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E-mail: kaj.nystrom@math.umu.se

Received June 19, 2005

Abstract

In this paper we consider general second order, symmetric and strongly elliptic
parabolic systems with real valued and constant coefficients in the setting of a
class of time-varying, non-smooth infinite cylinders

Ω = {(x0, x, t) ∈ R× Rn−1 × R : x0 > A(x, t)}.

We prove solvability of Dirichlet, Neumann as well as regularity type problems
with data in Lp and Lp

1,1/2 (the parabolic Sobolev space having tangential
(spatial) gradients and half a time derivative in Lp) for p ∈ (2 − ε, 2 + ε)
assuming thatA(x, ·) is uniformly Lipschitz with respect to the time variable and
that ‖Dt

1/2A‖∗ ≤ ε0 < ∞ for ε0 small enough (‖Dt
1/2A‖∗ is the parabolic

BMO-norm of a half-derivative in time). We also prove a general structural
theorem (duality theorem between Dirichlet and regularity problems) stating
that if the Dirichlet problem is solvable in Lp with the relevant bound on the
parabolic non-tangential maximal function then the regularity problem can be
solved with data in Lq

1,1/2(∂Ω) with q−1 + p−1 = 1. As a technical tool,
which also is of independent interest, we prove certain square function estimates
for solutions to the system.

Keywords: Second order parabolic systems, time-varying cylinder, Carleson measure, maximal
function, parabolic singular integrals, square functions, potential theory.
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1. Introduction and statement of main results

In recent years considerable progress has been made in the study of linear second order
parabolic systems and equations in non-smooth, time-varying domains. In particular
in [9], [11] the L2 solvability for Dirichlet, Neumann and regularity type problems were
established for parabolic Lamé systems as well as a linearized system of non-stationary
Navier-Stokes equations.

General second order symmetric parabolic systems with real valued and constant
coefficients satisfying the Legendre-Hadamard ellipticity condition have the following
form for relevant n, m and constant coefficient matrices Ars,

∂ur

∂t
=

∂

∂xi
Ars

ij
∂us

∂xj
0 ≤ i, j ≤ n− 1 1 ≤ r, s ≤ m, (1)

Ars
ij = Asr

ji , (2)
Ars

ij νiνjη
rηs ≥ c|ν|2|η|2 for all ν ∈ Rn η ∈ Rm. (3)

From the perspective of boundary value problems in a domain Ω the most natural
boundary conditions for %u = (u1, ...., um) are Dirichlet conditions, %u = %f , and Neumann
type conditions (∂"u

∂ν )r = N iArs
ij

∂us

∂xj
= f r. Here N = (N0, ..., Nn−1) is the (in the space

variables) outward directed normal define on the boundary of the time-slices of Ω (this
is made more precise below). A prototype for the kind of systems considered in this
paper is the parabolic Lamé system

∂%u

∂t
= µ∆%u + (σ + µ)∇(div %u). (4)

The stationary version of this system appears in linear elasticity and the constants µ
and σ are referred to as Lamé moduli. The parabolic Lamé system can be represented
as a second order, symmetric, constant coefficient system satisfying the Legendre-
Hadamard ellipticity condition in an infinite number of ways. For example if n = m = 2
we can express this system in the following two ways,

Ars
ij =

(
A11 A12

A21 A22

)

=





2µ + σ 0 0 σ
0 µ µ 0
0 µ µ 0
σ 0 0 2µ + σ



 , (5)

Ars
ij =

(
A11 A12

A21 A22

)

=





2µ + σ 0 0 µ + σ
0 µ 0 0
0 0 µ 0

µ + σ 0 0 2µ + σ



 . (6)

Using integration by parts each representation give rise to a conormal derivative,
(∂%u

∂ν

)r
=

( ∂%u

∂νA

)r
= N iArs

ij
∂us

∂xj
. (7)

In particular the examples in (5) and (6) give rise to the following two conormals,
∂%u

∂ν1
= σ(div %u)N + µ((∇%u) + (∇%u)T )N, (8)

∂%u

∂ν2
= (µ + σ)(div %u)N + µ(∇%u)N. (9)
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Here (∇%u)T is the transpose of the matrix under consideration and (∇%u)+(∇%u)T is the
matrix of symmetric gradients. A Neumann type problem with (8) being prescribed
on the boundary of the domain is usually referred to as the traction boundary value
problem and in the stationary case this condition is the most relevant one from the
physical point of view. In this case the corresponding matrix (5) is only semi-positive
definite while in (6) the Lamé system is represented in terms of a positive definite
matrix.

In this paper we will assume, partially as we are interested in proving a structural
theorem about the duality between the Dirichlet and regularity problems for systems,
that our system satisfies a condition stronger than the Legendre-Hadamard condition.
In fact we will assume that

Ars
ij ηr

i η
s
j ≥ c

∑

(l,q)

|ηq
l |

2 for all ηi, ηj ∈ Rm. (10)

This condition implies that the matrix {Ars
ij } is positive definite. As described above

many systems can be represented in an infinite number of ways and our results on
Dirichlet problems and our duality result will apply to any system having at least one
representation in terms of a positive definite matrix {Ars

ij }.
Our geometric set up is that of time-varying non-smooth domains of the form

Ω = {(x0, x, t) ∈ R× Rn−1 × R : x0 > A(x, t)} (11)

where n ≥ 2 and where the function A(x, t) : Rn → R is compactly supported. In
order to introduce our regularity assumptions on the function A, which give a clear
connection to parabolic singular integrals, we have to introduce some more notation.
Let z = (x, t) ∈ Rn−1×R and let ‖z‖ be the unique positive solution ρ of the equation

t2

ρ4
+

n−1∑

i=0

x2
i

ρ2
= 1. (12)

Note that ‖(δx, δ2t)‖ = δ‖(x, t)‖ and we will call ‖z‖ the parabolic norm of z. By defi-
nition the parabolic BMO is the space of locally integrable functions modulo constants
satisfying

‖b‖∗ := sup
B

1
|B|

∫

B

|b(z)−mBb|dz <∞ (13)

where z = (x, t), B denotes the parabolic ball B = Br(z0) = {z ∈ R = ‖z − z0‖ < r}
and mBb denotes the average of the function b over the ball B. Let ,̂∨ be the Fourier
and the inverse Fourier transform on Rn, and let ξ, τ denote the phase variables.
Following Fabes-Riviere [3, 4] we define a parabolic half-order time derivative by

DnA(x, t) :=
(

τ

‖(ξ, τ)‖Â(ξ, τ)
)∨

(x, t). (14)

We let ‖ · ‖∞ be the supremum norm and define ‖A‖comm = ‖∇xA‖∞+ ‖DnA‖∗ where

∇x =
(

∂
∂x1

, . . . , ∂
∂xn−1

)
, ‖∇xA‖∞ := supt ‖∇xA(·, t)‖∞. The regularity condition we
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impose on our domains in (11) is that ‖A‖comm < ∞. As explained in [5, p. 213] the
notation ‖A‖comm reflects the fact that this quantity is equivalent to the operator norm
of the commutator [

√
∆− ∂/∂t,A] and since this commutator is the parabolic analogue

of the first Calderón commutator, the present condition is, at least from the point of
singular integrals the appropriate parabolic analogue of the Lipschitz domains which
have been considered in the elliptic theory. One can also prove that ‖A‖comm ≤ β <∞
implies that A(x, t) is parabolically Lipschitz in the following sense,

|A(x, t)−A(y, s)| ≤ β(|x− y| + |t− s|1/2) x, y ∈ Rn t, s ∈ R. (15)

We furthermore introduce for 0 < α ≤ 2 and g ∈ C∞
0 (R) the fractional differentiation

operators Dα by

(Dαg)∧(τ) := |τ |αĝ(τ). (16)

It is well-known that if 0 < α < 1 then

Dαg(s) = c
∫

R

g(s)− g(τ)
|s− τ |1+α

dτ, (17)

whenever s ∈ R, i.e., Iα = cD−1
α , where Iα(s) = |s|α−1 for s ∈ R is the one-dimensional

Riesz transform of order α and c is a universal constant. If h ∈ C∞
0 (Rn) then by

Dt
αh : Rn → R we will mean Dαh(x, ·) defined a.e. for each x ∈ Rn−1. In [6] it is

proved that

‖A‖comm := ‖∇xA‖∞ + ‖DnA‖∗ ≈ ‖∇xA‖∞ + ‖Dt
1/2A‖∗ (18)

and that given ε > 0, 0 < ε < 1 and γ, 0 < γ < ∞ there exists δ = δ(ε, γ) > 0 such
that if ‖∇xA‖∞ ≤ γ <∞ then

min
{
‖Dt

1/2A‖∗, ‖DnA‖∗
}
≤ δ ⇒ max

{
‖Dt

1/2A‖∗, ‖DnA‖∗
}
≤ ε. (19)

I.e. the smallness of ‖DnA‖∗ could equivalently be stated as a smallness condition on
‖Dt

1/2A‖∗.
The surface measure on ∂Ω is defined as dσtdt, where dσt is the naturally defined

surface measure on the Lipschitz graph ∂Ωt. Here Ωt =
{
(x0, x, t) ∈ R × Rn−1 ×

{t};x0 > A(x, t)
}

and the unit outer normal to Ωt is denoted by Nt = (N0
t , ..., Nn−1

t ).
Lp(∂Ω) denotes the Lp-spaces w.r.t. the measure dσtdt. Following Fabes and Jodeit [2]
we define a parabolic Sobolev space in the following way. Let π = ∂Ω → Rn be the
projection π

(
A(x, t), x, t

)
= (x, t) and set f̃ = f ◦ π−1. Lp

1,1/2(∂Ω) is defined to consist
of equivalence classes of functions f with distributional derivatives in x satisfying
‖f‖Lp

1,1/2
(∂Ω) <∞, where

‖f‖Lp
1,1/2

(∂Ω) := ‖f̃‖Lp
1,1/2

(Rn) := ‖Df̃‖p. (20)

Here

(Df̃)∧(ξ, τ) := ‖(ξ, τ)‖ ˆ̃f(ξ, τ), (21)
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i.e., f̃ = D−1φ, φ ∈ Lp(Rn) where D−1 is a parabolic Riesz potential. By applying
Plancherel’s theorem, if p = 2, we have

‖Df̃‖2 ≈ ‖Dt
1/2f̃‖2 + ‖∇xf̃‖2, (22)

where Dt
1/2 denotes the one-dimensional one half fractional derivative of f in the time

variable introduced in (16-17).
We are now ready to formulate the first four main results proved in this paper.

In the statement of these theorems H denotes the Hilbert transform in the t-variable
and the symbol Ñ∗ refers to a non tangential maximal function operator defined in the
bulk of the paper.

Theorem 1 (The Dirichlet problem)
Let Ω be as in (11) and assume that {Ars

ij } are real constants satisfying (2)
and (10). Let ‖A‖comm ≤ β < ∞ and assume that ‖Dt

1/2A‖∗ ≤ ε0 < ∞. If

ε0 = ε0(‖∇xA‖∞) is small enough then the following is true: given %f ∈ L2(∂Ω) there
exists a unique %u, ‖Ñ∗(%u)‖2 <∞, satisfying the following conditions,

∂ur

∂t
=

∂

∂xi
Ars

ij
∂us

∂xj
0 ≤ i, j ≤ n− 1 1 ≤ r, s ≤ m in Ω,

%u = %f a.e on ∂Ω.

There furthermore exists %g ∈ L2(∂Ω) such that %u can be represented as a double layer
potential, %u = D%g, and

‖Ñ∗(D%g)‖2 ≤ Cβ‖%f‖2.

Theorem 2 (The Neumann problem)
Under the same assumptions as in Theorem 1 the following is true: given %f ∈

L2(∂Ω) there exists a unique %u (modulo a constant vector), ‖Ñ∗(∇%u)‖2 <∞, satisfying
the following conditions,

∂ur

∂t
=

∂

∂xi
Ars

ij
∂us

∂xj
0 ≤ i, j ≤ n− 1 1 ≤ r, s ≤ m in Ω,

(∂%u

∂ν

)r
= N iArs

ij
∂us

∂xj
= f r a.e on ∂Ω.

There furthermore exists %g ∈ L2(∂Ω) such that %u can be represented as a single layer
potential, %u = S%g, and

‖Ñ∗(∇S%g)‖2 + ‖Ñ∗(HDt
1/2S%g)‖2 ≤ Cβ‖%f‖2.

Theorem 3 (The regularity problem)
Under the same assumptions as in Theorem 1 the following is true: given %f ∈

L2
1,1/2(∂Ω) there exists a unique %u (modulo a constant vector), ‖Ñ∗(∇%u)‖2 < ∞,

satisfying the following conditions,

∂ur

∂t
=

∂

∂xi
Ars

ij
∂us

∂xj
0 ≤ i, j ≤ n− 1 1 ≤ r, s ≤ m in Ω,

%u = %f.
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There furthermore exists %g ∈ L2(∂Ω) such that %u can be represented as a single layer
potential, %u = S%g, and

‖Ñ∗(∇S%g)‖2 + ‖Ñ∗(HDt
1/2S%g)‖2 ≤ Cβ‖%f‖L2

1,1/2
(∂Ω).

Theorem 4 (Duality between the adjoint Dirichlet problem and the regularity pro-
blem)

Let

Ω = Ω1 = {(x0, x, t) ∈ R× Rn−1 × R : x0 > A(x, t)},
Ω2 = {(x0, x, t) ∈ R× Rn−1 × R : x0 < A(x, t)}

and assume that ‖A‖comm ≤ β < ∞ and that {Ars
ij } are real constants satisfying (2)

and (10). Assume furthermore that for some p ∈ (1,∞) and for k ∈ {1, 2} there exist,
given %f ∈ Lp(∂Ω), a solution %vk, satisfying ‖Ñ∗,k(%vk)‖p < ∞ (Ñ∗,k is, for k ∈ {1, 2}, a
non tangential maximal function operator defined Ωk as the domain of reference), to
the problem

−∂vr
k

∂t
=

∂

∂xi
Ars

ij
∂vs

k

∂xj
0 ≤ i, j ≤ n− 1 1 ≤ r, s ≤ m in Ωk,

%vk = %f a.e on ∂Ω.

Then for q satisfying, q−1+p−1 = 1 there exist, given %g ∈ Lq
1,1/2(∂Ω), a unique solution

%u (modulo a constant vector), satisfying ‖Ñ∗(∇%u)‖q <∞, to the problem

∂ur

∂t
=

∂

∂xi
Ars

ij
∂us

∂xj
0 ≤ i, j ≤ n− 1 1 ≤ r, s ≤ m in Ω,

%u = %g a.e on ∂Ω in Lq
1,1/2(∂Ω).

We emphasize that Theorem 1, Theorem 2 and Theorem 3 were previously proven
in [11] in the case of the parabolic Lamé system in (4). Also note that by standard
real-variable arguments it follows that the L2 result is self-improving in the sense that
there exists some small ε = ε(Ω) > 0 such that the theorems and the inequalities
remain valid for 2− ε < p < 2 + ε.

Theorem 4 states that if the adjoint Dirichlet problem is solvable in Ω and its
complement, with data in Lp(∂Ω) and with an appropriate bound on the non tangen-
tial maximal function operator, then the regularity problem is solvable with data in
Lq

1,1/2(∂Ω) for q satisfying, q−1 + p−1 = 1. The reverse statement, i.e., that solvability
of the regularity problem implies solvability of the Dirichlet problem follows immedi-
ately from the fact if the regularity problem is solvable then an appropriate matrix of
Green functions can be constructed. Using this matrix the Dirichlet problem can be
solved by standard arguments. The theorem generalizes to the setting of systems the
result of [7] for the heat equation. For the Laplace equation in Lipschitz domains it
is well known that there exist a duality between solvability of the Dirichlet problem
and the regularity problem of the type considered in this paper. In fact in that case
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the same is true for the Dirichlet and Neumann problem (see [10] for an account of
this and related issues). Also note that compared to the case of the Laplace operator
questions concerning the duality between the Dirichlet problem and the Neumann and
regularity problems can not be paralleled, in the setting of non-smooth time-varying
domains, in the case of the heat equation. This is clear from the results in [7] and [8]
due to Hofmann and Lewis.

Concerning the proof of our results one key component is the following square
function estimate for solutions %u of our system ( for the definition of the change of
variables ρ(λ, x, t) : Rn+1

+ = R+ × Rn−1 × R → Ω we again refer to the bulk of the
paper).

Theorem 5

Let Ω be as in (11) and assume that ‖A‖comm ≤ β < ∞. Let %u be a solution to
the second order parabolic system in (1) and assume that the constants defining the
system, {Ars

ij }, satisfy (2) and (10). Then for r ∈ {1, 2, ..,m}

(i)
∞∫

0

∫

Rn

|ur
xixj

◦ ρ|2λdzdλ ≤ cβ‖Ñ∗(∇%u)‖22, 0 ≤ i, j ≤ n− 1,

(ii)
∞∫

0

∫

Rn

|ur
xit ◦ ρ|2λ3dzdλ ≤ cβ‖Ñ∗(∇%u)‖22, 0 ≤ i ≤ n− 1,

(iii)
∞∫

0

∫

Rn

∣∣Dt
1/2

(
ur

xi
◦ ρ

)∣∣2λdzdλ ≤ cβ‖Ñ∗(∇%u)‖22, 0 ≤ i ≤ n− 1,

(iv)
∞∫

0

∫

Rn

∣∣Dt
3/2

(
ur ◦ ρ

)∣∣2λ3dzdλ ≤ cβ‖Ñ∗(∇%u)‖22.

In fact having established the square function estimate in Theorem 5, Theorem 1,
Theorem 2 and Theorem 3 can be proven by copying the lengthy arguments in [11].
Apart from Theorem 5 the main technical estimates of [11], i.e., [11, Lemma 3.4]
and [11, Theorem 5.1], follows from estimates on parabolic singular integrals, Theo-
rem 5 and by using the symmetry of the system. In the case of the second part of
[11, Theorem 5.1] this may initially not seem obvious to the reader but by reanalyzing
the argument of proof based on integration by parts, the reader can verify that as a
result of the symmetry of our system the appropriate version of the statement of that
technical component can be proved. We omit the details. Based on these estimates
and the fact that we are assuming the strong ellipticity condition in (10) all of the
results in [11, Section 6] based on Rellich identities and inequalities can be verified to
hold in our setting. Concerning the proof of Theorem 1, Theorem 2 and Theorem 3 we
will not reproduce more of these arguments in this paper. Instead from the perspective
of proofs we will focus on the proof of Theorem 4 and Theorem 5.

The difficult part of Theorem 5 is part (i). In [11] this theorem was proven under
the assumption that %u solves the parabolic Lamé system in Ω. The argument explored



100 Nyström

certain specific features of that particular system and in particular the argument used
the fact that if %u solves the system in (4) then div %u solves a heat equation in Ω.
Still based on the arguments in [1] the intuition is that the type of square function
estimates considered here should be valid, in the time-varying case, for all second
order parabolic systems of the type we consider. That this is the case is proven in this
paper. Concerning the proof of the duality theorem, i.e., Theorem 4, our argument
is a generalization of the argument in [7] for the heat equation. That argument is
based on ideas originated in [15] for the Laplace equation and explored in [13] in
the study of higher order elliptic equations and systems in Lipschitz domains. The
generalization of the elliptic approach to the situation of time-varying cylinders is
already technically highly complicated in the case of the heat operator but the reader
will notice that equipped with the square function estimate in Theorem 5 part (i) (and
several variation on the same theme) we are able to carry the argument through also
in the case of our systems.

It is our belief that our work is an encouraging contribution to the study of
parabolic systems in this genuinely parabolic setting and that the next step is to go
for parabolic versions of the results in [13] in a relevant set of time-varying cylinders.

The rest of the paper is organized as follows. In Section 2 we state a key lemma
(Lemma 6) on Carleson measures, recall some facts on singular integrals and prove
Theorem 5. Section 3 is devoted to the proof of Theorem 4.

2. Carleson measures, singular integrals and square functions

In this section we prove the square function estimates of Theorem 5 as well as a number
of variation of these. Our geometric set up is, as described in the introduction, time-
varying domains as in (11) where the regularity condition on the function A can be
summarized as ‖A‖comm = ‖∇xA‖∞ + ‖DnA‖∗ <∞.

2.1 Carleson measures and the non-tangential maximal function

Let P (z) ∈ C∞
0 (Rn). We furthermore assume that P (z) is a non-negative even function

and that
∫
Rn P (z)dz = 1. I.e. we assume that P (z) is a parabolic approximation of

the identity. Let d = n + 1 and define

Pλ(z) = λ−dP (λ−αz) = λ−dP
(x

λ
,

t

λ2

)
. (23)

For a locally integrabel function f we denote by Pλf the naturally defined operation
of convolution. Define a ‘parabolic’ lifting ρ(λ, x, t) from Rn+1

+ = R+ ×Rn−1 ×R onto
Ω = {(x0, x, t) ∈ R× Rn−1 × R : x0 > A(x, t)} in the following way,

ρ(λ, x, t) = (λ + PγλA(x, t), x, t) ρ(0, x, t) = (A(x, t), x, t). (24)

Here γ is a small parameter and we can adjust γ, as ‖∇xA‖∞ <∞, so that,

1
2
≤ 1 +

∂PγλA(z)
∂λ

≤ 3/2.
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The following lemma is crucial and incorporates the geometry information in an ana-
lytic and quantitative way (for a proof see [6, p. 365–366]).

Lemma 6

Let σ, θ be non-negative integers and let φ = (φ1, . . . , φn−1) be a multiindex.
Define 3 = σ + |φ| + θ. Assume that ‖A‖comm ≤ β <∞ and let

dv =
(

∂(PγλA(x, t)
∂λσ∂xφ∂tθ

)2

λ2(+2θ−3dxdtdλ

define a measure on Rn+1
+ . Then this measure is a Carleson measure on Rn+1

+ if either
σ + θ ≥ 1 or |φ| ≥ 2 and

(i) v
(
Br(z)× (0, r)

)
≤ Crdγ(2−2φ−4θ)b2(1 + β)2.

Here b = ‖DnA‖∗ if θ ≥ 1 and b = 1, if θ = 0. Moreover if 3 ≥ 1 then

(ii)

∥∥∥∥∥
∂(PγλA

∂λσ∂xφ∂tθ

∥∥∥∥∥
∞

≤ C1γ
(1−|φ|−2θ)λ1−(−θb(1 + β).

Remark 1 Let us in this context give a short digression to Littlewood-Paley theory.
Let in the following g ∈ C∞

0 (Rn) and recall that Dn = D−1 ◦ ∂
∂t where Dn are D are the

parabolic differential operator defined in (14) and (21). Let furthermore Pλ be as (23).
As Pλ is an even function and therefore has vanishing first order moments, it follows
by standard arguments that Q̃λg = D−1 ∂

∂λPλg satisfies the following Littlewood-Paley
estimate for p ∈ (1,∞)

(∫

Rn

( ∞∫

0

|Q̃λg|2λ−1dλ

)p/2

dxdt

)1/p

≤ cp||g||p.

Let a > 0 and (X, t) = (x0, x, t) ∈ ∂Ω. We let Γ̃a(X, t) be the parabolic cone

Γ̃a(X, t) =
{
(y0, y, s) ∈ Ω : ‖(y − x, t− s)‖ < a|y0 − x0|

}
. (25)

If h is a function defined on Ω we define the non-tangential maximal function Ñ∗(h) =
Ña
∗ (h) : ∂Ω→ R by

Ñ∗(h)(X, t) = Ña
∗ (h)(X, t) = sup

(Y,s)∈Γ̃a(X,t)

|h|(Y, s). (26)

We also introduce appropriate truncated version of this in the following way. Let r > 0
and let the parabolic cone, truncated at height r and centered at (X, t) = (x0, x, t) ∈
∂Ω, be defined as

Γ̃a,r(X, t) =
{
(y0, y, s) ∈ Ω : ‖(y − x, t− s)‖ < a|y0 − x0|, y0 − x0 < r

}
.
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Similarly we define the truncated non-tangential maximal function Ña,r
∗ (h) : ∂Ω → R

by

Ña,r
∗ (h)(X, t) = sup

(Y,s)∈Γ̃a,r(X,t)

|h|(Y, s).

To continue we let Baλ(x, t) = {(y, s) : ||(x− y, t− s)|| < aλ} and define

Γa(x, t) := {(λ, y, s), λ > 0, (y, s) ∈ Baλ(x, t)},
Γa,r(x, t) := {(λ, y, s), r > λ > 0, (y, s) ∈ Baλ(x, t)}.

For a function g defined on Rn+1
+ and for a ≥ 1 fixed we also introduce the following

maximal function Na
∗ (g) : Rn+1

+ → R,

N∗(g)(x, t) = Na
∗ (g)(x, t) = sup

Γa(x,t)
|g|(λ, y, s).

Similarly we introduce the truncated maximal function as

Na,r
∗ (g)(x, t) = sup

Γa,r(x,t)
|g|(λ, y, s).

Let ρ(λ, x, t) be the parabolic lifting introduced in the previous subsection. Note that
if a and r are fixed numbers then one can easily prove that

Γ̃ã,r̃(ρ(0, x, t)) ⊂ ρ(Γa,r(x, t)),

provided that ã is sufficiently small depending on a and ‖A‖comm and r̃ = r+PγrA(x, t).
Hence choosing γ small we can make sure that |r̃ − r| is small.

If again a > 0 and (X, t) = (x0, x, t) ∈ ∂Ω we define using the notation just
introduced, for functions u defined in Ω, the associate square function as well as the
associated truncated square function as

Sa(u)(X, t) =
( ∫

Γ̃a(X,t)

|∇u(Y, s)|2δ(Y, s)−ndY ds
)1/2

,

Sa,r(u)(X, t) =
( ∫

Γ̃a,r(X,t)

|∇u(Y, s)|2δ(Y, s)−ndY ds
)1/2

.

Here δ(Y, s) is the parabolic distance from (Y, s) ∈ Ω to ∂Ω. Note that if F ⊂ ∂Ω,
then by the theorem of Fubini,

∫

F

|Sa(u)(X, t)|2dσ(X, t) ∼
∫

∪(X,t)∈F Γ̃a(X,t)

|∇u(Y, s)|2δ(Y, s)dY ds,

∫

F

|Sa,r(u)(X, t)|2dσ(X, t) ∼
∫

∪(X,t)∈F Γ̃a,r(X,t)

|∇u(Y, s)|2δ(Y, s)dY ds.
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2.2 Singular integrals

Let in the following (X, t) = (x0, x1, ..., xn−1, t), (x, t) = (x1, ..., xn−1, t). Let

Γ(X, t) =
(

Γj,k(X, t)
)

m×m

be a fundamental solution to the parabolic system under consideration. For the explicit
construction in case of the Lamé system we refer to [11]. For %f ∈ L2(∂Ω) we define

S %f(X, t) =
t∫

−∞

∫

∂Ωs

Γ(X −Q, t− s)%f(Q, s)dσs(Q)ds (27)

D%f(X, t) =
t∫

−∞

∫

∂Ωs

{
∂

∂νs
Γ(X −Q, t− s)

}T

%f(Q, s)dσs(Q)ds (28)

where ∂
∂νs

is the conormal derivative defined in (7) applied to each column of the
matrix. S %f and D%f are the single respectively double layer potentials. In [11] the
following is proved in the case of the Lamé system and the argument carries over to
this more general setting.

Theorem 7
Let ‖A‖comm ≤ β <∞ and let %f ∈ Lp(∂Ω) with 1 < p <∞. Define for (P, t) ∈ ∂Ω

and j = 0, 1 . . . , n− 1 the following operators

Kj %f(P, t) := p.v

t∫

−∞

∫

∂Ωs

∂Γ
∂xj

(P −Q, t− s)%f(Q, s)dσs(Q)ds.

Then
‖Kj %f‖p ≤ Cβ,p‖%f‖p.

Note that in case of a vector %g, ‖%g‖p is defined as the sum of ‖gj‖p where gj is
component j of %g. A consequence of the last theorem is that Kj %f(P, t) exists for a.e.
(P, t) ∈ ∂Ω w.r.t. dσtdt. We now consider continuity of Sb

%f in the regularity space
Lp

1,1/2(∂Ω). By definition

Sb
%f(P, t) =

t∫

−∞

∫

∂Ωs

Γ(P −Q, t− s)%f(Q, s)dσs(Q)ds (29)

for all (P, t) ∈ ∂Ω for which this expression make sense. Based on the result in [5], [6]
the following can be proved (see [11])

Theorem 8
Let ‖A‖comm ≤ β <∞ and let %f ∈ Lp(∂Ω). Then

‖Sb
%f‖Lp

1,1/2
(∂Ω) ≤ Cβ‖%f‖p.
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2.3 Square function estimates

In this section we will prove Theorem 5. We also prove a number of variations and
state a number of remarks which will be useful in the next section.

Proof. Let ‖A‖comm ≤ β < ∞ and let %u be a solution to the second order parabolic
system in (1) and assume that the system fulfills (2) and (10). We will start by proving
(i) of Theorem 5. In particular we will prove that

∑

r,i

∞∫

0

∫

Rn

|ur
xi
◦ ρ|2λdzdλ ≤ cβ‖Ñ∗(%u)‖22, (30)

where ρ(λ, x, t) = (λ + PγλA(x, t), x, t), ρ(0, x, t) = (A(x, t), x, t) was introduced in
(23)-(24). Part (i) of Theorem 5 then follows by applying (30) to the vector %uxj .

Define

Qrs = Ars
00 +

∑

(i,j),i)=0,j )=0

Ars
ij

∂PγλA

∂xi

∂PγλA

∂xj
− 2

∑

j,j )=0

Ars
0j

∂PγλA

∂xj
. (31)

Q = {Qrs} is a m ×m matrix. By the Legendre-Hadamard condition Q is a positive
definite matrix with eigenvalues bounded from below by C(1 + |∇PγλA|2). To prove
the theorem we will start by manipulating the expression

I = −
∫

Rn

Qrs(ur ◦ ρ)(us ◦ ρ)dz. (32)

Here {r, s} are initially assumed fixed, but we will at certain instances also sum over
these indices. Integrating, in I, once by parts in the λ-direction we have,

I = −
∞∫

0

∫

Rn

Qrs
λλ(ur ◦ ρ)(us ◦ ρ)λdzdλ−

∞∫

0

∫

Rn

Qrs(ur ◦ ρ)λλ(us ◦ ρ)λdzdλ

−
∞∫

0

∫

Rn

Qrs(ur ◦ ρ)(us ◦ ρ)λλλdzdλ− 2
∞∫

0

∫

Rn

Qrs
λ (ur ◦ ρ)(us ◦ ρ)λλdzdλ

−2
∞∫

0

∫

Rn

Qrs
λ (ur ◦ ρ)λ(us ◦ ρ)λdzdλ− 2

∞∫

0

∫

Rn

Qrs(ur ◦ ρ)λ(us ◦ ρ)λλdzdλ

= T1 + T2 + T3 + T4 + T5 + T6. (33)

To continue we first analyze T2 and T3. By symmetry we only have to treat T2. Let
from now on D = (1 + ∂PγλA

∂λ ). Then by carrying out the differentiation we get

T2 = −
∞∫

0

∫

Rn

Qrs(ur
x0x0

◦ ρ)(us ◦ ρ)D2λdzdλ

−
∞∫

0

∫

Rn

Qrs(ur
x0
◦ ρ)(us ◦ ρ)

∂2PγλA

∂λ2
λdzdλ.
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As us
t = Ars

ij ur
xixj

we have

up
t = Arp

00u
r
x0x0

+
∑

(i,j,r),(i,j) )=(0,0)

Arp
ij ur

xixj
. (34)

We now change variables. Assume initially that i 1= 0, j 1= 0. Then

(ur
xixj

◦ ρ) = (ur
xj
◦ ρ)xi − (ur

xjx0
◦ ρ)

∂PγλA

∂xi

= (ur
xj
◦ ρ)xi − (ur

x0
◦ ρ)xj

∂PγλA

∂xi
+ (ur

x0x0
◦ ρ)

∂PγλA

∂xi

∂PγλA

∂xj
. (35)

Suppose that i = 0, j 1= 0. Then

(ur
x0xj

◦ ρ) = (ur
x0
◦ ρ)xj − (ur

x0x0
◦ ρ)

∂PγλA

∂xj
. (36)

Combining (34-36),

up
t ◦ ρ = Arp

ij ur
xixj

◦ ρ = Arp
00u

r
x0x0

◦ ρ

+
∑

(i,j,r),i)=0,j )=0

Arp
ij

[
(ur

xj
◦ ρ)xi − (ur

x0
◦ ρ)xj

∂PγλA

∂xi
+ (ur

x0x0
◦ ρ)

∂PγλA

∂xi

∂PγλA

∂xj

]

+ 2
∑

(j,r),j )=0

Arp
0j

[
(ur

x0
◦ ρ)xj − (ur

x0x0
◦ ρ)

∂PγλA

∂xj

]
.

Grouping the terms properly,

up
t ◦ ρ =

∑

r

Qrpur
x0x0

◦ ρ +
∑

(i,j,r),i)=0,j )=0

Arp
ij [(ur

xj
◦ ρ)xi − (ur

x0
◦ ρ)xj

∂PγλA

∂xi
]

+ 2
∑

(j,r),j )=0

Arp
0j(u

r
x0
◦ ρ)xj . (37)

Importing (37) into the formula for T2 and putting p = s we have,

T2 = −
∞∫

0

∫

Rn

(us
t ◦ ρ)(us ◦ ρ)D2λdzdλ

+
∑

(i,j,r),i)=0,j )=0

∞∫

0

∫

Rn

Ars
ij (ur

xj
◦ ρ)xi(u

s ◦ ρ)D2λdzdλ

−
∑

(i,j,r),i)=0,j )=0

∞∫

0

∫

Rn

Ars
ij (ur

x0
◦ ρ)xj

∂PγλA

∂xi
(us ◦ ρ)D2λdzdλ

+ 2
∑

(j,r),j )=0

∞∫

0

∫

Rn

Ars
0j(u

r
x0
◦ ρ)xj (u

s ◦ ρ)D2λdzdλ

−
∞∫

0

∫

Rn

Qrs(ur
x0
◦ ρ)(us ◦ ρ)

∂2PγλA

∂λ2
λdzdλ.
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By partial integration in the second, third and fourth terms of this expression we get

T2 +
∞∫

0

∫

Rn

(us
t ◦ ρ)(us ◦ ρ)D2λdzdλ

+
∑

(i,j,r),i)=0,j )=0

∞∫

0

∫

Rn

Ars
ij (ur

xj
◦ ρ)(us ◦ ρ)xiD

2λdzdλ

−
∑

(i,j,r),i)=0,j )=0

∞∫

0

∫

Rn

Ars
ij (ur

x0
◦ ρ)

∂PγλA

∂xi
(us ◦ ρ)xjD

2λdzdλ

+ 2
∑

(j,r),j )=0

∞∫

0

∫

Rn

Ars
0j(u

r
x0
◦ ρ)(us ◦ ρ)xjD

2λdzdλ = G.

Here G denotes a sum of terms to which we can apply Lemma 6 and conclude that

|G| ≤ C
( ∞∫

0

∫

Rn

|ur
x0
◦ ρ|2λdzdλ

)1/2(∫

Rn

|N∗(us ◦ ρ)|2 dz
)1/2

. (38)

Defining Λ as the set of index {(i, j, r), i 1= 0, j 1= 0} can continue and conclude that

T2 +
∞∫

0

∫

Rn

(us
t ◦ ρ)(us ◦ ρ)D2λdzdλ−G

equals

−
∑

Λ

∞∫

0

∫

Rn

Ars
ij (ur

xj
◦ ρ)(us

xi
◦ ρ)D2λdzdλ

−
∑

Λ

∞∫

0

∫

Rn

Ars
ij (ur

xj
◦ ρ)(us

x0
◦ ρ)

∂PγλA

∂xi
D2λdzdλ

+
∑

Λ

∞∫

0

∫

Rn

Ars
ij (ur

x0
◦ ρ)

∂PγλA

∂xi
(us

xj
◦ ρ)D2λdzdλ

+
∑

Λ

∞∫

0

∫

Rn

Ars
ij (ur

x0
◦ ρ)

∂PγλA

∂xi

∂PγλA

∂xj
(us

x0
◦ ρ)D2λdzdλ

−2
∑

(j,r),j )=0

∞∫

0

∫

Rn

Ars
0j(u

r
x0
◦ ρ)(us

xj
◦ ρ)D2λdzdλ

−2
∑

(j,r),j )=0

∞∫

0

∫

Rn

Ars
0j(u

r
x0
◦ ρ)(us

x0
◦ ρ)

∂PγλA

∂xj
D2λdzdλ.

In this expansion the second and third term will cancel if we sum over the indices (r, s).
In the following we will neglect these two terms and assume that we are summing over
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all indices (i.e., we will use summation convention). By simple manipulations we can
therefore conclude that the last set of expressions equals

∞∫

0

∫

Rn

Qrs(ur
x0
◦ ρ)(us

x0
◦ ρ)D2λdzdλ−

∞∫

0

∫

Rn

Ars
00(u

r
x0
◦ ρ)(us

x0
◦ ρ)D2λdzdλ

−
∞∫

0

∫

Rn

Ars
ij (ur

xj
◦ ρ)(us

xi
◦ ρ)D2λdzdλ +

∞∫

0

∫

Rn

Ars
00(u

r
x0
◦ ρ)(us

x0
◦ ρ)D2λdzdλ

=
∞∫

0

∫

Rn

Qrs(ur
x0
◦ ρ)(us

x0
◦ ρ)D2λdzdλ−

∞∫

0

∫

Rn

Ars
ij (ur

xj
◦ ρ)(us

xi
◦ ρ)D2λdzdλ.

Hence importing this into (33) (assuming a similar derivation for T3) we get,

I = T1 + T4 + T5 + T6 + G

+ 2
∞∫

0

∫

Rn

Qrs(ur
x0
◦ ρ)(us

x0
◦ ρ)D2λdzdλ− 2

∞∫

0

∫

Rn

Ars
ij (ur

xj
◦ ρ)(us

xi
◦ ρ)D2λdzdλ

−
∞∫

0

∫

Rn

(us
t ◦ ρ)(us ◦ ρ)D2λdzdλ−

∞∫

0

∫

Rn

(ur
t ◦ ρ)(ur ◦ ρ)D2λdzdλ.

In fact this can be simplified to

I = T1 + T4 + T5 + G− 2
∞∫

0

∫

Rn

Ars
ij (ur

xj
◦ ρ)(us

xi
◦ ρ)D2λdzdλ

−
∞∫

0

∫

Rn

(us
t ◦ ρ)(us ◦ ρ)D2λdzdλ−

∞∫

0

∫

Rn

(ur
t ◦ ρ)(ur ◦ ρ)D2λdzdλ. (39)

Here the last cancellation follows from the form of the expression in T6. Using the
Carleson measure conditions of Lemma 6 we easily see that,

|T4| + |T5| ≤ C
∑

r,s,j

( ∞∫

0

∫

Rn

|ur
x0
◦ ρ|2λdzdλ

)1/2(∫

Rn

|N∗(us ◦ ρ)|2 dz
)1/2

. (40)

The term T1 in (33), (39) decouples into a linear combination of terms of the types

A =
∞∫

0

∫

Rn

∂3PγλA

∂xi∂λ2
(ur ◦ ρ)(us ◦ ρ)λdzdλ,

B =
∞∫

0

∫

Rn

∂2PγλA

∂xi∂λ

∂2PγλA

∂xj∂λ
(ur ◦ ρ)(us ◦ ρ)λdzdλ,

C =
∞∫

0

∫

Rn

∂PγλA

∂xi

∂3PγλA

∂xj∂λ2
(ur ◦ ρ)(us ◦ ρ)λdzdλ.
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In A, B and C we have that i 1= 0. We intend to prove that

|A| + |B| + |C| ≤ C
∑

r,s,j

( ∞∫

0

∫

Rn

|ur
xj
◦ ρ|2λdzdλ

)1/2(∫

Rn

|N∗(us ◦ ρ)|2 dz
)1/2

+ C
∑

r

∫

Rn

|N∗(ur ◦ ρ)|2 dz. (41)

For A and C this is proven by lifting the derivative w.r.t. xi in ∂3PγλA
∂xi∂λ2 using partial

integration. The rest is a consequence of Lemma 6. Combining (38-41) we can therefore
conclude that,

2
∞∫

0

∫

Rn

Ars
ij (ur

xj
◦ ρ)(us

xi
◦ ρ)D2λdzdλ = −

∞∫

0

∫

Rn

(us
t ◦ ρ)(us ◦ ρ)D2λdzdλ

−
∞∫

0

∫

Rn

(ur
t ◦ ρ)(ur ◦ ρ)D2λdzdλ + E. (42)

Here |E| is bounded by the expression on the r.h.s. of (41). From this and (42) as well
as our strong ellipticity condition in (10) we are left with terms of the type,

∞∫

0

∫

Rn

(us
t ◦ ρ)(us ◦ ρ)D2λdzdλ. (43)

But the expression in (43) equals,
∞∫

0

∫

Rn

(us ◦ ρ)t(us ◦ ρ)D2λdzdλ−
∞∫

0

∫

Rn

(us ◦ ρ)λ(us ◦ ρ)
∂PγλA

∂t
D2λdzdλ . (44)

The second term in (44) satisfies the same estimate as the term E in (42). In the first
term of (44) we integrate by parts w.r.t. λ and get (ignoring the minus sign),

∞∫

0

∫

Rn

(us ◦ ρ)λt(us ◦ ρ)D2λ2dzdλ

+
∞∫

0

∫

Rn

(us ◦ ρ)t(us ◦ ρ)λD2λ2dzdλ

+2
∞∫

0

∫

Rn

(us ◦ ρ)t(us ◦ ρ)D
∂2PγλA

∂λ2
λ2dzdλ .

The third term in this expression can be handled using interior regularity estimate for
the system (of the type stated in [11, Section 3]) and Lemma 6. By symmetrization
we can assume that the sum of the first and second terms in the expression has the
form

∞∫

0

∫

Rn

[(us ◦ ρ)(us ◦ ρ)]tλ

[

1 + 2
∂PγλA

∂λ
+

(∂PγλA

∂λ

)2
]

λdzdλ. (45)
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Partial integration w.r.t. t in (45), making use of Lemma 6 combined with Cauchy
Schwarz with ε we can conclude that we have proved the inequality in (30) and hence
part (i) of the Theorem 5. The deduction of (ii), (iii) and (iv) follows from (i) using
the arguments in [11, p. 1322–1323]. !

Remark 2 An obvious consequence of the inequality in (30) is that

∞∫

0

∫

Rn

|ur
xixj

◦ ρ|2λdzdλ ≤ cβ‖N∗(%uxj ◦ ρ)‖22.

In the proof of the duality result in Theorem 4 we will need a Lp version of the
inequality stated in Remark 2. It is well known that the appropriate Lp-version should
follow from the L2 result and real-variable techniques. Still in order to carry such an
argument a localized version of the inequality in Remark 2 is needed. To formulate
this properly let ∆r be a cube on Rn−1 × R of dimension r × ....× r × r2 and let

∆̃r = {(A(x, t), x, t) : (x, t) ∈ ∆r}

be the associated surface cube on the boundary of our domain Ω.

Lemma 9

Let ã > 0, a > 0 and let ξ > 0 be small number. For all cubes ∆r ⊂ Rn−1 × R
there exists a constant C = C(||A||comm, ã, a, ξ) and a constant δ = δ(||A||comm) such
that

∫

∆̃r

|Sã,r(uk)(X, t)|2dσ(X, t) ≤ C
∫

∆̃(1+ξ)r

|Ña,(1+ξ)δr
∗ (us)(X, t)|2dσ(X, t).

The symbols Ña,(1+ξ)δr
∗ (·) and Sã,r(·) refer to the truncated non-tangential max-

imal operator and square function operator introduced at the end of Section 2.1.
Lemma 9 can be proved by arguing as in the proof of part (i) of Theorem 5. The
main difference is that we instead start out by manipulating

I = −
∫

Rn

Qrs(ur ◦ ρ)(us ◦ ρ)θ̃2dz

where θ is an appropriate test function and θ̃ = θ ◦ ρ. The exact details of the proof
(and much more) can be found in [12].

Remark 3 Based on Theorem 5 and Lemma 9 one can prove that for each p ∈ (1,∞)
the following estimates is true,

( ∫

Rn

( ∞∫

0

(ur
xixj

◦ ρ)2λdλ

)p/2

dxdt

)1/p

≤ cβ‖Ñ∗(∇%u)‖p.
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This is proved using real-variable techniques. In particular let λ > 0 and let ∆ =
∆r ⊂ Rn−1 × R be a Whitney cube, of scale r, in the Whitney decomposition of
Eλ := {(x, t) : Sã(uk)(A(x, t), x, t) > λ} such that Sã(uk)(A(x∗, t∗), x∗, t∗) ≤ λ for
some point (x∗, t∗) ∈ 5∆. 5∆ is the cube having the same center as ∆ but being
scaled by a factor 5 and Sã(·) is the square function operator introduced at the end of
Section 2.1. Let also, for η >> 1 and ε << 1,

Fλ(η, ε) :=
{
(x, t) ∈ ∆ : Sã(uk)(A(x, t), x, t) > ηλ,

∑

s

Ña
∗ (us)(A(x, t), x, t) ≤ ελ

}
.

By a standard argument based on interior regularity estimates we note that, if η large
enough and ε is small enough then Sã,r(uk)(A(x, t), x, t) > ηλ/2 if (x, t) ∈ Fλ(η, ε). If
we define

Ω(∆, η, ε) := ∪(x,t)∈Fλ(η,ε)Γ̃a(A(x, t), x, t)

then Ω(∆, η, ε) is the region defined as the union of parabolic cones with vertex on
Fλ(η, ε). Hence

(ηλ/2)2|Fλ(η, ε)| ≤
∫

Fλ(η,ε)

|Sã,r(uk)(A(x, t), x, t)|2dxdt.

Let π = ∂Ω→ Rn be the projection π
(
A(x, t), x, t

)
= (x, t) then trivially π−1(Fλ(η, ε)) ⊂

∂Ω(∆, η, ε) and using Proposition 3.4 in [14] we can conclude that Ω(∆, η, ε) =
{(x0, x, t) : x0 > Â(x, t)} where ‖Â‖comm < β with β independent of ∆. Based on
Lemma 9 we can assume that there exist constants C and δ, independent of η, ε and
∆ such that

∫

Fλ(η,ε)

|Sã,r(uk)(A(x, t), x, t)|2dxdt

≤
∫

Fλ(η,ε)

|Sã,r(uk)(Â(x, t), x, t)|2dxdt

≤ C
∑

s

∫

(1+ξ)∆̃

|Ña,(1+ξ)δr
∗,Ω(∆,η,ε)(u

s)(Â(x, t), x, t))|2dxdt.

The subscript in the maximal function indicates that it is defined w.r.t. Ω(∆, η, ε).
Hence by construction we can conclude that

(ηλ/2)2|Fλ(η, ε)| ≤ Cε2λ2|∆|

and in particular we have proved that |Fλ(η, ε)| ≤ Cε2/η2|∆|. From this we can
conclude by standard arguments that for each p ∈ (1,∞) there exists a universial
constant C such that

∫

Rn

|Sã(uk)(A(x, t), x, t)|pdxdt ≤
∑

s

C
∫

Rn

|Ña
∗ (us)(A(x, t), x, t)|pdxdt.

The inequality stated in the beginning of this remark is now a consequence of this
estimate and interior regularity estimates.
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Based on the same techniques as in the proof of Theorem 5 we will also prove the
following lemma which will be useful in the proof of Theorem 4.

Lemma 10

Let ‖A‖comm ≤ β < ∞ and let %u a solution to the second order parabolic system
in (1) assuming that the system fulfills (2) and (10). Let δ be an arbitrary positive
number. Then for any p ∈ [2,∞) such that the r.h.s. is finite the following is true,

∑

r

n−1∑

i=1

∫

Rn

|(ur ◦ ρ)xi |pdz ≤ Cδ

(
∑

r

n−1∑

i=1

∫

Rn

|N∗(ur
xi
◦ ρ)|pdz

)

+ C(δ)‖N∗(us
x0
◦ ρ)‖p

p,∫

Rn

|Dn(ur ◦ ρ)|pdz ≤ C‖N∗(∇%u ◦ ρ)‖p
p.

Proof. We start by controlling the expression containing (ur ◦ ρ)xi . Integrating twice
in the λ direction we have

∫

Rn

|(ur ◦ ρ)xi |pdxdt =
∞∫

0

∫

Rn

∂2

∂λ2
|(ur ◦ ρ)xi |pλdzdλ

= p(p− 1)
∞∫

0

∫

Rn

|(ur ◦ ρ)xi |p−2|(ur ◦ ρ)xiλ|2λdzdλ

+ p

∞∫

0

∫

Rn

|(ur ◦ ρ)xi |p−1(ur ◦ ρ)xiλλλdzdλ.

Integrating by parts w.r.t. xi in the last term we can conclude that

1
p(p− 1)

∫

Rn

|(ur ◦ ρ)xi |pdxdt =
∞∫

0

∫

Rn

|(ur ◦ ρ)xi |p−2|(ur ◦ ρ)xiλ|2λdzdλ

−
∞∫

0

∫

Rn

|(ur ◦ ρ)xi |p−2(ur ◦ ρ)xixi(u
r ◦ ρ)λλλdzdλ

:= A + B. (46)

By a simple majorization using the non-tangential maximal operator and Cauchy-
Schwarz we have for arbitrary positive numbers ε1, ε2, ε3, ε4,

|A| ≤ C

( ∫

Rn

|N∗((ur ◦ ρ)xi)|pdz

)1−2/p( ∫

Rn

( ∞∫

0

|(ur ◦ ρ)xiλ|2λdλ

)p/2

dz

)2/p

≤ Cε1

( ∫

Rn

|N∗((ur ◦ ρ)xi)|pdz

)

+ Cε−1
1

( ∫

Rn

( ∞∫

0

|(ur ◦ ρ)xiλ|2λdλ

)p/2

dz

)

:= Cε1A1 + Cε−1
1 A2, (47)
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|B| ≤ Cε2

∞∫

0

∫

Rn

|(ur ◦ ρ)xi |p−2|(ur ◦ ρ)xixi |2λdzdλ

+ Cε−1
2

∞∫

0

∫

Rn

|(ur ◦ ρ)xi |p−2|(ur ◦ ρ)λλ|2λdzdλ

≤ Cε2ε3

( ∫

Rn

|N∗((ur ◦ ρ)xi)|pdz

)

+ Cε2ε
−1
3

( ∫

Rn

( ∞∫

0

|(ur ◦ ρ)xixi |2λdλ

)p/2

dz

)

+ Cε−1
2 ε4

( ∫

Rn

|N∗((ur ◦ ρ)xi)|pdz

)

+ Cε−1
2 ε−1

4

( ∫

Rn

( ∞∫

0

|(ur ◦ ρ)λλ|2λdλ

)p/2

dz

)

:= Cε2ε3B1 + Cε2ε
−1
3 B2 + Cε−1

2 ε4B3 + Cε−1
2 ε−1

4 B4. (48)

Hence we have to prove appropriate bounds on A2, B2 as well as B4. As before

(ur ◦ ρ)xixi = (ur
xixi

◦ ρ) + 2(ur
xix0

◦ ρ)
∂PγλA

∂xi
+ (ur

x0
◦ ρ)

∂2PγλA

∂x2
i

+ (ur
x0x0

◦ ρ)
∂PγλA

∂xi

∂PγλA

∂xi
,

(ur ◦ ρ)xiλ = (ur
xix0

◦ ρ)
(
1 +

∂PγλA

∂λ

)
+ (ur

x0x0
◦ ρ)

∂PγλA

∂xi

(
1 +

∂PγλA

∂λ

)

+ (ur
x0
◦ ρ)

∂2PγλA

∂xi∂λ
,

(ur ◦ ρ)λλ = (ur
x0x0

◦ ρ)
(
1 +

∂PγλA

∂λ

)2
+ (ur

x0
◦ ρ)

∂2PγλA

∂λ2
.

Combining Remark 2 and 3 and using Lemma 6 we see that,

A2 + B4 ≤ c‖N∗(us
x0
◦ ρ)‖p

p. (49)

Similarly B2 is bounded by

c
[
‖N∗(us

xi
◦ ρ)‖p

p + ‖N∗(us
x0
◦ ρ)‖p

p +
∫

Rn

( ∞∫

0

|(ur
x0
◦ ρ)|2

(
∂2PγλA

∂x2
i

)2

λdλ

)p/2

dz
]
. (50)

By coping the argument in [7, p. 764–765] we can prove that the last term in (50) is
bounded by ‖N∗(ur

x0
◦ ρ)‖p

p. Hence

B2 ≤ c
[
‖N∗(us

xi
◦ ρ)‖p

p + ‖N∗(us
x0
◦ ρ)‖p

p

]
. (51)

Returning to (46-48) and making appropriate choices of ε1, ε2, ε3, ε4 we can conclude
from (49) and (51) that

|A| + |B| ≤ Cδ‖N∗(ur
xi
◦ ρ)‖p

p + C(δ)‖N∗(us
x0
◦ ρ)‖p

p

with δ arbitrary. This finishes the first part of the lemma.
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To prove the second part let in the following g ∈ C∞
0 (Rn), ||g||q = 1 where q is

the index dual to p and let Pλ be the non-negative and even parabolic approximation
of identity defined in (23). Again by integration by parts,

∫

Rn

Dn(ur ◦ ρ)gdz = −
∫

Rn

∞∫

0

∂

∂λ
(Dn(ur ◦ ρ)Pλg)dλdz

= −
∫

Rn

∞∫

0

Dn(ur ◦ ρ)
∂

∂λ
Pλgdλdz

−
∫

Rn

∞∫

0

Dn(ur ◦ ρ)λPλgdλdz := C + D. (52)

By duality we want to prove that both C and D in (52) are bounded as in the statement
of the lemma. As Dn = D−1 ◦ ∂

∂t we have

C = −
∫

Rn

∞∫

0

(ur ◦ ρ)tD−1 ∂

∂λ
Pλgdλdz

= −
∫

Rn

∞∫

0

(ur
x0
◦ ρ)D−1 ∂

∂λ
Pλg

∂PγλA

∂t
dλdz

−
∫

Rn

∞∫

0

(ur
t ◦ ρ)D−1 ∂

∂λ
Pλgdλdz := C1 + C2.

Using Remark 1 and the equation we get

|C2| ≤
( ∫

Rn

( ∞∫

0

|Q̃λg|2λ−1dλ

)q/2

dz

)1/q( ∫

Rn

( ∞∫

0

(ur
t ◦ ρ)2λdλ

)p/2

dz

)1/p

≤ C

( ∫

Rn

( ∞∫

0

(us
xixj

◦ ρ)2λdλ

)p/2

dz

)1/p

(53)

where we again have used summation convention. By Remark 3 we can therefore
from (53) conclude that |C2| ≤ C‖N∗(∇%u ◦ ρ)‖p. Similarly we have

|C1| ≤ C

( ∫

Rn

( ∞∫

0

(ur
x0
◦ ρ)2

∣∣∣∣∣
∂PγλA

∂t

∣∣∣∣∣

2

λdλ

)p/2

dz

)1/p

. (54)

By again copying the argument in [7, p. 764–765] we can conclude from (54) that
|C1| ≤ C‖N∗(∇%u ◦ ρ)‖p. To handle the term D we integrate once more w.r.t. λ,

D =
∫

Rn

∞∫

0

Dn(ur ◦ ρ)λλPλgλdλdz

+
∫

Rn

∞∫

0

Dn(ur ◦ ρ)λ
∂

∂λ
Pλgλdλdz := D1 + D2. (55)
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To handle the term D1 in (55) recall that Dn = D−1 ◦ ∂
∂t and if we use that D−1 is a

self-adjoint operator we get

D2 =
∫

Rn

∞∫

0

(ur ◦ ρ)tλQ̃λgλdλdz =
∫

Rn

∞∫

0

(ur
x0t ◦ ρ)

(
1 +

∂PγλA

∂λ

)
Q̃λgλdλdz

+
∫

Rn

∞∫

0

(ur
x0x0

◦ ρ)
∂PγλA

∂t

(
1 +

∂PγλA

∂λ

)
Q̃λgλdλdz

+
∫

Rn

∞∫

0

(ur
x0
◦ ρ)

∂2PγλA

∂λ∂t
Q̃λgλdλdz

:= D21 + D22 + D23. (56)

In these expressions Q̃λg = D−1 ∂
∂λPλg. Now in fact

|D21| + |D22| + |D23| ≤ C‖N∗(∇%u ◦ ρ)‖p.

For D21 this follows from Remark 1, Remark 3 and interior regularity estimates. For
D22 the conclusion is a consequence of the same two remarks combined with part (ii)
of Lemma 6. Finally D23 is handled in the same way as we handled the term C1 above.
Left is to handle the term D1 of (55). But spelling out

D1 =
∫

Rn

∞∫

0

(ur ◦ ρ)tλλQ̃λgλdλdz

in a way similar to the way we manipulated D2 in (56) we can by analyzing all the
terms conclude that all the terms can be handled using the arguments used to analyze
the pieces D21, D22 and D23. This completes the proof of the Lemma. !

3. Proof of Theorem 4

By standard arguments (like the continuity method, see [10]) in order to prove Theo-
rem 4 all we have to prove is the validity of the inequality

‖%f‖q ≤ Cβ‖Sb
%f‖Lq

1,1/2
(∂Ω) (57)

for q as in the statement of the theorem and where Sb
%f is defined in (29). Let

Ω = Ω1 = {(x0, x, t) ∈ R× Rn−1 × R : x0 > A(x, t)},
Ω2 = {(x0, x, t) ∈ R× Rn−1 × R : x0 < A(x, t)}.

Let S %f be the single layer potential defined in (27) and define %u1 to be the restriction
of S %f to Ω1. Similarly we define %u2 to be the restriction of S %f to Ω2. Here If we
assume that %f ∈ Lq(∂Ω) then, as proved in [11, Section 3], a.e on ∂Ω

∂%u1

∂ν
= (I/2 + K∗

ν )%f,
∂%u2

∂ν
= (−I/2 + K∗

ν )%f.
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Here K∗
ν is an appropriate boundary operator having continuity in Lp as in Theorem

7 and the conormal is defined in (7). As

‖%f‖q ≤ max
{∥∥∂%u1

∂ν

∥∥
q
,
∥∥∂%u2

∂ν

∥∥
q

}
(58)

we intend to prove that

max
{∥∥∂%u1

∂ν

∥∥
q
,
∥∥∂%u2

∂ν

∥∥
q

}
≤ C(β, n, q)‖Sb

%f‖Lq
1,1/2

(∂Ω). (59)

Obviously (58) and (59) give us (57). In the following we just consider the case Ω = Ω1

and we will for simplicity write %u = %u1. By duality

∫

∂Ω

∣∣∣∣∣
∂%u

∂ν

∣∣∣∣∣

q

dσtdt = sup
"v∈Lp(∂Ω)

∣∣∣∣
∫

∂Ω

∂%u

∂ν
%vdσtdt

∣∣∣∣ (60)

and the idea is to manipulate the integral on the r.h.s. of (60). Note that ∂"u
∂ν is vector

of length m and that the multiplication on the r.h.s. of (60) should be understood as
a scalar product. Using our assumption on the solvability of the Dirichlet problem
any %v ∈ Lp(∂Ω) is the trace in Lp(∂Ω) of a solution to the adjoint system. Hence
we can assume that there exists an extension to Ω of %v, also denoted by %v, such that
‖Ñ∗(%v)‖p ≤ C‖%v‖p and such that

−∂vr

∂t
=

∂

∂xi
Ars

ij
∂vs

∂xj
0 ≤ i, j ≤ n− 1 1 ≤ r, s ≤ m in Ω. (61)

We start out with some manipulations based on the divergence formula. Using that v
solves the adjoint equation in (61) we have

∫

Ω

%v
∂%u

∂t
dXdt =

∫

∂Ω

%v
∂%u

∂ν
dσtdt−

∫

Ω

∂vr

∂xi
Ars

ij
∂us

∂xj
dXdt (62)

∫

Ω

%u
∂%v

∂t
dXdt = −

∫

∂Ω

%u
∂%v

∂ν
dσtdt +

∫

Ω

∂ur

∂xi
Ars

ij
∂vs

∂xj
dXdt. (63)

Combining (62) and (63) using the symmetry condition in (2) we get
∫

∂Ω

%v
∂%u

∂ν
dσtdt =

∫

∂Ω

%u
∂%v

∂ν
dσtdt +

∫

Ω

(
%v

∂%u

∂t
+ %u

∂%v

∂t

)
dXdt := A + B. (64)

Before continuing our manipulations we introduce some notation reflecting that our
domain is a graph. In fact for r = 1, ...,m we define

wr(x0, x, t) =
∞∫

x0

vr(y, x, t)dy.

The vector %w = (w1, ..., wm) solves the same adjoint equation as %v. When manipulating
A and B we intend to explore that %w is one degree smoother than %v in the x0-direction
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and in particular we intend to make use of Lemma 10. We start by considering the
expression in A.

(∂%v

∂ν

)r
:= Ars

ij N i ∂vs

∂xj
= Ars

ij N i ∂2ws

∂xj∂x0

= Ars
ij

(
N i ∂

∂x0
−N0 ∂

∂xi

)∂ws

∂xj
+ Ars

ij N0 ∂2ws

∂xi∂xj

= Ars
ij

(
N i ∂

∂x0
−N0 ∂

∂xi

)∂ws

∂xj
−N0 ∂wr

∂t
. (65)

We denote by ∂
∂Ti

, i = 1, ..., n − 1, the tangential derivative (N i ∂
∂x0

−N0 ∂
∂xi

). Hence
by (65)

A =
∫

∂Ω

%u
∂%v

∂ν
dσtdt =

∫

∂Ω

urArs
ij

∂

∂Ti

∂ws

∂xj
dσtdt

−
∫

∂Ω

N0ur ∂wr

∂t
dσtdt := A1 + A2. (66)

Trivially, by partial integration along the boundary,

|A1| ≤ ||ur||Lq
1,1/2

(∂Ω)

∣∣∣
∣∣∣
∂ws

∂xj

∣∣∣
∣∣∣
Lp(∂Ω)

. (67)

Manipulating A2 in a by now standard way we have,

A2 =
∫

Rn

(ur ◦ ρ)(wr
t ◦ ρ)dz = −

∫

Rn

∞∫

0

∂

∂λ
[(ur ◦ ρ)(wr

t ◦ ρ)]dλdz

= −
∫

Rn

∞∫

0

∂

∂λ
[(ur ◦ ρ)(wr ◦ ρ)t]dλdz +

∫

Rn

∞∫

0

∂

∂λ

[
(ur ◦ ρ)(wr

x0
◦ ρ)

∂PγλA

∂t

]
dλdz

=
∫

Rn

(ur ◦ ρ)(wr ◦ ρ)tdz +
∫

Rn

∞∫

0

∂

∂λ

[
(ur ◦ ρ)(wr

x0
◦ ρ)

∂PγλA

∂t

]
dλdz := A21 + A22.

If H is the Hilbert transform in the t-variable we get using the definition of the half-
time derivative in (16) that

|A21| =
∣∣∣∣
∫

Rn

HDt
1/2(u

r ◦ ρ)Dt
1/2(w

r ◦ ρ)dz

∣∣∣∣ ≤ ||Dt
1/2(u

r ◦ ρ)||q||Dt
1/2(w

r ◦ ρ)||p. (68)

Continuing we have,

A22 =
∫

Rn

∞∫

0

(ur ◦ ρ)λ(vr ◦ ρ)
∂PγλA

∂t
dλdz +

∫

Rn

∞∫

0

(ur ◦ ρ)(vr ◦ ρ)λ
∂PγλA

∂t
dλdz

+
∫

Rn

∞∫

0

(ur ◦ ρ)(vr ◦ ρ)
∂2PγλA

∂t∂λ
dλdz. (69)
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We shortly stop here in order to manipulating the expression B of (64). Let in the
following for simplicity D = (1 + ∂PγλA

∂λ ). Then

B =
∫

Rn

∞∫

0

(vr ◦ ρ)(ur
t ◦ ρ)Ddλdz +

∫

Rn

∞∫

0

(ur ◦ ρ)(vr
t ◦ ρ)Ddλdz.

By familiar manipulations

B =
∫

Rn

∞∫

0

(vr ◦ ρ)(ur ◦ ρ)tDdλdz −
∫

Rn

∞∫

0

(vr ◦ ρ)(ur
x0
◦ ρ)D

∂PγλA

∂t
dλdz

+
∫

Rn

∞∫

0

(ur ◦ ρ)(vr ◦ ρ)tDdλdz −
∫

Rn

∞∫

0

(ur ◦ ρ)(vr
x0
◦ ρ)D

∂PγλA

∂t
dλdz

= −
∫

Rn

∞∫

0

(vr ◦ ρ)(ur ◦ ρ)
∂2PγλA

∂λ∂t
dλdz −

∫

Rn

∞∫

0

(vr ◦ ρ)(ur ◦ ρ)λ
∂PγλA

∂t
dλdz

−
∫

Rn

∞∫

0

(ur ◦ ρ)(vr ◦ ρ)λ
∂PγλA

∂t
dλdz. (70)

Here we have slightly changed the order of the expressions and conducted one inte-
gration by parts. Adding A22 and B we see from (69) and (70) that we have perfect
cancellation. Summarizing (64), (66-70) we can conclude that
∣∣∣∣∣

∫

∂Ω

∂%u

∂ν
%vdσtdt

∣∣∣∣∣ ≤ ||ur||Lq
1,1/2

(∂Ω)

∣∣∣
∣∣∣
∂ws

∂xj

∣∣∣
∣∣∣
Lp(∂Ω)

+ ||Dt
1/2(u

r ◦ ρ)||q||Dt
1/2(w

r ◦ ρ)||p. (71)

Our intention is now to apply Lemma 10 in order to complete the proof of (59) and
hence of Theorem 4. Recall that by the definitions in (14), (16) and (21) Dn, Dt

1/2

and D are defined using the multipliers |τ |1/2, τ ||(ξ, τ)||−1 and ||(ξ, τ)||. Also ||(ξ, τ)||
is defined through the relation in (12), i.e.,

τ2

||(ξ, τ)||4 +
n−1∑

i=0

ξ2
i

||(ξ, τ)||2 = 1.

Define parabolic Riesz transforms Rj using the multipliers ξj ||(ξ, τ)||−1 for j ∈
{1, ..., n− 1} and τ ||(ξ, τ)||−2 for j = n. Then

D =
n−1∑

j=1

Rj
∂

∂xj
+ RnDn

and by continuity of Riesz potentials

||Df ||p ≤ cn

[
∑

j

∣∣∣
∣∣∣
∂f

∂xj

∣∣∣
∣∣∣
p
+ ||Dnf ||p

]

(72)
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for all smooth functions f : Rn−1 × R → R. As |τ |1/2||(ξ, τ)||−1 is a Lp-multiplier
for p ∈ (1,∞) we can conclude that the inequality in (72) holds with Dn replaced by
Dt

1/2. Using our assumption on the solvability of the Dirichlet problem in (61) with
the appropriate bound on the non-tangential maximal function we can conclude using
Lemma 10 that

∑

r

n−1∑

i=1

∫

Rn

|(wr ◦ ρ)xi |pdz ≤ Cδ

(
∑

r

n−1∑

i=1

∫

Rn

|N∗(wr
xi
◦ ρ)|pdz

)

+ C(δ)‖N∗(ws
x0
◦ ρ)‖p

p

≤ Cδ

(
∑

r

n−1∑

i=1

∫

Rn

|wr
xi
◦ ρ|pdz

)

+ C(δ)‖ws
x0
◦ ρ‖p

p

∫

Rn

|Dn(wr ◦ ρ)|pdz ≤ C‖N∗(∇%w ◦ ρ)‖p
p ≤ C‖∇%w ◦ ρ‖p

p

for an arbitrary positive δ. Combining these two inequalities, (72) and the discussion
below that display we can conclude that

∣∣∣
∣∣∣
∂ws

∂xj

∣∣∣
∣∣∣
Lp(∂Ω)

+ ||Dt
1/2(w

r ◦ ρ)||p ≤ C‖ws
x0
◦ ρ‖p

p = C‖vs ◦ ρ‖p
p. (73)

In (73) the last equality follows by construction. Combining (71) and (73) we can
conclude that,

∣∣∣∣∣

∫

∂Ω

∂%u

∂ν
%vdσtdt

∣∣∣∣∣ ≤ ||%u||Lq
1,1/2

(∂Ω)||%v||Lp(∂Ω).

The proof of Theorem 4 is complete. !
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