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Abstract

Let ϕ(t) be a positive increasing function and letẼ be an arbitrary sequence
space, rearrangement-invariant with respect to the atomic measureµ(n) =
1/n. Let {a∗n} mean the decreasing rearrangement of a sequence{|an|}.
A sequence spacèϕ,E with symmetric (quasi)norm‖{ϕ(n)a∗n}‖Ẽ is called
ultrasymmetric, because it is not only intermediate but also interpolation between
the corresponding Lorentz and Marcinkiewicz spacesΛϕ andMϕ. We study
properties of the spaces`ϕ,E for all admissible parametersϕ,E and use them for
the definition ofultrasymmetric approximation spacesXϕ,E , which essentially
generalize most of classical approximation spaces. At the same time we show
that the spacesXϕ,E possess almost all properties of classical prototypes, such
as equivalent norms, representation, reiteration, embeddings, transformation etc.
Special attention is paid to interpolation properties of these spaces. At last, we
apply our results to ultrasymmetric operator ideals.

1. Introduction

The ultrasymmetric function spaces Lϕ,E with the (quasi)norm ‖f‖ = ‖ϕ(t) f∗(t)‖
Ẽ

were introduced in [14] and shown to form a large class of spaces, including Lp, Lorentz
spaces Lpq, Lorentz-Zygmund spaces Lpr(logL)α and many other classical examples.
In spite of their generality, these new spaces can be investigated deeply and in detail
with rather sharp results that open a simple way to various applications. All these pos-
sibilities appear owing to the following main property: any spaceLϕ,E is interpolation
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between the Lorentz spaceΛϕ and the Marcinkiewicz spaceMϕ with the same fundamental
functionϕ(t). While the classical spaces depend only on two-three numerical parame-
ters, the ultrasymmetric spaces may be defined for an arbitrary positive increasing
function ϕ(t) and an arbitrary space Ẽ which is rearrangement-invariant (symmetric)
with respect to the measure dt/t.

The simple form and the rich properties of ultrasymmetric spaces make them
tempting for use in more general situations, via the replacement of f∗(t) by other
decreasing functions connected with f . For example, we may involve the K-functional
of J. Peetre (cf. Section 5 below), substituting K(t, f, A0, A1)/t in place of f∗(t) and
obtaining various new interpolation spaces for the (quasi)Banach couple (A0, A1). We
can take the E-functional E(t, f, A0, A1) = inf ‖f−f0‖A1 , ‖f0‖A0 ≤ t, and thus obtain
various new approximation spaces.

Unfortunately, the theory of E-spaces, elaborated in [10] within the framework of
abstract Abelian group theory (see also [1, Chapter 7]), gives explicit practical results
only for power-type parameters ϕ(t) = tθ and E = Lq, while the further generalization
becomes rather complicated and implicit (see [4, Section 4.2.C]). At the same time,
some other investigations show that it could be more fruitful to use, instead of the
E-functional, the so-called approximation numbers(besides the classical work [12], see,
e.g., [6, 7, 8], where the parameter functions are ϕ(t) = tθ(1 + | ln t|)α). However an
immediate extension of this approach to arbitrary ultrasymmetric spaces from [14]
is impossible, since the sequence of approximation numbers should be considered in
ultrasymmetric sequencespaces which were not defined and considered in [14].

At first sight, the transition from function to sequence spaces is not problematic,
requiring only a standard change of measure. In fact, this is not so, because the
main tool of [14] —the close connection between spaces Ẽ (with measure dt/t) and E
(with usual Lebesgue measure)— does not work in the discrete case. Consequently, all
properties of ultrasymmetric spaces, based on this connection, require a special care in
the case of sequence spaces. For example, this concerns such important properties of
approximation spaces as equivalent exponential form of the norm, the representation
theorem and some others.

The next section of the present paper is just devoted to the exposition and proof
of all needed properties of ultrasymmetric sequence spaces `ϕ,E . These properties
are used then in Sections 3 and 4 for stating the main facts about the corresponding
approximation spaces, following the line of the paper [12] (theorems of equivalence,
representation, reiteration, embedding, transformation etc.). In Section 5 we establish
the interpolation properties of ultrasymmetric approximation spaces, reflecting the
corresponding properties of ultrasymmetric sequence spaces. And in the last section
we consider some applications to operator ideals.

Throughout the paper we do not differentiate spaces with equivalent (quasi)norms
and use the same letter C for various constants, even in the same chain of inequalities
(as a rule, these constants depend only on the parameter functions ϕ,ψ etc.). We write
a ∼ b if (1/C)a ≤ b ≤ Ca for some positive constant C.
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2. Sequence spaces

A rearrangement-invariant (another name — symmetric) Banach sequence space E is
an interpolation space1 in the Banach couple (`1, `∞), i.e., any sequence space which
can be represented as E = F(`1, `∞) for some (real) interpolation functor F (about this
and other basic concepts of interpolation theory see, e.g., [1, 4]). It can be described
also as a Banach space of sequences a = {an} with the properties

i) |an| ≤ |bn| for all n =⇒ ‖{an}‖E ≤ ‖{bn}‖E ,

ii) ‖{an}‖E = ‖{a∗n}‖E , where {a∗n} means the decreasing rearrangement of {|an|}.

(Formally speaking, these properties give something more, since they may be used also
for the definition of quasi-Banach symmetric spaces which are outside of the couple
(`1, `∞).)

Given an arbitrary E = F(`1, `∞), we define another sequence space Ẽ =
F(˜̀1, `∞), where

‖{an}‖˜̀1 =
∞∑
n=1

1
n
|an|.

As a simplest example, we obtain the spaces ˜̀
p, 1 ≤ p ≤ ∞, with the norm

‖{an}‖˜̀p =
( ∞∑
n=1

1
n
|an|p

)1/p
,

(which, of course, makes sense as a quasinorm for p < 1 too).
The spaces Ẽ also are symmetric but with respect to another (atomic) measure

µ(n) = 1/n. Such spaces will be used as one of the parameters in the definition of
ultrasymmetric sequence spaces. As the second parameter we will use an arbitrary
positive increasing function ϕ(t) with positive and finite extension indices

0 < πϕ := lim
s→0

lnmϕ(s)
ln s

≤ ρϕ := lim
s→∞

lnmϕ(s)
ln s

<∞,

where mϕ(s) = supt ϕE(ts)
/
ϕE(t). In what follows, any given parameter function

ϕ(t) could be replaced by an equivalent one, thus we always may assume that it is
strictly monotone, smooth and such that ϕ′(t) ∼ ϕ(t)/t.

Definition 2.1 A symmetric sequence space G is called ultrasymmetricif its (quasi)
norm ‖{an}‖G is equivalent to ‖{ϕ(n)a∗n}‖Ẽ for some function ϕ and space Ẽ described
above. Further on we will use the notation G = `ϕ,E .

Notice that `ϕ,E is a Banach space if ρϕ < 1, independently of the parameter space
E. In the case of ρϕ > 1 it is only quasi-Banach and in the remaining case ρϕ = 1
the character of `ϕ,E depends on additional conditions. As a well-studied example of
such spaces we can mention the Lorentz-Zygmund spaces `pr(log `)α, appearing when
ϕ(t) = t1/p(1 + ln t)α and Ẽ = ˜̀

r (see, e.g., [7]).
1Recall that a space E is called interpolation between spaces E0, E1 if any linear operator, bounded

on E0, E1, is also bounded on E.
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Most properties of the ultrasymmetric sequence spaces can be obtained analo-
gously to the properties of ultrasymmetric function spaces considered in [14]. The
main assertion is that a spaceG is ultrasymmetric if and only if it is a (real) interpolation
space between the extreme spacesΛϕ andMϕ with the (quasi)norms

‖{an}‖Λϕ =
∞∑
n=1

ϕ(n)a∗n
n

, ‖{an}‖Mϕ = sup
n
ϕ(n)a∗n,

so thatG = F(Λϕ,Mϕ) = `ϕ,E , whereE = F(`1, `∞) with the same functorF . Moreover,
a spacè ϕ,E is interpolation between two other such spaces`ϕ,E0 and`ϕ,E1 if and only if the
spaceE is interpolation betweenE0 andE1.

Interpolation of spaces `ϕ,E with different parameter functions ϕ is more compli-
cated. The following result can be readily obtained from some general theorems of real
interpolation (see, e.g., [4, Theorem 4.3.1]).

Proposition 2.2

If ρϕ0 < πϕ ≤ ρϕ < πϕ1 then the space `ϕ,E is (real) interpolation between
`ϕ0,E0 , `ϕ1,E1 , independently of the spaces E,E0, E1. In particular, the inequalities
1/p0 < πϕ ≤ ρϕ < 1/p1 are sufficient for the space `ϕ,E to be interpolation between
`p0 and `p1 .

Another problem, important for the applications, is comparing ultrasymmetric
sequence spaces one with another; the corresponding results also are analogous to
those from [14].

Proposition 2.3

The embedding `ϕ,E ↪→`ψ,F is independent of the spaces E,F , if and only if

∫ ∞

1

ψ(t)
tϕ(t)

dt <∞. (2.1)

In order for this embedding to be always valid when E↪→F , it is necessary and sufficient
that ϕ(t) ≥ Cψ(t), for some positive constant C and all t ≥ 1.

Proposition 2.4

Let r(n) = ψ(2n)/ϕ(2n) and let Ed be the cone of nonnegative and nonincreasing
sequences from the space E. Let, as usual, r∗ mean the nonincreasing rearrangement
of the sequence r. If the linear operator Qa = {r∗(n)an} is bounded from Ed to F ,
then `ϕ,E ↪→`ψ,F . Moreover, in the case of the function r(n) being (almost) decreasing
(that is, when r(n) ∼ r∗(n)), the condition Q : Ed → F is necessary for such an
embedding.

Let us illustrate the last proposition by the following example.
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Example 2.5 Let E = `p, F = `q, p > q and let ψ(t) = ϕ(t)(1 + | ln t|)ε, with some
ε < 0. Then Qa ∼ {nεan} and by the Hölder inequality we obtain that

‖Qa‖`q ∼
( ∞∑
n=1

(nεan)q
)1/q

≤
( ∞∑
n=1

apn

)1/pq( ∞∑
n=1

nεqp/(p−q)
)(p−1)/pq

<∞,

for any a ∈ Ed, if εpq/(p − q) < −1, that is, ε < 1/p − 1/q. For any such ε, we
get an embedding `ϕ,E ↪→`ψ,F . Considering the sequence a = {n−1/p ln−σ n} with
1/p < σ < 1/q, it is easy to ascertain that the operator Q does not act from `p to `q
if ε = 1/p − 1/q. Hence the condition ε < 1/p − 1/q is also necessary for the above
mentioned embedding.

At last we present the following corollary from Proposition 2.4.

Proposition 2.6

`ϕ,E = `ψ,F if and only if ϕ(t) ∼ ψ(t), for t ≥ 1 and E = F .

Many properties of ultrasymmetric spaces `ϕ,E (e.g., Proposition 2.4 above) re-
quire simultaneous consideration of the parameter spaces Ẽ and E. In the case of
function spaces this is easy because of the simple connection between these spaces:
f(t) ∈ Ẽ(1,∞) if and only if g(u) = f(eu) ∈ E(0,∞); moreover, ‖f‖

Ẽ
= ‖g‖E . The

corresponding relation does not exist in the case of sequence spaces, and the norms
‖{an}‖Ẽ and ‖{a2n}‖E may be even not equivalent. However the needed connection
exists in some important situations, and the following lemmas will be used for showing
this.

For the first assertion, let us define a linear operator T such that

(Ta)n = a2k , for n = 2k, 2k + 1, . . . , 2k+1 − 1, k = 0, 1, . . .

and the weight function δ(n) equal to 1 when n = 2k, for some k = 0, 1, . . . and equal
to 0 otherwise. For any E, the weight space E(δ) will be defined, as usual, as having
the norm ‖a‖E(δ) = ‖{δ(n)an}‖E .

Lemma 2.7

T : E(δ) → Ẽ for any symmetric sequence space E.

Proof. If E = `∞ then

‖Ta‖`∞ = sup
k
|a2k | = sup

n
δ(n)|an| = ‖a‖`∞(δ),

which implies that T : `∞(δ) → `∞. If E = `1 then

‖Ta‖˜̀1 = |a1|+
(1
2

+
1
3

)
|a2|+ · · ·+

2k+1−1∑
n=2k

1
n
|a2k |+ · · ·

But, for any k,
2k+1−1∑
n=2k

1
n
≤ 2

∫ 2k+1

2k

dx

x
= 2 ln 2,
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so that

‖Ta‖˜̀1 ≤ 2 ln 2
∞∑
k=0

|a2k | = 2 ln 2 ‖{δ(n)an}‖`1 = 2 ln 2 ‖a‖`1(δ),

which means that T : `1(δ) → ˜̀
1.

Let now E = F(`1, `∞) for some interpolation functor F . It is easy to show that
the same relation is true for the corresponding weight spaces with arbitrary weight;
in particular, E(δ) = F(`1(δ), `∞(δ)). Since, by definition, also Ẽ = F(˜̀1, `∞), the
required boundedness of the operator T follows immediately; moreover, the norm of
operator T can be estimated independently of E. �

For the second assertion, we define a linear operator S such that (Sa)1 =
a1, (Sa)2 = a2/2 and

(Sa)n+1 =
2n∑

k=2n−1+1

ak
k
, for n = 2, 3, . . .

Lemma 2.8

S : Ẽ → E for any symmetric sequence space E.

Proof. Again we start by showing that S : ˜̀
1 → `1 and S : `∞ → `∞. For `1, we have

immediately that

‖Sa‖`1 ≤
∞∑
n=1

1
n
|an| = ‖a‖˜̀1 .

For the second space, we have

‖Sa‖`∞ = sup
{
|a1|,

1
2
|a2|, . . . ,

∣∣∣ 2n∑
k=2n−1+1

ak
k

∣∣∣, . . .}

≤ sup
{
|a1|,

1
2
|a2|, . . . , max

2n−1+1≤k≤2n
|ak|

2n∑
k=2n−1+1

1
k
, . . .

}
.

As before,
2n∑

k=2n−1+1

1
k
≤

∫ 2n

2n−1

dx

x
= ln 2, n = 2, 3, . . . ,

which gives
‖Sa‖`∞ ≤ 2 ln 2 sup {|a1|, |a2|, . . .} = 2 ln 2 ‖a‖`∞ ,

so that the required assertion follows from interpolation properties of the spaces E
and Ẽ. �

Theorem 2.9

Let {an} be a nonincreasing sequence of nonnegative numbers. Then ‖a‖
Ẽ
∼

‖{a2n}‖E for any symmetric sequence space E, with equivalence constant independent
of E.

Proof. We already know from Lemma 2.7 that ‖Ta‖
Ẽ
≤ C ‖a‖E(δ). The given proper-

ties of the sequence {an} imply that (Ta)n ≥ an for each n, thus the lattice properties of
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any space Ẽ give that ‖a‖
Ẽ
≤ C ‖a‖E(δ) = C ‖{a2n}‖E . On the other hand, Lemma 2.8

asserts that ‖Sa‖E ≤ C ‖a‖
Ẽ

and, for our sequences,

(Sa)n+1 =
2n∑

k=2n−1+1

ak
k
≥ a2n

2n∑
k=2n−1+1

1
k
≥ 1

2
(ln 2) a2n+1 , n ≥ 2,

so that ‖Sa‖E ≥ 1
2 ln 2 ‖{a2n}‖E and thus ‖{a2n}‖E ≤ C ‖a‖

Ẽ
. �

3. Approximation spaces

Let X be a quasi-Banach space and let {Gn}, n = 1, 2, . . . , be an approximation family
of subsets from X, that is, arbitrary sets having the properties

a) G1 ⊂ G2 ⊂ . . . ⊂ X, G0 = {0},
b) λGn ⊆ Gn for all λ ∈ R and all n,
c) Gm +Gn ⊆ Gm+n for all m, n.

The approximation numbersof arbitrary f ∈ X are defined as

an(f,X) = inf
g∈Gn−1

‖f − g‖X ,

so that a1(f,X) = ‖f‖X . Evidently, {an(f,X)} is a nonincreasing sequence of non-
negative numbers.

The main idea of approximation theory is to classify the elements f ∈ X in
accordance with the properties of their approximation numbers. In particular, we can
construct various approximation spacesof f , requiring that {an(f,X)} ∈ A for special
types of sequence spaces A. A general description of such an approach was given in [2];
the papers [3, 12] contain effective realization and applications for the case of weight
`p-spaces taken as A. In the present paper we consider as A all ultrasymmetric spaces.

Definition 3.1 The ultrasymmetric approximation space Xϕ,E is defined as the set
of all f ∈ X such that {an(f,X)} ∈ `ϕ,E . We put

‖f‖Xϕ,E := ‖{an(f,X)}‖`ϕ,E = ‖{ϕ(n)an(f,X)}‖
Ẽ
, (3.1)

so that the space Xϕ,E with this quasinorm becomes a quasi-Banach space.

Evidently, any embedding `ϕ,E ↪→`ψ,F entails an analogous embedding
Xϕ,E ↪→Xψ,F , thus we may use the conditions of Propositions 2.3 and 2.4 (and also
Example 2.5) as sufficient for the last embedding. The necessity of these conditions
depends on completeness of the considered interpolation scheme, that is, the exis-
tence of functions f ∈ X with prescribed sequences of approximation numbers (up to
equivalence).

As a first step for studying ultrasymmetric approximation spaces, let us pass
to another form of the quasinorm (3.1), containing the parameter space E instead
of Ẽ.
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Theorem 3.2

The quasinorm (3.1) is equivalent to

‖f‖exp
Xϕ,E

:= ‖{ϕ(2n)a2n(f,X)}‖E , (3.2)

with equivalence constant dependent only on ϕ.

Proof. We show that ‖{ϕ(n)an}‖Ẽ ∼ ‖{ϕ(2n)a2n}‖E for all nonincreasing sequences
of nonnegative numbers {an} and for any parameter function ϕ(t), with 0 < πϕ ≤
ρϕ < ∞. As is known, the last inequalities provide that ϕ(t) ∼ ϕ(2t), for all t ≥ 1.
Let T be as in Lemma 2.7 and let b = T{ϕ(n)an}. Then bn = ϕ(2k)a2k , for n =
2k, . . . , 2k+1 − 1, k = 0, 1, . . . Therefore bn ≥ ϕ(2k)an ∼ ϕ(2k+1)an ≥ ϕ(n)an. But
Lemma 2.7 implies that

‖b‖
Ẽ
≤ C ‖{ϕ(2n)a2n}‖E =⇒ ‖{ϕ(n)an}‖Ẽ ≤ C(ϕ) ‖{ϕ(2n)a2n}‖E .

For the opposite inequality, set c = S{ϕ(n)an} with the same operator S as in
Lemma 2.8. Then for any n ≥ 2,

cn+1 =
2n∑

k=2n−1+1

1
k
ϕ(k)ak ≥ ϕ(2n−1) a2n

2n∑
k=2n−1+1

1
k
≥ C(ϕ)ϕ(2n)a2n ,

(of course, cn+1 ≥ C(ϕ)ϕ(2n)a2n for n = 0, 1 as well). As a consequence,

‖{ϕ(2n)a2n}‖E ≤ C(ϕ) ‖{ϕ(n)an}‖Ẽ ,

and we are done. �

For various applications of approximation spaces, it is important to have a spe-
cial representation of any element f ∈ Xϕ,E via elements from the subsets Gn (the
representation theorem, see [12]).

Theorem 3.3

The space Xϕ,E consists of those (and only those) elements f ∈ X which can
be represented as f =

∑
gn, for some elements gn ∈ G2n , n = 0, 1, . . ., such that

{ϕ(2n)‖gn‖X} ∈ E. Moreover, the norm of f in Xϕ,E is equivalent to

‖f‖rep
Xϕ,E

:= inf ‖{ϕ(2n)‖gn‖X}‖E ,

where the infimum is taken over all possible representations f =
∑
gn, gn ∈ G2n ,

converging in X.

Proof. a) Let f ∈ Xϕ,E . For each n = 0, 1, . . ., define fn ∈ G2n−1 such that ‖f−fn‖X ≤
2 a2n(f,X) (in particular, f0 = 0). For any n ≥ 2, set gn = fn−1 − fn−2, so that
gn ∈ G2n−1−1 +G2n−2−1 ⊆ G2n ; for the remaining n, set g0 = g1 = 0. Then

∥∥∥f − k∑
n=0

gn‖X = ‖f − fk−1

∥∥∥
X
≤ 2 a2k−1 → 0,
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as k → ∞, due to the definition of the space Xϕ,E . Hence, the series
∑
gn converges

to f in X as needed.
Furthermore, for any n ≥ 2,

‖gn‖X ≤ C (‖f − fn−1‖X + ‖f − fn−2‖X) ≤ 4C a2n−2(f,X),

hence

ϕ(2n)‖gn‖X ≤ 4C ϕ(2n) a2n−2(f,X) ≤ C(X,ϕ)ϕ(2n−2) a2n−2(f,X).

Due to symmetricity of the space E, this implies that

‖{ϕ(2n)‖gn‖X}‖E ≤ C(X,ϕ) ‖{ϕ(2n) a2n(f,X)}‖E ∼ ‖f‖Xϕ,E ,

which proves the necessitypart of the theorem.
b) Now let a representation f =

∑∞
n=0 gn, gn ∈ G2n be given so that

{ϕ(2n)‖gn‖X} ∈ E.

For any n, we have that
∑n−1
k=0 gk ∈ G1 + · · ·+G2n−1 ⊆ G2n−1. Thus

a2n(f,X) ≤ ‖f −
n−1∑
k=0

gk‖X ≤
∞∑
k=n

‖gk‖X . (3.3)

Therefore it is enough to prove the following assertion.

Lemma 3.4

Let bn ≥ 0, n ∈ N0 and let {ϕ(2n)bn} ∈ E. If cn =
∑∞
k=n bk then {ϕ(2n)cn} ∈ E

for any positive function ϕ(t) with low extension index πϕ > 0.

Proof. We show first that the series
∑∞
k=0 bk converges and all cn are defined. Indeed,

any symmetric sequence space E↪→`∞, so that ϕ(2n)bn ≤ M , for some M and all n,
that is, bn ≤ M/ϕ(2n). Since πϕ > 0, there exists a constant C = C(ϕ) such that
mϕ(t) ≤ C tπϕ/2 for all t > 0. This implies that ϕ(1)/ϕ(2n) ≤ mϕ(2−n) ≤ C 2−πϕn/2

and thus ∞∑
k=0

bk ≤
CM

ϕ(1)

∞∑
k=0

2−πϕn/2 <∞.

Let us define a linear operator Q{bn} = {cn} and show that it is bounded on the
weight space E(ϕ(2n)), for any symmetric sequence space E. If {bn} ∈ `∞(ϕ(2n)) with
unit norm, then bn ≤ 1/ϕ(2n). At the same time,

ϕ(2n)
ϕ(2k)

≤ mϕ(2n−k) ≤ C 2−πϕ(k−n)/2,

so that

cn ≤
∞∑
k=n

1
ϕ(2k)

≤ C

ϕ(2n)

∞∑
k=0

2−πϕk/2 ≤ C

ϕ(2n)
.

This implies that {ϕ(2n)cn} ∈ `∞ with norm not exceeding C.
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If now {bn} ∈ `1(ϕ(2n)), then

‖{ϕ(2n)cn}‖`1 =
∞∑
n=0

ϕ(2n)
∞∑
k=n

bk =
∞∑
k=0

bk

k∑
n=0

ϕ(2n).

But
k∑

n=0

ϕ(2n) ≤ C ϕ(2k)
k∑

n=0

2−πϕ(k−n)/2 ≤ Cϕ(2k),

so that

‖{ϕ(2n)cn}‖`1 ≤ C
∞∑
k=0

ϕ(2k) bk.

Therefore the operator Q is bounded on both spaces `1(ϕ(2n)) and `∞(ϕ(2n)), and
the assertion of Lemma 3.4 follows from the interpolation properties of the spaces
E(ϕ(2n)). �

In order to finish the proof of Theorem 3.3 we should now put bn = ‖gn‖X , recall
that a2n(f,X) ≤ cn and apply Lemma 3.4. This gives us that {ϕ(2n)a2n(f,X)} ∈ E,
that is, f ∈ Xϕ,E , and the sufficiencypart of the theorem is also proved. �

4. Iteration and comparison of approximation schemes

Due to Theorem 3.3, the representation f =
∑∞
n=0 gn, gn ∈ G2n can be chosen so that

‖{ϕ(2n)‖gn‖X}‖E ≤ C ‖f‖Xϕ,E =⇒ ‖gn‖X ≤ C

ϕ(2n)
‖f‖Xϕ,E , for any n.

Using inequality (3.3), we obtain that

a2n(f,X) ≤ C
∞∑
k=n

1
ϕ(2k)

‖f‖Xϕ,E ≤
C

ϕ(2n)
‖f‖Xϕ,E , (4.1)

which may be regarded as an analog of the famous Jackson inequality.
Another inequality, which will be used below, is analogous to the Bernstein in-

equality from the theory of trigonometric approximation. Given an arbitrary g ∈ G2n ,
we may apply Theorem 3.3 to the element f = g, considering this equality a possible
representations for f . This implies that

‖g‖Xϕ,E ≤ C ϕ(2n) ‖g‖X , for any g ∈ G2n . (4.2)

Due to the definition of approximation spaces, Gn ⊂ Xϕ,E for any n and any
parameters ϕ, E. Thus we can define the approximation numbers with respect to the
space Xϕ,E instead of X:

an(f,Xϕ,E) = inf
g∈Gn−1

‖f − g‖Xϕ,E ,

and then construct the iteratedapproximation spaces (Xϕ,E)ψ,F . Our aim is to compare
these new spaces with the initial ones.

First of all, let us compare the approximation numbers.
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Lemma 4.1

There exists a constant C = C(ϕ) such that

a2n+1(f,X) ≤ C

ϕ(2n)
a2n(f,Xϕ,E). (4.3)

Proof. Let two elements g1, g2 ∈ G2n−1 be chosen such that, for some ε > 0,

‖f − g1‖Xϕ,E ≤ a2n(f,Xϕ,E) + ε

‖(f − g1)− g2‖X ≤ a2n(f − g1, X) + ε .

Then g1 + g2 ∈ G2(2n−1) ⊂ G2n+1−1, and hence by (4.1)

a2n+1(f,X) ≤ ‖f − (g1 + g2)‖X ≤ a2n(f − g1, X) + ε

≤ C

ϕ(2n)
‖f − g1‖Xϕ,E + ε ≤ C

ϕ(2n)
(a2n(f,Xϕ,E) + ε) + ε .

Since ε is arbitrary, this leads to (4.3). �

Theorem 4.2

The ultrasymmetric approximation scheme is stable with respect to iteration,
namely, (Xϕ,E)ψ,F = Xϕψ,F for any parameter functions ϕ,ψ and any parameter
spaces E,F .

Proof. If f ∈ (Xϕ,E)ψ,F , then by Lemma 4.1

‖f‖(Xϕ,E)ψ,F ∼ ‖{ψ(2n) a2n(f,Xϕ,E)}‖F ≥ C ‖{ψ(2n)ϕ(2n) a2n+1(f,X)}‖F

≥ C ‖{ψ(2n+1)ϕ(2n+1) a2n+1(f,X)}‖F ≥ C
(
‖f‖Xϕψ,F − ‖f‖X

)
,

so that
‖f‖Xϕψ,F ≤ C

(
‖f‖X + ‖f‖(Xϕ,E)ψ,F

)
≤ C ‖f‖(Xϕ,E)ψ,F .

Conversely, let f ∈ Xϕψ,F . By Theorem 3.3, there exists a representation f =∑
gn, gn ∈ G2n , converging in X and such that

‖{ψ(2n)ϕ(2n)‖gn‖X}‖F ≤ C ‖f‖Xϕψ,F .

In particular, due to the inequality (4.2), this implies that for any n = 0, 1, . . .

‖gn‖Xϕ,E ≤ C ϕ(2n)‖gn‖X ≤ C

ψ(2n)
‖f‖Xϕψ,F .

But ∞∑
n=0

1
ψ(2n)

≤ 1
ψ(1)

∞∑
n=0

mψ(2−n) ≤ C
∞∑
n=0

2−πψn/2 <∞,

and hence the series
∑
gn converges to f in the space Xϕ,E as well. Moreover,

{ψ(2n)‖gn‖Xϕ,E} ≤ C {ψ(2n)ϕ(2n)‖gn‖X} ∈ F, (4.4)

which means that f ∈ (Xϕ,E)ψ,F with inequality ‖f‖(Xϕ,E)ψ,F ≤ C ‖f‖Xϕψ,F . �
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Both one-sided embeddings in this theorem depend only on the relations (4.2)
or (4.3), which may connect in the same manner arbitrary spaces and even different
approximation schemes. This allows us to compare approximation spaces of various
nature one with another (see, e.g., [12] for the case of `p-spaces as parameters).

Theorem 4.3

Let (X,Y ) be a quasi-Banach couple2 with common approximation family {Gn} ⊂
X∩Y . Suppose that there exist a constant C and a nonnegative nonincreasing function
ψ(t), t > 0, such that

‖g‖Y ≤ C ψ(n) ‖g‖X , for all g ∈ Gn and n = 1, 2, . . .

Then Xϕψ,E ⊆ Yϕ,E , for every parameters ϕ(t) and E.

Proof. The proof of this theorem is essentially the same as for the second part of the
preceding theorem, only the inequality (4.4) should now be changed to

{ϕ(2n)‖gn‖Y } ≤ C {ϕ(2n)ψ(2n)‖gn‖X} ∈ E,

which gives the required embedding. �

Another kind of comparing different approximation schemes was also proposed
in [12] as transformationtheorem.

Theorem 4.4

Consider two approximation families {Gn} ⊂ X and {Hn} ⊂ Y and let a linear
operator T : X → Y be such that T (Gm) ⊆ Hn, whenever n ≥ ψ(m), for some
nonnegative nonincreasing function ψ(t) with positive and finite extension indices.
Then T (Xϕ(ψ),E) ⊆ Yϕ,E , for every parameters ϕ(t) and E.

Proof. For a given n, let m be such an integer that ψ(m) ≤ n < ψ(m + 1) (without
loss of generality, we may assume that the function ψ(m) is strictly monotone and thus
this number always exists and is unique). Then T (Gm) ⊆ Hn and thus

an+1(Tf, Y ) = inf
h∈Hn

‖Tf − h‖Y ≤ inf
g∈Gm

‖Tf − Tg‖Y ≤ ‖T‖ am+1(f,X). (4.5)

At the same time, from the condition ρψ, ρϕ <∞, it follows that ψ(m+1) ∼ ψ(m) and
ϕ(Cn) ∼ ϕ(n) for any constant C; thus ϕ(n) ≤ ϕ

(
ψ(m+1)

)
∼ ϕ

(
ψ(m)

)
. Consequently,

ϕ(n) an(Tf, Y ) ≤ C ϕ
(
ψ(m)

)
am(f,X) for any n ∈ N.

Before comparing the norms of the corresponding sequences, it should be men-
tioned that any number m may correspond to several different numbers n entering into
the same interval

(
ψ(m), ψ(m+ 1)

)
. Let us show that this multiplicity can be ignored

in our estimates, that is, any number m may be taken only once.

2Two spaces X, Y form a couple if they are continuously embedded into some common linear
topological Hausdorff space.
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Lemma 4.5

For arbitrary positive sequence a = {an}, let bn = am whenever ψ(m) ≤ n <
ψ(m+ 1) and let ψ(t), ϕ(t), E be as described above. Then

‖{ϕ(n)bn}‖Ẽ ≤ C ‖{ϕ
(
ψ(m)

)
am}‖Ẽ .

with some constant C dependent only on functions ϕ,ψ.

Proof. As mentioned before, n ∼ ψ(m) and ϕ(n) ∼ ϕ
(
ψ(m)

)
, hence it remains to

compare {bn} with {am}. The cardinality of the set {n : n ∈
(
ψ(m), ψ(m + 1)

)
} is

equivalent to ψ(m + 1) − ψ(m) ∼ ψ′(m) ∼ ψ(m)/m, provided the last ratio does not
vanish at infinity (otherwise this cardinality becomes eventually no greater than 1, in
which case the assertion of the lemma is obvious). Therefore

‖{ϕ(n)bn}‖˜̀1 =
∞∑
n=1

ϕ(n)
n

bn ∼
∞∑
m=1

ϕ
(
ψ(m)

)
m

am,

which implies that the linear operator Ra = b acts boundedly from ˜̀
1
(
ϕ(ψ)

)
to ˜̀

1(ϕ).
The second action R : `∞

(
ϕ(ψ)

)
→ `∞(ϕ) is obviously independent of the above

mentioned cardinality and the assertion of the lemma follows by interpolation. �

Returning to the proof of Theorem 4.4, denote bymn the value ofm corresponding
to n as described above. Then, from the inequality (4.5) and the last lemma, we obtain
that

‖{ϕ(n)an(Tf, Y )}‖
Ẽ
≤ ‖T‖ ‖{ϕ(n)amn(f,X)}‖

Ẽ
≤ C ‖{ϕ

(
ψ(m)

)
am(f,X)}‖

Ẽ
,

which was required. �

Remark. In the same manner as above, it is possible to generalize other assertions
from [12, Section 3], such as theorems of composition, commutationand so on.

5. Interpolation of approximation spaces

In this section we show that the ultrasymmetric approximation spaces are rather
suitable for applications of real interpolation methods. Given a quasi-Banach cou-
ple (X,Y ), we denote by (X,Y )KΦ the interpolation space with the (quasi)norm
‖f‖ = ‖(1/t)K(t, f,X, Y )‖Φ, where Φ may be an arbitrary Banach function space
and K(t, f,X, Y ) is the K-functional of J. Peetre:

K(t, f,X, Y ) = inf
f=f1+f2

(
‖f1‖X + t ‖f2‖Y

)
.

In the case of Y ↪→X this (quasi)norm is equivalent to ‖(1/t)K(t, f,X, Y )χ(0,1)(t)‖Φ.
Another equivalent expression can be obtained by discretization of the parameter space
Φ (see, e.g., [4, p. 358]). For instance, if ρϕ < 1, we may take Φ = `ϕ,E , ϕ(t) = tϕ(1/t),
getting (again for the case of Y ↪→X) the (quasi)norm of (X,Y )KΦ in the form

‖f‖K,ϕ,E := ‖{ϕ(n)K(1/n, f,X, Y )}‖
Ẽ
∼ ‖{ϕ(2n)K(2−n, f,X, Y )}‖E , (5.1)
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(the last equivalence is due to Theorem 3.2). Remark that, instead of 2n, we may take
here qn with any q > 1.

In order to involve maximum of approximation spaces into one interpolation
scheme, we should take an appropriate couple (X,Y ) with maximally large space
X and minimally small space Y . The most natural large space X is the basic space
of the approximation scheme which contains all approximation spaces by definition3.
The choice of a small space Y is not so simple, since the most natural candidate
Y =

⋃∞
n=1Gn is neither ultrasymmetric approximation nor quasi-Banach space at all.

The famous paper [10] uses this kind of a space Y within the framework of theory
of quasinormed Abelian groups. Unfortunately, interpolation theory of these groups,
elaborated in [10], gives explicit results only for the spaces Xϕ,E with ϕ(t) = tθ and
E = `p.

For our purposes, we will take a space Y not so small, but sufficient for consid-
eration of all needed spaces Xϕ,E . Moreover, this space will depend on a parameter p
which can be taken as big as needed. Namely, we define Y = Yp = Xϕ,E with ϕ = tp

and E = `1; as follows from Proposition 2.3, this space is contained in any other Xϕ,E

with ρϕ < p and arbitrary E.

Lemma 5.1

Let p ≥ 1 be fixed, then for any n = 0, 1, . . . and any f ∈ X,

(1/C) a2n(f,X) ≤ K(2−np, f,X, Yp) ≤ C
n∑
k=0

2p(k−n)a2k(f,X). (5.2)

Proof. For arbitrary h ∈ Yp, we get

a2n(f,X) = inf
g∈G2n−1

‖f − g‖X ≤ C
(
‖f − h‖X + inf

g∈G2n−1

‖h− g‖X
)

≤ C
(
‖f − h‖X + a2n(h,X)

)
.

By the inequality (4.1), we obtain that a2n(h,X) ≤ (C/2np) ‖h‖Yp , whence

a2n(f,X) ≤ C
(
‖f − h‖X + 2−np‖h‖Yp

)
.

Passing to infimum over all h ∈ Yp, we obtain the first inequality in (5.2).
To prove the second inequality, for any given n = 0, 1, . . . , let us define a function

gn ∈ G2n−1 such that ‖f − gn‖X ≤ 2a2n(f,X), and then put f1 = g0, fn = gn−1 −
gn−2 (n ≥ 2). Then,

‖f1‖X ≤ C
(
‖f − g0‖X + ‖f‖X

)
≤ C

(
2a1(f,X) + ‖f‖X

)
= 3C a1(f,X),

‖fn‖X ≤ C
(
‖f − gn−1‖X + ‖f − gn−2‖X

)
≤ 4C a2n−2(f,X), for all n ≥ 2.

Since gn ∈ Yp for each n, we may write that

K(2−np, f,X, Yp) ≤ ‖f − gn‖X + 2−np‖gn‖Yp ≤ 2 a2n(f,X) + 2−np‖gn‖Yp ,
3Remark that the space X itself is an ultrasymmetric approximation space Xϕ,E with ϕ(t) ≡ 1 and

E = `∞.



Ultrasymmetric sequence spaces in approximation theory 271

and then, by the inequality (4.2),

‖gn‖Yp =
∥∥∥ n+1∑
k=1

fk
∥∥∥
Yp
≤ C

n+1∑
k=1

2kp‖fk‖X ≤ C1

n∑
k=0

2kpa2k(f,X).

Therefore,

K(2−np, f,X, Yp) ≤ C1

(
a2n(f,X) + 2−np

n∑
k=0

2kpa2k(f,X)
)
∼

n∑
k=0

2p(k−n)a2k(f,X),

and we are done. �

Theorem 5.2

Let p > max(1, ρϕ) and ψ(t) = ϕ(t1/p). Then

Xϕ,E = (X,Yp)KΦ , where Φ = `ψ,E .

Proof. By the definition of the function ψ(t), we have that ρψ < 1, which allows us to
write the norm of (X,Y )KΦ in a discrete form like (5.1), namely,

‖f‖K,ψ,E ∼ ‖{ψ(2np)K(2−np, f,X, Yp)}‖E . (5.3)

The theorem will be proved if we show that ‖f‖K,ψ,E ∼ ‖f‖Xϕ,E .
Using the first inequality in (5.2), we obtain immediately that

‖f‖K,ψ,E ≥ (1/C) ‖{ψ(2np) a2n(f,X)}‖E
= (1/C) ‖{ϕ(2n) a2n(f,X)}‖E
= (1/C) ‖f‖Xϕ,E .

The second inequality from (5.2) gives that

‖f‖K,ψ,E ≤ C
∥∥∥{
ψ(2np)

n∑
k=0

2p(k−n)a2k(f,X)
}∥∥∥

E
.

At the same time, for any k ≤ n,

ψ(2np) ≤ ψ(2kp)mψ(2p(n−k)) ≤ C(ε) 2p(n−k)(ρψ+ε)ψ(2kp).

Taking ε = (1− ρψ)/2, we obtain that

ψ(2np) ≤ C 2p(n−k)(1−ε)ψ(2kp),

whence

‖f‖K,ψ,E ≤ C
∥∥∥{ n∑

k=0

2εp(k−n)ϕ(2k)a2k(f,X)
}∥∥∥

E
.

For finishing the proof, we need the following:
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Lemma 5.3

The linear operator Pa = b, defined by the equalities

bn =
n∑
k=0

2εp(k−n)ak, n = 0, 1, . . . ,

is bounded in any symmetric sequence space E.

Proof. As usual, it is enough to show that P is bounded in `1 and `∞. We have that

‖Pa‖`1 ≤
∞∑
n=0

n∑
k=0

2εp(k−n)|ak| =
∞∑
k=0

|ak|
∞∑
n=k

2−εp(n−k) ≤ C
∞∑
k=0

|ak|,

and also

‖Pa‖`∞ ≤ sup
n

n∑
k=0

2εp(k−n)|ak| ≤ sup
n

(
max
k≤n

|ak| ·
n∑
k=0

2−εp(n−k)
)
≤ C sup

n
|an|,

as required. �

Returning to the proof of Theorem 5.2, we obtain that

‖f‖K,ψ,E ≤ C ‖{ϕ(2n)a2n(f,X)}‖E = C ‖f‖Xϕ,E ,

and the theorem is proved. �

Corollary 5.4

A space Xϕ,E is interpolation between the spaces Xϕ0,E0 and Xϕ1,E1 if and only
if the space `ϕ,E is interpolation between `ϕ0,E0 and `ϕ1,E1 . Moreover, for any real
interpolation functor F and any number p > max(ρϕ0 , ρϕ1), one has

F(Xϕ0,E0 , Xϕ1,E1) = (X,Yp)KΨ ,

where Ψ = F(`ψ0,E0
, `ψ1,E1

), ψi(t) = ϕi(t1/p), i = 0, 1.

This assertion follows immediately from Theorem 5.2, using general reiteration
theorems of interpolation (see, e.g., [4, p. 357]).

For applying this corollary, we should return to the problem, already posed in
Section 2: when is the ultrasymmetric space `ϕ,E interpolation between two other
spaces `ϕ0,E0 and `ϕ1,E1? The solution is simple for the case of interpolation with
numerical parameters (for the definition and properties of this method, see, e.g., [1,
Section 3.1]). For example, under conditions of Proposition 2.2, we get that

(Xϕ0,E0 , Xϕ1,E1)θ,q = Xϕ,`q , ϕ(t) =
(
ϕ0(t)

)1−θ(
ϕ1(t)

)θ
,

whenever 0 < θ < 1, 1 ≤ q ≤ ∞.
Interpolation with functional parameters is much more difficult; apparently, the

most general interpolation theorem of such a type for ultrasymmetric function spaces
is Theorem 5.2 from [14]. An analogous result can be proved for sequence spaces as
well, leading to the following assertion for approximation spaces.
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Proposition 5.5

Let the parameter functions ϕ0(t), ϕ1(t) and σ(t) be such that πϕ1/ϕ0
> 0, 0 <

πσ ≤ ρσ < 1 and let ϕ = ϕ0σ(ϕ1/ϕ0). Then the space Xϕ,E is interpolation between
the spaces Xϕ0,E0 and Xϕ1,E1 independently of parameter spaces E,E0, E1; moreover,

Xϕ,E = (Xϕ0,E0 , Xϕ1,E1)
K
Ψ , Ψ = `σ,E .

Of course, interpolation between ultrasymmetric sequence spaces becomes much sim-
pler if the parameter function ϕ(t) does not change —a space `ϕ,E is interpolation
between `ϕ,E0 and `ϕ,E1 if and only if the space E is interpolation between E0 and E1.
It might be useful to combine this result with embedding assertions like Proposition 2.4.
For instance, we obtain the following assertion.

Proposition 5.6

Let the functions ϕ(t), ψ(t) and the symmetric sequence spaces E,F satisfy the
conditions of Proposition 2.4 and let the space E be interpolation between E0, E1.
Then T : Xϕ,E → Xψ,F for any (quasi)linear operator T which is bounded on the
spaces Xϕ,E0 and Xϕ,E1 .

6. Ultrasymmetric operator ideals

The ultrasymmetric approximation spaces can be used for various applications, for-
merly known only for spaces with numerical parameters (such as Xρ

u from [12] and
some others). Due to their generality, they give results with more delicate distinction
of approximation characteristics for considered functions. The spaces Xϕ,E could be
particularly effective for solution of problems with non-power conditions on the growth
of n. A more or less complete exposition of such applications requires special study
and separate papers. In the present paper we consider only some consequences for
operator ideals.

Let X be the Banach space L(A,B) of all bounded linear operators T between
the Banach spaces A and B and let Gn denote the set of all operators S ∈ L(A,B)
such that rankS ≤ n. The corresponding approximation numbers of linear operators

an(T ) = inf
rankS<n

‖T − S‖L(A,B),

were introduced by A.Pietsch in 1963 and studied then by many authors. Let us
denote the approximation space Xϕ,E , with these numbers, by Lϕ,E(A,B). As follows
from general theory of s-numbers elaborated in [11, Section 14], the spaces Lϕ,E(A,B)
are operator ideals; by analogy we may call them ultrasymmetric ideals. In fact,
all operators from these ideals are compact, since, due to Theorem 3.3, any T ∈
Lϕ,E(A,B) can be approximated by finite dimensional operators.

Now any result, obtained in the previous sections, can be reformulated so as to
get some new property of operator ideals. For example, if p > q and ψ(t)/ϕ(t) =
(1 + | ln t|)ε, then Lϕ,`p(A,B)↪→Lψ,`q(A,B) for any ε < 1/p − 1/q. Another fact: the
ideal Lϕ,E(A,B) is interpolation between two other such ideals Lϕi,Ei(A,B), i = 0, 1,
if and only if the sequence space `ϕ,E is interpolation between `ϕ0,E0 and `ϕ1,E1 .
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As a more interesting result, let us show that the ultrasymmetric operator ideals
have a multiplicationproperty, which again generalizes an analogous property of ideals
Xρ
u, stated in [12]. We say that the symmetric spaces E0, E1 are multipliers of a given

symmetric space E if, for any sequences {an} ∈ E0 and {bn} ∈ E1, their product
sequence {anbn} belongs to E (as shown in [9, Lemma 13.5], this always implies the
existence of a constant C such that ‖{anbn}‖E ≤ C ‖{an}‖E0‖{bn}‖E1). Such a re-
lation between symmetric spaces is well-studied not only for `p, but also for Lorentz,
Marcinkiewicz, Lorentz-Zygmund, Orlicz and many other spaces.

Theorem 6.1

Let E0, E1 be multipliers of E and let ϕ(t) = ϕ0(t)ϕ1(t) for t ≥ 1. Then

Lϕ0,E0(D,B) ◦ Lϕ1,E1(A,D) ⊆ Lϕ,E(A,B), (6.1)

i.e., for any S ∈ Lϕ0,E0(D,B) and T ∈ Lϕ1,E1(A,D), the composition ST ∈
Lϕ,E(A,B).

Proof. Using the proof of Theorem 3.2, it is easy to show that the spaces `ϕ0,E0 and
`ϕ1,E1 are also multipliers of the space `ϕ,E . Due to symmetricity and the lattice
property of the norm in `ϕ,E , for any nonnegative nonincreasing sequence {an}, one
has that

‖{an}‖`ϕ,E ≤ C
(
‖{a1, 0, a3, 0, . . . }‖`ϕ,E + ‖{0, a2, 0, a4, . . . }‖`ϕ,E

)
= C

(
‖{a1, a3, . . . }‖`ϕ,E + ‖{a2, a4, . . . }‖`ϕ,E

)
≤ 2C ‖{a2n−1}‖`ϕ,E ,

and thus
‖{ϕ(n) an(ST )}‖

Ẽ
≤ C ‖{ϕ(n) a2n−1(ST )}‖

Ẽ
. (6.2)

On the next step we will use the following multiplication property of appro-
ximation numbers (which is also due to A. Pietsch, see [13, Proposition 2.3.12]:
am+n−1(ST ) ≤ am(S) an(T ). By this property we obtain that

‖{ϕ(n) an(ST )}‖
Ẽ
≤ C ‖{an(S)an(T )}‖`ϕ,E ≤ C ‖{an(S)}‖`ϕ0,E0

‖{an(T )}‖`ϕ1,E1
,

which implies (6.1). �

Remark. A stronger, so-called factorizationproperty appears if the embedding (6.1)
turns into equality (with equivalent norms), which means that any operator from
Lϕ,E(A,B) can be factorized by some operators from Lϕ0,E0(D,B) and Lϕ1,E1(A,D).
The factorization property of ultrasymmetric operator ideals depends on the similar
property of symmetric spaces E,E0, E1, which in the abstract case occurs rather sel-
dom.

The remarkable inequalities, proved by B. Carl in [5], allow us to estimate the
behavior of entropy numbers and eigenvalues of operators from ultrasymmetric ideals.
Containing arbitrary parameter functions ϕ(t) rather than only powers tθ and arbitrary
symmetric sequence spaces E rather than only `p, these estimates would be more subtle
and more accurate than the previously existent.
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Let us recall that the nth entropy number en(T ) of an operator T ∈ L(A,B)
is defined as the infimum of all ε > 0 such that there exist elements g1, . . . , gr, with
r ≤ 2n−1, giving that

T (UA) ⊆
r⋃
i=1

{gi + εUB},

where UA and UB are closed unit balls of A and B respectively. As shown in [5,
Theorem 1], for any p > 0, there exists a constant C = C(p) such that

n
(
en(T )

)p ≤ C
n∑
k=1

(
ak(T )

)p
, n = 1, 2, . . . (6.3)

Theorem 6.2

If T ∈ Lϕ,E(A,B), then {ϕ(n) en(T )} ∈ Ẽ.

Proof. First of all, let us show that the operator Pa = b, such that b pn = (1/n)
∑n
k=1 a

p
k,

with fixed number p, is bounded in any space `ϕ,E with ρϕ < 1/p. In the case of p = 1
this operator is linear, namely, the classical Hardy operator, which is known to be
bounded in any symmetric space with upper Boyd index less than 1. Otherwise, this
operator is only quasilinear, but this property is also sufficient for application of real
interpolation. Due to Proposition 2.2, it is enough to show that P is bounded on some
`p1 with ρϕ < 1/p1 < 1/p (as the second space `p0 we can always take `∞, where
the boundedness of P is evident). Setting an = apn and bn = b pn , we obtain that the
operator P1a = b is again the classical Hardy operator, and thus it is bounded in `r
with r = p1/p. This means that

‖{bn}‖`p1 = ‖{bn}‖1/p
`r

≤ C ‖{an}‖1/p
`r

= C ‖{an}‖`p1 ,

and we are done.
If now the ideal Lϕ,E(A,B) is given, we take arbitrary p < 1/ρϕ, obtaining that

∥∥∥{( 1
n

n∑
k=1

an(T )p
)1/p}∥∥∥

`ϕ,E
≤ C ‖{an(T )}‖`ϕ,E ,

and it remains only to use inequality (6.3). �

Proceeding to the characterization of eigenvalues of operators from ultrasymmetric
ideals, we should observe that the set of these numbers is at most countable, since all
such operators are compact. Let a compact operator T act in a complex Banach
space A. Denote by {λn(T )} the sequence of all eigenvalues of this operator, counted
according to their multiplicities and such that |λ1(T )| ≥ |λ2(T )| ≥ . . . ≥ 0. If T has
only a finite number n0 of eigenvalues, we put λn(T ) = 0 for all n > n0.

As shown in [5, Theorem 4], the eigenvalues of a compact operator T , acting
in a complex Banach space, are connected with its entropy numbers by the inequal-
ity |λn(T )| ≤

√
2 en(T ), n = 1, 2, . . . Therefore Theorem 6.2 entails immediately an

analogous assertion for the eigenvalues.



276 Pustylnik

Theorem 6.3

Let T ∈ Lϕ,E(A,A). Then {ϕ(n)|λn(T )|} ∈ Ẽ.

To finish, let us consider a simple application of this result.

Example 6.4 Let h(t) be a locally integrable 2π-periodical function. Consider the
corresponding convolution operator

T f(t) =
∫ 2π

0
h(t− s) f(s) ds. (6.4)

It is easy to see that T ∈ L(L1, L1) with norm equal to ‖h‖L1(0,2π). Moreover, using
trigonometric approximation of the function h(t), similarly to Jackson’s theorem, one
can show that a2n+2(T ) ≤ C ωL1

(h, 1
n), for any n = 1, 2, . . . , where

ωL1
(h, δ) = sup

0≤s≤δ

∫ 2π

0
|h(t+ s)− h(t)| dt.

Let now some parameter function ϕ(t) and parameter space E be given. By
analogy to usual Besov spaces, let us define

B1,ϕ,E =
{
h : ‖h‖B1,ϕ,E

= ‖h‖L1 +
∥∥∥{
ϕ(n)ωL1

(
h,

1
n

)}∥∥∥
Ẽ
<∞

}
.

Like (6.2) we can show that

‖{ϕ(n) an(T )}‖
Ẽ
≤ C

(
‖T‖L(L1,L1) + ‖{ϕ(n) a2n+2(T )}‖

Ẽ

)
.

Then Theorem 6.3 gives immediately, that the eigenvalues λn(T ) of the operator (6.4),
arranged in the descending order, satisfy the condition {ϕ(n)|λn(T )|} ∈ Ẽ whenever
h ∈ B1,ϕ,E .

And one more consequence can be stated here. Namely, we may use the result of
T. Carleman (see [13, Proposition 6.5.5]), claiming that the eigenvalues of the convo-
lution operator (6.4) coincide with the (complex) Fourier coefficients of the function
h(t), multiplied by 2π and arranged in the descending order. Hence these coefficients
also form a sequence belonging to `ϕ,E .
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