Collectanea Mathematica (electronic version): http://www.imub.ub.es/collect

Collect. Math. 57, 2 (2006), 193-210
(C) 2006 Universitat de Barcelona

Linear distortion of Hausdorff dimension and Cantor's function

O. Dovgoshey and V. Ryazanov
Institute of Applied Mathematics and Mechanics, NAS of Ukraine
74 Roze Luxemburg str., Donetsk, 83114, UKRAINE
E-mail: aleksdov@mail.ru
E-mail: ryaz@iamm.ac.donetsk.ua
O. Martio and M. Vuorinen
Department of Mathematics and Statistics, P.O. Box 68
FIN - 00014 University of Helsinki, FINLAND
E-mail: martio@cc.helsinki.fi
E-mail: vuorinen@csc.fi

Received May 9, 2005

Abstract

Let f be a mapping from a metric space X to a metric space Y, and let α be a positive real number. Write $\operatorname{dim}(E)$ and $\mathcal{H}^{s}(E)$ for the Hausdorff dimension and the s-dimensional Hausdorff measure of a set E. We give sufficient conditions that the equality $\operatorname{dim}(f(E))=\alpha \operatorname{dim}(E)$ holds for each $E \subseteq X$. The problem is studied also for the Cantor ternary function G. It is shown that there is a subset M of the Cantor ternary set such that $\mathcal{H}^{s}(M)=1$, with $s=\log 2 / \log 3$ and $\operatorname{dim}(G(E))=(\log 3 / \log 2) \operatorname{dim}(E)$, for every $E \subseteq M$.

1. Statements of main results

Let f be a mapping from a metric space (X, ρ) to a metric space (Y, d). It is a simple fact that if the double inequality

$$
\begin{equation*}
c_{1}(\rho(x, y))^{\alpha} \leq d(f(x), f(y)) \leq c_{2}(\rho(x, y))^{\alpha} \tag{1.0}
\end{equation*}
$$

Keywords: Hausdorff dimension, Cantor function. MSC2000: 28A78, 26A30.
holds for all x, y from X where $\alpha \in(0, \infty)$ and c_{1} and c_{2} are some positive constants, then every set $A \subseteq X$ satisfies

$$
\operatorname{dim}(f(A))=\frac{1}{\alpha} \operatorname{dim}(A) .
$$

We are interested in necessary and sufficient local conditions under which this equality holds for every $A \subseteq X$. The following theorem provides conditions for this.

Write $\operatorname{ac}(A)$ for the set of all accumulation points of a set A. Let f be a mapping from a metric space (X, ρ) to a metric space (Y, d). If x and a are the points of X and $x \neq a$ we put

$$
K_{f}(x, a):= \begin{cases}\frac{\log (d(f(x), f(a)))}{\log (\rho(x, a))} & \text { if } \quad f(x) \neq f(a) \\ +\infty & \text { if } \quad f(x)=f(a)\end{cases}
$$

Theorem 1.1

Let $f:(X, \rho) \rightarrow(Y, d)$ be a homeomorphism. Suppose that the limit

$$
\begin{equation*}
\lim _{x \rightarrow a} K_{f}(x, a)=\alpha(a) \in(0, \infty) \tag{1.1}
\end{equation*}
$$

exists for every $a \in \operatorname{ac}(X)$. Then the following statements are equivalent.
(i) There exists a set $X_{0} \subseteq \operatorname{ac} X$ such that

$$
\begin{equation*}
\alpha(a)=\alpha_{0} \tag{1.2}
\end{equation*}
$$

for all a in $\operatorname{ac}(X) \backslash X_{0}$ and either $\operatorname{dim}(Z)=0$ or $\operatorname{dim}(Z)=\infty$ for every $Z \subseteq X_{0}$.
(ii) For every $A \subseteq X$ the equality

$$
\begin{equation*}
\operatorname{dim}(f(A))=\frac{1}{\alpha_{0}} \operatorname{dim}(A) \tag{1.3}
\end{equation*}
$$

holds.

Corollary 1.2

Let $f: X \rightarrow Y$ be a homeomorphism and let $\operatorname{dim}(X)<\infty$. Suppose that the limit (1.1) exists for every $a \in \operatorname{ac}(X)$. Then

$$
\begin{equation*}
\operatorname{dim}(f(A))=\operatorname{dim}(A), \quad \forall A \subseteq X \tag{1.4}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
\alpha(a)=1 \tag{1.5}
\end{equation*}
$$

for every $a \in \operatorname{ac}(X) \backslash X_{0}$ where $X_{0} \subset X$ is zero-dimensional.

Remark 1.3 Note that, as it follows from the proof of Theorem 1.1, the equivalence (i) \Longleftrightarrow (ii) is also valid if (1.1) holds only in $X \backslash X_{*}$ where

$$
\begin{equation*}
\operatorname{dim}\left(X_{*}\right)=\operatorname{dim}\left(f\left(X_{*}\right)\right)=0 . \tag{1.6}
\end{equation*}
$$

See further consequences of Theorem 1.1 in the end of Section 2. Note also that, if $f: X \rightarrow Y$ is a continuous bijection and (1.1) holds, then it does not follow that f is a homeomorphism. On the other hand, if $f:(X, \rho) \rightarrow(Y, d)$ is a homeomorphism and for each $a \in \operatorname{ac}(X)$ we have $\alpha(a)=1$, then there need not exist positive constants α and c such that the inequality $d(f(x), f(y)) \leq c(\rho(x, y))^{\alpha}$ holds for all x and y in some ball $B(a, r) \subseteq X$; see Example 3.3.

In the third part, we investigate the following problem: Let $C \subset[0,1]$ be the standard Cantor ternary set and let G be the Cantor function. Characterize the set of points $x \in C$ such that

$$
\lim _{\substack{y \rightarrow x \\ y \in C}} \frac{\log |G(x)-G(y)|}{\log |x-y|}=\frac{\log 2}{\log 3} .
$$

In Theorem 1.4 these points are characterized in terms of the spacing of $0^{\prime} s$ and $2^{\prime} s$ in ternary expansions.

Let x be a point of the Cantor ternary set C. Then x has a triadic representation

$$
x=\sum_{m=1}^{\infty} \frac{2 \alpha_{m}}{3^{m}}
$$

where $\alpha_{m} \in\{0,1\}$. Define a sequence $\left\{\mathcal{R}_{x}(n)\right\}_{n=1}^{\infty}$ by the rule

$$
\begin{gather*}
\mathcal{R}_{x}(n):= \begin{cases}\inf \left\{m-n: \alpha_{m} \neq \alpha_{n}, m>n\right\} & \text { if } \exists m>n: \alpha_{m} \neq \alpha_{n} \\
0 & \text { if } \forall m>n: \alpha_{m}=\alpha_{n},\end{cases} \tag{1.7}\\
\mathcal{R}_{x}(n)=1 \Longleftrightarrow\left(\alpha_{n} \neq \alpha_{n+1}\right),
\end{gather*}
$$

i.e.

$$
\mathcal{R}_{x}(n)=2 \Longleftrightarrow\left(\alpha_{n}=\alpha_{n+1}\right) \&\left(\alpha_{n+1} \neq \alpha_{n+2}\right)
$$

and so on.

Theorem 1.4

Let x be a point of C. Then

$$
\begin{equation*}
\lim _{\substack{y \rightarrow x \\ y \in C}} \frac{\log |G(x)-G(y)|}{\log |x-y|}=\frac{\log 2}{\log 3} \tag{1.8}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\mathcal{R}_{x}(n)}{n}=0 \tag{1.9}
\end{equation*}
$$

This theorem and Theorem 1.1 imply the following result.

Theorem 1.5

There exists a set $M \subseteq C$ such that $\mathcal{H}^{s}(M)=1$ with $s=\log 2 / \log 3$ and $\operatorname{dim}(G(A))=\frac{\log 3}{\log 2} \operatorname{dim}(A)$, for every $A \subseteq M$.

Remark 1.6 It is well-known that the Cantor function G satisfies the inequality

$$
\begin{equation*}
|G(x)-G(y)| \leq 2|x-y|^{\log 2 / \log 3} \tag{1.10}
\end{equation*}
$$

for all x and y in $[0,1]$. The proof can be found in [4], see also [3]. The Hausdorff dimension of the Cantor ternary set equals $\log 2 / \log 3$ and, moreover, $\mathcal{H}^{s}(C)=1$ for $s=\log 2 / \log 3$.

2. Linear distortion of Hausdorff dimension under mappings of metric spaces

We recall the definitions of the Hausdorff dimension and the s-dimensional Hausdorff measure. Let (X, ρ) be a metric space and let

$$
\operatorname{diam} A:=\sup \{\rho(x, y): x, y \in A\}
$$

be the diameter of $A \subseteq X$ if $A \neq \emptyset, \operatorname{diam} \emptyset=0$. If $A \subseteq \bigcup_{i \in I} E_{i}$ with $0<\operatorname{diam} E_{i} \leq \delta$ for each index $i \in I$, then $\left\{E_{i}\right\}_{i \in I}$ is called $a \delta$-cover of A. If all δ-covers of A are uncountable, then

$$
\mathcal{H}_{\delta}^{s}(A):=\infty
$$

for each $s \geq 0$ and, in the opposite case,

$$
\begin{equation*}
\mathcal{H}_{\delta}^{s}(A):=\inf \left\{\sum_{i \in \mathbb{N}}\left(\operatorname{diam} E_{i}\right)^{s}:\left\{E_{i}\right\}_{i \in \mathbb{N}} \text { is a countable } \delta \text {-cover of } A\right\} \tag{2.1}
\end{equation*}
$$

for $s \geq 0$. The s-dimensional Hausdorff measure of A is defined by

$$
\begin{equation*}
\mathcal{H}^{s}(A):=\lim _{\delta \rightarrow 0} \mathcal{H}_{\delta}^{s}(A) . \tag{2.2}
\end{equation*}
$$

Note that the limit exists because $\mathcal{H}_{\delta}^{s}(A)$ is nonincreasing function of δ and that the Hausdorff measure \mathcal{H}^{s} is a regular Borel measure, see e.g. [7]. The Hausdorff dimension of A is the number $\operatorname{dim}(A)$ such that

$$
\mathcal{H}^{s}(A)=\left\{\begin{array}{lll}
+\infty & \text { if } & s<\operatorname{dim}(A), \\
0 & \text { if } & s>\operatorname{dim}(A) .
\end{array}\right.
$$

Definition 2.1 Let (X, ρ) be a metric space. A family \mathcal{B} of closed balls $B(a, \delta)$ in (X, ρ) is said to fulfil the condition (\mathbf{V}) if $B(a, \delta) \in \mathcal{B}$ whenever $a \in X$ and $\delta \in(0, \Delta(a)]$ for some $\Delta(a)>0$.

Some results closely related to the next lemma can be found in $[2, \S 2.8]$.

Lemma 2.2

Let A be a subset of the metric space (X, ρ) such that $\mathcal{H}^{s}(A)=0$ for some $s>0$ and let a family \mathcal{B} of closed balls in (X, ρ) fulfil the (V) condition. Then, for all positive numbers δ and η, there is a countable δ-cover $\left\{B_{i}\right\}_{i \in \mathbb{N}} \subseteq \mathcal{B}$ of the set A with

$$
\begin{equation*}
\sum_{i \in \mathbb{N}}\left(\operatorname{diam} B_{i}\right)^{s} \leq \eta . \tag{2.3}
\end{equation*}
$$

Proof. It follows from (2.1), (2.2) and $\mathcal{H}^{s}(A)=0$ that for every $\gamma>0$ there is a $\frac{\delta}{2}$-cover $\left\{E_{i}^{(1)}\right\}_{i \in \mathbb{N}}$ of the set A such that

$$
\begin{equation*}
\sum_{i \in \mathbb{N}}\left(d_{i}^{(1)}\right)^{s} \leq \frac{\gamma}{2}, \tag{2.4}
\end{equation*}
$$

where $d_{i}^{(1)}:=\operatorname{diam} E_{i}^{(1)}$.
Suppose \mathcal{B} fulfils the (V) condition. We shall say that $i \in \mathbb{N}$ is a marked index if there is a point $a_{i_{0}}^{(1)} \in E_{i_{0}}^{(1)} \cap A$ for which

$$
d_{i_{0}}^{(1)}<\Delta\left(a_{i_{0}}^{(1)}\right)
$$

where Δ is the function from Definition 2.1. Let $\mathcal{I}^{(1)}$ be the set of all marked indices. It is obvious that

$$
E_{i}^{(1)} \subseteq B\left(a_{i}^{(1)}, d_{i}^{(1)}\right) \in \mathcal{B}
$$

for all $i \in \mathcal{I}^{(1)}$. Using (2.4) and

$$
\operatorname{diam} B\left(a_{i}^{(1)}, d_{i}^{(1)}\right) \leq 2 d_{i}^{(1)},
$$

we have

$$
\begin{equation*}
\sum_{i \in \mathcal{I}^{(1)}}\left(\operatorname{diam} B\left(a_{i}^{(1)}, d_{i}^{(1)}\right)\right)^{s} \leq 2^{s} \frac{\gamma}{2} . \tag{2.5}
\end{equation*}
$$

It should be observed that $\left\{B\left(a_{i}^{(1)}, d_{i}^{(1)}\right)\right\}_{i \in \mathcal{I}^{(1)}}$ is a δ-cover of the set

$$
\left\{a \in A: \Delta(a)>\left(\frac{\gamma}{2}\right)^{1 / s}\right\}
$$

Really, if $a_{0} \in A \backslash\left(\bigcup_{i \in \mathcal{I}^{(1)}} B\left(a_{i}^{(1)}, d_{i}^{(1)}\right)\right)$, then there is $E_{i_{0}}^{(1)} \ni a_{0}$ with $d_{i_{0}}^{(1)} \geq \Delta\left(a_{0}\right)$. It follows from (2.4) that

$$
\left(\frac{\gamma}{2}\right)^{1 / s} \geq d_{i_{0}}^{(1)}
$$

Hence,

$$
\Delta\left(a_{0}\right) \leq\left(\frac{\gamma}{2}\right)^{1 / s}
$$

Reasoning similarly we can define the sequence $\left\{\mathcal{I}^{(n)}\right\}_{n=1}^{\infty}$ such that for each positive integer n :

$$
\begin{gather*}
\sum_{i \in \mathcal{I}^{(n)}}\left(\operatorname{diam} B\left(a_{i}^{(n)}, d_{i}^{(n)}\right)\right)^{s} \leq 2^{s} \frac{\gamma}{2^{n}}, \tag{2.6.1}\\
B\left(a_{i}^{(n)}, d_{i}^{(n)}\right) \in \mathcal{B} \text { and } \operatorname{diam} B\left(a_{i}^{(n)}, d_{i}^{(n)}\right) \leq \delta \text { for each } i \in \mathcal{I}^{(n)}, \tag{2.6.2}\\
\left\{a \in A: \Delta(a)>\left(\frac{\gamma}{2^{n}}\right)^{1 / s}\right\} \subseteq \bigcup_{i \in \mathcal{I}^{(n)}} B\left(a_{i}^{(n)}, d_{i}^{(n)}\right) . \tag{2.6.3}
\end{gather*}
$$

For this purpose we take a $\frac{\delta}{2}$-cover $\left\{E_{i}^{(n)}\right\}_{i \in \mathbb{N}}$ of A such that

$$
\sum_{i \in \mathbb{N}}\left(\operatorname{diam} E_{i}^{(n)}\right)^{s} \leq \frac{\gamma}{2^{n}}
$$

Now set $\gamma:=\frac{1}{2^{s}} \eta$. Then (2.6.1) implies that

$$
\sum_{n=1}^{\infty} \sum_{i \in \mathcal{I}^{(n)}}\left(\operatorname{diam} B_{i}^{(n)}, d_{i}^{(n)}\right)^{s} \leq \eta
$$

Hence, by (2.6.2) and (2.6.3), the family

$$
\left\{B\left(a_{i}^{(n)}, d_{i}^{(n)}\right): n=1,2, \ldots ; i \in \mathcal{I}^{(n)}\right\}
$$

is a desired δ-cover of A.

Proposition 2.3

Suppose that (X, ρ) and (Y, d) be metric spaces. Let $\beta \in(0, \infty)$ and let $f: X \rightarrow Y$ be a mapping such that

$$
\begin{equation*}
\liminf _{x \rightarrow a} K_{f}(x, a) \geq \beta \tag{2.7}
\end{equation*}
$$

for each $a \in \operatorname{ac}(X)$. Then we have

$$
\begin{equation*}
\operatorname{dim}(A) \geq \beta \operatorname{dim}(f(A)) \tag{2.8}
\end{equation*}
$$

for every $A \subseteq X$.

Proof. If $\operatorname{dim}(A)=\infty$, then the inequality (2.8) is trivial. Suppose that $0 \leq \operatorname{dim}(A)<s<\infty$. Then by the definition of the Hausdorff dimension we have $\mathcal{H}^{s}(A)=0$.

For each $\varepsilon \in(0, \beta)$, define a family $\mathcal{B}_{\varepsilon}$ of the closed balls $B(a, \delta)$ in (X, ρ) by the rule

$$
\begin{equation*}
\left(B(a, \delta) \in \mathcal{B}_{\varepsilon}\right) \Longleftrightarrow\left(\forall x \in B(a, \delta): d(f(x), f(a)) \leq(\rho(x, a))^{\beta-\varepsilon}\right) \tag{2.9}
\end{equation*}
$$

It follows immediately from (2.7) that $\mathcal{B}_{\varepsilon}$ fulfils the condition (V). Hence by Lemma 2.2, for every $\eta>0$, there is δ-cover $\left\{B_{i}\left(a_{i}, \delta_{i}\right)\right\}_{i \in \mathbb{N}} \subseteq \mathcal{B}_{\varepsilon}$ of A such that

$$
\begin{equation*}
\sum_{i \in \mathbb{N}}\left(\operatorname{diam} B\left(a_{i}, \delta_{i}\right)\right)^{s} \leq \eta \tag{2.10}
\end{equation*}
$$

It follows from (2.9) that

$$
\operatorname{diam}\left(f\left(B\left(a_{i}, \delta_{i}\right)\right) \leq 2\left(\operatorname{diam}\left(B\left(a_{i}, \delta_{i}\right)\right)\right)^{\beta-\varepsilon}\right.
$$

The last inequality and (2.10) imply that $\left\{f\left(B\left(a_{i}, \delta_{i}\right)\right)\right\}_{i \in \mathbb{N}}$ is a $2 \delta^{\beta-\varepsilon}$-cover of $f(A)$ and

$$
\sum_{i \in \mathbb{N}}\left(\operatorname{diam} f\left(B\left(a_{i}, \delta_{i}\right)\right)\right)^{s /(\beta-\varepsilon)} \leq 2^{s /(\beta-\varepsilon)} \eta
$$

Consequently

$$
\mathcal{H}^{s /(\beta-\varepsilon)}(f(A))=0
$$

that is

$$
\operatorname{dim}(f(A)) \leq \frac{s}{\beta-\varepsilon}
$$

for all $\varepsilon \in(0, \beta)$ and every $s>\operatorname{dim}(A)$. Letting $\varepsilon \rightarrow 0$ and $s \rightarrow \operatorname{dim}(A)$ we have (2.8).

Corollary 2.4

Suppose that (X, ρ) and (Y, d) are a metric spaces. Let $0<\beta \leq \alpha<\infty$ and let $f: X \rightarrow Y$ be a homeomorphism such that

$$
\begin{equation*}
\beta \leq \liminf _{x \rightarrow a} K_{f}(x, a) \leq \limsup _{x \rightarrow a} K_{f}(x, a) \leq \alpha \tag{2.11}
\end{equation*}
$$

for every $a \in \operatorname{ac}(X)$. Then the inequalities

$$
\begin{equation*}
\frac{1}{\alpha} \operatorname{dim}(A) \leq \operatorname{dim}(f(A)) \leq \frac{1}{\beta} \operatorname{dim}(A) \tag{2.12}
\end{equation*}
$$

hold for every $A \subseteq X$.

Proof. By Proposition 2.3 it suffices to prove the first inequality in (2.12).
Since f is a homeomorphism, we have

$$
\operatorname{ac}(Y)=f(\operatorname{ac}(X))
$$

Let f^{-1} be the inverse map of f and let $a \in \operatorname{ac}(X)$. Applying inequality (2.11) we obtain

$$
\frac{1}{\alpha} \leq\left\{\limsup _{x \rightarrow a} K_{f}(x, a)\right\}^{-1}=\liminf _{y \rightarrow b} K_{f^{-1}}(y, b)
$$

where $b=f(a) \in \operatorname{ac}(Y)$. Now the desired inequality follows from Proposition 2.3.
2.5. Proof of Theorem 1.1. (i) \Rightarrow (ii) Suppose that there is $X_{0} \subseteq \operatorname{ac}(X)$ such that $\alpha(a)=\alpha_{0}$ for every $a \in \operatorname{ac}(X) \backslash X_{0}$, and for every $Z \subseteq X_{0}$ we have either $\operatorname{dim}(Z)=0$ or $\operatorname{dim}(Z)=\infty$. Let A be a subset of X. Then

$$
\operatorname{dim}(A)=\max \left\{\operatorname{dim}\left(A \backslash X_{0}\right), \operatorname{dim}\left(A \cap X_{0}\right)\right\}
$$

and

$$
\operatorname{dim}(f(A))=\max \left\{\operatorname{dim}\left(f\left(A \backslash X_{0}\right)\right), \operatorname{dim}\left(f\left(A \cap X_{0}\right)\right)\right\} .
$$

Thus, by Corollary 2.4 it remains to prove that either

$$
\operatorname{dim}\left(A \cap X_{0}\right)=\operatorname{dim}\left(f\left(A \cap X_{0}\right)\right)=0
$$

or

$$
\operatorname{dim}\left(A \cap X_{0}\right)=\operatorname{dim}\left(f\left(A \cap X_{0}\right)\right)=+\infty
$$

To prove this we represent $A \cap X_{0}$ in the form

$$
A \cap X_{0}=\bigcup_{n=1}^{\infty} A_{n}
$$

where

$$
A_{n}:=\left\{a \in A \cap X_{0}: \frac{1}{n} \leq \alpha(a) \leq n\right\}
$$

for $n=1,2, \ldots$. From this representation we get the equalities

$$
\begin{aligned}
f\left(A \cap X_{0}\right) & =\bigcup_{n=1}^{\infty} f\left(A_{n}\right) \\
\operatorname{dim}\left(A \cap X_{0}\right) & =\sup _{1 \leq n<\infty}\left(\operatorname{dim} A_{n}\right) \\
\operatorname{dim}\left(f\left(A \cap X_{0}\right)\right) & =\sup _{1 \leq n<\infty} \operatorname{dim}\left(f\left(A_{n}\right)\right)
\end{aligned}
$$

Hence $\operatorname{dim}\left(A \cap X_{0}\right)=0$ iff

$$
\forall n \in \mathbb{N}: \operatorname{dim}\left(A_{n}\right)=0
$$

It follows from the alternative

$$
\operatorname{dim}\left(A_{n}\right)=0 \text { or } \operatorname{dim}\left(A_{n}\right)=\infty
$$

that we have $\operatorname{dim}\left(A \cap X_{0}\right)=\infty$ iff there exists $n_{0} \in \mathbb{N}$ such that $\operatorname{dim}\left(A_{n_{0}}\right)=\infty$.
Consequently, the conclusion follows by Corollary 2.4.
(ii) \Rightarrow (i) Suppose that (1.3) holds for every $A \subseteq X$. Put

$$
\begin{aligned}
X_{0}^{+} & :=\left\{a \in \operatorname{ac} X: \alpha(a)>\alpha_{0}\right\} \\
X_{0}^{-} & :=\left\{a \in \operatorname{ac} X: \alpha(a)<\alpha_{0}\right\}, \text { and } \\
X_{0} & :=X_{0}^{+} \cup X_{0}^{-}
\end{aligned}
$$

By definition $\alpha(a)=\alpha_{0}$ for each $a \in(\operatorname{ac} X) \backslash X_{0}$. It remains to prove that

$$
\operatorname{dim}(Z)=0 \text { or } \operatorname{dim}(Z)=+\infty
$$

for each $Z \subseteq X_{0}$.

Suppose that for some $Z \subseteq X_{0}$

$$
0<\operatorname{dim}(Z)<\infty
$$

Then we have

$$
\begin{equation*}
0<\operatorname{dim}\left(Z \cap X_{0}^{+}\right)<\infty \tag{2.13}
\end{equation*}
$$

or

$$
\begin{equation*}
0<\operatorname{dim}\left(Z \cap X_{0}^{-}\right)<\infty \tag{2.14}
\end{equation*}
$$

Consider the case (2.13) first. Set for each positive integer n

$$
\begin{equation*}
X_{n}^{+}:=\left\{a \in \operatorname{ac}(X): \alpha(a) \in\left(\alpha_{0}+\frac{1}{n}, \alpha_{0}+n\right)\right\} . \tag{2.15}
\end{equation*}
$$

Then

$$
X_{0}^{+}=\bigcup_{n=1}^{\infty} X_{n}^{+}
$$

and (2.13) implies that for some $n_{0} \in \mathbb{N}$

$$
0<\operatorname{dim}\left(Z \cap X_{n_{0}}^{+}\right)<\infty
$$

Hence, by Corollary 2.4 and (2.15), we have

$$
\operatorname{dim}\left(f\left(Z \cap X_{n_{0}}^{+}\right)\right) \leq \frac{1}{\alpha_{0}+\frac{1}{n_{0}}} \operatorname{dim}\left(Z \cap X_{n_{0}}^{+}\right)<\frac{1}{\alpha_{0}} \operatorname{dim}\left(Z \cap X_{n_{0}}^{+}\right) .
$$

This contradicts (1.3) with $A=Z \cap X_{n_{0}}^{+}$. The case (2.14) can be proved analogously.
2.6. Proof of Corollary 1.2. In order to prove this corollary, it suffices to take $\alpha_{0}=1$. It should be observed here that the inequality $\operatorname{dim}(X)<\infty$ implies the equality $\operatorname{dim}(Z)=0$ for each $Z \subseteq X_{0}$.

Corollary 2.7

Suppose that (X, ρ) and (Y, d) are metric spaces, and

$$
X=X^{\circ} \cup X^{1}, \quad X^{\circ} \cap X^{1}=\emptyset
$$

Let $\alpha \in(0, \infty)$ and let $\varphi: X \rightarrow Y$ be a mapping such that:

$$
\begin{equation*}
\operatorname{dim}\left(X^{\circ}\right)=\operatorname{dim}\left(\varphi\left(X^{\circ}\right)\right)=0 . \tag{2.16}
\end{equation*}
$$

2.8. For every $a \in \operatorname{ac}\left(X^{1}\right) \cap X^{1}$,

$$
\lim _{\substack{x \rightarrow a \\ x \in X^{1}}} K_{\varphi}(x, a)=\alpha .
$$

2.9. The restriction $\left.\varphi\right|_{X^{1}}: X^{1} \rightarrow \varphi\left(X^{1}\right)$ is a homeomorphism.

Then

$$
\begin{equation*}
\operatorname{dim}(\varphi(A))=\frac{1}{\alpha} \operatorname{dim}(A) \tag{2.17}
\end{equation*}
$$

for each $A \subseteq X$.
Proof. It follows from (2.16) that $\operatorname{dim}(A)=\operatorname{dim}\left(A \cap X^{1}\right)$ and $\operatorname{dim}(\varphi(A))=\operatorname{dim}(\varphi(A \cap$ X^{1})) for every $A \subseteq X$. Consequently, it suffices to prove (2.17) for $A \subseteq X^{1}$.

For this purpose we can use Theorem 1.1 with $X=X^{1}, Y=\varphi\left(X^{1}\right), X_{0}=\emptyset$ and f equals $\left.\varphi\right|_{X^{1}}: X^{1} \rightarrow \varphi\left(X^{1}\right)$.

Corollary 2.10
Suppose that all the conditions of Corollary 2.7 hold with an exception of 2.9. If X^{1} can be represented in the form $X^{1}=\bigcup_{j \in \mathbb{N}} X_{j}^{1}$ such that $\left.\varphi\right|_{X_{j}^{1}}: X_{j}^{1} \rightarrow \varphi\left(X_{j}^{1}\right)$ is a homeomorphism for every $j \in \mathbb{N}$, then equality (2.17) holds for every $A \subseteq X$.

Proof. Reasoning as in the proof of Corollary 2.7 we can easily show that

$$
\operatorname{dim}(\varphi(A))=\sup _{j \in \mathbb{N}}\left(\operatorname{dim}\left(\varphi\left(A \cap X_{j}^{1}\right)\right)\right)=\frac{1}{\alpha} \sup _{j \in \mathbb{N}}\left(\operatorname{dim}\left(A \cap X_{j}^{1}\right)\right)=\frac{1}{\alpha} \operatorname{dim}(A) .
$$

Corollary 2.11

Suppose that all the conditions of Corollary 2.7 hold except 2.9. If X^{1} is separable and $\left.\varphi\right|_{X^{1}}: X^{1} \rightarrow \varphi\left(X^{1}\right)$ is a local homeomorphism, then equality (2.17) holds for each $A \subseteq X$.

Proof. Every separable metric space has a countable base, see e.g. [5, §21, II, Theorem 2]. Hence we can use Corollary 2.10.

Let $c p(X)$ denote the set of all condensation points of a metric space X, i.e. points whose neighborhoods are not countable sets.

Corollary 2.12

Suppose that X and Y are metric spaces, $f: X \rightarrow Y$ is a local homeomorphism and X is separable. Let $\alpha \in(0, \infty)$ and let

$$
\lim _{x \rightarrow a} K_{f}(x, a)=\alpha
$$

for every $a \in c p(X)$. Then (2.17) holds for every $A \subseteq X$.
Proof. The set $X \backslash c p(X)$ is a countable set in every separable metric space X, [5, §23, III].

3. The Cantor ternary function

We recall the definitions of the Cantor ternary set C and ternary Cantor function G. Let $x \in[0,1]$, then x belongs C if and only if x has a base 3 expansion using only the
digits 0 and 2, i.e.

$$
\begin{equation*}
x=\sum_{m=1}^{\infty} \frac{2 \alpha_{m}}{3^{m}}, \quad \alpha_{m} \in\{0,1\} \tag{3.1}
\end{equation*}
$$

The Cantor function G may be defined on C by the following rule. If $x \in C$ has the ternary expansion (3.1), then

$$
G(x):=\sum_{m=1}^{\infty} \frac{\alpha_{m}}{2^{m}}
$$

In this section we will denote by C^{1} the set of all endpoints of complementary intervals of C. We also write $C^{\circ}:=C \backslash C^{1}$.

The proof of Theorem 1.4 needs the following lemma.

Lemma 3.1

Let $x \in C$ be a point with the representation (3.1) and let $\mathcal{R}_{x}(n)$ be the sequence from (1.7). Then

$$
\begin{equation*}
\mathcal{R}_{x}(n)=\mathcal{R}_{1-x}(n) \tag{3.2}
\end{equation*}
$$

If x is not a right endpoint of a complementary interval of C, then

$$
\begin{equation*}
\sum_{m=n+1}^{\infty} \alpha_{m} 2^{-(m-n)} \geq 2^{-\left(1+\mathcal{R}_{x}(n+1)\right)}, \quad \forall n \in \mathbb{N} \tag{3.3}
\end{equation*}
$$

Proof. Since $1-x=\sum_{m=1}^{\infty} \frac{2\left(1-\alpha_{m}\right)}{3^{m}}$ we have (3.2). It remains to prove (3.3). If $\alpha_{n+1}=1$, then (3.3) is obvious. In the opposite case, $2^{-\left(1+\mathcal{R}_{x}(n+1)\right)}$ is the first positive element of the series $\sum_{m=n+1}^{\infty} \alpha_{m} 2^{-(m-n)}$.
3.2. Proof of Theorem 1.4. Consider first the case where x is not an endpoint of some complementary interval of C. Suppose that x has representation (3.1), y tends to x, and

$$
y=\sum_{m=1}^{\infty} \frac{2 \beta_{m}}{3^{m}}
$$

where $\beta_{m}=\beta_{m}(y) \in\{0,1\}$. Let $n_{0}=n_{0}(x, y)$ be the smallest index m with $\left|\beta_{m}-\alpha_{m}\right| \neq 0$. Then using the definition of the Cantor function we have

$$
\lim _{\substack{y \rightarrow x \\ y \in C}} \frac{\log |G(x)-G(y)|}{\log |x-y|}=\lim _{\substack{y \rightarrow x \\ y \in C}} \frac{\log \left|\sum_{m=n_{0}}^{\infty}\left(\alpha_{m}-\beta_{m}\right) 2^{-\left(m-n_{0}\right)}\right|-n_{0} \log 2}{\log \left|2 \sum_{m=n_{0}}^{\infty}\left(\alpha_{m}-\beta_{m}\right) 3^{-\left(m-n_{0}\right)}\right|-n_{0} \log 3}
$$

It is easy to make sure that

$$
1 \leq\left|2 \sum_{m=n_{0}}^{\infty}\left(\alpha_{m}-\beta_{m}\right) 3^{-\left(m-n_{0}\right)}\right| \leq 3
$$

for all $y \in C$ and that $n_{0}(x, y)$ tends to infinity if $y \rightarrow x, y \in C$. Hence,
$\frac{\log 3}{\log 2} \lim _{\substack{y \rightarrow x \\ y \in C}} \frac{\log |G(x)-G(y)|}{\log |x-y|}=\lim _{\substack{y \rightarrow x \\ y \in C}}\left(1-\frac{\log \left|\left(\alpha_{n_{0}}-\beta_{n_{0}}\right)+\sum_{m=n_{0}+1}^{\infty}\left(\alpha_{m}-\beta_{m}\right) 2^{-\left(m-n_{0}\right)}\right|}{n_{0} \log 2}\right)$.
Writing

$$
z(x, y):=\left|\left(\alpha_{n_{0}}-\beta_{n_{0}}\right)+\sum_{m=n_{0}+1}^{\infty}\left(\alpha_{m}-\beta_{m}\right) 2^{-\left(m-n_{0}\right)}\right|
$$

we see that the limit relation (1.8) is equivalent to

$$
\begin{equation*}
\lim _{\substack{y \rightarrow x \\ y \in C}} \frac{\log z(x, y)}{n_{0}(x, y)}=0 . \tag{3.4}
\end{equation*}
$$

Next we obtain bounds for $z(x, y)$. If

$$
\left(\alpha_{n_{0}}-\beta_{n_{0}}\right)=1,
$$

then

$$
z(x, y)=1+\sum_{m=n_{0}+1}^{\infty}\left(\alpha_{m}-\beta_{m}\right) 2^{-\left(m-n_{0}\right)}
$$

and hence

$$
\sum_{m=n_{0}+1}^{\infty} \alpha_{m} 2^{-\left(m-n_{0}\right)} \leq z(x, y) \leq 2 .
$$

Consequently, by (3.3) we obtain

$$
\begin{equation*}
2^{-\left(1+\mathcal{R}_{x}\left(n_{0}+1\right)\right)} \leq z(x, y) \leq 2 . \tag{3.5}
\end{equation*}
$$

If

$$
\left(\alpha_{n_{0}}-\beta_{n_{0}}\right)=-1,
$$

then

$$
z(x, y)=1-\sum_{m=n_{0}+1}^{\infty}\left(\alpha_{m}-\beta_{m}\right) 2^{-\left(m-n_{0}\right)},
$$

and hence

$$
\begin{equation*}
1-\sum_{m=n_{0}+1}^{\infty} \alpha_{m} 2^{-\left(m-n_{0}\right)} \leq z(x, y) \leq 2 . \tag{3.6}
\end{equation*}
$$

Since

$$
1-\sum_{m=n_{0}+1}^{\infty} \alpha_{m} 2^{-\left(m-n_{0}\right)}=\sum_{m=n_{0}+1}^{\infty}\left(1-\alpha_{m}\right) 2^{-\left(m-n_{0}\right)},
$$

relations (3.6), (3.3) and (3.2) imply that

$$
z(x, y) \geq 2^{-\left(1+\mathcal{R}_{1-x}\left(n_{0}+1\right)\right)}=2^{-\left(1+\mathcal{R}_{x}\left(n_{0}+1\right)\right)} .
$$

Consequently, as in the first case, we have (3.5). Now, (3.4) follows from (3.5) and (1.9). Thus, the implication (1.9) $\Rightarrow(1.8)$ follows.

Suppose now that (1.9) does not hold. Then there is a strictly increasing sequence $\left\{n_{j}\right\}_{j=1}^{\infty}$ such that

$$
\begin{equation*}
\lim _{j \rightarrow \infty} \frac{\mathcal{R}_{x}\left(1+n_{j}\right)}{1+n_{j}}=\limsup _{n \rightarrow \infty} \frac{\mathcal{R}_{x}(n)}{n}=a \in(0, \infty] \tag{3.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\alpha_{n_{j}} \neq \alpha_{n_{j}+1}, \quad \forall n_{j} \tag{3.8}
\end{equation*}
$$

where $\alpha_{n_{j}}$ and $\alpha_{n_{j}+1}$ are digits in the representation (3.1).
Let $\left\{\alpha_{m}\right\}_{m=1}^{\infty}$ be a sequence of digits in (3.1). Putting

$$
\beta_{m}^{(j)}:= \begin{cases}1-\alpha_{m} & \text { if } n_{j} \leq m \leq n_{j}+\mathcal{R}_{x}\left(1+n_{j}\right) \tag{3.9}\\ \alpha_{m} & \text { otherwise }\end{cases}
$$

and

$$
y_{j}:=\sum_{m=1}^{\infty} \frac{2 \beta_{m}^{(j)}}{3^{m}}
$$

we claim that

$$
\lim _{j \rightarrow \infty} \frac{\log \left|G(x)-G\left(y_{j}\right)\right|}{\log \left|x-y_{j}\right|}=\frac{\log 2}{\log 3}(1+a) .
$$

Indeed, (3.8) and (3.9) imply the equalities

$$
\begin{aligned}
\frac{1}{2}\left|x-y_{j}\right| & =\left(\frac{1}{3}\right)^{n_{j}}-\left(\frac{1}{3}\right)^{n_{j}+1}-\ldots-\left(\frac{1}{3}\right)^{n_{j}+\mathcal{R}_{x}\left(n_{j}+1\right)}, \\
\left|G(x)-G\left(y_{j}\right)\right| & =\left(\frac{1}{2}\right)^{n_{j}}-\left(\frac{1}{2}\right)^{n_{j}+1}-\ldots-\left(\frac{1}{2}\right)^{n_{j}+\mathcal{R}_{x}\left(n_{j}+1\right)}
\end{aligned}
$$

Hence, by (3.7), we have

$$
\lim _{j \rightarrow \infty} \frac{\log \left|G(x)-G\left(y_{j}\right)\right|}{\log \left|x-y_{j}\right|}=\frac{\log 2}{\log 3} \lim _{j \rightarrow \infty} \frac{n_{j}+\mathcal{R}_{x}\left(1+n_{j}\right)}{n_{j}}=(1+a) \frac{\log 2}{\log 3} .
$$

Consider now the case where $x \in C^{1}$. In this case there is $n_{0} \in \mathbb{N}$ such that $\mathcal{R}_{x}(n)=0$ for every $n \geq n_{0}$. It remains only to show that

$$
\lim _{\substack{y \rightarrow x \\ y \in C}} \frac{\log |G(x)-G(y)|}{\log |x-y|}=\frac{\log 2}{\log 3} .
$$

Suppose that x is a right endpoint of a complementary interval, (i.e. $\alpha_{n}=0$ for all large enough n), y tends to x, and

$$
y=\sum_{m=1}^{\infty} \frac{2 \beta_{m}(y)}{3^{m}}, \quad \beta_{m}(y) \in\{0,1\}
$$

Then there are positive integers m_{1} and $m_{2}=m_{2}(y)$ such that

$$
x=\sum_{m=1}^{m_{1}} \frac{2 \alpha_{m}}{3^{m}}, \beta_{m}(y)=\alpha_{m}
$$

if $1 \leq m \leq m_{1}, m_{2}(y)>m_{1}, \beta_{m_{2}}(y)=1$, and $\beta_{m}(y)=0$ if $m_{1}<m<m_{2}(y)$.
Hence

$$
\lim _{\substack{y \rightarrow x \\ y \in C}} \frac{\log |G(x)-G(y)|}{\log |x-y|}=\lim _{\substack{y \rightarrow x \\ y \in C}} \frac{\log \left(\sum_{m=m_{2}(y)}^{\infty} \beta_{m} 2^{-m}\right)}{\log \left(2 \sum_{m=m_{2}(y)}^{\infty} \beta_{m} 3^{-m}\right)}=\lim _{\substack{y \rightarrow x \\ y \in C}} \frac{-m_{2}(y) \log 2}{-m_{2}(y) \log 3}=\frac{\log 2}{\log 3}
$$

The case where x is a left endpoint of a complementary interval is similar.
EXAMPLE 3.3 Here we give an example of a homeomorphism $f:(X, \rho) \rightarrow(Y, d)$ such that:
(i) For every $a \in \operatorname{ac}(X)$

$$
\lim _{x \rightarrow a} K_{f}(x, a)=1
$$

(ii) For arbitrary positive α, c and for every ball $B(a, \delta) \subseteq X$ there exist $x, y \in$ $B(a, \delta)$ for which

$$
d(f(x), f(y)) \geq c(\rho(x, y))^{\alpha}
$$

The example is constructed with aid of the Cantor ternary set C and the Cantor function G.

Set

$$
M:=\left\{x \in C: \lim _{\substack{y \rightarrow x \\ y \in C}} \frac{\log |G(x)-G(y)|}{\log |x-y|}=\frac{\log 2}{\log 3}\right\}
$$

and

$$
\begin{equation*}
I^{\circ}:=G\left(M \cap C^{\circ}\right) \tag{3.10}
\end{equation*}
$$

Let $F_{1}: I^{\circ} \rightarrow M \cap C^{\circ}$ be a function such that $F_{1}(G(y))=y$ for every $y \in M \cap C^{\circ}$. It is easy to see that F_{1} is a homeomorphism and by the definition of M we see that

$$
\begin{equation*}
\lim _{y \rightarrow a} K_{F_{1}}(a, y)=\frac{\log 3}{\log 2} \tag{3.11}
\end{equation*}
$$

for every $a \in I^{\circ}$.
Let \mathcal{E} be the space of infinite strings from the two-letters alphabet $\{0,1\}$. We may define a metric d on \mathcal{E} by setting

$$
d(\alpha, \beta)=\max _{1 \leq n<\infty} \frac{1}{2^{n}}\left|\alpha_{n}-\beta_{n}\right|
$$

if $\alpha=\left\{\alpha_{n}\right\}_{n=1}^{\infty}, \beta=\left\{\beta_{n}\right\}_{n=1}^{\infty}$ are elements of \mathcal{E}.
Evidently, if $d(\alpha, \beta) \neq 0$, then there is a positive integer n such that $d(\alpha, \beta)=2^{-n}$.

The space (\mathcal{E}, d) is an ultrametric space and the map

$$
C \ni \sum_{n=1}^{\infty} \frac{2 \varepsilon_{n}}{3^{n}} \xrightarrow{\Phi}\left\{\varepsilon_{n}\right\} \in \mathcal{E}
$$

is a homeomorphism. (The proof can be found in [1, Chapter 2].)
We claim that the inequality

$$
\begin{equation*}
\frac{1}{2}|x-y|^{\log 2 / \log 3} \leq d(\Phi(x), \Phi(y)) \leq|x-y|^{\log 2 / \log 3} \tag{3.12}
\end{equation*}
$$

holds for all $x, y \in C$. Indeed, if x and y have the representations

$$
x=\sum_{i=1}^{\infty} 2 \alpha_{i} 3^{-i}, \quad y=\sum_{i=1}^{\infty} 2 \beta_{i} 3^{-i}, \quad \alpha_{i}, \beta_{i} \in\{0,1\}
$$

and if $d(\Phi(x), \Phi(y))=2^{-n}$, then we get

$$
\frac{1}{2}|x-y|=\left|\sum_{i=n}^{\infty}\left(\alpha_{i}-\beta_{i}\right) 3^{-i}\right| \geq 3^{-n}\left(1-\sum_{i=1}^{\infty} 3^{-i}\right)=\frac{1}{2}(d(\Phi(x), \Phi(y)))^{\log 3 / \log 2}
$$

A similar argument yields

$$
|x-y| \leq 3\left(d(\Phi(x), \Phi(y))^{\log 3 / \log 2}\right.
$$

These inequalities imply (3.12).
Let $F_{2}: M \cap C^{\circ} \rightarrow \Phi\left(M \cap C^{\circ}\right)$ be the restriction of the map Φ on the set $M \cap C^{\circ}$. Obviously, F_{2} is a homeomorphism and it follows from (3.12) that

$$
\begin{equation*}
\lim _{z \rightarrow a} K_{F_{2}}(a, z)=\frac{\log 2}{\log 3} \tag{3.13}
\end{equation*}
$$

for each $a \in\left(M \cap C^{\circ}\right)$. Now set, for every $x \in I^{\circ}$,

$$
f(x):=F_{2}\left(F_{1}(x)\right) .
$$

The function f is a homeomorphism from I° to $\Phi\left(M \cap C^{\circ}\right)$ and the limits (3.11), (3.13) imply that

$$
\lim _{x \rightarrow a} K_{f}(x, a)=1
$$

for each $a \in I^{\circ}$, i.e., we get (i).
Suppose α, c are arbitrary positive constants and O is an open interval in $[0,1]$. To prove (ii) we can choose $x \in C$ such that (3.7) holds and

$$
\alpha>\frac{2}{1+a}, \quad a \in(0, \infty), \quad G(x) \in O
$$

Since M is a dense subset of a perfect set C, there are sequences $\left\{x_{j}\right\}_{j \in \mathbb{N}}$ and $\left\{y_{j}\right\}_{j \in \mathbb{N}}$ in M such that

$$
\lim _{j \rightarrow \infty} x_{j}=\lim _{j \rightarrow \infty} y_{j}=x, \quad x_{j} \neq y_{j} \quad \forall j \in \mathbb{N},
$$

and

$$
\lim _{j \rightarrow \infty} \frac{\log \left|F_{1}\left(x_{j}\right)-F_{1}\left(y_{j}\right)\right|}{\log \left|x_{j}-y_{j}\right|}=\frac{\log 3}{\log 2} \frac{1}{(1+a)},
$$

see the proof of Theorem 1.4. The last relation and (3.12) imply that

$$
\lim _{j \rightarrow \infty} \frac{\log d\left(f\left(x_{j}\right), f\left(y_{j}\right)\right)}{\log \left|x_{j}-y_{j}\right|}=\frac{1}{(1+a)} .
$$

Hence there is $N_{0} \in \mathbb{N}$ such that

$$
d\left(f\left(x_{j}\right), f\left(y_{j}\right)\right) \geq\left|x_{j}-y_{j}\right|^{2 /(1+a)}
$$

for $j \geq N_{0}$. Since $\frac{2}{1+a}<\alpha$ and $\lim _{j \rightarrow 0}\left|x_{j}-y_{j}\right|=0$, we have (ii).
To prove Theorem 1.5 we use the following two propositions.

Proposition 3.4

Let I° be the subset of the unit interval $[0,1]$ from (3.10). Then each number, simply normal to base 2 , belongs to I°.

We recall the definition. Suppose x belongs to $[0,1]$ and has the following base 2 representation

$$
x=\sum_{n=1}^{\infty} \frac{a_{n}}{2^{n}}, \quad a_{n} \in\{0,1\} .
$$

This number x is called a simply normal to base 2 if

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} a_{n}=\frac{1}{2} . \tag{3.14}
\end{equation*}
$$

3.5. Proof of Proposition 3.4. Let $x_{0} \in C$ be a point with the ternary expansion

$$
x_{0}=\sum_{n=1}^{\infty} \frac{2 \alpha_{n}}{3^{n}}, \quad \alpha_{n} \in\{0,1\} .
$$

Suppose $G\left(x_{0}\right)$ is a number simply normal to base 2. Since $G\left(x_{0}\right)=\sum_{n=1}^{\infty} \frac{\alpha_{n}}{2^{n}}$, formula (3.14) implies that $x_{0} \in C^{\circ}$. (If $x_{0} \in C^{1}$, i.e. x is an endpoint of a complementary interval of C, then $\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} \alpha_{n}=0$ or $\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} \alpha_{n}=1$.) Hence, it suffices to show that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\mathcal{R}_{x_{0}}(n)}{n}=0 . \tag{3.15}
\end{equation*}
$$

Put $\mathbb{N}_{0}:=\left\{n: \alpha_{n}=0\right\}$ and $\mathbb{N}_{1}:=\left\{n: \alpha_{n}=1\right\}$. Since $x_{0} \in C^{\circ}$ we have $\operatorname{card}\left(\mathbb{N}_{0}\right)=$ $\operatorname{card}\left(\mathbb{N}_{1}\right)=\infty$. It follows from (3.14) that

$$
\begin{aligned}
\frac{1}{2} & =\lim _{\substack{m \rightarrow \infty \\
m \in \mathbb{N}_{1}}} \frac{1}{m+\mathcal{R}_{x_{0}}(m)} \sum_{n=1}^{m+\mathcal{R}_{x_{0}}(m)} \alpha_{n} \\
& =\lim _{\substack{m \rightarrow \infty \\
m \in \mathbb{N}_{1}}} \frac{m}{m+\mathcal{R}_{x_{0}}(m)} \frac{1}{m}\left(\mathcal{R}_{x_{0}}(m)-1+\sum_{n=1}^{m} \alpha_{m}\right) \\
& =\lim _{m \rightarrow \infty}^{m \in \mathbb{N}_{1}} \frac{m}{m+\mathcal{R}_{x_{0}}(m)}\left(\frac{\mathcal{R}_{x_{0}}(m)}{m}+\frac{1}{2}\right) .
\end{aligned}
$$

Hence we get

$$
\lim _{\substack{m \rightarrow \infty \\ m \in \mathbb{N}_{1}}} \frac{\mathcal{R}_{x_{0}}(m)}{m}=0 .
$$

A similar calculation yields

$$
\lim _{\substack{m \rightarrow \infty \\ m \in \mathbb{N}_{0}}} \frac{\mathcal{R}_{x_{0}}(m)}{m}=0 .
$$

Since $\mathbb{N}=\mathbb{N}_{0} \cup \mathbb{N}_{1}$ we have (3.15).
The proof of the next lemma is well-known.

Lemma 3.6

Let m_{1} be the Lebesgue measure on \mathbb{R}, and let $s=\log 2 / \log 3$. Then

$$
m_{1}(G(A))=\mathcal{H}^{s}(A)
$$

for every $A \subseteq C$.
3.7. Proof of Theorem 1.5. As in Example 3.3 set

$$
M=\left\{x \in C: \lim _{\substack{y \rightarrow x \\ y \in C}} K_{G}(y, x)=\frac{\log 2}{\log 3}\right\} .
$$

We claim that

$$
\begin{equation*}
\left.\operatorname{dim}(G(A))=\frac{\log 3}{\log 2} \operatorname{dim}(A)\right) \tag{3.16}
\end{equation*}
$$

for every $A \subseteq M$, and

$$
\begin{equation*}
\mathcal{H}^{s}(M)=1 \tag{3.17}
\end{equation*}
$$

for $s=\log 2 / \log 3$.
In order to prove (3.16), we can apply Corollary 2.7 with $X=M, X^{\circ}=C^{1}$, $Y=[0,1]$. Observe that C^{1} is countable and hence we have (2.16). The restriction

$$
\left.G\right|_{M \cap C^{\circ}}: M \cap C^{\circ} \rightarrow G\left(M \cap C^{\circ}\right)
$$

is strictly increasing and continuous, so that it is a homeomorphism.
It remains to verify (3.17). Let N^{-}be the set of numbers which are not simply normal to base 2. It is known [6, p.103] that $m_{1}\left(N^{-}\right)=0$. By Proposition $3.4 I^{\circ}$ is the superset of the set of all simply normal to base 2 numbers. Consequently, $m_{1}\left(I^{\circ}\right)=1$, and by Lemma 3.6 we have (3.17).

Acknowledgments. The first and third authors thank for the support the Academy of Finland.

References

1. G.A. Edgar, Measure, Topology, and Fractal Geometry, Springer-Verlag, New York, 1990.
2. H. Federer, Geometric Measure Theory, Springer-Verlag, New-York, 1969.
3. R.E. Gilman, A class of functions continuous but not absolutely continuous, Ann. of Math. (2), 33 (1932), 433-442.
4. E. Hille and J.D. Tamarkin, Remarks on known example of a monotone continuous function, Amer. Math. Monthly 36 (1929), 255-264.
5. K. Kuratowski, Topology, Vol. I, Academic Press, New York-London, 1966.
6. I. Niven, Irrational Numbers, John Wiley and Sons, Inc., New York, N.Y., 1956.
7. C.A. Rogers, Hausdorff Measures, Cambridge University Press, Cambridge, 1970.
