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Abstract

Let u, b be two weight functions on(0,∞). Assume thatu is continuous
on (0,∞) and thatb is such that the functionB(t) :=

∫ t
0 b(s) ds satisfies

0 < B(t) < ∞ for every t ∈ (0,∞). Let the operatorTu,b be given at
a measurable non-negative functiong on (0,∞) by

(Tu,bg)(t) = sup
t≤τ<∞

u(τ)
B(τ)

∫ τ

0
g(s)b(s) ds.

We give necessary and sufficient conditions on weightsv, w on(0,∞) for which
there exists a positive constantC such that the inequality(∫ ∞

0
[(Tu,bg) (t)]q w(t) dt

)1/q

≤ C

(∫ ∞

0
[g(t)]p v(t) dt

)1/p

holds for every measurable non-negative functiong on (0,∞), wherep, q ∈
(0,∞) satisfy certain restrictions. We also characterize weightsv, w on(0,∞)
for which there exists a positive constantC such that the inequality(∫ ∞

0
[(Tu,bϕ) (t)]q w(t) dt

)1/q

≤ C

(∫ ∞

0
[ϕ(t)]p v(t) dt

)1/p

Keywords:Hardy operators involving suprema, weighted inequalities.
MSC2000:47G10, 26D15.
The research was partly supported by the grant no. 201/01/0333 of the Grant Agency of the Czech

Republic. The research of the third author was partly supported by the grant no. 201/03/0935 of the
Grant Agency of the Czech Republic and by the grant no. MSM 0021620839 of the Czech Ministry of
Education.

227

textes4
collect



228 Gogatishvili, Opic, and Pick

holds for every non-negative and non-increasing functionϕ on (0,∞). The
crucial tool in our approach to the latter problem is the reduction of the given
inequality to the pair of analogous inequalities involving more manageable ope-
rators, namely the classical Hardy-type integral operator and the operator

(Ruϕ)(t) = sup
t≤τ<∞

u(τ)ϕ(τ).

Such estimates have recently been found indispensable in the study of problems
involving fractional maximal operators and optimal Sobolev embeddings.

1. Introduction

Our aim is to study weighted one-dimensional inequalities for Hardy-type operators
involving supremum. We do this using methods of discretization and antidiscretization.

Suppose f is a locally-integrable function on Rn. Then its non-increasing rearrange-
mentf∗ is given by

f∗(t) = inf {λ > 0; |{x ∈ Rn; |f(x)| > λ}| ≤ t} , t ∈ (0,∞).

Quite many familiar function spaces can be defined using the non-increasing rearrange-
ment of a function. One of the most important classes of such spaces are the so-called
classical Lorentz spaces.

Let p ∈ (0,∞) and let w be a weight, that is, a non-negative measurable and
a.e. finite function on (0,∞). Then the classical Lorentz space Λp(w) is defined as the
set of all measurable functions f whose non-increasing rearrangement satisfies

‖f‖Λp(w) :=
(∫ ∞

0
[f∗(t)]p w(t) dt

)1/p

< ∞.

In their pioneering paper [1], Ariño and Muckenhoupt characterized when the
Hardy–Littlewood maximal operator M , defined at f ∈ L1

loc(Rn) by

(Mf)(x) = sup
Q3x

|Q|−1
∫
Q

|f(y)| dy, x ∈ Rn,

(where the supremum is extended over all cubes Q ⊂ Rn with sides parallel to the
coordinate axes and |E| denotes the n-dimensional Lebesgue measure of E ⊂ Rn) is
bounded on the classical Lorentz space Λp(w) when p ∈ [1,∞). In other words, they
characterized the class of weights w for which the inequality∫ ∞

0
[(Mf)∗(t)]p w(t) dt .

∫ ∞

0
[f∗(t)]p w(t) dt

holds for every locally integrable f on Rn.
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(As usual, here and below, by A . B and A & B we mean that A ≤ CB and
CA ≥ B, respectively, where C is a positive constant independent of appropriate
quantities involved in the expressions A and B. We will also write A ≈ B when both
A . B and A & B are satisfied.)

Let M(0,∞) be the set of all Lebesgue-measurable functions on (0,∞) and
M+(0,∞) its subset consisting of all nonnegative functions on (0,∞). We denote
by M+(0,∞; ↓) the cone of all functions in M+(0,∞) which are non-increasing on
(0,∞).

The approach of [1] has two main ingredients. The first of them is the well-known
two-sided estimate (cf. [2, Chapter 3, Theorem 3.8])

(Mf)∗(t) ≈ (Pf∗)(t), f ∈ L1
loc(Rn), t ∈ (0,∞), (1.1)

where P is the averaging operatordefined by

(Pg)(t) =
1
t

∫ t

0
g(s) ds, g ∈ M+(0,∞), t ∈ (0,∞).

The second key ingredient is a characterization of the boundedness of P on the cone
M+(0,∞; ↓) in the weighted Lebesgue spaceLp(w) over (0,∞), whose norm is given by

‖g‖p,w =
(∫ ∞

0
|g(t)|pw(t) dt

)1/p

,

in other words, a characterization of the inequality(∫ ∞

0
[(Pϕ)(t)]p w(t) dt

)1/p

.
(∫ ∞

0
[ϕ(t)]p w(t) dt

)1/p

, ϕ ∈ M+(0,∞; ↓). (1.2)

The point is that (1.2) (which is restricted to non-increasing functions) is true for
a substantially larger class of weights than the analogous, unrestricted, classical Hardy
inequality(∫ ∞

0
[(Pg)(t)]p w(t) dt

)1/p

.
(∫ ∞

0
[g(t)]p w(t) dt

)1/p

, g ∈ M+(0,∞).

This groundbreaking observation was made in [1].
In [22], Sawyer extended the result of [1] to the case of two weights and two

exponents p, q. He characterized the validity of the inequality(∫ ∞

0
[(Mf)∗(t)]q w(t) dt

)1/q

.
(∫ ∞

0
[f∗(t)]p v(t) dt

)1/p

, L1
loc(Rn),

provided that 1 < p, q < ∞. Further extensions were obtained for example in [23]. For
more references, see [4].

An analogous problem for the fractional maximal operatorin place of the Hardy–
Littlewood maximal operator was studied in [6]. The fractional maximal operator,
Mγ , γ ∈ (0, n), is defined at f ∈ L1

loc(Rn) by

(Mγf)(x) = sup
Q3x

|Q|γ/n−1
∫
Q

|f(y)| dy, x ∈ Rn,
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where the supremum is extended over all cubes Q ⊂ Rn with sides parallel to the
coordinate axes. It was shown in [6, Theorem 1.1] that

(Mγf)∗(t) . sup
t≤τ<∞

τγ/n(Pf∗)(τ) (1.3)

for every f ∈ L1
loc(Rn) and t ∈ (0,∞). This estimate is not two-sided as (1.1), but it

is sharp in the following sense: for every ϕ ∈ M+(0,∞; ↓) there exists a function f on
Rn such that f∗ = ϕ a.e. on (0,∞) and

(Mγf)∗(t) & sup
t≤τ<∞

τγ/n(Pf∗)(τ), t ∈ (0,∞). (1.4)

Consequently, the role of Pf∗ in the argument of Ariño and Muckenhoupt [1] is in
the case of fractional maximal operator taken over by the expression on the right-hand
sides of (1.3) and (1.4). Thus, in order to characterize boundedness of the fractional
maximal operator Mγ between classical Lorentz spaces it is necessary and sufficient to
characterize the validity of the weighted inequality(∫ ∞

0

[
sup

t≤τ<∞
τγ/n−1

∫ τ

0
ϕ(s) ds

]q

w(t) dt

)1/q

.
(∫ ∞

0
[ϕ(t)]p v(t) dt

)1/p

for all ϕ ∈ M+(0,∞; ↓). This last estimate can be interpreted as a restricted weighted
inequality for the operator Tγ , defined by

(Tγg)(t) = sup
t≤τ<∞

τγ/n−1
∫ τ

0
g(s) ds, g ∈ M+(0,∞), t ∈ (0,∞). (1.5)

Such a characterization was obtained in [6] for the particular case when 1 < p ≤ q < ∞
and in [16, Theorem 2.10] in the case of more general operators and for extended range
of p and q. Full proofs and some further extensions and applications can be found in [9].

The operator Tγ is a typical example of what we call a Hardy-type operator involv-
ing suprema. Rather interestingly, such operators have been recently encountered in
various research projects. They have been found indispensable in the search for opti-
mal pairs of rearrangement-invariant norms for which a Sobolev-type inequality holds
([12]). They constitute a very useful tool for characterization of the associate norm
of an operator-induced norm, which naturally appears as an optimal domain norm in
a Sobolev embedding ([18, 19]). Supremum operators are also very useful in limiting
interpolation theory as can be seen from their appearance for example in [8, 10, 7, 20].

In this paper we investigate the behaviour of general two-weight Hardy-type oper-
ators involving supremum on weighted Lebesgue spaces and on classical Lorentz spaces.
The operator Tγ , defined in (1.5), is a particular example of such operators. We cover
all cases of parameters p, q, including the case q < p which has not been treated so far
and which requires a new method.

The paper is structured as follows. In Section 2 we define several auxiliary op-
erators and prove certain relations between them. In Section 3 we characterize the
validity of weighted inequalities for supremum operators on monotone functions, and
in Section 4 on nonnegative functions.
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2. Preliminaries

Definition 2.1 Let u be a continuous weight on (0,∞). We define the operator Ru

at ϕ ∈ M+(0,∞; ↓) by

(Ruϕ)(t) = sup
t≤τ<∞

u(τ)ϕ(τ), t ∈ (0,∞).

Let b be a weight and let B(t) =
∫ t
0 b(s) ds, t ∈ (0,∞). Assume that b is such that

0 < B(t) < ∞ for every t ∈ (0,∞). The operator Tu,b is defined at g ∈ M+(0,∞) by

(Tu,bg)(t) = sup
t≤τ<∞

u(τ)
B(τ)

∫ τ

0
g(s)b(s) ds, t ∈ (0,∞).

We also make use of the weighted Hardy operator

(Pu,bg)(t) =
u(t)
B(t)

∫ t

0
g(s)b(s) ds, t ∈ (0,∞).

We start with a simple lemma which enables us to restrict our considerations to
special weights u, namely to those for which u

B is non-increasing. For this purpose, we
put

ū(t) = B(t) sup
t≤τ<∞

u(τ)
B(τ)

, t ∈ (0,∞).

Note that ū
B is non-increasing on (0,∞). In the second part of the lemma we develop

a principle which (under certain assumptions) reduces the inequalities involving Tu,b

to those involving Ru and Pu,b, which are considerably more manageable operators.
This idea was first used in [6].

Lemma 2.2

Let u and b be as in Definition 2.1.
(i) For every g ∈ M+(0,∞) and t ∈ (0,∞),

(Tu,bg)(t) = (Tū,bg)(t).

(ii) Assume that

sup
0<t<∞

u(t)
B(t)

∫ t

0

b(s)
u(s)

ds < ∞. (2.1)

Then, for all ϕ ∈ M+(0,∞; ↓),

(Tu,bϕ)(t) ≈ (Ruϕ)(t) + (Pū,bϕ)(t), t ∈ (0,∞).

Proof. (i) Fix g ∈ M+(0,∞) and t ∈ (0,∞). Then, interchanging the suprema, we get

(Tū,bg)(t) = sup
t≤τ<∞

sup
τ≤y<∞

u(y)
B(y)

∫ τ

0
g(s)b(s) ds

= sup
t≤y<∞

u(y)
B(y)

sup
t≤τ≤y

∫ τ

0
g(s)b(s) ds = (Tu,bg)(t).
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(ii) If ϕ ∈ M+(0,∞; ↓), then

1
B(t)

∫ t

0
ϕ(s)b(s) ds ≥ ϕ(t) for all t ∈ (0,∞),

whence
(Tu,bϕ)(t) ≥ (Ruϕ)(t) for every t ∈ (0,∞).

Moreover, by (i),

(Tu,bϕ)(t) = (Tū,bϕ)(t) ≥ (Pū,bϕ)(t) for every t ∈ (0,∞).

Conversely, using the monotonicity of Ruϕ and (2.1), we have

(Tu,bϕ)(t) = sup
t≤τ<∞

u(τ)
B(τ)

(∫ t

0
ϕ(s)b(s) ds +

∫ τ

t
ϕ(s)b(s) ds

)
≤ ū(t)

B(t)

∫ t

0
ϕ(s)b(s) ds + sup

t≤τ<∞

u(τ)
B(τ)

∫ τ

t
ϕ(s)b(s) ds

= (Pū,bϕ)(t) + sup
t≤τ<∞

u(τ)
B(τ)

∫ τ

t
u(s)ϕ(s)

b(s)
u(s)

ds

≤ (Pū,bϕ)(t) + (Ruϕ)(t) · sup
t≤τ<∞

u(τ)
B(τ)

∫ τ

t

b(s)
u(s)

ds

. (Pū,bϕ)(t) + (Ruϕ)(t),

and the proof is complete. �

We will be particularly interested in the situation when (2.1) is valid with u
replaced by ū. It is easy to show that this is equivalent to

sup
0<t<∞

u(t)
B(t)

∫ t

0

b(s)
ū(s)

ds < ∞. (2.2)

3. Inequalities for non-increasing functions

Let 0 < p, q < ∞ and let u be a continuous weight. The first main aim of this section
is to give a characterization of weights v and w such that the inequality

(∫ ∞

0
[(Ruϕ) (t)]q w(t) dt

)1/q

.
(∫ ∞

0
[ϕ(t)]p v(t) dt

)1/p

(3.1)

holds for all ϕ ∈ M+(0,∞; ↓). The result is most innovative when 0 < q < p < ∞.
We also present a simpler characterization in this case provided that u is equivalent to
a non-decreasing function on (0,∞). We are led to considering such a special case by
the important examples when u(t) = tα with α ∈ (0, 1) (cf. [6, 12]) or u(t) = tα| log t|β
with α ∈ (0, 1) and β ∈ R (cf. [16, 9]).
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Definition 3.1 Let {xk}∞k=−∞ be an increasing sequence in (0,∞) such that
limk→−∞ xk = 0 and limk→∞ xk = ∞. Then we say that {xk} is a covering sequence.
We also admit increasing sequences {xk}k=K

k=J , where either J ∈ Z and xJ = 0, or
K ∈ Z and xK = ∞, or both.

Theorem 3.2
Let 0 < p, q < ∞ and let u be a continuous weight. Let v and w be weights such

that 0 <
∫ x
0 v(t) dt < ∞ and 0 <

∫ x
0 w(t) dt < ∞ for every x ∈ (0,∞). When q < p,

we define r by
1
r

=
1
q
− 1

p
. (3.2)

(i) Let 0 < p ≤ q < ∞. Then (3.1) is satisfied for all ϕ ∈ M+(0,∞; ↓) if and
only if(∫ x

0

[
sup

t≤τ≤x
u(τ)

]q
w(t) dt

)1/q

.
(∫ x

0
v(t) dt

)1/p

for every x ∈ (0,∞). (3.3)

(ii) Let 0 < q < p < ∞. Then (3.1) is satisfied for all ϕ ∈ M+(0,∞; ↓) if and
only if

sup
{xk}

∑
k

(∫ xk+1

xk

[
sup

t≤τ≤xk+1

u(τ)
]q

w(t) dt

)r/q (∫ xk+1

0
v(t) dt

)−r/p

< ∞, (3.4)

where the supremum is taken over all covering sequences {xk}.
Proof. Sufficiency:We will restrict ourselves to the case when

∫∞
0 w(s) ds = ∞ and∫∞

0 v(s) ds = ∞. In the other cases the proof needs only simple modifications. We
may choose covering sequences {xk}k∈Z and {y′s}s∈Z such that

∫ xk
0 w(t) dt = 2k and∫ y′s

0 v(t) dt = 2s. Then, since Ruϕ is nonincreasing on (0,∞),∫ ∞

0
[(Ruϕ)(t)]q w(t) dt ≤

∞∑
k=−∞

[(Ruϕ)(xk)]
q
∫ xk+1

xk

w(t) dt

=
∞∑

k=−∞
2k sup

i≥k
sup

xi≤τ<xi+1

[u(τ)ϕ(τ)]q

≤
∞∑

k=−∞
2k

∞∑
i=k

sup
xi≤τ<xi+1

[u(τ)ϕ(τ)]q

=
∞∑

i=−∞
sup

xi≤τ<xi+1

[u(τ)ϕ(τ)]q
i∑

k=−∞
2k

=
∞∑

i=−∞
2i+1 sup

xi≤τ<xi+1

[u(τ)ϕ(τ)]q

= 4
∞∑

i=−∞

(∫ xi

xi−1

w(t) dt

)
sup

xi≤τ<xi+1

[u(τ)ϕ(τ)]q

.
∞∑

i=−∞

(∫ xi

xi−1

w(t) dt

)
[u(zi)ϕ(zi)]

q ,
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where zi is some point in [xi, xi+1] such that

sup
xi≤τ<xi+1

[u(τ)ϕ(τ)]q ≤ 2 [u(zi)ϕ(zi)]
q .

Thus, ∫ ∞

0
[(Ruϕ)(t)]q w(t) dt .

∞∑
i=−∞

(∫ zi

zi−2

w(t) dt

)
[u(zi)ϕ(zi)]

q .

For a technical reason, which will be apparent soon, it is convenient to write the last
sum as

∞∑
k=−∞

(∫ z2k

z2k−2

w(t) dt

)
[u(z2k)ϕ(z2k)]

q +
∞∑

k=−∞

(∫ z2k+1

z2k−1

w(t) dt

)
[u(z2k+1)ϕ(z2k+1)]

q

=:Seven + Sodd.

We shall estimate Seven. First, we reduce the sequence {y′s} according to a principle
similar to that which was introduced by Q. Lai in [13]: Fix k ∈ Z. If the interval
[z2k−2, z2k) contains more than one element of the sequence {y′s}, we delete from this
sequence all such elements but the one which lies nearest to z2k−2. Thus, every interval
[z2k−2, z2k), k ∈ Z, now contains at most one element of the reduced sequence, which
we denote by {yn}n∈Z. Formally, we denote

Yk =
{
s ∈ Z; y′s ∈ [z2k−2, z2k)

}
, k ∈ Z,

J = {k ∈ Z; Yk 6= ∅} ,

θk = min
{
y′s; s ∈ Yk

}
, k ∈ J,

and
Y = {θk}k∈J .

Then Y is a subsequence of {y′s}s∈Z, which we enumerate as {yn}n∈Z. Clearly,
yn < yn+1 for all n ∈ Z. Now, {yn} is a covering sequence having the following
properties: Suppose that for some n, k, s ∈ Z we have

yn < z2k ≤ yn+1 = y′s. (3.5)

We claim that then, necessarily,

yn−1 ≤ y′s−2, (3.6)
y′s−1 < z2k, (3.7)

and
yn−1 < z2k−2. (3.8)

Indeed, as {yn}n∈Z is a subsequence of {y′s}s∈Z and yn+1 = y′s, it follows that yn ≤ y′s−1

and yn−1 ≤ y′s−2. This yields (3.6). Next, since y′s = θk+1, we have {y′j}j∈Z∩[z2k, y
′
s) =

∅, which yields (3.7). Finally, the set Y ∩ [z2k−2, y
′
s) is either empty (in which case (3.8)

is obvious) or has just one element, yn, in which case (3.8) follows again. By (3.6)
and (3.7), for all n, k, s ∈ Z satisfying (3.5),∫ yn+1

0
v(t) dt = 4

∫ y′s−1

y′s−2

v(t) dt ≤ 4
∫ z2k

yn−1

v(t) dt.
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Together with the assumptions on v, this yields that∫ z2k

yn−1

v(t) dt > 0.

Using this and the monotonicity of ϕ, we get

[ϕ(z2k)]
p ≤

(∫ z2k

yn−1

v(t) dt

)−1 ∫ z2k

yn−1

[ϕ(t)]p v(t) dt

≤ 4
(∫ yn+1

0
v(t) dt

)−1 ∫ yn+1

yn−1

[ϕ(t)]p v(t) dt.

Hence,

[ϕ(z2k)]
q .

(∫ yn+1

0
v(t) dt

)−q/p
(∫ yn+1

yn−1

[ϕ(t)]p v(t) dt

)q/p

(3.9)

for every n, k ∈ Z such that yn < z2k ≤ yn+1.
Denote An = {k ∈ Z; yn < z2k ≤ yn+1}, n ∈ Z. Then, by (3.9), (3.8) and (3.5),

Seven =
∞∑

n=−∞

∑
k∈An

(∫ z2k

z2k−2

w(t) dt

)
[u(z2k)ϕ(z2k)]

q

.
∞∑

n=−∞

∑
k∈An

∫ z2k

z2k−2

[
sup

t≤x≤yn+1

u(x)
]q

w(t) dt

×
(∫ yn+1

0
v(t) dt

)−q/p
(∫ yn+1

yn−1

[ϕ(t)]p v(t) dt

)q/p

≤
∞∑

n=−∞

∫ yn+1

yn−1

[
sup

t≤x≤yn+1

u(x)
]q

w(t) dt

×
(∫ yn+1

0
v(t) dt

)−q/p
(∫ yn+1

yn−1

[ϕ(t)]p v(t) dt

)q/p

. (3.10)

Assume first that 0 < p ≤ q < ∞. Then (3.10), (3.3) and the convexity of the
function tq/p yield

Seven .
∞∑

n=−∞

(∫ yn+1

yn−1

[ϕ(t)]p v(t) dt

)q/p

.

( ∞∑
n=−∞

∫ yn+1

yn−1

[ϕ(t)]p v(t) dt

)q/p

.
(∫ ∞

0
[ϕ(t)]p v(t) dt

)q/p

.

When 0 < q < p < ∞, we apply Hölder’s inequality for sums with exponents r
q

and p
q to (3.10), and then use (3.4) to get
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Seven .

 ∞∑
n=−∞

(∫ yn+1

yn−1

[
sup

t≤τ≤yn+1

u(τ)
]q

w(t) dt

)r/q (∫ yn+1

0
v(t) dt

)−r/p
q/r

×
( ∞∑

n=−∞

∫ yn+1

yn−1

[ϕ(t)]p v(t) dt

)q/p

=

[ ∞∑
m=−∞

(∫ y2m

y2m−2

[
sup

t≤τ≤y2m

u(τ)
]q

w(t) dt

)r/q (∫ y2m

0
v(t) dt

)−r/p

+
∞∑

m=−∞

(∫ y2m+1

y2m−1

[
sup

t≤τ≤y2m+1

u(τ)
]q

w(t) dt

)r/q (∫ y2m+1

0
v(t) dt

)−r/p
]q/r

×
( ∞∑

n=−∞

∫ yn+1

yn−1

[ϕ(t)]p v(t) dt

)q/p

.
(∫ ∞

0
[ϕ(t)]p v(t) dt

)q/p

since both {y2m}m∈Z and {y2m−1}m∈Z are covering sequences.
It is clear from the argument that we can estimate Sodd in the same way, with

possibly different sequence {yn}n∈Z. This completes the proof of the sufficiency part.

Necessity:We first observe that(
Ruχ(0,x]

)
(t) = χ(0,x](t) sup

t≤τ≤x
u(τ), x ∈ (0,∞).

Thus, testing the inequality (3.1) with functions ϕ(t) = χ(0,x](t), x ∈ (0,∞), we
get (3.3) for any p, q ∈ (0,∞). When 0 < p ≤ q < ∞, this proves the necessity part of
the theorem.

Let 0 < q < p < ∞ and let {xk} be a fixed covering sequence. For N ∈ N and
t ∈ (0,∞), put

ϕN (t) = χ(0,x−N ](t)

 N∑
i=−N

αi

1/p

+
N∑

k=−N

χ(xk,xk+1](t)

(
N∑

i=k

αi

)1/p

,

where

αi =

(∫ xi+1

xi

[
sup

t≤τ≤xi+1

u(τ)
]q

w(t) dt

)r/q (∫ xi+1

0
v(t) dt

)−r/q

.
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Then ϕN is non-increasing on (0,∞) and∫ ∞

0
[(RuϕN )(t)]q w(t) dt

≥
N∑

k=−N

∫ xk+1

xk

[
sup

t≤τ≤xk+1

u(τ)
]q

w(t) dt

(
N∑

i=k

αi

)q/p

≥
N∑

k=−N

(∫ xk+1

xk

[
sup

t≤τ≤xk+1

u(τ)
]q

w(t) dt

)
α

q/p
k

=
N∑

k=−N

(∫ xk+1

xk

[
sup

t≤τ≤xk+1

u(τ)
]q

w(t) dt

)r/q (∫ xk+1

0
v(t) dt

)−r/p

=: AN

since 1 + r
p = r

q . On the other hand,

∫ ∞

0
[ϕN (t)]p v(t) dt =

∫ x−N

0
[ϕN (t)]p v(t) dt +

N∑
k=−N

∫ xk+1

xk

[ϕN (t)]p v(t) dt

=
∫ x−N

0

 N∑
i=−N

αi

 v(t) dt +
N∑

k=−N

∫ xk+1

xk

(
N∑

i=k

αi

)
v(t) dt

=
∫ x−N

0

 N∑
i=−N

αi

 v(t) dt +
N∑

i=−N

αi

i∑
k=−N

∫ xk+1

xk

v(t) dt

=
N∑

i=−N

αi

∫ x−N

0
v(t) dt +

N∑
i=−N

αi

∫ xi+1

x−N

v(t) dt

=
N∑

i=−N

αi

∫ xi+1

0
v(t) dt

=
N∑

i=−N

(∫ xi+1

xi

[
sup

t≤τ≤xi+1

u(τ)
]q

w(t) dt

)r/q (∫ xi+1

0
v(t) dt

)−r/q ∫ xi+1

0
v(t) dt

=
N∑

i=−N

(∫ xi+1

xi

[
sup

t≤τ≤xi+1

u(τ)
]q

w(t) dt

)r/q (∫ xi+1

0
v(t) dt

)−r/p

= AN .

Consequently, (3.1) implies
A

1/q
N . A

1/p
N . (3.11)

As mentioned above, (3.3) is necessary for the validity of (3.1) also when 0 < q < p.
Therefore, for every k ∈ Z,(∫ xk+1

xk

[
sup

t≤τ≤xk+1

u(τ)
]q

w(t) dt

)1/q (∫ xk+1

0
v(t) dt

)−1/p

< ∞.

Hence also AN < ∞ since it is a finite sum of finite numbers. Thus, by (3.11), AN ≤ C
for some C > 0 independent of N ∈ N. On letting N →∞, the assertion follows. �
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Remark 3.3 Suppose that u is equivalent to a non-decreasing function on (0,∞).
Then (3.3) reduces to

u(x)
(∫ x

0
w(t) dt

)1/q

.
(∫ x

0
v(t) dt

)1/p

for every x ∈ (0,∞).

As a particular case of this result, we recover [6, Lemma 3.1]. Analogously, (3.4) is
simplified to

sup
{xk}

∑
k

[
u(xk+1)

]r (∫ xk+1

xk

w(t) dt

)r/q (∫ xk+1

0
v(t) dt

)−r/p

< ∞. (3.12)

Moreover, the next theorem shows that in this case (3.4) can be replaced by an integral
condition in the spirit of [17, Theorem 1.15].

Theorem 3.4

Let 0 < q < p < ∞ and let u, v, w and r be as in Theorem 3.2. Moreover, assume
that u is equivalent to a non-decreasing function on (0,∞). Then the inequality (3.1)
holds if and only if

∫ ∞

0

(∫ t

0
w(s) ds

)r/p
[

sup
t≤τ<∞

u(τ)
(∫ τ

0
v(s) ds

)−1/p
]r

w(t) dt < ∞. (3.13)

Proof. Again, we will prove the assertion only in the case when
∫∞
0 w(s) ds = ∞ and∫∞

0 v(s) ds = ∞.
As u is equivalent to a non-decreasing function on (0,∞), Theorem 3.2 and Re-

mark 3.3 imply that it is sufficient to show that (3.13) is equivalent to (3.12). Assume
that (3.13) holds. Let {xk} be a covering sequence. Then

∞∑
k=−∞

(∫ xk+1

xk

w(t) dt

)r/q

[u(xk+1)]
r
(∫ xk+1

0
v(t) dt

)−r/p

≈
∞∑

k=−∞

(∫ xk+1

xk

(∫ t

xk

w(s) ds

)r/p

w(t) dt

)
[u(xk+1)]

r
(∫ xk+1

0
v(t) dt

)−r/p

≤
∞∑

k=−∞

∫ xk+1

xk

(∫ t

0
w(s) ds

)r/p
[

sup
t≤τ<∞

u(τ)
(∫ τ

0
v(s) ds

)−1/p
]r

w(t) dt

=
∫ ∞

0

(∫ t

0
w(s) dt

)r/p
[

sup
t≤τ<∞

u(τ)
(∫ τ

0
v(s) ds

)−1/p
]r

w(t) dt < ∞,

and (3.12) follows.
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Now, assume that (3.12) holds. Let {xk} be such that
∫ xk
0 w(t) dt = 2k. Then∫ ∞

0

(∫ t

0
w(s) ds

)r/p
[

sup
t≤τ<∞

u(τ)
(∫ τ

0
v(y) dy

)−1/p
]r

w(t) dt

≤
∞∑

k=−∞

(∫ xk+1

xk

(∫ t

0
w(s) ds

)r/p

w(t) dt

)[
sup

xk≤τ<∞
u(τ)

(∫ τ

0
v(y) dy

)−1/p
]r

.
∞∑

k=−∞
2rk/q

∞∑
i=k

[
sup

xi≤τ<xi+1

u(τ)
(∫ τ

0
v(y) dy

)−1/p
]r

=
∞∑

i=−∞

[
sup

xi≤τ<xi+1

u(τ)
(∫ τ

0
v(y) dy

)−1/p
]r i∑

k=−∞
2kr/q

≈
∞∑

i=−∞

[
sup

xi≤τ<xi+1

u(τ)
(∫ τ

0
v(t) dt

)−1/p
]r

2ir/q

≈
∞∑

i=−∞

[
sup

xi≤τ<xi+1

u(τ)
(∫ τ

0
v(t) dt

)−1/p
]r (∫ xi

xi−1

w(t) dt

)r/q

.
∞∑

i=−∞

(∫ yi+1

yi−1

w(t) dt

)r/q

[u(yi+1)]
r
(∫ yi+1

0
v(t) dt

)−r/p

,

where yi+1 ∈ [xi, xi+1) is such that[
sup

xi≤τ<xi+1

u(τ)
(∫ τ

0
v(t) dt

)−1/p
]r

≤ 2

[
u(yi+1)

(∫ yi+1

0
v(t) dt

)−1/p
]r

.

Therefore,∫ ∞

0

(∫ t

0
w(s) ds

)r/p
[

sup
t≤τ<∞

u(τ)
(∫ τ

0
v(y) dy

)−1/p
]r

w(t) dt

.
∞∑

i=−∞

(∫ yi+1

yi−1

[
sup

t≤τ≤yi+1

u(τ)
]q

w(t) dt

)r/q (∫ yi+1

0
v(t) dt

)−r/p

=
∞∑

m=−∞

(∫ y2m

y2m−2

[
sup

t≤τ≤y2m

u(τ)
]q

w(t) dt

)r/q (∫ y2m

0
v(t) dt

)−r/p

+
∞∑

m=−∞

(∫ y2m+1

y2m−1

[
sup

t≤τ≤y2m+1

u(τ)
]q

w(t) dt

)r/q (∫ y2m+1

0
v(t) dt

)−r/p

< ∞.

We note that the monotonicity of u was needed only in the proof of the first part. �

Our next aim is to characterize the validity of the inequality(∫ ∞

0
[(Tu,bϕ) (t)]q w(t) dt

)1/q

.
(∫ ∞

0
[ϕ(t)]p v(t) dt

)1/p

(3.14)

for all ϕ ∈ M+(0,∞; ↓). To this end one can combine Lemma 2.2, Theorem 3.2 and
the known results on weighted inequalities for monotone functions due to Sawyer [22],



240 Gogatishvili, Opic, and Pick

Stepanov [23] and others. For example, when (2.1) is true with u replaced by ū (that
is, when (2.2) is satisfied), then we obtain the following theorem.

As usual, for 1 ≤ p < ∞ we put p′ = p
p−1 when p > 1 and p′ = ∞ when p = 1.

Moreover, we denote

V (t) =
∫ t

0
v(s) ds, t ∈ (0,∞).

Theorem 3.5

Let 0 < p, q < ∞. When q < p, define r by (3.2). Let b be a weight such that
0 < B(t) < ∞ for every t ∈ (0,∞), where B(t) =

∫ t
0 b(s) ds. Let u, v and w be as in

Theorem 3.2 and assume that (2.2) is satisfied.
(i) Let 1 < p ≤ q < ∞. Then (3.14) holds on M+(0,∞; ↓) if and only if

(∫ x

0

[
sup

t≤τ≤x
ū(τ)

]q
w(t) dt

)1/q

.
(∫ x

0
v(t) dt

)1/p

for all x ∈ (0,∞), (3.15)

and

sup
x>0

(∫ ∞

x

(
ū(t)
B(t)

)q

w(t) dt

)1/q
(∫ x

0

(
B(t)
V (t)

)p′

v(t) dt

)1/p′

< ∞. (3.16)

(ii) Let 0 < p ≤ q < ∞ and 0 < p ≤ 1. Then (3.14) holds on M+(0,∞; ↓) if and
only if (3.15) is satisfied and

B(x)
(∫ ∞

x

(
ū(t)
B(t)

)q

w(t) dt

)1/q

.
(∫ x

0
v(t) dt

)1/p

for all x ∈ (0,∞). (3.17)

(iii) Let 1 < p < ∞, 0 < q < p < ∞ and q 6= 1. Then (3.14) holds on M+(0,∞; ↓)
if and only if

sup
{xk}

∑
k

(∫ xk+1

xk

[
sup

t≤τ≤xk+1

ū(τ)
]q

w(t) dt

)r/q (∫ xk+1

0
v(t) dt

)−r/p

< ∞, (3.18)

where the supremum is taken over all covering sequences, and

∫ ∞

0

(∫ ∞

t

(
ū(s)
B(s)

)q

w(s) ds

)r/q
(∫ t

0

(
B(s)
V (s)

)p′

v(s) ds

)r/q′

×
(

B(t)
V (t)

)p′

v(t) dt < ∞. (3.19)

(iv) Let 1 < p < ∞ and q = 1. Then (3.14) holds on M+(0,∞; ↓) if and only
if (3.18) is satisfied and

(∫ ∞

0

(∫ t

0
ū(s)w(s) ds + B(t)

∫ ∞

t

ū(s)
B(s)

w(s) ds

)p′ v(t)

[V (t)]p
′ dt

)1/p′

< ∞. (3.20)



Weighted inequalities for Hardy-type operators involving suprema 241

(v) Let 0 < q < p ≤ 1. Then (3.14) holds on M+(0,∞; ↓) if and only if (3.18) is
satisfied and (∫ ∞

0

(
ess sup
0<s≤t

B(s)
[V (s)]1/p

)r (∫ ∞

t

(
ū(s)
B(s)

)q

w(s) ds

)r/p

(3.21)

×
(

ū(t)
B(t)

)q

w(t) dt

)1/r

< ∞. (3.22)

Proof. All the four statements of the theorem are proved along the same line of argu-
ment: first, by Lemma 2.2 (i), Tū,b = Tu,b. Moreover, ¯̄u = ū. Hence, by Lemma 2.2 (ii),
the inequality (3.14) holds on M+(0,∞; ↓) if and only if both inequalities

(∫ ∞

0
[(Rūϕ) (t)]q w(t) dt

)1/q

.
(∫ ∞

0
[ϕ(t)]p v(t) dt

)1/p

(3.23)

and (∫ ∞

0
[(Pū,bϕ) (t)]q w(t) dt

)1/q

.
(∫ ∞

0
[ϕ(t)]p v(t) dt

)1/p

(3.24)

are satisfied on M+(0,∞; ↓). Now, necessary and sufficient conditions for (3.23) were
given in Theorem 3.2. On the other hand, Pū,b is just a weighted Hardy-type operator.
Thus, necessary and sufficient conditions for (3.24) follow from known general criteria.
These are in all cases formulated in form of a pair of conditions, one of which is always
covered by the condition characterizing (3.23). Let us be more precise.

In the case (i), it follows from Theorem 3.2 that (3.23) holds if and only if (3.15)
is satisfied. Next, by [22, Theorem 1] and criteria for the validity of Hardy-type
inequalities on M+(0,∞), cf. e.g. [17], (3.24) holds if and only if both (3.16) and

(∫ x

0
[ū(t)]q w(t) dt

)1/q

.
(∫ x

0
v(t) dt

)1/p

, x ∈ (0,∞), (3.25)

are satisfied. However, (3.25) clearly follows from (3.15).
In the case (ii), (3.23) holds if and only if (3.15) is satisfied, while (3.24) holds if

and only if both (3.17) and (3.25) hold (this can be found in [5, Theorem 2.4] and a
particular case in [14, Theorem 2.2]). Again, (3.25) follows from (3.15).

In the case (iii), (3.23) holds if and only if (3.18) is satisfied, while (3.24) holds if
and only if both (3.19) and

(∫ ∞

0

(∫ t

0
[ū(s)]q w(s) ds

)r/p

[V (t)]−r/p [ū(t)]q w(t) dt

)1/r

< ∞ (3.26)

are satisfied. (This can be proved as in [11, Corollary 4.7], for a particular case
see also [23, Theorem 3a]). We now claim that (3.18) implies (3.26). Indeed, by
Theorem 3.2, (3.18) is equivalent to (3.23), which in turn yields

(∫ ∞

0
[ϕ(t)]q [ū(t)]q w(t) dt

)1/q

.
(∫ ∞

0
[ϕ(t)]p v(t) dt

)1/p

(3.27)
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for all ϕ ∈ M+(0,∞; ↓). The last inequality is just an embedding of classical Lorentz
spaces, and the criteria for such embedding, given in [22, Remark on p. 148], and in [23,
Proposition 1] (see also [4, Theorem 3.1]) show that (3.26) is equivalent to (3.27).

In the case (iv), (3.23) holds if and only if (3.18) is satisfied. Since q = 1, we have
r = r

q = p′ and r
p = p′ − 1. Moreover, by the Fubini theorem, (3.24) is equivalent to

∫ ∞

0
ϕ(t)b(t)

∫ ∞

t

ū(s)w(s)
B(s)

ds dt .
(∫ ∞

0

[
ϕ(t)

]p
v(t) dt

)1/p

.

This is a particular case of an embedding between classical Lorentz spaces. By [23,
Proposition 1], this is true if and only if (3.20) is true and(∫ ∞

0
ū(t)w(t) dt

)p′ (∫ ∞

0
v(s) ds

)1−p′

< ∞.

However, the latter estimate is a special case of (3.18).
In the case (v), (3.23) holds if and only if (3.18) is satisfied. By [3, Theo-

rem 3.1], (3.24) holds if and only if both (3.21) and (3.26) are true. However, as
shown above in the proof of the case (iii), (3.26) follows from (3.18). �

Remark 3.6 As in Theorem 3.4, in the case when ū is equivalent to a non-decreasing
function on (0,∞), the condition (3.18) can be replaced by the integral condition

∫ ∞

0

(∫ t

0
w(s) ds

)r/p
[

sup
t≤τ<∞

ū(τ)
(∫ τ

0
v(s) ds

)−1/p
]r

w(t) dt < ∞.

Remark 3.7 Theorem 3.5 with slightly modified assumptions can also be proved using
a reduction theorem from [11]. Note that Theorem 6.2 in [11] states that, for 1 < p < ∞
and 0 < q < ∞, the inequality (3.14) holds for all ϕ ∈ M+(0,∞; ↓) if and only if (3.1)
holds for all ϕ ∈ M+(0,∞; ↓) and simultaneously the estimate

(∫ ∞

0
[(Tu,bg) (t)]q w(t) dt

)1/q

.
(∫ ∞

0
[g(t)]p

(
V (t)
B(t)

)p

[v(t)]1−p dt

)1/p

is satisfied for all g ∈ M+(0,∞). This motivates us to study when the inequality(∫ ∞

0
[(Tu,bg) (t)]q w(t) dt

)1/q

.
(∫ ∞

0
[g(t)]p v(t) dt

)1/p

(3.28)

holds for all g ∈ M+(0,∞). This will be done in the next section.

4. Inequalities for nonnegative functions

In this section we study the same weighted inequalities as above but without the
restriction to non-increasing functions. In particular, we wish to establish when the
inequality (3.28) holds for all g ∈ M+(0,∞).
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Recall that if p ∈ (1,∞), then the conjugate number p′ is given by p′ = p
p−1 . We

shall also use the following notation.

Notation. For a given weight v, 0 ≤ α < β ≤ ∞ and 1 ≤ p < ∞, we denote

σp(α, β) =


(∫ β

α
[v(t)]1−p′ dt

)1/p′

when 1 < p < ∞

ess sup
α<t<β

1
v(t) when p = 1.

We first consider the particular case when b ≡ 1. Then we write Tu := Tu,b and
since B(t) = t, t ∈ (0,∞), we have

Tug(t) = sup
t≤s<∞

u(s)
s

∫ s

0
g(y) dy.

We will characterize the validity of the inequality(∫ ∞

0
[(Tug) (t)]q w(t) dt

)1/q

.
(∫ ∞

0
[g(t)]p v(t) dt

)1/p

(4.1)

on the set M+(0,∞).

Theorem 4.1

Assume that 1 ≤ p < ∞ and 0 < q < ∞. When q < p, we define r by (3.2). Let
u, v and w be as in Theorem 3.2.

(i) Let p ≤ q. Then (4.1) holds on M+(0,∞) if and only if

sup
x>0

((
ū(x)

x

)q ∫ x

0
w(t) dt +

∫ ∞

x

(
ū(t)

t

)q

w(t) dt

)1/q

σp(0, x) < ∞. (4.2)

(ii) Let q < p. Then (4.1) holds on M+(0,∞) if and only if

sup
{xk}

∑
k

(∫ xk+1

xk−1

min
{

ū(xk)
xk

,
ū(t)

t

}q

w(t) dt

)r/q

[σp(xk−1, xk)]
r

1/r

< ∞, (4.3)

where the supremum is taken over all covering sequences {xk}.

Proof. Sufficiency:By (4.2),
∫ x
0 w(t) dt < ∞ for every x ∈ (0,∞). As in the proofs

above, we may assume with no loss of generality that
∫∞
0 w(t) dt = ∞. Thus, there is

a covering sequence {xk}k∈Z such that
∫ xk
0 w(t) dt = 2k. Then
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∫ ∞

0
[(Tug)(t)]q w(t) dt ≤

∞∑
k=−∞

(∫ xk+1

xk

w(t) dt

)(
sup

xk≤τ<∞

u(τ)
τ

∫ τ

0
g(s) ds

)q

=
∞∑

k=−∞
2k

(
sup

k≤i<∞
sup

xi≤τ<xi+1

u(τ)
τ

∫ τ

0
g(s) ds

)q

≤
∞∑

k=−∞
2k

∞∑
i=k

sup
xi≤τ<xi+1

(
u(τ)

τ

∫ τ

0
g(s) ds

)q

=
∞∑

i=−∞
sup

xi≤τ<xi+1

(
u(τ)

τ

∫ τ

0
g(s) ds

)q i∑
k=−∞

2k

=
∞∑

i=−∞
sup

xi≤τ<xi+1

(
u(τ)

τ

∫ τ

0
g(s) ds

)q

2i+1

≈
∞∑

i=−∞

(∫ xi

xi−1

w(t) dt

)
sup

xi≤τ<xi+1

(
u(τ)

τ

∫ τ

0
g(s) ds

)q

.
∞∑

i=−∞

(∫ xi

xi−1

w(t) dt

)(
u(zi)

zi

∫ zi

0
g(s) ds

)q

,

where zi is some point in [xi, xi+1) such that

sup
xi≤τ<xi+1

(
u(τ)

τ

∫ τ

0
g(s) ds

)q

≤ 2
(

u(zi)
zi

∫ zi

0
g(s) ds

)q

.

Together with the inclusion (xi−1, xi) ⊂ (zi−2, zi), this implies that

∫ ∞

0
[(Tug)(t)]q w(t) dt .

∞∑
i=−∞

(∫ zi

zi−2

w(t) dt

)(
u(zi)

zi

∫ zi

0
g(s) ds

)q

≈
∞∑

i=−∞

(∫ zi

zi−2

w(t) dt

)(
u(zi)

zi

∫ zi

zi−2

g(s) ds

)q

+
∞∑

i=−∞

(∫ zi

zi−2

w(t) dt

)(
u(zi)

zi

∫ zi−2

0
g(s) ds

)q

=: I1 + I2.

Now, by the Hölder inequality,

I1 ≤
∞∑

i=−∞

(∫ zi

zi−2

w(t) dt

)(
u(zi)

zi
σp(zi−2, zi)

)q
(∫ zi

zi−2

[
g(y)

]p
v(y) dy

)q/p

. (4.4)

Thus, when p ≤ q, we get by (4.2) that

I1 .
∞∑

i=−∞

(∫ zi

zi−2

[
g(y)

]p
v(y) dy

)q/p

.
(∫ ∞

0

[
g(y)

]p
v(y) dy

)q/p

.
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When q < p, we use the Hölder inequality for sums with exponents p
q and r

q
in (4.4) to get

I1 .

 ∞∑
i=−∞

(∫ zi

zi−2

w(t) dt

)r/q (
u(zi)

zi

)r

[σp(zi−2, zi)]
r

(p−q)/p

×

 ∞∑
i=−∞

∫ zi

zi−2

[g(y)]p v(y) dy

q/p

.

Now, we make use of the facts that {z2m}m∈Z and {z2m+1}m∈Z are covering sequences
and that u ≤ ū and ū(t)

t is non-increasing on (0,∞). Therefore, writing the first sum
in the last formula in the form

∞∑
i=−∞

=
∑

i=2m

+
∑

i=2m+1

,

we obtain by (4.3),

I1 .
(∫ ∞

0
[g(y)]p v(y) dy

)q/p

.

Let us estimate I2. Since u ≤ ū and ū(t)
t is non-increasing,

I2 ≤
∞∑

i=−∞

∫ zi

zi−2

(
ū(t)

t

)q (∫ t

0
g(s) ds

)q

w(t) dt

.
∫ ∞

0

(∫ t

0
g(s) ds

)q ( ū(t)
t

)q

w(t) dt.

We now claim that(∫ ∞

0

(∫ t

0
g(s) ds

)q ( ū(t)
t

)q

w(t) dt

)1/q

.
(∫ ∞

0
[g(t)]p v(t) dt

)1/p

. (4.5)

Indeed, when p ≤ q, a necessary and sufficient condition for (4.5) is (cf. e.g. [17])

sup
x>0

(∫ ∞

x

(
ū(t)

t

)q

w(t) dt

)1/q

σp(0, x) < ∞,

which clearly follows from (4.2). When q < p, a necessary and sufficient condition
for (4.5) is, by [21, Theorem 3],

sup
{xk}

(∑
k

(∫ xk+1

xk

(
ū(t)

t

)q

w(t) dt

)r/q

[σp (xk−1, xk)]
r

)1/r

< ∞. (4.6)

Since ū(t)
t is non-increasing, this condition follows from (4.3). Hence, (4.5) holds, and

we get

I2 .
(∫ ∞

0
[g(s)]p v(s) ds

)q/p

.
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This finishes the proof of the sufficiency part.
Necessity:Fix x ∈ (0,∞) and let En = {t ∈ (0, x]; v(t) > 1

n}, n ∈ N. Let p > 1.
If g ∈ M+(0,∞) and supp g ⊂ [0, x], then, by Lemma 2.2 (i) and the monotonicity of
ū(t)

t ,

(Tug) (t) ≥ min
{

ū(t)
t

,
ū(x)

x

}∫ ∞

0
g(s) ds.

So, testing (4.1) with functions g = χEnv1−p′ and then varying x ∈ (0,∞), we get(∫ ∞

0
min

{
ū(t)

t
,
ū(x)

x

}q

w(t) dt

)1/q ∫
En

[v(t)]1−p′ dt

.
(∫

En

[v(t)]1−p′ dt

)1/p

.

Since the right hand side is finite and non-zero, this yields(∫ ∞

0
min

{
ū(t)

t
,
ū(x)

x

}q

w(t) dt

)1/q (∫
En

[v(t)]1−p′ dt

)1/p′

≤ C,

with C > 0 independent of n ∈ N and x ∈ (0,∞). Taking supremum first over n and
then over x and using the fact that ū(t)

t is non-increasing, we obtain (4.2).
When p = 1, we test (4.1) on functions g = χE

v , where E ⊂ (0, x] is measurable
and x ∈ (0,∞). We get analogously(∫ ∞

0
min

{
ū(t)

t
,
ū(x)

x

}q

w(t) dt

)1/q

|E|−1
∫

E

1
v(t)

dt ≤ C

with some C > 0 independent of x ∈ (0,∞) and E ⊂ (0, x). For every fixed x ∈ (0,∞),

sup
E⊂(0,x)

|E|−1
∫

E

1
v(t)

dt = ess sup
0<t≤x

1
v(t)

.

Therefore, (4.2) follows on taking supremum first over E and then over x. This finishes
the proof of the necessity part when p ≤ q. In fact, we have shown that (4.1)
implies (4.2) for anyp ∈ [1,∞) and q ∈ (0,∞).

Now assume q < p and p > 1, and let {xk} be a fixed covering sequence. For
N ∈ N and t ∈ (0,∞), put

gN (t) :=
N∑

k=−N

χ[xk−1,xk)(t)α
r/(qp)
k β

r/(q′p)
k [v(t)]1−p′ ,

where

αk :=
∫ xk+1

xk

(
ū(s)

s

)q

w(s) ds, βk :=
∫ xk

xk−1

[v(s)]1−p′ ds, k ∈ Z.

Then ∫ ∞

0
[gN (t)]pv(t) dt =

N∑
k=−N

α
r/q
k β

r/p′

k =: γN .
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Since

(TugN )(t) ≥ ū(t)
t

α
r/(qp)
k β

r/(q′p)
k

∫ xk

xk−1

[v(s)]1−p′ ds = α
r/(qp)
k β

r/(qp′)
k

ū(t)
t

for all k ∈ Z ∩ [−N,N ] and t ∈ [xk, xk+1), we get

∫ ∞

0
[(TugN )(t)]q w(t) dt ≥

N∑
k=−N

∫ xk+1

xk

[(TugN )(t)]q w(t) dt

≥
N∑

k=−N

α
r/p
k β

r/p′

k

∫ xk+1

xk

(
ū(t)

t

)q

w(t) dt = γN .

As we have noticed above, (4.2) is a necessary condition for (4.1). This yields that
α

1/q
k β

1/p′

k < ∞ for every k ∈ Z. Hence also γN < ∞ for every N ∈ N. Conse-
quently, (4.2) and our estimates imply that γ

1/r
N ≤ C with C > 0 independent of

N ∈ N. On letting N →∞, we obtain (cf. (4.6)) ∞∑
k=−∞

(∫ xk+1

xk

(
ū(s)

s

)q

w(s) ds

)r/q
(∫ xk

xk−1

[v(s)]1−p′ ds

)r/p′
1/r

< ∞. (4.7)

Now, for N ∈ N and t ∈ (0,∞), we denote

g̃N (t) :=
N∑

k=−N

χ[xk−1,xk)(t)α̃
r/(qp)
k β

r/(q′p)
k [v(t)]1−p′ ,

where, for k ∈ Z,

α̃k :=
(

ū(xk)
xk

)q ∫ xk

xk−1

w(s) ds,

and βk are given as above. Then

∫ ∞

0
[g̃N (t)]p v(t) dt =

N∑
k=−N

α̃
r/q
k β

r/p′

k =: γ̃N .

Since (recall that, by Lemma 2.2 (i), Tū = Tu)

(Tug̃N )(t) ≥ sup
xk≤τ<∞

ū(τ)
τ

α̃
r/(qp)
k β

r/(q′p)
k

∫ τ

0
v(s)1−p′ ds ≥ α̃

r/(qp)
k β

r/(qp′)
k

ū(xk)
xk

for all k ∈ Z ∩ [−N,N ] and t ∈ [xk−1, xk), we get

∫ ∞

0
[(Tug̃N )(t)]q w(t) dt ≥

N∑
k=−N

∫ xk

xk−1

[(TugN )(t)]q w(t) dt

≥
N∑

k=−N

α̃
r/q
k β

r/p′

k = γ̃N .
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Similar argument as above yields ∞∑
k=−∞

((
ū(xk)

xk

)q ∫ xk

xk−1

w(t) dt

)r/q (∫ xk

xk−1

[v(s)]1−p′ ds

)r/p′
1/r

< ∞. (4.8)

Now, (4.7) and (4.8) imply (4.3) for p > 1.
Assume that p = 1, 0 < q < 1, and let {xk} be a fixed covering sequence. For

k ∈ Z, let Ek be a measurable subset of the interval [xk−1, xk). If we denote

ck :=
∫ xk+1

xk

(
ū(t)

t

)q

w(t) dt, dk :=
∫

Ek

ds

v(s)
and Ak :=

(
ck

|Ek|

)r/q

dr
k,

then (recall that r = q
1−q and so r + 1 = r

q )

Ak|Ek| = c
r/q
k |Ek|−rdr

k = (Akdk)
q ck. (4.9)

Putting, for N ∈ N and t ∈ (0,∞),

hN (t) :=
N∑

k=−N

Ak
χEk

(t)
v(t)

,

we get ∫ ∞

0
hN (t)v(t) dt =

N∑
k=−N

Ak|Ek| =: %N . (4.10)

Moreover, for all k ∈ Z ∩ [−N,N ] and t ∈ [xk, xk+1),

(TuhN )(t) ≥ sup
t≤τ<∞

ū(τ)
τ

N∑
j=−N

Aj

∫ τ

0

χEj (s)
v(s)

ds

≥ ū(t)
t

N∑
j=−N

Aj

∫ t

0

χEj (s)
v(s)

ds

≥ Ak
ū(t)

t

∫
Ek

ds

v(s)

= Akdk
ū(t)

t
.

Together with (4.9), this implies that

∫ ∞

0
[(TuhN )(t)]q w(t) dt ≥

N∑
k=−N

∫ xk+1

xk

[(TuhN )(t)]q w(t) dt

≥
N∑

k=−N

(Akdk)q
∫ xk+1

xk

(
ū(t)

t

)q

w(t) dt

=
N∑

k=−N

(Akdk)qck = %N . (4.11)
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As above, (4.2) shows that

c
1/q
k dk < ∞ for every k ∈ Z.

Hence also %N < ∞ for every N ∈ N. Thus, (4.10), (4.11) and (4.1) yield

%
1/r
N ≤ C

with C > 0 independent of N ∈ N and of the choice of Ek. Taking supremum over all
choices of {Ek}k∈Z and then letting N →∞, we obtain

∞∑
k=−∞

(∫ xk+1

xk

(
ū(s)

s

)q

w(s) ds

)r/q
(

ess sup
xk−1≤t<xk

1
v(t)

)r

< ∞. (4.12)

Finally, if we take dk as above and put, for k ∈ Z,

c̃k :=
(

ū(xk)
xk

)q ∫ xk

xk−1

w(t) dt and Ãk :=
(

c̃k

|Ek|

)r/q

dr
k,

then
Ãk|Ek| = c̃

r/q
k |Ek|−rdr

k =
(
Ãkdk

)q
c̃k. (4.13)

Defining

h̃N (t) =
N∑

k=−N

Ãk
χEk

(t)
v(t)

, N ∈ N, t ∈ (0,∞),

we get ∫ ∞

0
h̃N (t)v(t) dt =

N∑
k=−N

Ãk|Ek| =: %̃N . (4.14)

Moreover, for all k ∈ Z ∩ [−N,N ] and t ∈ [xk−1, xk),

(Tuh̃N )(t) ≥ sup
xk≤τ<∞

ū(τ)
τ

N∑
j=−N

Ãj

∫ τ

0

χEj (s)
v(s)

ds

≥ ū(xk)
xk

N∑
j=−N

Ãj

∫ xk

xk−1

χEj (s)
v(s)

ds

≥ ū(xk)
xk

Ãkdk.

Together with (4.13), this implies that∫ ∞

0

[
(Tuh̃N )(t)

]q
w(t) dt ≥

N∑
k=−N

∫ xk

xk−1

[
(Tuh̃N )(t)

]q
w(t) dt

≥
N∑

k=−N

(Ãkdk)q
(

ū(xk)
xk

)q ∫ xk

xk−1

w(t) dt

=
N∑

k=−N

(Ãkdk)q c̃k = %̃N . (4.15)
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Again, (4.2) shows that

c̃
1/q
k dk < ∞ for every k ∈ Z.

Hence also %̃N < ∞ for every N ∈ N. Thus, (4.14), (4.15) and (4.1) yield

%̃
1/r
N ≤ C

with C > 0 independent of N ∈ N and of the choice of Ek. Taking supremum over all
choices of {Ek}k∈Z and then letting N →∞, we obtain

∞∑
k=−∞

(
ū(xk)

xk

)r
(∫ xk

xk−1

w(s) ds

)r/q (
ess sup

xk−1≤t<xk

1
v(t)

)r

< ∞. (4.16)

Now, (4.3) follows from (4.16) and (4.12). �

Our next aim is to obtain an analogous result involving a general operator Tu,b.

Theorem 4.2

Assume that 1 ≤ p < ∞ and 0 < q < ∞. When q < p, we define r by (3.2). Let
b be a weight such that b(t) > 0 for a.e. t ∈ (0,∞) and B(t) :=

∫ t
0 b(s) ds < ∞ for all

t ∈ (0,∞). Let u, v and w be as in Theorem 3.2. For 0 ≤ α < β ≤ ∞, we denote

σp,b(α, β) =


(∫ β

α
[v(t)]1−p′ [b(t)]p

′
dt

)1/p′

when 1 < p < ∞

ess sup
α<t<β

b(t)
v(t) when p = 1.

(i) Let p ≤ q. Then (3.28) holds on M+(0,∞) if and only if

sup
x>0

((
ū(x)
B(x)

)q ∫ x

0
w(t) dt +

∫ ∞

x

(
ū(t)
B(t)

)q

w(t) dt

)1/q

σp,b(0, x) < ∞.

(ii) Let q < p. Then (3.28) holds on M+(0,∞) if and only if

sup
{xk}

∑
k

(∫ xk+1

xk−1

min
{

ū(xk)
B(xk)

,
ū(t)
B(t)

}q

w(t) dt

)r/q

[σp,b(xk−1, xk)]
r

1/r

< ∞,

where the supremum is taken over all covering sequences {xk}.

Proof. The assertion follows immediately from Theorem 4.1 on changing the parame-
ters

g(t) → g(t)b(t), v(t) → v(t)
[
b(t)

]−p and u(t) → u(t)
t

B(t)
. �

We have also an alternative integral criterion that characterizes (4.1). This fact
resembles the similar situation involving classical Hardy integral operator, for which
a “sum criterion” was found by Sawyer in [21] and an “integral criterion” was estab-
lished by Maz’ya in [15].

We shall need the following elementary lemma.
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Lemma 4.3

Let c > 1 and 0 < q < ∞. Let either J ∈ Z or J = −∞. Then

∞∑
k=J

c−k

(
k∑

i=J

ai

)q

≈
∞∑

k=J

c−kaq
k.

for any sequence {ai}i∈Z of non-negative numbers.

Proof. When 0 < q ≤ 1, we have

∞∑
k=J

c−kaq
k ≤

∞∑
k=J

c−k

(
k∑

i=J

ai

)q

≤
∞∑

k=J

c−k
k∑

i=J

aq
i =

∞∑
i=J

aq
i

∞∑
k=i

c−k ≈
∞∑

i=J

aq
i c
−i.

When 1 < q < ∞, let α ∈ (0, 1
q ). Then we obtain by the Hölder inequality that

∞∑
k=J

c−kaq
k ≤

∞∑
k=J

c−k

(
k∑

i=J

ai

)q

=
∞∑

k=J

c−k

(
k∑

i=J

aic
−αicαi

)q

≤
∞∑

k=J

c−k
k∑

i=J

aq
i c
−αqi

(
k∑

i=J

cαq′i

)q/q′

.
∞∑

k=J

c−k
k∑

i=J

aq
i c

αq(k−i)

=
∞∑

i=J

aq
i c
−αqi

∞∑
k=i

c(αq−1)k

≈
∞∑

i=J

aq
i c
−i. �

Theorem 4.4

Let u, v and w be as in Theorem 4.1. Let 1 ≤ p < ∞ and 0 < q < p and let r be
defined by (3.2). Then the inequality (4.1) holds for all g ∈ M+(0,∞) if and only if

(∫ ∞

0

(∫ ∞

t

(
ū(s)

s

)q

w(s) ds

)r/p ( ū(t)
t

)q

[σp(0, t)]r w(t) dt

)1/r

< ∞ (4.17)

and ∫ ∞

0

(∫ t

0
w(s) ds

)r/p
[

sup
t≤τ<∞

ū(τ)
τ

σp(0, τ)

]r

w(t) dt

1/r

< ∞. (4.18)

Proof. As usual, we restrict ourselves to the case when
∫∞
0 w(s) ds = ∞ and∫∞

0 v(s) ds = ∞.
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By Theorem 4.1, it is sufficient to show that (4.17) and (4.18) are equivalent
to (4.3). Assume first that (4.17) and (4.18) hold. Let {xk} be a covering sequence.
Since(∫ xk+1

xk

(
ū(t)

t

)q

w(t) dt

)r/q

≈
∫ xk+1

xk

(∫ xk+1

t

(
ū(s)

s

)q

w(s) ds

)r/p ( ū(t)
t

)q

w(t) dt,

we get from (4.17) that

∞∑
k=−∞

(∫ xk+1

xk

(
ū(t)

t

)q

w(t) dt

)r/q

[σp(xk−1, xk)]
r

.
∫ ∞

0

(∫ ∞

t

(
ū(s)

s

)q

w(s) ds

)r/p ( ū(t)
t

)q

[σp(0, t)]r w(t) dt < ∞.

Similarly, since (∫ xk

xk−1

w(t) dt

)r/q

≈
∫ xk

xk−1

(∫ t

xk−1

w(s) ds

)r/p

w(t) dt,

we obtain from (4.18),

∞∑
k=−∞

(
ū(xk)

xk

)r
(∫ xk

xk−1

w(t) dt

)r/q

[σp(xk−1, xk)]
r < ∞,

and (4.3) follows.
As for the converse, assume that (4.3) holds. If∫ ∞

0

(
ū(t)

t

)q

w(t) dt < ∞,

then there exists J ∈ Z such that

2−J−1 <

∫ ∞

0

(
ū(t)

t

)q

w(t) dt ≤ 2−J .

If ∫ ∞

0

(
ū(t)

t

)q

w(t) dt = ∞,

we set J := −∞. Next, for k ∈ Z, k > J , we choose xk ∈ (0,∞) so that∫ ∞

xk

(
ū(t)

t

)q

w(t) dt = 2−k.

If J > −∞, then we further set xJ := 0. Then∫ ∞

0

(∫ ∞

t

(
ū(s)

s

)q

w(s) ds

)r/p ( ū(t)
t

)q

[σp(0, t)]r w(t) dt

.
∞∑

k=J+1

∫ xk

xk−1

(∫ ∞

t

(
ū(s)

s

)q

w(s) ds

)r/p ( ū(t)
t

)q

w(t) dt · [σp(0, xk)]
r

.
∞∑

k=J

2−(rk)/q [σp(0, xk)]
r .
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Now, it is easy to see that Lemma 4.3 implies
∞∑

k=J

2−(rk)/q [σp(0, xk)]
r ≈

∞∑
k=J

[σp(xk−1, xk)]
r 2−(kr)/q.

Therefore, we finally obtain∫ ∞

0

(∫ ∞

t

(
ū(s)

s

)q

w(s) ds

)r/p ( ū(t)
t

)q

[σp(0, t)]r w(t) dt

.
∞∑

k=J

[σp(xk−1, xk)]
r
(∫ xk+1

xk

(
ū(t)

t

)q

w(t) dt

)r/q

< ∞,

which yields (4.17).
It just remains to verify (4.18). We take {xk} so that

∫ xk
0 w(t) dt = 2k. Then,

working as in the proof of Theorem 3.4, implication (3.12)⇒(3.13), we get∫ ∞

0

(∫ t

0
w(s) ds

)r/p
[

sup
t≤τ<∞

ū(τ)
τ

σp(0, τ)

]r

w(t) dt

≤
∞∑

k=−∞

(∫ xk+1

xk

(∫ t

0
w(s) ds

)r/p

w(t) dt

)[
sup

xk≤τ<∞

ū(τ)
τ

σp(0, τ)

]r

≈
∞∑

k=−∞
2(rk)/q

[
sup

xk≤τ<∞

ū(τ)
τ

σp(0, τ)

]r

≤
∞∑

k=−∞
2(rk)/q

∞∑
i=k

[
sup

xi≤τ<xi+1

ū(τ)
τ

σp(0, τ)

]r

.
∞∑

i=−∞
2(ri)/q

[
sup

xi≤τ<xi+1

ū(τ)
τ

σp(0, τ)

]r

.
∞∑

i=−∞

(∫ yi+1

yi−1

w(t) dt

)r/q [
ū(yi+1)

yi+1
σp(0, yi+1)

]r
,

where yi+1 ∈ [xi, xi+1) is such that[
sup

xi≤τ<xi+1

ū(τ)
τ

σp(0, τ)

]r

≤ 2
[
ū(yi+1)

yi+1
σp(0, yi+1)

]r
.

Splitting the last sum into two, we have∫ ∞

0

(∫ t

0
w(s) ds

)r/p
[

sup
t≤τ<∞

ū(τ)
τ

σp(0, τ)

]r

w(t) dt

.
∞∑

m=−∞

(∫ y2m

y2m−2

w(t) dt

)r/q [
ū(y2m)

y2m
σp(0, y2m)

]r

+
∞∑

m=−∞

(∫ y2m+1

y2m−1

w(t) dt

)r/q [
ū(y2m+1)

y2m+1
σp(0, y2m+1)

]r
=: I + II.
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Now,

I ≈
∞∑

m=−∞

(∫ y2m

y2m−2

w(t) dt

)r/q [
ū(y2m)

y2m
σp(0, y2m−2)

]r

+
∞∑

m=−∞

(∫ y2m

y2m−2

w(t) dt

)r/q [
ū(y2m)

y2m
σp(y2m−2, y2m)

]r
=: I1 + I2.

We shall estimate I1 using the finiteness of (4.17), which we have already proved. By
the monotonicity of ū(t)

t ,

I1 ≤
∞∑

m=−∞

(∫ y2m

y2m−2

(
ū(y2m)

y2m

)q

w(t) dt

)r/q

[σp(0, y2m−2)]
r

.
∞∑

m=−∞

(∫ y2m

y2m−2

(∫ y2m

t

(
ū(s)

s

)q

w(s) ds

)r/p ( ū(t)
t

)q

w(t) dt

)
[σp(0, y2m−2)]

r

≤
∞∑

m=−∞

∫ y2m

y2m−2

(∫ ∞

t

(
ū(s)

s

)q

w(s) ds

)r/p ( ū(t)
t

)q

[σp(0, t)]r w(t) dt

=
∫ ∞

0

(∫ ∞

t

(
ū(s)

s

)q

w(s) ds

)r/p ( ū(t)
t

)q

[σp(0, t)]r w(t) dt < ∞

by (4.17).
A straightforward application of Theorem 4.1 (ii) yields I2 < ∞. The estimate

of II is analogous. �
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