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Abstract

New cases of the multiplicity conjecture are considered.

Introduction

Throughout this paper, we fix a field K and let R be a homogeneous K-algebra. In
other words, R is a finitely generated K-algebra, generated over K by elements of
degree 1, and hence is isomorphic to S/I where S = K[x1, . . . , xn] is a polynomial
ring and I a graded ideal contained in (x1, . . . , xn). Consider a graded minimal free
S-resolution of R:

0 −→
bp⊕

j=1

S(−dpj) −→ · · · −→
b1⊕

j=1

S(−d1j) −→ S −→ 0.

The ring R is said to have a pure resolution if for all i, the shifts dij do not depend on
j (but only on i). Hence if the resolution is pure, it has the following shape:

0 −→ Sbp(−dp) −→ · · · −→ Sb1(−d1) −→ S −→ 0.

When R is Cohen-Macaulay and has a pure resolution, Huneke and Miller’s formula [15]
says that the multiplicity of R is given by

e(R) =
( p∏

i=1

di

)/
p!.
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In general we define Mi(I) = max{dij : j = 1, . . . , bi} and mi(I) = min{dij : j =
1, . . . , bi} for i = 1, . . . p. When there is no danger of ambiguity, we write Mi and mi

for short.
Huneke and Srinivasan had the following

Conjecture 1. For each homogeneous Cohen-Macaulay K-algebra R

( p∏

i=1

mi

)/
p! ≤ e(R) ≤

( p∏

i=1

Mi

)/
p!.

Conjecture 1 has been widely studied and partial results have been obtained. In [13],
the first author and Srinivasan showed that this conjecture is true in the following
cases: R has a quasi-pure resolution (i.e., mi(I) ≥ Mi−1(I)); I is a perfect ideal
of codimension 2; I is a codimension 3 Gorenstein ideal generated by 5 elements; I
is a stable ideal; I is a squarefree strongly stable ideal. Furthermore, Guardo and
Van Tuyl [10] proved that the conjecture holds for powers of complete intersections,
and Srinivasan [21] proved a stronger bounds for Gorenstein algebras with quasi-pure
resolutions. And recently, in [17], Migliore, Nagel and Römer proved a stronger version
of Conjecture 1 when R is a codimension 2 or Gorenstein codimension 3 algebra (with
no limitations on the number of generators). As a corollary, they showed that in these
two cases, the multiplicity e(R) reaches the upper or lower bound if and only if R has
a pure resolution.

It was observed in [13], that the lower bound in Conjecture 1 fails in general if R is
not Cohen-Macaulay, even in one replaces in Conjecture 1 the projective dimension by
the codimension. In the same paper, the authors had the following stronger conjecture
for the upper bound of the multiplicity of R.

Conjecture 2. Let R be a homogeneous K-algebra of codimension s. Then

e(R) ≤
( s∏

i=1

Mi

)/
s!.

If the defining ideal of R is stable, or squarefree strongly stable, or if R has a linear
resolution, Conjecture 2 is shown to be true in [13]. In addition, Gold [9] proved it for
codimension 2 lattice ideals. This was generalized by Römer [20] for all codimension
two ideals. In the same paper Römer proved Conjecture 2 for componentwise linear
ideals in characteristic 0.

In Section 1 we show that if I ⊂ S is an ideal of codimension s, not necessarily
perfect, for which one has

( s∏

i=1

mi

)/
s! ≤ e(R) ≤

( s∏

i=1

Mi

)/
s!,

and if f1, . . . , fm is a regular sequence modulo I, then the corresponding inequalities
are again valid for (I, f1, . . . , fm). One might expect that the proof of this statement
is rather simple. But again careful estimates are required to establish the result.
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In Section 2 we show that Conjecture 2 is valid in the limit with respect to taking
powers of ideal, that is, we show that

lim
k→∞

e(S/Ik)
1
s!

∏s
i=1 Mi(Ik)

≤ 1.

Unfortunately, this does not imply that Conjecture 2 holds for all sufficiently high
powers of I.

In view of the results by Migliore, Nagel and Römer [17] one is lead to ask the
following question: suppose that for a ring R the lower bound in Conjecture 1, or the
upper bound in Conjecture 2 is reached. Does this imply that R is Cohen-Macaulay
and has a pure resolution?

In Section 3 we show that not only in the cases described by Migliore, Nagel and
Römer this improved multiplicity conjecture holds, but also for rings with almost pure
resolutions, as well as for rings defined by componentwise linear ideals.

We also recall a recent result of Miró-Roig [19] who showed that graded ideals of
maximal minors of maximal grade satisfy Conjecture 1, and we show that again in this
case the upper or lower bound is reached if and only if the resolution is pure. This
case includes rings whose defining ideal is a power of a graded regular sequence. We
also would like to mention that Migliore, Nagel and Römer [18] recently independently
gave different proofs of Theorem 1.1 and Theorem 3.5.

1. The multiplicity conjecture and regular sequences

Let I ⊂ S be a graded ideal of codimension s, R = S/I and f1, . . . fm a homogeneous
regular sequence of R. Suppose that

( s∏

i=1

mi(I)
)/

s! ≤ e(R) ≤
( s∏

i=1

Mi(I)
)/

s!.

Are the corresponding inequalities again valid for R/(f1, . . . , fm)? In fact, without
assuming that S/I is Cohen-Macaulay, we have the following

Theorem 1.1

Let I ⊂ S be a graded ideal of codimension s, R = S/I and f = f1, . . . fm a
homogeneous regular sequence of R. Suppose that

( s∏

i=1

mi(I)
)/

s! ≤ e(R) ≤
( s∏

i=1

Mi(I)
)/

s!.

Then
( s+m∏

i=1

mi(I, f)
)/

(s + m)! ≤ e(R/(f)) ≤
( s+m∏

i=1

Mi(I, f)
)/

(s + m)!.
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Moreover, if e(R/(f)) = (
∏s+m

i=1 Mi(I, f))/(s + m)!, then e(R) = (
∏s

i=1 Mi(I))/s!, all
fj have the same degree, say d, and Mi(I) = id for i = 1, . . . , s.

Proof. By using induction on m, one needs only to show the case m = 1. For simplicity,
we denote f1 by f , Mi(I) and mi(I) by Mi and mi, respectively. Let d = deg f .

We first show that

e(R/(f)) ≤
( s+1∏

i=1

Mi(I, f)
)/

(s + 1)!.

We have codim(I, f) = s + 1 and e(R/(f)) = e(S/(I, f)) = e(R) · d.
Let G. be the minimal graded free resolution of R, and H. the minimal graded

free resolution of S/(f). Then F. = G. ⊗ H. is the minimal graded free resolution
of R/(f) = S/(I, f). Hence Fi = Gi ⊗ S ⊕ Gi−1 ⊗ S(−d), i = 1, . . . , p + 1, where
p = proj dim S/I. Therefore Mi((I, f)) = max{Mi,Mi−1 + d} for i = 1, . . . , p + 1.

Thus we need to show that

(s + 1)d
s∏

i=1

Mi ≤
s+1∏

i=1

max {Mi,Mi−1 + d}, where M0 = 0. (1)

Set Mi = id + yi for 1 ≤ i ≤ s + 1. Then

max {Mi,Mi−1 + d} = max {id + yi, id + yi−1} = id + max{yi−1, yi}.

Let N = {i : yi ≥ 0, 1 ≤ i ≤ s + 1}, and let j = max {i : i ∈ N}. In case N = ∅, we
set j = 0. Then yi < 0 for all i with j < i ≤ s + 1.

We will distinguish two cases:

Case 1. j = s + 1. We have max {ys, ys+1} ≥ ys+1 ≥ 0. Inequality (1) is equivalent
to the inequality

(s + 1)d
s∏

i=1

Mi ≤
s∏

i=1

max {Mi,Mi−1 + d} · ((s + 1)d + max {ys, ys+1}),

which is satisfied since Mi ≤ max{Mi,Mi−1 + d} for i = 1, . . . , s, and because
max{ys, ys+1} ≥ 0.

If e(R/(f)) = (
∏s+1

i=1 Mi(I, f))/(s + 1)!, then we have

s+1∏

i=1

Mi(I, f) = (s + 1)!de(R) ≤ (s + 1)d
s∏

i=1

Mi ≤
s+1∏

i=1

Mi(I, f).

Hence e(R) = (
∏s

i=1 Mi(I))/s!, Mi = max {Mi,Mi−1 + d} for i = 1, . . . s and
max {ys, ys+1} = 0. From Mi = max {Mi,Mi−1 + d} for i = 1, . . . s, one sees that
ys ≥ ys−1 ≥ · · · ≥ y1 ≥ 0. One the other hand, since 0 = max {ys, ys+1} ≥ ys+1 ≥ 0,
one has ys ≤ 0. Therefore ys = ys−1 = · · · = y1 = 0, that is, Mi = id for i = 1, . . . s.

Case 2. j < s + 1. Since

j∏

i=1

Mi ≤
j∏

i=1

max {Mi,Mi−1 + d}
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it suffices to show that

(s + 1)d
s∏

i=j+1

(id + yi) ≤
s+1∏

i=j+1

(id + yi−1) = ((j + 1)d + yj)
s+1∏

i=j+2

(id + yi−1). (2)

Set zi = yi/d. Then inequality (2) is equivalent to the inequality

s∏

i=j+1

(i + zi) · (s + 1) ≤ ((j + 1) + zj)
s∏

i=j+1

((i + 1) + zi).

Since id + yi = Mi > 0, it follows 0 < i + zi for i = 1, . . . , s + 1. Hence we need to
show that

s + 1 ≤ ((j + 1) + zj) ·
s∏

i=j+1

(1 + 1/(i + zi)).

Since zi < 0 for all i = j +1, . . . , s, and since i+zi > 0, it follows that 1/(i + zi) > 1/i.
Therefore, using the fact that zj = yj/d > 0, we have

s + 1 = (j + 1)
s∏

i=j+1

(1 + 1/i) ≤ ((j + 1) + zj)
s∏

i=j+1

(1 + 1/(i + zi)).

Since 1/(i + zi) is strictly greater than 1/i, we even have

e(R/(f)) <

∏s+1
i=1 Mi(I, f)

s + 1!
.

In other words, e(R/(f)) can never reach the upper bound in this case.
Finally, by taking j = max{i : yi ≤ 0, 0 ≤ i ≤ s + 1}, where y0 = 0, and

distinguishing the cases j = s + 1 and j < s + 1, a discussion as before shows that

e(R/(f)) ≥
∏s+1

i=1 mi(I, f)
s + 1

!,

as desired. !

2. Powers of an ideal

As the main result of this section we want to prove that Conjecture 2 is true in the
limit with respect to taking powers of an ideal. To be more precise, we show

Theorem 2.1

For any graded ideal I ⊂ S of codimension s we have

lim
k→∞

e(S/Ik)
1
s!

∏s
i=1 Mi(Ik)

≤ 1.

Proof. For the proof of this result we will proceed in several steps.
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(i) Let M be a graded S-module of projective dimension p. We set

regi(M) = max {j : βii+j(M) += 0} for i = 0, . . . , p.

Then Mi(I) = regi(S/I) + i for i = 1, . . . , p, and

reg(I) = max {regi(I) : i = 0, . . . , p}

is the regularity of I.
Let L ⊂ S be a graded ideal of codimension s. We claim that regi(S/L) ≥

regi−1(S/L) for i = 0, . . . , s. In fact, let

0 −−−−→ Fp
ϕp−−−−→ Fp−1

ϕp−1−−−−→ · · · ϕ2−−−−→ F1
ϕ1−−−−→ F0 −−−−→ S/L −−−−→ 0

be a graded minimal free resolution of S/L. Suppose that regi(S/L) < regi−1(S/L) for
some i ≤ s. Then Mi(L) ≤Mi−1(L). Let e ∈ Fi−1 be a homogeneous basis element of
degree Mi−1(L), and let f be any homogeneous basis element of Fi. Then deg ϕi(f) =
deg f ≤Mi(L) ≤Mi−1(L). Thus if we write ϕi(f) as a linear combination of the basis
elements of Fi−1, the coefficient a of e will be of degree deg a ≤Mi(L)−Mi−1(L) ≤ 0.
This is only possible if a = 0, since ϕi(f) ∈ mFi−1, where m is the graded maximal
ideal of S.

Now we consider the S-dual of the resolution F . Let e∗ be the dual basis element
of e, and ϕ∗i : F ∗

i−1 → F ∗
i the map dual to ϕi. Then it follows that ϕ∗i (e∗) = 0. Thus

e∗ is a cycle of the dual complex. On the other hand, e∗ cannot be a boundary, since
e∗ is a basis element of F ∗

i−1 and since the image of ϕ∗i−1 : F ∗
i−2 → F ∗

i−1 is contained in
mF ∗

i−1. Hence we see that Exti−1
S (S/L, S) = H i−1(F ∗) += 0. This contradicts the fact

that Extj
S(S/L, S) = 0 for j < s, since grade L = codim L = s.

(ii) Cutkosky, Herzog and Trung [6, Theorem 3.1] showed that

regi(I
k) = qik + ci (3)

is a linear function for k , 0. In particular, reg(Ik) = qk + c for k , 0. It is also
shown that q = q0, see [6, Corollary 3.2].

By (i) we have
reg0(I

k) ≤ regi(I
k) ≤ reg(Ik)

for i = 0, . . . , s− 1 where s = codim I (= codim Ik for all k). Thus (3) implies

qk + c0 ≤ qik + ci ≤ qk + c

for i = 0, . . . , s− 1 and all k , 0. This implies that qi = q for i = 0, . . . , s− 1.

(iii) From (ii) it follows that

1
s!

s∏

i=1

Mi(Ik) =
qs

s!
ks + · · · for k , 0

is a polynomial function of degree s whose leading coefficient is qs/s!.
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(iv) For k , 0, the function s!e(S/Ik) is a polynomial function whose leading
term is an integer which we denote by e(I, S). In other words,

e(S/Ik) =
e(I, S)

s!
ks + · · · for k , 0.

For all k , 0, let {P1, . . . , Pr} be the (stable) set of minimal prime ideals of S/Ik of
height s. The associativity formula of multiplicity ([4, Corollary 4.7.8]) then shows
that

e(S/Ik) =
r∑

i=1

#(SPi/Ik
Pi

)e(S/Pi).

Here #(M) denotes the length of a module M .
Each SPi is a regular local ring of dimension s, and IPi is PiSPi primary. Therefore

#(SPi/Ik
Pi

) =
e(IPi , SPi)

s!
ks + · · ·

is a polynomial function of degree s for k , 0, see [4, Proposition 4.6.2], where the
numerator e(IPi , SPi) of the leading coefficient of this polynomial is the multiplicity of
SPi with respect to IPi . This proves (iv) and also shows that

e(I, S) =
∑

P

e(IP , SP )e(S/P ), (4)

where the sum is taken over all asymptotic minimal prime ideals of I.

(v) The theorem will follow once we have shown e(I, S) ≤ qs. We first notice
that e(I, S) ≤ e(J, S) for any ideal J ⊂ I with codim J = codim I = s, and that
e(I, S) = e(J, S) if J is a reduction ideal of I, that is, if JIk = Ik+1 for some k.
Indeed, this follows from formula (4) and the fact that the corresponding statements
are true for ideals in a local ring which are primary to the maximal ideal, see [4,
Lemma 4.6.5].

Now we use the fact, shown by Kodiyalam [16, Theorem 5], that I admits a
reduction ideal J with reg0(J) = q. Hence replacing I by J we may assume that I is
generated in degree ≤ q.

After a base field extension we may assume that K is infinite. Then, since
codim I = s, generically chosen q-forms f1, . . . , fs ∈ Iq will form a regular sequence.
Let L be the ideal generated by these forms. Then e(I, S) ≤ e(L, S) = qs, as de-
sired. It just remains to establish the last equation. This can be seen as follows:
Since the L is generated by a regular sequence each of the factor modules Lk−1/Lk

is a free S/L-module, whose rank is
(s+k−1

s−1

)
. Hence, since e(S/L) = qs, we see that

e(Lk−1/Lk) = qs
(s+k−1

s−1

)
. It follows that

e(S/Lk) = qs
k∑

j=1

(
s + k − 1

s− 1

)

=
qs

s!
ks + · · ·
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This implies that e(L, S) = qs. !

Unfortunately Theorem 2.1 does not imply that Conjecture 2 is true for all high
enough powers of an ideal, as it is easy to find ideals for which

lim
k→∞

e(S/Ik)
1
s!

∏s
i=1 Mi(Ik)

= 1.

3. The improved multiplicity conjecture

Motivated by the results of Migliore, Nagel and Römer [17], we say that the improved
multiplicity conjecture holds, if all standard graded K-algebras R satisfy the multi-
plicity conjectures, and whenever the bounds are reached, then the defining ideal has
a pure resolution and R is Cohen-Macaulay.

In this section we show that for some interesting classes of examples the improved
multiplicity conjecture holds.

Generalizing the result [17, Corollary 1.3] we first show.

Theorem 3.1
Let I ⊂ S be a graded ideal of codimension 2. Then S/I satisfies the improved

multiplicity conjecture.

Proof. Römer proved in [20, Theorem 2.4] that R = S/I satisfies Conjecture 2. Thus it
remains to be shown that if e(R) = (1/2)M1M2, then R is Cohen-Macaulay and has a
pure resolution. Once it is shown that R is Cohen-Macaulay, then by [17, Theorem 1.3]
we also have that R has a pure resolution. (This last fact also follows from Theorem 3.5
below.)

Let S = K[x1, . . . , xn]. One may assume that |K| =∞, and that (after a generic
change of coordinates) x1, . . . , xn is an almost regular sequence on R, i.e, multiplication
with xi on Ri−1 = R/(x1, . . . , xi−1)R has a finite length kernel for all i. In his proof,
Römer showed that

e(R) ≤ e(Rn−2) ≤ (1/2)M1M2, .

He also showed in [20, Lemma 2.3] that e(Rn−2) = e(R) + length(0 :Rn−3 xn−2). Thus
if we assume that the upper bound is reached, then xn−2 is regular on Rn−3. By [12,
Proposition 3] this implies that x1, . . . , xn−2 is a regular sequence, and hence R is
Cohen-Macaulay. !

We say that I is componentwise linear if all ideals spanned by the graded com-
ponents of I have a linear resolution. Our next class of rings satisfying the improved
multiplicity conjecture is the following

Theorem 3.2
Let I ⊂ S be a componentwise linear ideal of codimension s. Then for S/I the

improved multiplicity conjecture holds.

Before we prove this theorem we first note the following generalization of [1].
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Lemma 3.3
Let I ⊂ S be a componentwise linear ideal. Then I and Gin(I) have the same

graded Betti-numbers and Gin(I) is a stable monomial ideal.

Proof. We may assume that the base field is infinite. Let I〈j〉 be the ideal generated
by all elements of degree j in I. By our assumption on I, the ideal I〈j〉 has a linear
resolution. Applying the Bayer-Stillman theorem [3] it follows that Gin(I〈j〉) has a
linear resolution, so that Gin(I〈j〉) = Gin(I)〈j〉. This proves that Gin(I) is again com-
ponentwise linear. Since Gin(I〈j〉) = Gin(I)〈j〉 is p-Borel and has a linear resolution,
Proposition 10 of Eisenbud, Reeves and Totaro [7] implies that Gin(I)〈j〉 is a stable
monomial ideal for all j, and hence Gin(I) is a stable monomial ideal. With the same
arguments as in the proof of [11, Theorem 1.1] it then follows that I and Gin(I) have
the same graded Betti-numbers. !

Proof Theorem 3.2 By the preceding lemma, we may assume that I is a stable mono-
mial ideal. Its Betti-numbers do not depend on the characteristic of the base field.
Thus we may assume that the base field has characteristic 0. Since I is component-
wise linear it follows from [11, Theorem 1.1.] (see also the proof of Lemma 3.3) that
Gin(I) is again componentwise linear and that I and Gin(I) have the same graded
Betti-numbers. Replacing I by Gin(I) and observing that Gin(I) is strongly stable
since the characteristic of the base field is 0, we may now assume that I is strongly
stable.

The proof of the multiplicity conjecture for stable ideals given in [13, Theorem 3.2]
is in fact only valid for strongly stable ideals, as it is used there that if I ⊂ K[x1, . . . , xn]
is stable, then I : xn is stable as well. But this is only true for strongly stable ideals.
However, as seen above, the stable ideal may be replaced by a strongly stable ideal.
Thus for the rest of our proof we may follow the arguments given in the proof of [13,
Theorem 3.2].

We first treat the case that S/I is Cohen-Macaulay. Let G(I) denote the unique
minimal monomial set of generators of I, and let j be the maximal number such that
xj divides some u ∈ G(I). It follows from [13, Lemma 3.1] that xa

j ∈ G(I) for some a.
Since non of the variables xk for k > j divides any of the monomial generators of I we
may as well assume that that j = n = dimK S1, so that in particular S/I is Artinian.
In the proof of [13, Theorem 3.2] it is shown that e(S/I) ≤ e(S/(x1, . . . , xn)a) =
(1/n!)

∏n
i=1 Mi. Thus if the upper bound is reached, then I = (x1, . . . , xn)a, and so

S/I even has a linear resolution.
Now suppose S/I reaches the lower bound. We prove the assertion by induction

on the length of S/I. The case length(S/I) = 1 is trivial. So now we assume that
length(S/I) > 1. Let J ⊂ S̄ = K[x1, . . . , xn−1] be the unique monomial ideal such
that (J, xn) = (I, xn). The ideals J and (I : xn) are again strongly stable ideals, and
since the multiplicity conjecture holds for strongly stable ideals we have

e(S/I) = e(S/(I, xn)) + e(S/(I : xn))

≥ (1/(n− 1)!)
n−1∏

i=1

mi(J) + (1/n!)
n∏

i=1

mi(I : xn).
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It is shown in the proof of [13, Theorem 3.2] that the right hand side of this inequality
is greater that or equal to (1/n!)

∏n
i=1 mi.

Our assumption implies that

e(S/(I, xn)) = e(S̄/J) = (1/(n− 1)!)
n−1∏

i=1

mi(J)

and e(S/(I : xn)) = (1/n!)
∏n

i=1 mi(I : xn). Hence the induction hypothesis yields
that both S̄/J and S/(I : xn) have a pure resolution. Lemma 3.3 then implies that
both S̄/J and S/(I : xn) have a linear resolution. Since S/I is Artinian, it follows
that S̄/J and S/(I : xn) are Artinian, and so there exist numbers a and b such that
J = (x1, . . . , xn−1)a, and (I : xn) = (x1, . . . , xn)b. Therefore,

I = (x1, . . . , xn−1)a + (x1, . . . , xn)bxn.

If n = 1, then I has a linear resolution. Thus we now may assume that n > 1.
Since J ⊂ I ⊂ (I : xn) it follows that a ≥ b, and since I is strongly stable it

follows that a ≤ b + 1. Suppose that a = b. Then

e(S/I) = e(S̄/J) + e(S/(I : xn)

=
(

n + a− 2
n− 1

)

+
(

n + a− 1
n

)

,

so that

n!e(S/I) = (2n + a− 1)
n−2∏

i=0

(a + i).

On the other hand, mi = a+ i−1 for i = 1, . . . , n−1 and mn = a+n. Therefore,
n!e(S/I) +=

∏n
i=1 mi for n > 1, a contradiction. Hence we conclude that a = b+1, and

so I = (x1, . . . , xn)b+1. In particular, I has a linear resolution.
Finally, let I be an arbitrary strongly stable ideal such that the multiplicity of

S/I reaches the upper bound. We want to show that S/I is Cohen-Macaulay.
We may assume that (I : xn) += I, because otherwise I ⊂ S̄ = K[x1, . . . , xn−1],

and we are done by induction on n. Assume S/I is not Cohen-Macaulay. In this case
it is shown in the proof of [13, Theorem 3.7] that

e(S/I) = e(S/(I : xn)) ≤ 1/t!
t∏

i=1

Mi(I : xn) ≤ 1/s!
s∏

i=1

Mi,

where t = codim S/(I : xn) ≤ codim S/I = s. It is also shown in [13, Lemma 3.6]
that Mi(I : xn) ≤ Mi for all i. Since on the other hand, Mi(I)/i ≥ 1 for all i, our
assumption implies that

(i) t = s,

(ii) Mi(I : xn) = Mi(I) for all i = 1, . . . , s, and

(iii) e(S/(I : xn)) = 1/s!
∏s

i=1 Mi(I : xn).
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Using Noetherian induction, condition (i) and (iii) yield that S/(I : xn) is Cohen-
Macaulay of codimension s with pure resolution. Since I : xn is componentwise linear
it follows then that I : xn even has a linear resolution. Finally, since (I : xn) is strongly
stable we conclude that (I : xn) = (x1, . . . , xs)a for some integer a.

Let G(I) = {u1, . . . , ur, v1xn, . . . , vtxn}, where the monomials ui are not divisible
by xn. Then (I : xn) = (u1, . . . , ur, v1, . . . , vt). Since M1(I : xn) = M1(I) = a, it
follows that I = (u1, . . . , ur). This contradicts our assumption that (I : xn) += I. !

In order to prove the improved multiplicity conjecture in the quasi-pure case we
must assume that the considered algebras are Cohen-Macaulay. It would be nice this
hypothesis could be dropped from the assumptions.

Theorem 3.4

Suppose that I ⊂ S is a Cohen-Macaulay ideal of codimension s with a quasi-pure
resolution. Then S/I satisfies the improved multiplicity conjecture.

Proof. The proof given in [13] yields the assertion. We sketch the arguments. Let

0 −→
bs⊕

j=1

S(−dsj) −→ · · · −→
b1⊕

j=1

S(−d1j) −→ S −→ 0

be the minimal graded free resolution of S/I. There are square matrices A and B
derived from the shifts dij with

det A =
∑

1≤ji≤bi
1≤i≤s

s∏

i=1

dijiV (d1j1 , . . . , dsjs), (5)

where V (d1j1 , . . . , dsjs) is the Vandermonde with entries given by d1j1 , . . . , dsjs , and
such that

det A = s!e(S/I) detB. (6)

It is also shown that

det B =
∑

1≤ji≤bi
1≤i≤s

V (d1j1 , . . . , dsjs). (7)

Using the fact that the resolution is quasi-pure, it follows from (7) that detB > 0.
Taking minimum and maximum of the diji in the products in (5) and using (6), one
obtains the inequalities

( s∏

i=1

mi

)
det B ≤ s!e(S/I) detB ≤

( s∏

i=1

Mi

)
det B.

Here the lower, resp. the upper inequality becomes an equality if and only if mi = dij ,
resp. Mi = dij for all i and j. Thus the assertion follows. !

As a last example we consider ideals of maximal minors. For these ideals Miró-
Roig has proved Conjecture 1. Inspecting the inequalities in her proof one can also
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see that improved multiplicity conjecture holds. For the convenience of the reader we
give a complete proof of the theorem, similar to that of Miró-Roig, in order to see
explicitly that the bounds are reached only when the resolution of the ideal is pure.
Independently, also Migliore, Nagel and Römer [18] found a proof of this theorem.

Let H = (hij) be an m×n-matrix with m ≤ n, whose entries are polynomials. We
say that H is a homogeneous matrix if all minors of H are homogeneous polynomials.
In particular, the entries of H itself must be homogeneous. For each i and j let
dij = deg hij . Then, since the 2-minors are homogeneous, we get d1j + di1 = d11 + dij

for all i and j. Thus if we set bi = di1 and aj = d11 − d1j , then

dij = bi − aj for all i = 1, . . . ,m and j = 1, . . . , n.

Conversely, given any sequences of integers b1, . . . , bm and a1, . . . , an we obtain the
degree matrix of a homogeneous matrix by setting dij = bi − aj . After a suitable
permutation of the rows and columns, we may assume that a1 ≤ a2 ≤ · · · ≤ an and
b1 ≤ b2 · · · ≤ bm. Then this implies that di+1,j ≥ dij ≥ di,j+1 for all i and j. For the
rest of this section we will remain with this assumption on the degrees of the entries.

Set r = n − m, and let Im(H) be the ideal of maximal minors of M . Then
height Im(H) ≤ r + 1, and if equality holds then Im(H) is perfect, see [5, Theorem 2.1
and Theorem 2.7].

We want to prove the following

Theorem 3.5

Suppose that height Im(H) = r + 1. Then the improved multiplicity conjecture
holds for S/Im(H).

Proof. For later calculations it is useful to set uij = dj,i+j−1 for all i = 1, . . . r + 1 and
j = 1, . . . ,m. Using this notation, we have

bj − ai+j−1 = uij

for all i and j in the above range, and since we assume that a1 ≤ a2 ≤ · · · ≤ an and
b1 ≤ b2 ≤ · · · ≤ bm we have

u1j ≥ u2j ≥ · · · ≥ ur+1,j for j = 1, . . . , r + 1, (8)

and

uij ≥ ui+1,j−1 for all i, j with i + j ≤ n + m + 1, i ≤ r + 1 and 1 < j. (9)

According to [14, Corollary 6.5] the multiplicity of R = S/Im(H) is then given by

e(R) =
∑

1≤j1≤j2≤···≤jr+1≤m

r+1∏

i=1

ui,ji . (10)

Since by assumption Im(H) is perfect, the Eagon-Northcott complex provides a
minimal graded free S-resolution of Im(H). This allows us to compute the numbers
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Mi(Im(H)). Following [5], the Eagon-Northcott complex resolving Im(H) can be de-
scribed as follows: let F an G be finitely generated free S-modules with basis f1, . . . , fm

and g1, . . . , gn, resp., and let ϕ : G→ F be the linear map with

ϕ(gj) =
m∑

i=1

hijfi, j = 1, . . . , n

denote by
∧j G the jth exterior power of G, and by Si(F ) the ith symmetric power of

F . For j = 1, . . . , n we may then view ϕ(gj) as an element of the symmetric algebra
S(F ) =

⊕
i Si(F ), and the Koszul complex of ϕ(g1), . . . , ϕ(gn) is then given by

0 −→
n∧

G⊗ S(F ) −→ · · · −→
1∧

G⊗ S(F ) −→
0∧

G⊗ S(F ) −→ 0.

The symmetric algebra S(F ) is graded, and the elements ϕ(gj) are homogeneous of
degree 1 (the coefficients hij are here considered to be of degree 0). The rth graded
component of the Koszul complex

0 −→
r∧

G⊗ S0(F ) −→ · · · −→
1∧

G⊗ Sr−1(F ) −→
0∧

G⊗ Sr(F ) −→ 0 (11)

is a complex of free S-modules, whose S-dual

0 −→
( 0∧

G⊗ Sr(F )
)∗
−→ · · · −→

( r−1∧
G⊗ S1(F )

)∗
−→

( r∧
G⊗ S0(F )

)∗
−→ 0

is the Eagon-Northcott complex resolving Im(H).
Set deg fi = a − bi for i = 1, . . . ,m and deg gj = a − aj for j = 1, . . . , n. Then

the Koszul complex (11) is a graded complex. In order to make the augmentation
map (

∧r G⊗S0(F ))∗ → Im(H) homogeneous of degree 0. We let the Eagon-Northcott
complex be the dual of complex (11) with respect to S(−(r−1)a−b), where a =

∑n
i=1 ai

and b =
∑m

i=1 bi.
Now we can compute the Mi for the ideal Im(H). For a basis element e ∈∧r−k G⊗ Sk(F ) we denote by e∗ the dual basis element in (

∧r−k G⊗ Sk(F ))∗. Then
the elements

(gi1 ∧ gi2 ∧ · · · ∧ gir−k ⊗ fj1fj2 · · · fjk)∗

establish a basis of (
∧r−k G⊗ Sk(F ))∗, and we have

deg(gi1 ∧ gi2 ∧ · · · ∧ gir−k ⊗ fj1fj2 · · · fjk)∗

= (r − 1)a + b−
r−k∑

s=1

(a− ais)−
k∑

t=1

(a− bjt)

= −a + b +
r−k∑

s=1

ais +
k∑

t=1

bjt .



224 Herzog and Zheng

It follows that

Mk+1 = −a + b + am+k+1 + · · · + an + kbm

=
m−1∑

i=1

(bi − ai) +
k∑

i=0

(bm − am+i)

=
m−1∑

j=1

u1j +
k+1∑

i=1

uim.

Thus we need to prove the following inequality

(r + 1)!
∑

1≤j1≤j2≤···≤jr+1≤m

r+1∏

i=1

ui,ji ≤
r∏

k=0

( m−1∑

j=1

u1j +
k+1∑

i=1

uim

)
. (12)

We use induction on min {r + 1,m} to prove this inequality. In case r = 0, we have
n = m, and on both sides of the inequality we have the same expression, namely∑n

j=1 u1j . In case m = 1, the ideal Im(H) is generated by the regular sequence
h11, . . . , h1n. In this case the inequality is also known to be true, see [13].

We now assume that min {r + 1,m} > 1, and decompose the expression for the
multiplicity as follows

(r + 1)!
∑

1≤j1≤j2≤···≤jr+1≤m

r+1∏

i=1

ui,ji = (r + 1)!
∑

1≤j1≤j2≤···≤jr+1<m

r+1∏

i=1

ui,ji

+ (r + 1)
(
r!

∑

1≤j1≤···≤jr≤m

r∏

i=1

ui,ji

)
ur+1,m.

Using induction we can replace the second summand by the larger term

(r + 1)
r−1∏

k=0

( m−1∑

j=1

u1j +
k+1∑

i=1

uim

)
ur+1,m,

and obtain the inequality

(r + 1)!e(R) ≤ (r + 1)!
∑

1≤j1≤j2≤···≤jr+1<m

r+1∏

i=1

ui,ji (13)

+ (r + 1)
r−1∏

k=0

( m−1∑

j=1

u1j +
k+1∑

i=1

uim

)
ur+1,m.

On the other hand, by (8) we get
r∏

k=0

( m−1∑

j=1

u1j +
k+1∑

i=1

uim

)
≥

r−1∏

k=0

( m−1∑

j=1

u1j +
k+1∑

i=1

uim

)( m−1∑

j=1

u1j + (r + 1)ur+1,m

)
(14)

=
r−1∏

k=0

( m−1∑

j=1

u1j +
k+1∑

i=1

uim

)( m−1∑

j=1

u1j

)

+ (r + 1)
r−1∏

k=0

( m−1∑

j=1

u1j +
k+1∑

i=1

uim

)
ur+1,m.
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Thus comparing (13) and (14) it remains to be shown that

(r + 1)!
∑

1≤j1≤j2≤···≤jr+1≤m−1

r+1∏

i=1

ui,ji ≤
r−1∏

k=0

( m−1∑

j=1

u1j +
k+1∑

i=1

uim

)( m−1∑

j=1

u1j

)
.

By induction hypothesis

(r + 1)!
∑

1≤j1≤j2≤···≤jr+1≤m−1

r+1∏

i=1

ui,ji ≤
r∏

k=0

( m−2∑

j=1

u1j +
k+1∑

i=1

ui,m−1

)
.

Thus the desired inequality follows once we can show that

r∏

k=0

( m−2∑

j=1

u1j +
k+1∑

i=1

ui,m−1

)
≤

r−1∏

k=0

( m−1∑

j=1

u1j +
k+1∑

i=1

uim

)( m−1∑

j=1

u1j

)
. (15)

This however is obvious, since the kth factor on left hand side for k = 0 is equal to the
last factor on the right hand side, and since, due to (9), for k = 1, . . . , r, the kth factor
on the left hand side

∑m−2
j=1 u1j +

∑k+1
i=1 ui,m−1 is less than or equal to the (k − 1)th

factor
∑m−1

j=1 u1j +
∑k

i=1 uim on the left hand side.
In order to prove the lower inequality, note that

mk+1 = −a + b + a1 + · · · + ar−k + kb1

=
m∑

i=2

(bi − ar+i) +
k∑

i=0

(b1 − ar−i+1)

=
r∑

i=r+1−k

ui1 +
m∑

j=1

ur+1,j .

Thus we need to prove the following inequality

(r + 1)!
∑

1≤j1≤j2≤···≤jr+1≤m

r+1∏

i=1

ui,ji ≥
r∏

k=0

( r∑

i=r+1−k

ui1 +
m∑

j=1

ur+1,j

)
. (16)

The proof of this inequality is completely analogue to that of inequality (12), since the
situation somehow dual to previous case. Indeed, the substitution

uij 0→ ur+2−i,m+1−j for i = 1, . . . , r and j = 1, . . . ,m

transfers (12) to (16) and reverses the inequalities (8) and (9). Thus the lower bound
follows from the upper bound.

Now suppose the multiplicity of S/Im(H) reaches the upper bound. This is only
possible if we have equality in (13), (14) and (15).

It follows from the formula for the shifts in the resolution of the Eagon-Northcott
complex, that the resolution of S/Im(H) is pure if and only if a1 = a2 = · · · = an and
b1 = b2 = · · · = bm, which is equivalent to say that all uij are equal.

Hence by induction we have equality in (13) if and only if uij = u for some u and
all i = 1, . . . , r + 1 and j = 1, . . . ,m − 1. On the other hand, we get equality in (14)
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if and only if uim = ur+1,m for i = 1, . . . , r, while equality holds in (15) if and only if
uim = ui,m−1 = u for i = 1, . . . , r. Thus all uij must be equal to u.

Using the reflection principle above it also follows that the lower bound for the
multiplicity is reached only when the resolution of S/Im(H) is pure. !

References

1. A. Aramova, J. Herzog, and T. Hibi, Ideals with stable Betti numbers, Adv. Math. 152 (2000),
72–77.

2. A. Aramova, J. Herzog, and T. Hibi, Shifting operations and graded Betti numbers, J. Algebraic
Combin. 12 (2000), 207–222.

3. D. Bayer and M. Stillman, A criterion for detecting m-regularity, Invent. Math. 87 (1987), 1–11.
4. W. Bruns and J. Herzog, Cohen–Macaulay Rings, Cambridge University Press, Cambridge, 1993.
5. W. Bruns and U. Vetter, Determinantal Rings, Springer Verlag, Berlin, 1988.
6. S.D. Cutkosky, J. Herzog, and N.V. Trung, Asymptotic behaviour of the Castelnuovo-Mumford
regularity, Compositio Math. 118 (1999), 243–261.

7. D. Eisenbud, A. Reeves, and B. Totaro, Initial ideals, Veronese subrings, and rates of algebras, Adv.
Math. 109 (1994), 168–187.

8. S. Eliahou and M. Kervaire, Minimal resolutions of some monomial ideals, J. Algebra 129 (1990),
1–25.

9. L.H. Gold, A degree bound for codimension two lattice ideals, J. Pure Appl. Algebra 182 (2003),
201–207.

10. E. Guardo and A. Van Tuyl, Powers of complete intersections: graded Betti-numbers and applica-
tions, (preprint, 2004), math.AC/0409090.

11. J. Herzog and T. Hibi, Componentwise linear ideals, Nagoya Math. J. 153 (1999), 141–153.
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