, be an irreducible component of ¥ ;. let [['] € X be a
general point of 3 and let ¢ : C — I' be the normalization of I'. Choose a singular
point P € T and denote by ¢’ : C’ — T' the partial normalization of I" obtained by
smoothing all singular points of I', except the point P. If w¢r is the dualizing sheaf of
C’ and

Ho,C" HO(C/7 OC”(1>) ® HO(C/7WC’(_1)) - HO(ClawC’)7

is the natural multiplication map, we have the following result.

Lemma 4.6

If h9(C,0¢(1)) = 3 and the geometric genus g of C' is such that g > n — 2, with
n > 5, then rk(pocr) > rk(poc) + 1. In particular, if h°(C,0¢(1)) = 3, n > 5 and
Ho,c s surjective, then pu, ¢ is also surjective.

Proof. Let ¢ : C — C" be the normalization map.

oY
Xl‘b
r

We recall that, if we set ¢*(P) := p; + p2 when P is a node and ¢*(P) = 2¢~'(P)
when P is a cusp, then the dualizing sheaf of C’ is a subsheaf of ¥, (wc(¢*(P))), (see
for Example [7], p. 80). In particular we have the following exact sequence

0 — wer — Yuwe(@*(P)) — Cp — 0 (13)
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where Cp is the skyscraper sheaf on C' with support at P. From this exact sequence,
we deduce that
HO(C,7 (UC’/) = HO(Ca wC(¢*(P)))

Moreover, tensoring (13) by O¢/(—1), we find the exact sequence
0 — wer(—1) = Yewe (9™ (P))(—=1) - Cp — 0 (14)
from which we get an injective map
H(C' wer (1)) — H(C,we (¢7(P))(~1)).
On the other hand
ho(C" wer(=1)) = W(Cowe(¢*(P)(-1)) =g —n+3 (15)

and so
HY(C',wer(—1)) = HO(C,weo(6°(P))(=1)).

Moreover, from the hypothesis h?(C, O¢(1)) = 3, we have that
H°(C,0¢(1)) =~ HY(C',0cr (1)) = H°(P?, Opz2(1)).
Therefore, in the following commutative diagram

H’O,C’

HO(C",0ci (1)) @ HO(C',wer (1)) HO(C' wer)

l n

HO(C,06(1)) ® HY(C,wo(—1)(6%(P)) —% HO(C,we (¢ (P)))

where we denoted by ,u;C the natural multiplication map, the vertical maps are iso-
morphisms. In particular,

rk(po,cr) = k(o).

In order to compute the rank of ugyc, we consider the following commutative diagram

Ho,C

HO(C,00(1)) @ HY(C,we(—1)) HO(C, we)

l Lk

H(C,00(1)) ® HY(C,we(~1)(6*(P))) —> HO(C,we (¢ (P)))

where the vertical maps are injections. Notice that, since we supposed n > 5,
hY(C,0c(1)) = 3 and g > n — 2 > 3, the sheaf O¢(1) is special. We deduce that
C is not hyperelliptic and, chosen a basis of H°(C,w¢), the associated map C' — P9~!
is an embedding. On the contrary, the sheaf wc(¢*(P)) does not define an embed-
ding on C. Choosing a basis of H°(C,wc(¢*(P)) and denoting by ® : C' — P9 the
associated map, this will be an embedding outside ¢*(P). If P is a node of C and
¢*(P) = p1+p2, the image of C' to P9, with respect to ®, will have a node at the image
point @ of p; and po. If P € I is a cusp, then ®(C) will have a cusp at the image point
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Q of ¢~1(P). The hyperplanes of P9 passing through @ cut out on C the canonical
linear series |wc|. Moreover, if we denote by B C P9 the subspace which is the base
locus of the hyperplanes of P9 corresponding to I m(“;,C)’ then @ ¢ B. Indeed, B
intersects the curve C' in the image of the base locus of

0c (V)] + lwe (¢ (P)(=1)] == P(Im(up,0)),

which coincides with the base locus of |wo(¢*(P))(—1)]|, since |O¢(1)| is base point
free. Now, by (15),

W (we(¢*(P)(—1)) =3+ g —n=h"(C,wc(-1)) + 1.
Then ¢*(P) does not belong to the base locus of |wa(¢*(P))(—1)|, and so
dim(< Q, B >ps) = dim(B) + 1.
Finally, we find that

rk(po,c) = rk(Guo,c) < dim(Im(G) N Im(ug’c))
g+1—dim(< B,Q >ps) — 1
= g—1—dim(B)

= rk(pipc) — 1.

O
Corollary 4.7

Let 3 C Eﬁ,d be a non-empty irreducible component of the expected dimension
of Xy 4, with n > 5. Suppose that ¥ has the expected number of moduli and that the
general element [I'] € X corresponds to a g.1.n. plane curve I' of geometric genus g such
that, if C — T' is the normalization of I', then the map u, c is surjective. Then, for
every k' < k and d' < d+k— k', there is at least an irreducible component X' C X, ;/,
such that ¥ C ¥/, the general element [D] € ¥/ corresponds to a g.l.n. plane curve D
of geometric genus ¢’ with normalization D¥ — D and the Brill-Noether map fio pv
surjective. In particular, ¥’ has the expected number of moduli.

Proof. Let I' be the curve corresponding to the general element [I'] of ¥ C X} ;. Since
by hypothesis ¥ is smooth of the expected dimension at [I'], by Section 2.1, for every
k' < k and for every d < d + k — k' there exists an irreducible component ¥’ of
E}},} o containing Y. In order to prove the statement, it is enough to show it under the
hypotheses ¥ =k —1landd =d+ 1, k=K andd =d—1ord=d and k' =k — 1.
If ¥ =k —1and d = d+ 1, then the statement follows by standard semicontinuity
arguments. If k =k’ andd =d—1ord=d and k' = k — 1, the statement follows by
Lemma 4.6 and by standard semicontinuity arguments. U

The following lemma has been stated and proved by Sernesi in [18]. Actually,
Sernesi supposes that I" has only nodes as singularities. But, since his proof works
for plane curves I' with any type of singularities and, since we need it for curves with
nodes and cusps, we state the lemma in a more general form.
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Lemma 4.8 ([18], Lemma 2.3)

Let I' be an irreducible and reduced plane curve of degree n > 5 with any type
of singularities. Denote by C the normalization of I'. Suppose that h°(C,O¢(1)) = 3
and the Brill-Noether map

po.c - H(C,0c(1)) @ HY(C,we(—1)) — H(C,we),

has maximal rank. Let R be a general line and let Py, P, and P53 be three fixed points
of ' N R. We denote by C' the partial normalization of I' = I' U R, obtained by
smoothing all the singular points, except Py, Py and P3. Then h°(C', O¢/(1)) = 3 and,
denoting by wcr the dualizing sheaf of C’', the multiplication map

Mo,0" HO(C/, OC/(I)) X HO(Cl,wC/(—l)) — HO(C/,OJC/),
has maximal rank.

Theorem 4.9

Let 3 ; be the algebraic system of irreducible plane curves of degree n > 4 with

k cusps, d nodes and geometric genus g = (”;1) — k — d. Suppose that:

n—2 < g equivalently k+ d < h®(P?, Op2(n — 4)) (16)

and 3
k:gﬁ%—{n; ]1'1‘3n—9§gz:manG7 (17)
k <6 otherwise. (18)

Then ¥ ; has at least an irreducible component X which is not empty and such
that, if ' C P? is the curve corresponding to the general element of ¥ and C is the
normalization curve of T', then h®(C,O¢(1)) = 3 and the map ji, ¢ has maximal rank.
In particular, when p < 0, the algebraic system ¥ has the expected number of moduli
equal to 3g — 3+ p — k.

Proof. Suppose tha{l7) holds. Then, by observing that
g >3n—9 if and only if k+d < h°(P?, Op2(n — 6))

and by using Theorem 3.5 for ¢t = 3, we have that there exists an irreducible compo-
nent ¥ of Xy ; whose general element is a geometrically 3-normal plane curve I'. By
Remark 3.4, it follows that also the linear systems cut out on C' by the conics and the
lines are complete. The statement follows from Corollary 4.5.

In order to prove the theorem under the hypothgdi8), we consider the following
subcases:

(1) 2n—-5<g<3n—9, ie. h°(Op(n—6)) <k+d < h%(Op2(n—5)) and n > 5,
(2) n—2<g<2n—7 and n>5,
(3) g=2n—6 and n > 4.
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Suppose that (1) holdsBy Theorem 3.5 for t = 2, we know that, under this
hypothesis, there exists a nonempty component ¥ C Xy ;, whose general element is
geometrically 2-normal. We conclude as in the previous case, by Corollary 4.5.

Now, suppose thaj and n verify (2). We shall prove the theorem by inductionron
andg. Setg = 2n — 7 — a, with a > 0 fixed. Suppose that the theorem is true for the
pair (n,g), with n > 7. We shall prove the theorem for (n + 1, g + 2), observing that
g+2=2(n+1)—7—a. Let I" be a g.l.n. irreducible plane curve of degree n and
genus g = 2n — 7 — a with k < 6 cusps, d nodes and no more singularities. Let C' be
the normalization of I'. Suppose that the Brill-Noether map j, ¢ has maximal rank.
Let R C P? be a general line and let Py, P, and P3 be three fixed points of I' N R.
By Section 2.1, since k < 6 < 3n, one can smooth the singular points Py, P», P3 and
preserve the other singularities of TUR C P2, obtaining a family of plane curves C — A
whose general fibre is irreducible, has degree n + 1 and genus g + 2. We conclude by
Lemma 4.8 and by standard semicontinuity arguments.

Now we prove the first step of the inductionfob> 7. If n = 7, we getd < a < 2. Let
a=0,i.e.g=2n—T—a=7. Let I be a g.1.n. irreducible plane curve of degree n = 7,
of genus g = n = 7 with £ < 6 cusps and nodes as singularities, such that no seven
singular points of I" lie on an irreducible conic. To prove that there exists such a plane
curve, notice that, by applying Theorem 3.5 for t = 1, we get that, for any fixed k& < 6,
there exists a g.l.n. irreducible sextic D of genus four with & cusps and d = 6 —k nodes.
Let Rq,..., Rg be the singular points of D. Since the points Ry,..., Rg of D impose
independent linear conditions to the conics, however we choose five singular points
Ri,...,R;i; of D, with I = (i1,...,i5) C (1,...,6), there exists only one conic C7,
passing through these points. Let us set S = J; CyN D and let R be a line intersecting
D transversally at six points out of S. By Bezout Theorem, no seven singular points
of I = DUR belong to an irreducible conic. Moreover, if D is the normalization of D,
if Q1,...,Q4 are four fixed points of D N R and D’ is the partial normalization of T
obtained by smoothing the singular points except Q1,...,Q4, then, by the following
exact sequence

0= Or()(=Q1—---—Q4) = Op(1) = Op(1) =0 (19)

we find that h°(D’,Op/(1)) = 3. By Section 2.1, one can smooth the singularities
Q1,-..,Q4 and preserve the other singularities of DU R, getting a family of irreducible
septics G — A whose general fibre I' is a geometrically linearly normal irreducible
septic with k£ cusps and 8 — k nodes such that no seven singular point of I' belong to
an irreducible conic. Let, now, C be the normalization of I and let A C C be the
adjoint divisor of the normalization map ¢ : C' — I'. We shall prove that ker(u, ) = 0.
Since I' is geometrically linearly normal, we have that

h(C we(-1)) = h%(C,0c(3)(-A)) =g —n+2=2.
Then, by the base point free pencil trick, we find that
ker(p1o,c) = H(C,w&(B) © Oc(2)),

where B is the base locus of |wco(—1) = O¢(3)(—A)|. Let F be the pencil of plane
cubics passing through the eight double points Pi,..., Ps of I" and let Bx be the base
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locus of the pencil F. Let I's be the general element of F. Suppose that Br has
dimension one. If B contains a line [, then, by Bezout theorem, at most three points
among Py,..., Ps, say Pp,..., P3 can lie on [ and the other points have to be contained
in the base locus of a pencil of conics F'. Using again Bezout theorem, we find that
the curves of F’ are reducible and the base locus of F’ contains a line I’. But also
" contains at most three points of Pj,..., Ps. It follows that there is only one cubic
through Py, ..., Ps. This is not possible by construction. Suppose that Bx contains
an irreducible conic I's. By Bezout theorem, at most seven points among P, ..., Py
may lie on I'y. On the other hand, since dim(F) = 1, there are exactly seven points
of Pp,...,Ps, say Pi,...,Pr, on I's and the general cubic I's of F is union of I'y and
a line passing through Ps. Since, by construction, no seven singular points of I' lie on
an irreducible conic, also in this case we get a contradiction. So the general element
I's of F is irreducible. Using again Bezout theorem, we find that I's is smooth and F
has only one more base point (). We consider the following cases:

a) @ doesn’t lie on T’

b) Q lies on I, but Q # Py, ..., Pg;

c) Q is infinitely near to one of the points Pi, ..., Py, say P;, i.e. the cubics of F have
at P the same tangent line [, but [ is not contained in the tangent cone to I' at P;
d) @ is like in the case c), but [ is contained in the tangent cone to I" at P;.

Suppose that the case a) or ¢) holds. Thus B = 0 and

Ker(io,0) = H'(Cywis & 0c(2)) = H(C, Oc(~2)(A)).
By Riemann-Roch Theorem, h°(C, Oc(—2)(A)) = h°(C, Oc(6)(—2A)) — 4. One sees
that h%(C, Oc(6)(—2A)) = 4, by blowing-up the plane at Py, ..., Py and by using some
standard exact sequences. Suppose now that the case b) holds. Thus B = @ and
dim(ker(pio,c)) = h*(C, Oc(=2)(A + Q)) = h°(C, Oc(6)(—2A - Q)) = 3.

Also in this case one sees that h%(C, O¢(6)(—2A —Q)) = 3 by blowing-up at Py, ..., Py
and @ and by using standard exact sequences. Finally, we analyze the case d). Let @ :
S — P? be the blow-up of the plane at P, ..., Py with exceptional divisors F1, ..., Eg.
Let @ € E; be the intersection point of E: and the strict transform C3 of the general
cubic T'3 of the pencil F. We denote by ® : S — S the blow-up of S at Q and by
U : S — P? the composition map of the maps ® and ®. We still denote by Ei,..., Eg
their strict transforms on S, by C' and Cs the strict transforms of T’ and I's and by Eg
the new exceptional divisor of S. In this case we have that

UHT) =C+2) E;+3Eqg, V(') =Cs+ > E;+2Fq.
i i
Moreover, the divisor A is cut out on C' by ) ; E; + Eg and the base locus B of the
linear series |wc(—1)| coincides with the intersection point of Eg and C. So, we have

that

dim (ker(po.c)) = h° (C, Oc(-2) ( Z E; + 2EQ))

_ h0<0700(6)<— QZE - 3EQ)> ~3.
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Moreover, from the following exact sequence
0= O5(~1) = 05(6)( =23 Bi — 3Eq) — Oo(6)( —2Y_ Bi — 3Eq) — 0

we find that

i <o, 0o (6)( — 23 Ei- 3EQ)> — HO <§, 05(6)( - 23 Ei- 3EQ)>.

In order to show that

B0 (S, 05(6)(~2) B - 3EQ)> =3,
we consider the following exact sequence
0— O§(3)(—ZE1-—EQ) - Og(ﬁ)(—QZEi—?)EQ) (20)

— 00y (6)( - 2) B = 3Eq) — 0.
By Riemann-Roch Theorem, we have that

KO <03,003(6)< —2Y E - 3EQ)> =1

and
Bl <c3, 00, (6)( - 23 Ei - 3EQ)> = 0.
Moreover, by Serre duality we have that
H? (é, 05(3)( — Z E; — EQ)> = H' (S, O35(—6) (2 Z E; + 3EQ)) .
From the exact sequence

0— Og(—ﬁ)(+2ZEi+3EQ) — 04(1) = Oc(1) = 0 (21)

by using that the map H(S, 0Og(1)) — H(C,0¢(1)) is surjective and that
hl(S,05(1)) = 0, we find that

H! (S, 05(~6)(+ 23 Ei+ BEQ)) = H' (5*, 05(3)( - > Ei- EQ)> = 0.
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Then, by (20),
K <5*, 0g(6)( —2Y B - 3EQ)> = 1! <S, 05@3) (- Y B~ EQ)>
4 B0 ((3’3,(’)@3(6)( ~2) Ei- 3EQ)> =3

and ker(u, ) = 0. The first step of induction foy = n = 7 andk < 6 is proved.

We complete the proof of the first step of the inductionpfand g verifying (2). When
n=7and 1 <a <2, the existence of a g.l.n. plane curve I" follows from Theorem 3.5.
Using the above notation, h%(C,wc(—1)) =1 if a = 1 and h°(C,wc(—1)) = 0 if a = 2.
In any case ¢ is injective. When n > 8 and a < n — 6 the theorem follows by
induction from the case n = 7. For n > 8 and a = n — 5, we find that g = n — 2,
or, equivalently, k + d = h°(P?, Op2(n — 4)). In Theorem 3.5, we proved the existence
of geometrically linearly normal plane curves of degree n > 8 and genus g = n — 2,
with nodes and k < 6 cusps. For every such plane curve I', using the above notation,
the Brill-Noether map p, ¢ is injective since h%(C,wc(—1)) = 0. The cases n = 5 and
n = 6 are similar.

Suppose now that and g verify (3) First of all we prove the theorem for
(n,g) = (4,2), (5,4), (6,6). For n = 4 and g = 2, we find n = g + 2 and we ar-
gue as in the case n > 8 and g = n — 2. Similarly, for (n,g) = (5,4). Forn = 6
and g = 6 in Theorem 3.5 we proved the existence of geometrically linearly normal
plane curves I' with k£ < 4 cusps and nodes as singularities. For every such a plane
curve I', denoting by C its normalization, we get that h%(C,wc(—1)) = 2, i.e. the
linear system F of conics passing through the four singular points Pi,..., Py of T is
a pencil which cuts out on C' the complete linear series |wco(—1)|. We have two pos-
sibilities: either the general element of this pencil is irreducible or it consists of a line
containing exactly three singular points P, P», P3 of I' and a line passing through Pj.
In any case the base locus of F intersects I only at Pi,..., Py and the linear series
|we(—1)| has no base points. Then, by the base point free pencil trick, we find that
ker(po,c) = HY(C,wE ® O(2)) = H°(C,0c(—1)(A)), where A C C is the adjoint
divisor of the normalization map C' — I'. By Riemann-Roch Theorem, we have that
hO(C,0c(—1)(A)) = hY(C,0c(4)(—2A)) — 3. By blowing-up at Py,..., Py, one can
see that h(C, O¢(4)(—2A)) = 3, as we wanted.

Finally, we show the theorem under the hypothesis (3) for n > 7, by using induc-
tion on n. In order to prove the inductive step we may use Lemma 4.8, exactly as we
did in the case (2). We prove the first step of induction. If n = 7 we have that g = 8.
On pages 337 and 338 we proved the existence of geometrically linearly normal plane
curves I' of degree 7 and genus 7 with £ < 6, such that, if Py,..., Pg are the singular
points of I', then no seven points among Pj,..., P lie on a conic. In particular, we
proved that, for every such a plane curve I', the general element of the pencil of cubics
passing through P, ..., Ps is irreducible and, if ¢ : C — I" is the normalization of T,
then the Brill-Noether map f, ¢ is injective. Let C” be the partial normalization of
I' which we get by smoothing all the singular points of I' except a node, say Ps. By
using the same notation and by arguing exactly as in the proof of Lemma 4.6, we get
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the following commutative diagram

:U‘O,C’

HO(C,aOC’<1))®H0(017w0’(_1)) HO(C/7WC’)

| L

HO(C,06(1)) ® H(C, we(—1)(6(B))) — HO(C, we(6* (Ps))

where /‘:;70 is the multiplication map and the vertical maps are isomorphisms. We
want to prove that the map p, ¢ is surjective. By the previous diagram it is enough
to prove that i, - is surjective. Since hO(C,we(¢*(Pg))) = 8 and

h(C,0c(1))h°(C,we(~1)(¢"(P5))) = 3(7T — 7+3) =9,

we have that dim(ker(iocr)) > 1 and g v is surjective if dim(ker(uocr)) = 1. By
recalling that I' is geometrically linearly normal, we have that, if Z is the scheme of
the points Pp,..., P; and Zzpe is the ideal sheaf of Z in P2, then in the following
commutative diagram

/

HO(C,0c(1)) ® HO(Cywe(~1)(6* (Py))) = HO(C,wo (0 (Fy))

| |

HO(P?, Op2(1)) @ HO(P?, Typ2(3)) ——> HO(P2, Typ2(4))

the vertical maps are isomorphisms. Hence, it is enough to prove that the kernel of the
multiplication map p has dimension one. Let { fo, f1, fo} be a basis of the vector space
HO(P? T zp2(3)). Since the general cubic passing through Py, ..., Py is irreducible, we
may assume that fy, fi and fo are irreducible. Suppose, by contradiction, that there
exist at least two linearly independent vectors in the kernel of p. Then, there exist
sections ug, u1, ug and vg, v1, v of HO(P?, Op2(1)) such that the sections Y, u; ® f; and
> i vi ® fi are linearly independent in HY(P?, Op2(1)) ® H°(P?, Zp2(3)) and

{Z?ouifi =0
Z?zovifi = 0.

We can look at (22) as a linear system in the variables fy, f1, f2. The space of solutions
of (22) is generated by the vector

(22)

(U1U2 — U2V1, U3Vy — UOV3, UQV1 — u1vo)-

In particular, if we set ¢; = (—1)1+iuivj — viuj, we find that f;q; = fiqj, for every
i # j. But this is not possible since f1, fo and f3 are irreducible. We deduce that

dim(ker(p)) = dim(ker(pocr)) =1

and p, ¢ is surjective. The existence of a plane septic of genus 8 with k < 6 cusps and
nodes as singularities, with injective Brill-Neother map, follows now by smoothing the
node Pg (in the sense of Section 2.1) and by standard semicontinuity arguments. O
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Remark 4.10 Notice that the conditions which we found in Theorem 4.9 in order that
Y7 ; has at least an irreducible component with the expected number of moduli, are
not sharp, even if we suppose p < 0. To see this, notice that in Remark 3.6 we proved
the existence of an irreducible component X of 25,20 whose general element corresponds
to a 3-normal plane curve. By Remark 3.4 and Corollary 4.5, we have that > has the
expected number of moduli.

Theorem 4.11

¥} 4 has the expected number of moduli, for every d < ("51) — 1.

Proof. First of all, we recall that, by [16], Y14 1s irreducible for every d < (";1) — 1.
Moreover, from Theorem 4.9 and from Corollary 2.7, we know that X7 ; is not empty
and it has the expected number of moduli if either p < 0 or p > 2. Next we shall prove
that, if p = 1, then the algebraic system

n o _ \n
1d = 21 (n—3)2/2-1

has general moduli. Equivalently, we will show that, if [['] € Y74 is a general point

and g = ("51) —1—-d= 3”2_ T then, on the normalization curve C' of T' there are
only finitely many linear series g2 with at least a ramification point. Notice that, if
g = (”;1) —1—d = 22" then n is odd and n > 5. We prove the statement by
induction on n.

If n = 5 then g = 4. Let C C P? be the canonical model of a general curve of
genus four and let 2P + @, with P # Q be a divisor in a g5 on C. This divisor is cut
out on C by the tangent line to C' at P. The projection of C' from @) is a plane quintic
of genus four with a cusp. This proves that Zil has general moduli.

Now we suppose that the theorem is true for n and we prove the theorem for
n+ 2. Let I' C P? be the plane curve with a cusp and @ — 1 nodes corresponding

to a general point [I'] € ZT (-2 and let C'y be an irreducible conic intersecting I
7T7

+2

(nr2-3)2_ " In particular,

transversally. By Section 2.1, the point [Co UT'] belongs to ET

)

however we choose four points Py, ..., P, of intersection between I" and C5, there exists

an analytic branch Sp, . p, of ETJZT?_W X passing through [Co UT'| and whose general

point corresponds to an irreducible plane curve of degree n + 2 with a cusp in a
neighborhood of the cusp of I' and a node at a neighborhood of every node of Co UT
different from Pi,..., P;. Moreover, S := Sp, . p, is smooth at the point [Cy U I,
(see [8], Chapter 2). Let

. vnt2
IT: 21,J(rn—1)2/2—1 - Many2)-7/2

+2

(n-12_ - In order to prove that II is dominant it is sufficient
77_

be the moduli map of EZL

to show that II(S) = Mzn-1. By Section 2.1, there exist an analytic open sets
2

% n+2
ST C X a2 2 14an—i

with ¢ = 1, 2, 3, such that

SV .=8Sn (IP’5 X Eﬁ(n_g)gﬂ_l) cStcscsics.
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Every 8%, with i = 1,2,3, has ( 44_2.) irreducible components, passing through [Cy U T
and intersecting transversally at [Cy UT, (see [8], Chapter 2 or [25]). Moreover, the
general point of every irreducible component of 8¢, with i = 1, 2, 3, corresponds to an
irreducible plane curve I'; of degree n + 2 with a cusp in a neighborhood of the cusp
of I', a node in a neighborhood of every node of Cy U T different from P;,..., Py and
4 — ¢ nodes specializing to 4 — ¢ fixed points among Pi,..., Py, as I'; specializes to
Cy UT. Now, notice that the moduli map II is not defined at the point [Co U T, but,
if § is sufficiently small, then the restriction of II to S extends to a regular function
on §. More precisely, let C — A be any family of curves, parametrized by a projective

curve A C S, passing through the point [Cy UT] and whose general point corresponds
3n—1 _ 3(n+2)—-7
2 = 2

to an irreducible plane curve of degree n + 2 of genus with a cusp
and nodes as singularities. If we denote by ¢’ — A the family of curves obtained
from C — A by normalizing the total space, we have that the general fibre of ¢’ — A
is a smooth curve of genus 3"2_ L corresponding to the normalization of the general
fibre of C — A, whereas the special fibre C{ is the partial normalization of Cy U T,
obtained by normalizing all the singular points, except Pi, ..., Py. Then, the map II4
is defined at [Cy UT'] and it associates to the point [Cy U T'] the isomorphism class of
Cl. Similarly, if [[';] is a general point in one of the irreducible components of S?, with
i =1, 2, 3, then II|4([I';]) is the partial normalization of I'; obtained by smoothing all
the singular points except for the 4 — i nodes of I'; tending to 4 — i fixed points among
Py, ..., P, as T; specializes to Co UT. It follows that, if we denote by MY, _, the locus

i 2
of Mzn—1 parametrizing j-nodal curves, then II5(S*) C MEE forevery i =0, ..., 4,
2

. . 2
and I5(S?%) ¢ Ms(S*1). In particular, we find that

dim (114 (S)) > dim(T1 4 (S°)) + 4.
In order to compute the dimension of II| (S°) we consider the rational map
F: H|5(50) - M(sn—7)/2

forgetting the rational tail. By the hypothesis that ET . has general moduli

(n=3)2 _
2
and hence F' is dominant. Moreover, if C' is the normalization curve of I', by the

generality of [['] in E’; (n-n2_,» We may assume that C is general in Man—7. We
T o 2

want to show that dim(F~1([C])) = 5. In order to see this, we recall that, by the
hypothesis that >" has general moduli, on C there exist only finitely many

1,92
linear series of degree n and dimension two, mapping C' to the plane as curve with a
cusp and nodes as singularities. Let g2 be one of these linear series, let {sq, 51, 52} be
a basis of g2 and ¢' : C — I C P? the associated morphism. If Q1,...,Q4 are four
general points of I, then the linear system of conics through Qq,...,Q4 is a pencil
F(Q1,...,Q4). Let Cy and Dy be two general conics of F(Q1,..., @Q4). We claim
that, if n : P! — Cy and B : P! — Dy are isomorphisms between P! and Cy and
D5 respectively, then the points 71(Q1),...,n71(Q4) are not projectively equivalent
to the points S71(Q1),...,3 1(Q4). In order to prove this, it is enough to prove
that there are at least two conics in the pencil F(Q1,...,Q4) which verify the claim.
Let D C P? be a conic. If we choose two sets of points p1,...,ps and qi,...,qs of
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D not projectively equivalent on D, we may always find projective automorphisms
A:P?2 — P? and A’ : P2 — P? such that A(p;) = Q; and A'(¢;) = (Q;), for every
i. By construction, the conics Co = A(D) and Dy = A’(D) belong to the pencil
F(Q1,...,Q4) and verify the claim. This implies that the partial normalizations C’
and D' of TV U Cy and TV U Dy, obtained by smoothing all the singular points except
Q1,...,Qu, are not isomorphic. Now, let C4 be a general conic of F(Q1,...,Q4)
and let Ry,..., Ry be four general points of I, different from Q1,...,Q4. If D) is a

general conic of the pencil F(Ry,..., Ry), then the partial normalization C’ and D’
of I U C4 and I" U D), obtained, respectively, by smoothing all the singular points
except Q1,...,Q4 and Ry,..., Ry, are not isomorphic. Indeed, since C' is a general

curve of genus 3"—2_7 > 7, the only automorphism of C'is the identity. This proves that
dim(F~1([C])) = 5. In particular, we deduce that

3n—7

dim (T4 (8%)) = 3 -3+5
and
3n—17 3(n+2)—7
dim(TT 4 (S) > 32 —3+9=3(”+2)—3. O

Remark 4.12 We expect that it is possible to prove that ¥} ; has expected number of
moduli for every p also when k = 2 or k = 3. By Corollary 2.7 and Theorem 4.9, X 4
is not empty, irreducible and it has expected number of moduli for p < 0 and p > 2k.
In order to extend Theorem 4.11 to the case k = 2 and k = 3 one needs to consider a
finite number of cases.
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