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Abstract

The affine systems generated byΨ ⊂ L2(Rn) are the systems

AA(Ψ) = {Dj
A Tk Ψ : j ∈ Z, k ∈ Zn},

whereTk are the translations, andDA the dilations with respect to an invertible
matrixA. As shown in [5], there is a simple characterization for those affine
systems that are a Parseval frame forL2(Rn). In this paper, we correct an
error in the proof of the characterization result from [5], by redefining the class
of not-necessarily expanding dilation matrices for which this characterization
result holds. In addition, we examine the connection between the eigenvalues
of the dilation matrixA and the characterization equations of the affine system
AA(Ψ) that are Parseval frames. Our observations go in the same directions
as other recent results in the literature that show that, whenA is not expanding,
the information about the eigenvalues alone is not sufficient to characterize or to
determine existence of those affine systems that are Parseval frames.
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1. Introduction

Let A ∈ GLn(R) and Ψ = {ψ1, . . . , ψL} ⊂ L2(Rn). The affine systems generated by
Ψ are the systems of the form

AA(Ψ) =
{
Dj

A Tk Ψ : j ∈ Z, k ∈ Zn}, (1.1)

where the translation operators Ty, y ∈ Rn, is defined by Ty f(x) = f(x − y), and
the dilation operators DA, A ∈ GLn(R), is defined by (DA f)(x) = |detA|1/2ψ(Ax),
for f ∈ L2(Rn) and x ∈ Rn.

Of particular interest are those functions Ψ for which the system AA(Ψ) is an
orthonormal (ON) basis or, more generally, a Parseval frame for L2(Rn). In particular,
Ψ is an ON wavelet if the set AA(Ψ) is an orthonormal basis for L2(Rn) and is a
Parseval frame wavelet if AA(Ψ) is a Parseval frame for L2(Rn).

There are relatively simple equations that completely characterize those functions
Ψ for which these systems are Parseval frames or ON bases for L2(Rn). This problem
has been investigated in several papers, including [3, 12, 8, 9, 1, 2, 7] (see [6] for more
insight about this problem). The most general result in this direction is obtained in [5]:

Theorem 1.1 ([5])

Let Ψ = {ψ1, · · · , ψL} ⊂ L2(Rn) and A ∈ GLn(R) be such that the matrix
B = At is expanding on a subspace F of Rn. Then the system AA(Ψ), given by (1.1),
is a Parseval frame for L2(Rn) if and only if

L∑
`=1

∑
j∈Pm

ψ̂`(B−jξ) ψ̂`(B−j(ξ +m)) = δm,0 for a.e. ξ ∈ Rn, (1.2)

and all m ∈ Zn, where Pm = {j ∈ Z : B−jm ∈ Zn}.

We are now going to recall the definition of expanding on a subspace. Before doing
this, let us observe that, until very recently, all dilation matrices A considered in the
literature were assumed to be expanding, i.e., all eigenvalues λ of A satisfy |λ| > 1.
As shown in [5, Section 5], this is equivalent to the existence of constants k and γ,
satisfying 0 < k ≤ 1 < γ <∞, such that

|Aj x| ≥ k γj |x| (1.3)

when x ∈ Rn, j ∈ Z, j ≥ 0, and

|Aj x| ≤ 1
k
γj |x| (1.4)

when x ∈ Rn, j ∈ Z, j ≤ 0. The dilation matrices which are considered in [5] are more
general than the expanding ones and contain, for example, matrices with eigenvalues
of modulus one. Also observe that it was shown in [5] and more recently in [4] that
there exist some classes of non-expanding matrices for which very useful wavelets exist.

We recall the following definition from [5]:
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Definition 1.2 Given M ∈ GLn(R) and a non-zero linear subspace F of Rn, we
say that M is expanding on F if there exists a complementary (not necessarily
orthogonal) linear subspace E of Rn with the following properties:

(i) Rn = F + E and F ∩ E = {0};
(ii) M(F ) = F and M(E) = E, that is, F and E are invariant under M ;
(iii) conditions (1.3) and (1.4) hold for all x ∈ F ;
(iv) given r ∈ N, there exists C = C(M, r) such that, for all j ∈ Z, the set

Zj
r (E) = {m ∈ E ∩ Zn : |M j m| < r}

has less than C elements.

Unfortunately, there is a mistake in an argument of Lemma 5.11 in [5], so that
Theorem 1.1 cannot be deduced under the assumption that B = At is expanding on a
subspace F of Rn. This mistake was pointed out by X. Yu, from McMaster University.
As we will show in this paper, there is a slight change in Definition 1.2, that will allow
us to correct the argument in Lemma 5.11 from [5] and so prove Theorem 1.1.

The paper is organized as follows. In Section 2 we construct an example to show
that Lemma 5.11 from [5] is false. In Section 3 we modify the definition of expanding on a
subspace, so that Theorem 1.1 can be obtained. In Section 4 we show several examples
of non-trivial matrices that are expanding on a subspace. Finally, in Section 5, we
examine in more detail the relationship between eigenvalues of a dilation matrix and
characterization equations.

Acknowledgements. The authors thank X. Yu for pointing out a mistake in a proof
of [5], E. Hernández, A. Jaikin, G. Weiss and E. Wilson for several useful suggestions
and discussions.

2. Counterexample

We begin by showing that Lemma 5.11 from [5] is false by producing a counterexample.
We need to introduce some notation: Given two complementary linear subspaces of
Rn, according to Definition 1.2, for any x ∈ Rn, there exist unique xF ∈ F and xE ∈ E
such that x = xF + xE . For r ∈ R, define

Q̃(r) = {x = xF + xE : xF ∈ F, xE ∈ E, |xF | < r, |xE | < r}.

We recall Lemma 5.11 from [5]:

Lemma 2.1 ([5])

Let M ∈ GLn(R) be expanding on a subspace F of Rn, r ∈ R, and E be a
complementary subspace of F as in Definition 1.2. There exists C = C(M, r) ∈ R such
that

#{m ∈ Zn \ E : M jm ∈ Q̃(r)} ≤ C|detM |−j

for all j ∈ Z.
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Consider the matrix

M =

(
2/3 0√

2 2

)
.

Let F be the eigenspace corresponding to the eigenvalue 2, that is

F =

{(
0
t

)
: t ∈ R

}
,

and E be the eigenspace corresponding to the eigenvalue 2/3, that is

E =

{( −4
(3
√

2)
t

t

)
: t ∈ R

}
.

It is clear that that the complementary subspaces F and E are invariant subspaces,
and that conditions (1.3) and (1.4) hold for all x ∈ F . In addition, since Z2⋂E = {0},
condition (iv) in Definition 1.2 is also satisfied. Therefore, M is expanding on F , in
the sense of Definition 1.2.

Now let m =

(
0
m2

)
∈ Z2. We have that m ∈ F , and, thus, m ∈ Z2 \ E. Observe

that M j m =

(
0

2j m2

)
, and, thus, |M j m| = 2j |m2|. Therefore, if j < 0, there exists

C = C(M, r) ∈ R

#

{
m =

(
0
m2

)
∈ Z2 : M jm ∈ Q̃(r)

}
= #

{
m2 ∈ Z : 2j |m2| < r

}
≥ C 2−j . (2.5)

On the other hand, since detM = 4/3, by Lemma 2.1 we should have that

#{m ∈ Z2 \ E : M jm ∈ Q̃(r)} ≤ C (4/3)−j (2.6)

for all j ∈ Z. This shows that the statement of Lemma 2.1 is false.

3. New definition

As we have shown, Lemma 5.11 from [5] does not hold. We will now propose a new
definition of the notion of expanding on a subspaceand will prove Theorem 1.1 using
this new definition.

Observe that, by condition (i) in Definition 1.2, given any x ∈ Rn, there exist
unique xE ∈ E and xF ∈ F such that x = xE + xF . Let us replace condition (iv) in
Definition 1.2 with the new condition:

(iv’) For anyj ≥ 0, there existsk1 = k1(M) > 0 such that,|xE | ≤ k1 |M j xE |.

Remark. Using the change of variables yE = M j xE , the last inequality gives |M−j yE | ≤
k1 |yE |. Thus, condition (iv’) is equivalent to:

(iv’) For anyj ≤ 0, there existsk1 = k1(M) > 0 such that,|M j xE | ≤ k1 |xE |.

Remark. If M is expanding on a subspace F ⊂ Rn, according to Definition (1.2)’, then
all eigenvalues λ of M satisfy |λ| ≥ 1. To show that this is the case, suppose that
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M u = αu, for u 6= 0, with |α| < 1. Observe that M ju = M juE + M juF , where
M juF ∈ F and M juE ∈ E. We also have that M ju = αju = αjuF + αjuE , and thus,
by the uniqueness on the decomposition into the E and F subspaces, M juF = αjuF

and M juE = αjuE . Since we assume that |α| < 1, then |M juF | = |αjuF | → 0, for
j → ∞ and |M juE | = |αjuE | → 0, for j → ∞. On the other hand, since M is
expanding on F , it follows that |M juF | ≥ kγj |uF |, with k > 0, γ > 1, and, by (iv’) in
Definition (1.2)’, |M j uE | ≥ k−1

1 |uE |. This is a contradiction, since u 6= 0. Therefore
one cannot have any eigenvalue λ = α with |α| < 1.

Observe, in particular, that the matrix M =

(
2/3 0√

2 2

)
, used in Section 2 as a

counterexample for Lemma 5.11 from [5], is not expanding on a subspace according
with Definition (1.2)’ (while it is expanding on a subspace according with Defini-
tion (1.2)).

We also observe that, if all eigenvalues λ of M satisfy |λ| ≥ 1, this does notimply
that M is expanding on a subspace (cf. Example 4 in Section 4).

A matrix M satisfying conditions (i)–(iii) from Definition (1.2) and the new con-
dition (iv)’ will still be called expanding onF . We will refer to such new definition as
Definition (1.2)’, to distinguish it from the previous one.

The goal is to prove the following proposition:

Proposition 3.1

Let Ψ = {ψ1, · · · , ψL} ⊂ L2(Rn) and A ∈ GLn(R) be such that the matrix B = At

is expanding on a subspace F of Rn. If

L∑
`=1

∑
j≥0

|ψ̂`(B−jξ)|2 ≤ C for a.e. ξ ∈ Rn (3.7)

for some C > 0, then there is a dense subspace D ⊂ L2(Rn) such that

L(f) =
L∑

`=1

∑
j∈Z

∑
m∈Zn

∫
suppf̂

|f̂(ξ +Bjm)|2 |ψ̂`(B−jξ)|2 dξ <∞ (3.8)

for all f ∈ D.

If Proposition 3.1 holds, then we say that A satisfies the Local Integrability
Condition (LIC). This condition plays a critical role in the proof of Theorem 1.1
(see [5] for details).

In order to prove this proposition, we need to introduce some new notation and
two lemmas. For r, s ∈ R, r > 1, s > 0, define

Q(r, s) =
{
x = xF + xE : xF ∈ F, xE ∈ E,

1
r
< |xF | < r, |xE | < s

}
, (3.9)

and
Q̃(r, s) = {x = xF + xE : xF ∈ F, xE ∈ E, |xF | < r, |xE | < s}.

In addition, we write Q(r) = Q(r, r), and Q̃(r) = Q̃(r, r).
The following lemma is proved in [5, Lemma 5.10] (observe that its proof only

uses (i), (ii) and (iii) from Definition 1.2).
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Lemma 3.2

Let M ∈ GLn(R) be expanding on a subspace F of Rn, and r ∈ R. There exists
N = N(M, r) ∈ N such that

#{j ∈ Z : M jη ∈ Q(r)} ≤ N for all η ∈ Rn. (3.10)

The following lemma is adapted from Lemma 5.11 in [5]:

Lemma 3.3

Let M ∈ GLn(R) be expanding on a subspace F of Rn, r ∈ R, and E be a
complementary subspace of F as in Definition (1.2)’. There exist C = C(M, r) > 0
and C̃ = C̃(M, r) > 0 such that

#{m ∈ Zn : M jm ∈ Q̃(r)} ≤ C for all j ≥ 0, (3.11)

and
#{m ∈ Zn : M jm ∈ Q̃(r)} ≤ C̃ |detM |−j for all j < 0. (3.12)

Proof. Assume j ≥ 0. For m ∈ Zn, write m = mF + mE with mF ∈ F, mE ∈ E. If
M jm ∈ Q̃(r), then |M jmF | < r, |M jmE | < r. By condition (iv)’ in Definition (1.2)’,
|mE | < k1 |M jmE | ≤ k1r, for some k1 = k1(M). Also, since M is expanding on F , it
follows that |mF | < r2, for some r2 = r2(M, r). Thus, for all j ≥ 0,

{m ∈ Zn : M jm ∈ Q̃(r)} ⊂ {m ∈ Zn : m ∈ Q̃(r, k1r2)}.

Since the last quantity is a finite set, then one can find C = C(M, r) > 0 such
that (3.11) holds.

Consider now the case j < 0. For ξ ∈ [0, 1)n, write ξ = ξF + ξE with ξF ∈ F and
ξE ∈ E. For any m ∈ Zn with M jm ∈ Q̃(r), since M is expanding on F , we have:

|M j(mF + ξF )| ≤|M j(mF )|+ |M j(ξF )| ≤ r +
1
k
|ξF | ≤ r +

1
k
S1 ≡ R1

where S1 = sup{|ξF | : ξ ∈ [0, 1)n}. Also, by condition (iv)’ in Definition (1.2)’, there
is a k1 = k1(M) such that

|M j(mE + ξE)| ≤|M j(mE)|+ |M j(ξE)| ≤ r + k1|ξE | ≤ r + k1S2 ≡ R2

where S2 = sup{|ξE | : ξ ∈ [0, 1)n}.
We have just shown that

{m ∈ Zn : M jm ∈ Q̃(r)} ⊂ {m ∈ Zn : m+ [0, 1)n ⊂M−j(Q̃(R1, R2))} ≡ Mj
R1,R2

.

Since the sets m+ [0, 1)n, m ∈ Zn, are disjoint,

#{m ∈ Zn : M jm ∈ Q̃(r)} ≤ #Mj
R1,R2

=
∣∣∣ ⋃
m∈Mj

R1,R2

(m+ [0, 1)n)
∣∣∣

≤
∣∣M−j(Q̃(R1, R2))

∣∣ = |Q̃(R1, R2)| | detM |−j (3.13)



Some remarks on the unified characterization of reproducing systems 301

Equation (3.12) then follows from (3.13) by taking C̃ = |Q̃(R1, R2)|. �

We can now prove Proposition 3.1

Proof of Proposition 3.1 Let f ∈ DE , where DE is a dense subspace of L2(Rn), defined
by

DE =
{
f ∈ L2(Rn) : f̂ ∈ L∞(Rn) and supp f̂ is compact in Rn \ E

}
.

Choose r ∈ N such that supp f̂ ⊂ Q(r). Then

L(f) ≤
L∑

`=1

∑
j∈Z

∑
m∈Zn

∫
Q(r)

|f̂(ξ +Bjm)|2 |ψ̂`(B−jξ)|2 dξ. (3.14)

For m ∈ Zn, if ξ ∈ Q(r) and ξ +Bjm ∈ Q(r), then, for j ∈ Z, we have

|Bjm| ≤ |ξE +Bjm|+ |ξE | < r + r = 2r ,

where ξ = ξF + ξE , with ξF ∈ F and ξE ∈ E. Thus, we have:

{m ∈ Zn : ξ ∈ Q(r) and ξ +Bjm ∈ Q(r)} ⊂ {m ∈ Zn : Bjm ∈ Q(2r)} = Zj
2r (3.15)

for every j ∈ Z, and

L(f) ≤
L∑

`=1

∑
j∈Z

#(Zj
2r)
∫

Q(r)
‖f̂‖2∞ |ψ̂`(B−jξ)|2 dξ. (3.16)

We write L+(f) for the sum of the terms in (3.14) for which j ≥ 0, and L−(f)
for the sum of the terms in the same expression for which j < 0. Then, L(f) =
L+(f) + L−(f).

We first estimate L+(f). By (3.11) in Lemma 3.3, #(Zj
2r) ≤ C(A, 2r), and, thus,

from (3.16) we obtain

L+(f) ≤ C(A, 2r) ‖f̂‖2∞
L∑

`=1

∑
j≥0

∫
Q(r)

|ψ̂`(B−jξ)|2 dξ.

Using (3.7), it follows that

L+(f) ≤ C(A, 2r)‖f̂‖2∞|Q(r)| <∞. (3.17)

We now estimate L−(f). Using (3.12) from Lemma 3.3 in (3.16) and then the
change of variables η = B−jξ we obtain:

L−(f) ≤ C̃(A, 2r) ‖f̂‖2∞
L∑

`=1

∑
j<0

∫
Q(r)

|ψ̂`(B−jξ)|2 |detB|−j dξ

= C̃(A, 2r)‖f̂‖2∞
L∑

`=1

∑
j<0

∫
Bjη∈Q(r)

|ψ̂`(η)|2 dη.
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By Lemma 3.2, the number of j ∈ Z such that Bjη ∈ Q(r) does not exceed a fixed
number, N(B, r), independently of η ∈ Rn. Hence,

L1(f) ≤ C̃(B, 2r)‖f̂‖2∞N(B, r)
L∑

`=1

‖ψ̂`‖22 <∞. (3.18)

Therefore, from (3.17), and (3.18) we deduce that, if f ∈ DE , then L(f) <∞. �

4. Examples

We describe in the following a number of examples of matrices M ∈ GLn(R) that
satisfy Definition (1.2)’.

The first observation is that if M is expanding, then it is also expanding on a
subspace.

Example 1 When M is an expanding matrix, Definition (1.2)’, is satisfied with F =
Rn and E = {0}.

The following examples show that there are matrices M ∈ GLn(R) that are ex-
panding on a subspace, but are not expanding.

Example 2 For a ∈ R, |a| > 1, the matrix

M =

(
a 0
0 1

)

has eigenvalues a and 1. Letting F be the eigenspace corresponding to the eigenvalue
a, and E the eigenspace corresponding to the eigenvalue 1, it is clear that M is ex-
panding on F , in the sense of Definition (1.2)’. It is easy to obtain analogous, higher
dimensional, diagonal matrices, even allowing some of the elements of the diagonal to
be -1, that satisfy “expanding on F”.

Example 3 For a ∈ R, |a| > 1, and θ ∈ R, consider the matrix

M =

a 0 0
0 cos θ − sin θ
0 sin θ cos θ

 ,
which corresponds to a dilation on the X–axis and a rotation around the origin in the
Y Z–plane. The matrix M is expanding on F = R×{0}× {0}, with E = {0}×R×R.

The following example is not expanding on a subspace, but we will show that
Theorem 1.1 is still valid in this case.

Example 4 For a ∈ R, |a| > 1, consider

M =

a 0 0
0 1 1
0 0 1

 .
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With F = R × {0} × {0}, and E = {0} × R × R, properties (i), (ii), and (iii) of
Definition (1.2)’ are obvious. However, condition (iv)’ fails. In fact, for xE = (0, x, y) ∈
E, one finds that M jxE = (0, x+ jy, y), and |M jxE | diverges for j →∞ (this violates
(iv)’).

On the other hand, one can show that Theorem 1.1 is still valid in this case.
In fact, we will show that one can prove Proposition 3.1 in this case and, as a con-
sequence, prove Theorem 1.1. Observe that, in order to prove Proposition 3.1, it is
sufficient to prove condition (3.10) from Lemma 3.2 and conditions (3.11) and (3.12)
from Lemma 3.3, since these conditions imply the LIC (eq. (3.8)). Our first observation
is that condition (3.10) is still valid in this case, since Lemma 3.2 does not depend on
condition (iv)’ of Definition (1.2)’. To prove (3.11) and (3.12) we need the following
argument. Let

m =

m1

m2

m3


and assume that M jm ∈ Q̃(r). Since

M jm =

aj 0 0
0 1 j
0 0 1

m,
it follows that

|ajm1| < r and

∣∣∣∣∣
(
m2 + j m3

m3

)∣∣∣∣∣ < r.

This shows that, if j ≥ 0, then #{m1 ∈ Z : |ajm1| < r} ≤ N1, for some N1 = N1(r);
if j < 0, then #{m1 ∈ Z : |ajm1| < r} ≤ a−j N1. Also, since∣∣∣∣∣

(
m2 + j m3

m3

)∣∣∣∣∣ ' |m2 + j m3|+ |m3|,

then |m2 + j m3| < Cr and |m3| < Cr, for some C > 0. This shows that #{m3 ∈ Z :
|m3| < r} ≤ N2, for some N2 = N2(Cr), and that #{m2 ∈ Z : |m2 + j m3| < r} ≤ N3,
for some N3 = N3(Cr) (in fact, for each j and m3 fixed, the number of such m2

is independent of j,m3). Combining these observations, we obtain that there are
constants N = N(M, r), Ñ = ñ(M, r) such that

#{m ∈ Z3 : M jm ∈ Q̃(r)} ≤ N, for j ≥ 0

#{m ∈ Z3 : M jm ∈ Q̃(r)} ≤ Ñ |detM |−j , for j ≥ 0.

This proves the conditions (3.11) and (3.12), and, as a consequence, shows that
Theorem 1.1 holds in this case.

Example 4 might suggest to the reader that Theorem 1.1 holds whenever the
dilation matrix M has all eigenvalues |λk| ≥ 1 and at least one eigenvalue |λ1| > 1.
However, this is not the case. In the next section we show that there are examples of
dilation matrices having the same eigenvalues as in Example 4, namely λ1 = a > 1
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and λ2 = λ3 = 1, for which the LIC fails. This shows that the information about
the eigenvalues of M alone is not sufficient to determine the LIC. This suggests that
the information about the eigenvalues alone is not sufficient to determine the charac-
terization equation (1.2) for affine systems with non-expanding dilation matrices. A
similar observation concerning the role of the eigenvalues in the existence of wavelets
with non-expanding dilations can be found in [11], where there are examples of affine
systems having dilation matrices with the same eigenvalues for which wavelets do or
do not exist.

5. Some observations about the role of eigenvalues

Let B =

2 0 0
0 1 1
0 0 1

. As we observed in the previous section, Theorem 1.1 is satisfied

for this choice of dilation matrix. In this section, we show that if B is replaced by
M = N−1BN , with N ∈ GL3(R), then there are choices of N for which the LIC
(defined after formula (3.8)) fails, and, as a consequence, Theorem 1.1 cannot be
proved.

Theorem 5.1

Let N =

1 0 0
0 1 0
0 a 1

, with 0 < a < 1 and a2

a−1 ∈ R \Q. Then the LIC fails for

M = N−1BN =

2 0 0
0 1 + a 1
0 −a2 1− a

 . (5.19)

In order to prove this theorem, we need some lemmas.

Lemma 5.2

Let b =

(
1 1
0 1

)
. Given δ > 0 and a lattice Λ = P Z2, where P =

(
1 + a 1
−a2 1− a

)
,

with 0 < a < 1 and a2

a−1 ∈ R \Q, there exist j = j(Λ) ∈ Z+ and λ ∈ Λ \ {0} such that

|b−jλ| ≤ δ.

Proof. For m,n ∈ Z, a direct calculation gives that

b−j P

(
m
−n

)
=

(
α− jβ
β

)
,

where α = (1−a)m−n and β = −a2m−(1−a)n. By the properties of infinite continued
fractions [10, Section 12.3], we can find infinitely many m,n ∈ Z with gcd(m,n) = 1
such that m < 0, n > 0, n

m < a2

a−1 and

0 6=
∣∣∣∣∣ nm − a2

a− 1

∣∣∣∣∣ < 1
m2

. (5.20)
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Observe that, since m < 0, n > 0, then α < 0, and since n
m < a2

a−1 , then also β < 0.
The inequalities (5.20) imply that

0 6= |(a− 1)n− a2m| < 1− a

m
.

By choosing m large enough, so that 1
m < δ√

2(1−a)
, we have that

0 6= |β| = | − a2n− (1− a)m| < δ√
2
.

Since β 6= 0, with m,n chosen as above, we can find j ∈ Z+ such that

j β ≤ α < (j − 1)β.

From this expression we obtain that

0 ≤ α− j β < −β < δ/
√

2.

Therefore, we have that ∣∣∣∣∣
(
α− jβ
β

)∣∣∣∣∣ < √δ2/2 + δ2/2 = δ,

and, thus: ∣∣∣∣∣b−j P

(
m
−n

)∣∣∣∣∣ < δ,

for some j ∈ Z+. This completes the proof with λ = P

(
m
−n

)
. �

Observe that the argument of the above lemma goes through if P is replaced by
k P , for k ∈ N.

Lemma 5.3

Let A = P−1bP , where P and b are as in Lemma 5.2, and let

Cj(A) = #
{
m ∈ Z2 : |Ajm| ≤ 1

4

}
.

Then supj∈Z+ C−j(A) = ∞.

Proof. Since P is invertible, there is a δ > 0 such that B(0, δ) ⊂ P B(0, 1/4). Thus:

C−j(A) ≥ #{λ ∈ PZ2 : |b−jλ| ≤ δ}.

Now choose k ∈ N, and apply Lemma 5.2, with the lattice Λ = k PZ2. Then there is a
j = j(k) ∈ Z+ and a λ ∈ Λ \ {0} such that |b−jλ| < δ. Let λl = l

k λ, for l = 1, 2, . . . , k.
It follows that λl ∈ Λ for each l, and λl1 6= λl2 if l1 6= l2. Moreover:

|b−jλl| =
l

k
|b−jλ| ≤ δ, l = 1, 2, . . . , k.

This shows that, for any given k ∈ N, there is a j(k) such that C−j(k)(A) ≥ k, which
implies that supj∈Z+ C−j(A) = ∞. �

From Lemma 5.3 the following observation follows easily.
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Lemma 5.4

Let M =

(
2 0
0 A

)
, where A is given in Lemma 5.3. Then, for j ∈ Z+, we have

K−j(M) ≥ 2j−1C−j(A),

where

Kj(M) = #
{
m ∈ Z3 : |M jm| ≤ 1

2

}
.

We can now prove Theorem 5.1

Proof of Theorem 5.1 Write the matrix M , given by (5.19) as in Lemma 5.4. Let
Q = [1, 2)× [1, 2)2, T = [12 ,

5
2)× [12 ,

5
2)2, and E = ∪∞j=1Ej , where Ej = [2j+1− 1, 2j+1−

1
2) × Aj [1, 2)2. Observe that, for all j ∈ Z+, Ej ⊂ M jQ, Ej ∩ Ej′ = ∅, if j 6= j′, and
that, for any i ∈ Z, M iE ∩ E = ∅. By Lemma 5.3, supj∈Z+ C−j(A) = ∞, and, thus,
there is a subsequence {C−jk

(A)} ⊂ {C−j(A)}, with j1 ≤ j2 ≤ . . . and C−jk
(A) ≥ 1,

such that ∞∑
k=1

1
C−jk

(A)
<∞. (5.21)

Define ψ̂(ξ) by ψ̂(ξ) =
∑∞

k=1
1√

C−jk
(A)
χEjk

(ξ). Then, by (5.21), we have that

∫
R3
|ψ̂(ξ)|2 dξ =

∞∑
k=1

1
2

1
C−jk

(A)
<∞,

and, since M iE ∩ E = ∅, ∑
i∈Z

|ψ̂(M iξ)|2 ≤ 1.

This shows that the assumptions of Proposition 3.1 are satisfied and, thus, in order to
show that the LIC fails, we only need to show that L(f), given by (3.8) is unbounded,
for our special choice of M . Let f̂ = χT . Then, using Lemma 5.4, we have

L(f) ≥
∑

j∈Z−

∑
m∈Z3

∫
supp f̂

|f̂(ξ +M jm)|2 |ψ̂(M−jξ)|2 dξ

≥
∑
j≥0

c 2jC−j(A)
∫

Q
|ψ̂(M jξ)|2 dξ,

for some c > 0. Using the change of variables η = M jξ (notice that detM j = 2j), we
have

L(f) ≥ c
∑
j≥0

C−j(A)
∫

MjQ
|ψ̂(η)|2 dη

≥ c
∞∑

k=1

C−jk
(A)

∫
MjkQ

|ψ̂(η)|2 dη

≥ c
∞∑

k=1

C−jk
(A)

∫
Ejk

|ψ̂(η)|2 dη

= c
∞∑

k=1

C−jk
(A)

1
C−jk

(A)
= ∞. �
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