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Abstract

Let f be a mapping from a metric space X to a metric space Y , and let α be
a positive real number. Write dim(E) and Hs(E) for the Hausdorff dimen-
sion and the s-dimensional Hausdorff measure of a set E. We give sufficient
conditions that the equality dim(f(E)) = α dim(E) holds for each E ⊆ X.
The problem is studied also for the Cantor ternary function G. It is shown
that there is a subset M of the Cantor ternary set such that Hs(M) = 1,
with s = log 2/log 3 and dim(G(E)) = (log 3/log 2) dim(E), for every
E ⊆ M .

1. Statements of main results

Let f be a mapping from a metric space (X, ρ) to a metric space (Y, d). It is a simple
fact that if the double inequality

c1(ρ(x, y))α ≤ d(f(x), f(y)) ≤ c2(ρ(x, y))α (1.0)
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holds for all x, y from X where α ∈ (0,∞) and c1 and c2 are some positive constants,
then every set A ⊆ X satisfies

dim(f(A)) =
1
α

dim(A).

We are interested in necessary and sufficient local conditions under which this equality
holds for every A ⊆ X. The following theorem provides conditions for this.

Write ac(A) for the set of all accumulation points of a set A. Let f be a mapping
from a metric space (X, ρ) to a metric space (Y, d). If x and a are the points of X and
x &= a we put

Kf (x, a) :=






log(d(f(x), f(a)))
log(ρ(x, a))

if f(x) &= f(a)

+∞ if f(x) = f(a)

Theorem 1.1

Let f : (X, ρ) → (Y, d) be a homeomorphism. Suppose that the limit

lim
x→a

Kf (x, a) = α(a) ∈ (0,∞) (1.1)

exists for every a ∈ ac(X). Then the following statements are equivalent.

(i) There exists a set X0 ⊆ acX such that

α(a) = α0 (1.2)

for all a in ac(X)\X0 and either dim(Z) = 0 or dim(Z) = ∞ for every Z ⊆ X0.

(ii) For every A ⊆ X the equality

dim(f(A)) =
1
α0

dim(A) (1.3)

holds.

Corollary 1.2

Let f : X → Y be a homeomorphism and let dim(X) < ∞. Suppose that the
limit (1.1) exists for every a ∈ ac(X). Then

dim(f(A)) = dim(A), ∀ A ⊆ X (1.4)

if and only if
α(a) = 1 (1.5)

for every a ∈ ac(X)\X0 where X0 ⊂ X is zero-dimensional.
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Remark 1.3 Note that, as it follows from the proof of Theorem 1.1, the equivalence
(i) ⇐⇒ (ii) is also valid if (1.1) holds only in X\X∗ where

dim(X∗) = dim(f(X∗)) = 0. (1.6)

See further consequences of Theorem 1.1 in the end of Section 2. Note also that, if
f : X → Y is a continuous bijection and (1.1) holds, then it does not follow that f is
a homeomorphism. On the other hand, if f : (X, ρ) → (Y, d) is a homeomorphism and
for each a ∈ ac(X) we have α(a) = 1, then there need not exist positive constants α
and c such that the inequality d(f(x), f(y)) ≤ c(ρ(x, y))α holds for all x and y in some
ball B(a, r) ⊆ X; see Example 3.3.

In the third part, we investigate the following problem: Let C ⊂ [0, 1] be the
standard Cantor ternary set and let G be the Cantor function. Characterize the set of
points x ∈ C such that

lim
y→x
y∈C

log |G(x)−G(y)|
log |x− y| =

log 2
log 3

.

In Theorem 1.4 these points are characterized in terms of the spacing of 0′s and 2′s in
ternary expansions.

Let x be a point of the Cantor ternary set C. Then x has a triadic representation

x =
∞∑

m=1

2αm

3m

where αm ∈ {0, 1}. Define a sequence {Rx(n)}∞n=1 by the rule

Rx(n) :=






inf{m− n : αm &= αn, m > n} if ∃ m > n : αm &= αn

0 if ∀ m > n : αm = αn,
(1.7)

Rx(n) = 1 ⇐⇒ (αn &= αn+1),

i.e.
Rx(n) = 2 ⇐⇒ (αn = αn+1) & (αn+1 &= αn+2)

and so on.

Theorem 1.4

Let x be a point of C. Then

lim
y→x
y∈C

log |G(x)−G(y)|
log |x− y| =

log 2
log 3

(1.8)

if and only if

lim
n→∞

Rx(n)
n

= 0. (1.9)
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This theorem and Theorem 1.1 imply the following result.

Theorem 1.5

There exists a set M ⊆ C such that Hs(M) = 1 with s = log 2/log 3 and
dim(G(A)) = log 3

log 2 dim(A), for every A ⊆ M .

Remark 1.6 It is well-known that the Cantor function G satisfies the inequality

|G(x)−G(y)| ≤ 2|x− y|log 2/log 3 (1.10)

for all x and y in [0, 1]. The proof can be found in [4], see also [3]. The Hausdorff
dimension of the Cantor ternary set equals log 2/log 3 and, moreover, Hs(C) = 1 for
s = log 2/log 3.

2. Linear distortion of Hausdorff dimension under mappings of metric spaces

We recall the definitions of the Hausdorff dimension and the s-dimensional Hausdorff
measure. Let (X, ρ) be a metric space and let

diam A := sup {ρ(x, y) : x, y ∈ A}

be the diameter of A ⊆ X if A &= ∅, diam ∅ = 0. If A ⊆
⋃
i∈I

Ei with 0 < diamEi ≤ δ

for each index i ∈ I, then {Ei}i∈I is called a δ-cover of A. If all δ-covers of A are
uncountable, then

Hs
δ(A) := ∞

for each s ≥ 0 and, in the opposite case,

Hs
δ(A) := inf





∑

i∈N
(diam Ei)s : {Ei}i∈N is a countable δ-cover of A




 (2.1)

for s ≥ 0. The s-dimensional Hausdorff measure of A is defined by

Hs(A) := lim
δ→0

Hs
δ(A). (2.2)

Note that the limit exists because Hs
δ(A) is nonincreasing function of δ and that the

Hausdorff measure Hs is a regular Borel measure, see e.g. [7]. The Hausdorff di-
mension of A is the number dim(A) such that

Hs(A) =
{

+∞ if s < dim(A),

0 if s > dim(A).

Definition 2.1 Let (X, ρ) be a metric space. A family B of closed balls B(a, δ)
in (X, ρ) is said to fulfil the condition (V) if B(a, δ) ∈ B whenever a ∈ X and
δ ∈ (0,∆(a)] for some ∆(a) > 0.
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Some results closely related to the next lemma can be found in [2, §2.8].

Lemma 2.2

Let A be a subset of the metric space (X, ρ) such that Hs(A) = 0 for some s > 0
and let a family B of closed balls in (X, ρ) fulfil the (V ) condition. Then, for all positive
numbers δ and η, there is a countable δ-cover {Bi}i∈N ⊆ B of the set A with

∑

i∈N
(diam Bi)s ≤ η. (2.3)

Proof. It follows from (2.1), (2.2) and Hs(A) = 0 that for every γ > 0 there is a
δ
2 -cover {E(1)

i }i∈N of the set A such that

∑

i∈N
(d(1)

i )s ≤ γ

2
, (2.4)

where d(1)
i := diam E(1)

i .
Suppose B fulfils the (V ) condition. We shall say that i ∈ N is a marked index

if there is a point a(1)
i0 ∈ E(1)

i0 ∩A for which

d(1)
i0 < ∆

(
a(1)

i0

)

where ∆ is the function from Definition 2.1. Let I(1) be the set of all marked indices.
It is obvious that

E(1)
i ⊆ B(a(1)

i , d(1)
i ) ∈ B

for all i ∈ I(1). Using (2.4) and

diam B(a(1)
i , d(1)

i ) ≤ 2d(1)
i ,

we have ∑

i∈I(1)

(diam B(a(1)
i , d(1)

i ))s ≤ 2s γ

2
. (2.5)

It should be observed that {B(a(1)
i , d(1)

i )}i∈I(1) is a δ-cover of the set
{

a ∈ A : ∆(a) >
(

γ

2

)1/s
}

.

Really, if a0 ∈ A\(
⋃

i∈I(1)

B(a(1)
i , d(1)

i )), then there is E(1)
i0 1 a0 with d(1)

i0 ≥ ∆(a0).

It follows from (2.4) that
(

γ

2

)1/s

≥ d(1)
i0 .

Hence,

∆(a0) ≤
(

γ

2

)1/s

.
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Reasoning similarly we can define the sequence {I(n)}∞n=1 such that for each pos-
itive integer n: ∑

i∈I(n)

(diam B(a(n)
i , d(n)

i ))s ≤ 2s γ

2n
, (2.6.1)

B(a(n)
i , d(n)

i ) ∈ B and diam B(a(n)
i , d(n)

i ) ≤ δ for each i ∈ I(n), (2.6.2)
{

a ∈ A : ∆(a) >
(

γ

2n

)1/s
}

⊆
⋃

i∈I(n)

B(a(n)
i , d(n)

i ). (2.6.3)

For this purpose we take a δ
2 -cover {E(n)

i }i∈N of A such that
∑

i∈N
(diam E(n)

i )s ≤ γ

2n
.

Now set γ := 1
2s η. Then (2.6.1) implies that

∞∑

n=1

∑

i∈I(n)

(diam B(n)
i , d(n)

i )s ≤ η.

Hence, by (2.6.2) and (2.6.3), the family
{
B(a(n)

i , d(n)
i ) : n = 1, 2, ...; i ∈ I(n)

}

is a desired δ-cover of A. !

Proposition 2.3

Suppose that (X, ρ) and (Y, d) be metric spaces. Let β ∈ (0,∞) and let f : X → Y
be a mapping such that

lim inf
x→a

Kf (x, a) ≥ β (2.7)

for each a ∈ ac(X). Then we have

dim(A) ≥ β dim(f(A)) (2.8)

for every A ⊆ X.

Proof. If dim(A) = ∞, then the inequality (2.8) is trivial. Suppose that
0 ≤ dim(A) < s < ∞. Then by the definition of the Hausdorff dimension we have
Hs(A) = 0.

For each ε ∈ (0,β), define a family Bε of the closed balls B(a, δ) in (X, ρ) by the
rule

(B(a, δ) ∈ Bε) ⇐⇒ (∀ x ∈ B(a, δ) : d(f(x), f(a)) ≤ (ρ(x, a))β−ε). (2.9)

It follows immediately from (2.7) that Bε fulfils the condition (V ). Hence by
Lemma 2.2, for every η > 0, there is δ-cover {Bi(ai, δi)}i∈N ⊆ Bε of A such that

∑

i∈N
(diam B(ai, δi))s ≤ η. (2.10)
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It follows from (2.9) that

diam (f(B(ai, δi)) ≤ 2(diam (B(ai, δi)))β−ε.

The last inequality and (2.10) imply that {f(B(ai, δi))}i∈N is a 2δβ−ε-cover of f(A)
and ∑

i∈N
(diam f(B(ai, δi)))s/(β−ε) ≤ 2s/(β−ε)η.

Consequently
Hs/(β−ε)(f(A)) = 0,

that is
dim(f(A)) ≤ s

β − ε

for all ε ∈ (0,β) and every s > dim(A). Letting ε → 0 and s → dim(A) we have (2.8). !

Corollary 2.4

Suppose that (X, ρ) and (Y, d) are a metric spaces. Let 0 < β ≤ α < ∞ and let
f : X → Y be a homeomorphism such that

β ≤ lim inf
x→a

Kf (x, a) ≤ lim sup
x→a

Kf (x, a) ≤ α (2.11)

for every a ∈ ac(X). Then the inequalities

1
α

dim(A) ≤ dim(f(A)) ≤ 1
β

dim(A) (2.12)

hold for every A ⊆ X.

Proof. By Proposition 2.3 it suffices to prove the first inequality in (2.12).
Since f is a homeomorphism, we have

ac(Y ) = f(ac(X)).

Let f−1 be the inverse map of f and let a ∈ ac (X). Applying inequality (2.11) we
obtain

1
α
≤ {lim sup

x→a
Kf (x, a)}−1 = lim inf

y→b
Kf−1(y, b)

where b = f(a) ∈ ac(Y ). Now the desired inequality follows from Proposition 2.3. !

2.5. Proof of Theorem 1.1. (i) ⇒ (ii) Suppose that there is X0 ⊆ ac(X) such that
α(a) = α0 for every a ∈ ac(X)\X0, and for every Z ⊆ X0 we have either dim(Z) = 0
or dim(Z) = ∞. Let A be a subset of X. Then

dim(A) = max{dim(A\X0), dim(A ∩X0)}

and
dim(f(A)) = max{dim(f(A\X0)), dim(f(A ∩X0))}.
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Thus, by Corollary 2.4 it remains to prove that either

dim(A ∩X0) = dim(f(A ∩X0)) = 0

or
dim(A ∩X0) = dim(f(A ∩X0)) = +∞.

To prove this we represent A ∩X0 in the form

A ∩X0 =
∞⋃

n=1

An

where

An :=
{
a ∈ A ∩X0 :

1
n
≤ α(a) ≤ n

}

for n = 1, 2, ... . From this representation we get the equalities

f(A ∩X0) =
∞⋃

n=1

f(An),

dim(A ∩X0) = sup
1≤n<∞

(dim An),

dim(f(A ∩X0)) = sup
1≤n<∞

dim(f(An)).

Hence dim(A ∩X0) = 0 iff
∀ n ∈ N : dim(An) = 0.

It follows from the alternative

dim(An) = 0 or dim(An) = ∞

that we have dim(A ∩X0) = ∞ iff there exists n0 ∈ N such that dim(An0) = ∞.
Consequently, the conclusion follows by Corollary 2.4.
(ii) ⇒ (i) Suppose that (1.3) holds for every A ⊆ X. Put

X+
0 := {a ∈ acX : α(a) > α0},

X−
0 := {a ∈ acX : α(a) < α0}, and

X0 := X+
0 ∪X−

0 .

By definition α(a) = α0 for each a ∈ (acX)\X0. It remains to prove that

dim(Z) = 0 or dim(Z) = +∞

for each Z ⊆ X0.
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Suppose that for some Z ⊆ X0

0 < dim(Z) < ∞.

Then we have
0 < dim(Z ∩X+

0 ) < ∞ (2.13)

or
0 < dim(Z ∩X−

0 ) < ∞. (2.14)

Consider the case (2.13) first. Set for each positive integer n

X+
n :=

{
a ∈ ac(X) : α(a) ∈

(
α0 +

1
n

,α0 + n
)}

. (2.15)

Then

X+
0 =

∞⋃

n=1

X+
n

and (2.13) implies that for some n0 ∈ N

0 < dim(Z ∩X+
n0

) < ∞.

Hence, by Corollary 2.4 and (2.15), we have

dim(f(Z ∩X+
n0

)) ≤ 1
α0 + 1

n0

dim(Z ∩X+
n0

) <
1
α0

dim(Z ∩X+
n0

).

This contradicts (1.3) with A = Z∩X+
n0

. The case (2.14) can be proved analogously. !

2.6. Proof of Corollary 1.2. In order to prove this corollary, it suffices to take α0 = 1.
It should be observed here that the inequality dim(X) < ∞ implies the equality
dim(Z) = 0 for each Z ⊆ X0. !

Corollary 2.7

Suppose that (X, ρ) and (Y, d) are metric spaces, and

X = X◦ ∪X1, X◦ ∩X1 = ∅.

Let α ∈ (0,∞) and let ϕ : X → Y be a mapping such that:

dim(X◦) = dim(ϕ(X◦)) = 0. (2.16)

2.8. For every a ∈ ac(X1) ∩X1,

lim
x→a

x∈X1

Kϕ(x, a) = α.

2.9. The restriction ϕ|X1 : X1 → ϕ(X1) is a homeomorphism.
Then

dim(ϕ(A)) =
1
α

dim(A) (2.17)
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for each A ⊆ X.

Proof. It follows from (2.16) that dim(A) = dim(A∩X1) and dim(ϕ(A)) = dim(ϕ(A∩
X1)) for every A ⊆ X. Consequently, it suffices to prove (2.17) for A ⊆ X1.

For this purpose we can use Theorem 1.1 with X = X1, Y = ϕ(X1), X0 = ∅ and
f equals ϕ|X1 : X1 → ϕ(X1). !

Corollary 2.10

Suppose that all the conditions of Corollary 2.7 hold with an exception of 2.9. If
X1 can be represented in the form X1 =

⋃

j∈N
X1

j such that ϕ|X1
j

: X1
j → ϕ(X1

j ) is a

homeomorphism for every j ∈ N, then equality (2.17) holds for every A ⊆ X.

Proof. Reasoning as in the proof of Corollary 2.7 we can easily show that

dim(ϕ(A)) = sup
j∈N

(dim(ϕ(A ∩X1
j ))) =

1
α

sup
j∈N

(dim(A ∩X1
j )) =

1
α

dim(A). !

Corollary 2.11

Suppose that all the conditions of Corollary 2.7 hold except 2.9. If X1 is separable
and ϕ|X1 : X1 → ϕ(X1) is a local homeomorphism, then equality (2.17) holds for each
A ⊆ X.

Proof. Every separable metric space has a countable base, see e.g. [5, §21, II, Theo-
rem 2]. Hence we can use Corollary 2.10. !

Let cp(X) denote the set of all condensation points of a metric space X, i.e.
points whose neighborhoods are not countable sets.

Corollary 2.12

Suppose that X and Y are metric spaces, f : X → Y is a local homeomorphism
and X is separable. Let α ∈ (0,∞) and let

lim
x→a

Kf (x, a) = α

for every a ∈ cp(X). Then (2.17) holds for every A ⊆ X.

Proof. The set X\cp (X) is a countable set in every separable metric space X, [5,
§23, III]. !

3. The Cantor ternary function

We recall the definitions of the Cantor ternary set C and ternary Cantor function G.
Let x ∈ [0, 1], then x belongs C if and only if x has a base 3 expansion using only the
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digits 0 and 2, i.e.

x =
∞∑

m=1

2αm

3m
, αm ∈ {0, 1}. (3.1)

The Cantor function G may be defined on C by the following rule. If x ∈ C has the
ternary expansion (3.1), then

G(x) :=
∞∑

m=1

αm

2m
.

In this section we will denote by C1 the set of all endpoints of complementary intervals
of C. We also write C◦ := C\C1.

The proof of Theorem 1.4 needs the following lemma.

Lemma 3.1

Let x ∈ C be a point with the representation (3.1) and let Rx(n) be the sequence
from (1.7). Then

Rx(n) = R1−x(n). (3.2)

If x is not a right endpoint of a complementary interval of C, then

∞∑

m=n+1

αm2−(m−n) ≥ 2−(1+Rx(n+1)), ∀ n ∈ N. (3.3)

Proof. Since 1−x =
∞∑

m=1

2(1−αm)
3m we have (3.2). It remains to prove (3.3). If αn+1 = 1,

then (3.3) is obvious. In the opposite case, 2−(1+Rx(n+1)) is the first positive element

of the series
∞∑

m=n+1
αm2−(m−n). !

3.2. Proof of Theorem 1.4. Consider first the case where x is not an endpoint of some
complementary interval of C. Suppose that x has representation (3.1), y tends to x,
and

y =
∞∑

m=1

2βm

3m

where βm = βm(y) ∈ {0, 1}. Let n0 = n0(x, y) be the smallest index m with
|βm − αm| &= 0. Then using the definition of the Cantor function we have

lim
y→x
y∈C

log |G(x)−G(y)|
log |x− y| = lim

y→x
y∈C

log
∣∣∣

∞∑
m=n0

(αm − βm)2−(m−n0)
∣∣∣− n0log 2

log
∣∣∣2

∞∑
m=n0

(αm − βm)3−(m−n0)
∣∣∣− n0log 3

.

It is easy to make sure that

1 ≤
∣∣∣∣∣2

∞∑

m=n0

(αm − βm)3−(m−n0)

∣∣∣∣∣ ≤ 3
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for all y ∈ C and that n0(x, y) tends to infinity if y → x, y ∈ C. Hence,

log 3
log 2

lim
y→x
y∈C

log |G(x)−G(y)|
log |x− y| = lim

y→x
y∈C

(

1−
log

∣∣(αn0 − βn0) +
∞∑

m=n0+1
(αm − βm)2−(m−n0)

∣∣

n0log 2

)

.

Writing

z(x, y) :=

∣∣∣∣∣∣
(αn0 − βn0) +

∞∑

m=n0+1

(αm − βm)2−(m−n0)

∣∣∣∣∣∣

we see that the limit relation (1.8) is equivalent to

lim
y→x
y∈C

log z(x, y)
n0(x, y)

= 0. (3.4)

Next we obtain bounds for z(x, y). If

(αn0 − βn0) = 1,

then

z(x, y) = 1 +
∞∑

m=n0+1

(αm − βm)2−(m−n0)

and hence
∞∑

m=n0+1

αm2−(m−n0) ≤ z(x, y) ≤ 2.

Consequently, by (3.3) we obtain

2−(1+Rx(n0+1)) ≤ z(x, y) ≤ 2. (3.5)

If
(αn0 − βn0) = −1,

then

z(x, y) = 1−
∞∑

m=n0+1

(αm − βm)2−(m−n0),

and hence

1−
∞∑

m=n0+1

αm2−(m−n0) ≤ z(x, y) ≤ 2. (3.6)

Since

1−
∞∑

m=n0+1

αm2−(m−n0) =
∞∑

m=n0+1

(1− αm)2−(m−n0),

relations (3.6), (3.3) and (3.2) imply that

z(x, y) ≥ 2−(1+R1−x(n0+1)) = 2−(1+Rx(n0+1)).
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Consequently, as in the first case, we have (3.5). Now, (3.4) follows from (3.5) and (1.9).
Thus, the implication (1.9) ⇒ (1.8) follows.

Suppose now that (1.9) does not hold. Then there is a strictly increasing sequence
{nj}∞j=1 such that

lim
j→∞

Rx(1 + nj)
1 + nj

= lim sup
n→∞

Rx(n)
n

= a ∈ (0,∞] (3.7)

and
αnj &= αnj+1, ∀ nj (3.8)

where αnj and αnj+1 are digits in the representation (3.1).
Let {αm}∞m=1 be a sequence of digits in (3.1). Putting

β(j)
m :=






1− αm if nj ≤ m ≤ nj +Rx(1 + nj)

αm otherwise
(3.9)

and

yj :=
∞∑

m=1

2β(j)
m

3m
,

we claim that
lim

j→∞

log |G(x)−G(yj)|
log |x− yj |

=
log 2
log 3

(1 + a).

Indeed, (3.8) and (3.9) imply the equalities

1
2
|x− yj | =

(1
3

)nj

−
(1

3

)nj+1

− ...−
(1

3

)nj+Rx(nj+1)

,

|G(x)−G(yj)| =
(1

2

)nj

−
(1

2

)nj+1

− ...−
(1

2

)nj+Rx(nj+1)

.

Hence, by (3.7), we have

lim
j→∞

log |G(x)−G(yj)|
log |x− yj |

=
log 2
log 3

lim
j→∞

nj +Rx(1 + nj)
nj

= (1 + a)
log 2
log 3

.

Consider now the case where x ∈ C1. In this case there is n0 ∈ N such that
Rx(n) = 0 for every n ≥ n0. It remains only to show that

lim
y→x
y∈C

log |G(x)−G(y)|
log |x− y| =

log 2
log 3

.

Suppose that x is a right endpoint of a complementary interval, (i.e. αn = 0 for all
large enough n), y tends to x, and

y =
∞∑

m=1

2βm(y)
3m

, βm(y) ∈ {0, 1}.



206 Dovgoshey, Martio, Ryazanov, and Vuorinen

Then there are positive integers m1 and m2 = m2(y) such that

x =
m1∑

m=1

2αm

3m
, βm(y) = αm

if 1 ≤ m ≤ m1, m2(y) > m1, βm2(y) = 1, and βm(y) = 0 if m1 < m < m2(y).
Hence

lim
y→x
y∈C

log |G(x)−G(y)|
log |x− y| = lim

y→x
y∈C

log
(

∞∑

m=m2(y)
βm2−m

)

log
(

2
∞∑

m=m2(y)
βm3−m

) = lim
y→x
y∈C

−m2(y)log 2
−m2(y)log 3

=
log 2
log 3

.

The case where x is a left endpoint of a complementary interval is similar. !

Example 3.3 Here we give an example of a homeomorphism f : (X, ρ) → (Y, d) such
that:

(i) For every a ∈ ac(X)
lim
x→a

Kf (x, a) = 1.

(ii) For arbitrary positive α, c and for every ball B(a, δ) ⊆ X there exist x, y ∈
B(a, δ) for which

d(f(x), f(y)) ≥ c(ρ(x, y))α.

The example is constructed with aid of the Cantor ternary set C and the Cantor
function G.

Set

M :=




x ∈ C : lim
y→x
y∈C

log |G(x)−G(y)|
log |x− y| =

log 2
log 3






and
I◦ := G(M ∩ C◦). (3.10)

Let F1 : I◦ → M ∩ C◦ be a function such that F1(G(y)) = y for every y ∈ M ∩ C◦. It
is easy to see that F1 is a homeomorphism and by the definition of M we see that

lim
y→a

KF1(a, y) =
log 3
log 2

(3.11)

for every a ∈ I◦.
Let E be the space of infinite strings from the two-letters alphabet {0, 1}. We

may define a metric d on E by setting

d(α, β) = max
1≤n<∞

1
2n
|αn − βn|

if α = {αn}∞n=1, β = {βn}∞n=1 are elements of E .
Evidently, if d(α, β) &= 0, then there is a positive integer n such that d(α, β) = 2−n.
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The space (E , d) is an ultrametric space and the map

C 1
∞∑

n=1

2εn

3n
Φ−→ {εn} ∈ E

is a homeomorphism. (The proof can be found in [1, Chapter 2].)
We claim that the inequality

1
2
|x− y|log 2/log 3 ≤ d(Φ(x),Φ(y)) ≤ |x− y|log 2/log 3 (3.12)

holds for all x, y ∈ C. Indeed, if x and y have the representations

x =
∞∑

i=1

2αi3−i, y =
∞∑

i=1

2βi3−i, αi, βi ∈ {0, 1},

and if d(Φ(x),Φ(y)) = 2−n, then we get

1
2
|x− y| =

∣∣∣∣∣

∞∑

i=n

(αi − βi)3−i

∣∣∣∣∣ ≥ 3−n

(

1−
∞∑

i=1

3−i

)

=
1
2
(d(Φ(x),Φ(y)))log 3/log 2.

A similar argument yields

|x− y| ≤ 3(d(Φ(x),Φ(y))log 3/log 2.

These inequalities imply (3.12).
Let F2 : M ∩C◦ → Φ(M ∩C◦) be the restriction of the map Φ on the set M ∩C◦.

Obviously, F2 is a homeomorphism and it follows from (3.12) that

lim
z→a

KF2(a, z) =
log 2
log 3

(3.13)

for each a ∈ (M ∩ C◦). Now set, for every x ∈ I◦,

f(x) := F2(F1(x)).

The function f is a homeomorphism from I◦ to Φ(M ∩C◦) and the limits (3.11),
(3.13) imply that

lim
x→a

Kf (x, a) = 1

for each a ∈ I◦, i.e., we get (i).
Suppose α, c are arbitrary positive constants and O is an open interval in [0, 1].

To prove (ii) we can choose x ∈ C such that (3.7) holds and

α >
2

1 + a
, a ∈ (0,∞), G(x) ∈ O.

Since M is a dense subset of a perfect set C, there are sequences {xj}j∈N and
{yj}j∈N in M such that

lim
j→∞

xj = lim
j→∞

yj = x, xj &= yj ∀ j ∈ N,
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and

lim
j→∞

log |F1(xj)− F1(yj)|
log |xj − yj |

=
log 3
log 2

1
(1 + a)

,

see the proof of Theorem 1.4. The last relation and (3.12) imply that

lim
j→∞

log d(f(xj), f(yj))
log |xj − yj |

=
1

(1 + a)
.

Hence there is N0 ∈ N such that

d(f(xj), f(yj)) ≥ |xj − yj |2/(1+a)

for j ≥ N0. Since 2
1+a < α and lim

j→0
|xj − yj | = 0, we have (ii). !

To prove Theorem 1.5 we use the following two propositions.

Proposition 3.4

Let I◦ be the subset of the unit interval [0, 1] from (3.10). Then each number,
simply normal to base 2, belongs to I◦.

We recall the definition. Suppose x belongs to [0, 1] and has the following base 2
representation

x =
∞∑

n=1

an

2n
, an ∈ {0, 1}.

This number x is called a simply normal to base 2 if

lim
N→∞

1
N

N∑

n=1

an =
1
2
. (3.14)

3.5. Proof of Proposition 3.4. Let x0 ∈ C be a point with the ternary expansion

x0 =
∞∑

n=1

2αn

3n
, αn ∈ {0, 1}.

Suppose G(x0) is a number simply normal to base 2. Since G(x0) =
∞∑

n=1

αn
2n , formula

(3.14) implies that x0 ∈ C◦. (If x0 ∈ C1, i.e. x is an endpoint of a complementary

interval of C, then lim
N→∞

1
N

N∑
n=1

αn = 0 or lim
N→∞

1
N

N∑
n=1

αn = 1.) Hence, it suffices to

show that

lim
n→∞

Rx0(n)
n

= 0. (3.15)



Linear distortion of Hausdorff dimension and Cantor’s function 209

Put N0 := {n : αn = 0} and N1 := {n : αn = 1}. Since x0 ∈ C◦ we have card(N0) =
card(N1) = ∞. It follows from (3.14) that

1
2

= lim
m→∞
m∈N1

1
m +Rx0(m)

m+Rx0 (m)∑

n=1

αn

= lim
m→∞
m∈N1

m

m +Rx0(m)
1
m

(

Rx0(m)− 1 +
m∑

n=1

αm

)

= lim
m→∞
m∈N1

m

m +Rx0(m)

(Rx0(m)
m

+
1
2

)
.

Hence we get

lim
m→∞
m∈N1

Rx0(m)
m

= 0.

A similar calculation yields

lim
m→∞
m∈N0

Rx0(m)
m

= 0.

Since N = N0 ∪ N1 we have (3.15). !

The proof of the next lemma is well-known.

Lemma 3.6

Let m1 be the Lebesgue measure on R, and let s = log 2/log 3. Then

m1(G(A)) = Hs(A)

for every A ⊆ C.

3.7. Proof of Theorem 1.5. As in Example 3.3 set

M =




x ∈ C : lim
y→x
y∈C

KG(y, x) =
log 2
log 3




 .

We claim that
dim(G(A)) =

log 3
log 2

dim(A)) (3.16)

for every A ⊆ M , and
Hs(M) = 1 (3.17)

for s = log 2/log 3.
In order to prove (3.16), we can apply Corollary 2.7 with X = M , X◦ = C1,

Y = [0, 1]. Observe that C1 is countable and hence we have (2.16). The restriction

G|M∩C◦ : M ∩ C◦ → G(M ∩ C◦)
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is strictly increasing and continuous, so that it is a homeomorphism.
It remains to verify (3.17). Let N− be the set of numbers which are not simply

normal to base 2. It is known [6, p.103] that m1(N−) = 0. By Proposition 3.4 I◦ is the
superset of the set of all simply normal to base 2 numbers. Consequently, m1(I◦) = 1,
and by Lemma 3.6 we have (3.17). !
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