
Collect. Math. 57, 1 (2006), 69–91
c© 2005 Universitat de Barcelona

Instanton sheaves on complex projective spaces

Marcos Jardim

IMECC - UNICAMP, Departamento de Matemática, Caixa Postal 6065
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Abstract

We study a class of torsion-free sheaves on complex projective spaces which
generalize the much studied mathematical instanton bundles. Instanton sheaves
can be obtained as cohomologies of linearmonads and are shown to be semistable
if its rank is not too large, while semistable torsion-free sheaves satisfying certain
cohomological conditions are instanton. We also study a few examples of moduli
spaces of instanton sheaves.

Introduction

The study of vector bundles and more general sheaves on complex projective spaces has
been a topic of great interest to algebraic geometers for many years, see for instance
the excellent book by Okonek, Schneider and Spindler [20] and Hartshorne’s problem
list [11]. In this paper we concentrate on a particular class of sheaves defined as follows,
generalizing the concept of admissible sheaves on P3 due to Manin [18], see also [10].

Definition. An instanton sheaf on Pn (n ≥ 2) is a torsion-free coherent sheaf E on
Pn with c1(E) = 0 satisfying the following cohomological conditions:

1. for n ≥ 2, H0(E(−1)) = Hn(E(−n)) = 0;
2. for n ≥ 3, H1(E(−2)) = Hn−1(E(1− n)) = 0;
3. for n ≥ 4, Hp(E(k)) = 0, 2 ≤ p ≤ n− 2 and ∀k;
The integer c = −χ(E(−1)) is called the charge of E.

If E is a rank 2m locally-free instanton sheaf on P2m+1 of trivial splitting type
(i.e. there exist a line " ⊂ P2m+1 such that E|! ' O2m

! ), then E is a mathematical in-
stanton bundle as originally defined by Okonek and Spindler [21]. There is an extensive
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literature on such objects, see for instance [2, 24]. The nomenclature is motivated by
gauge theory: mathematical instanton bundles on P2n+1 correspond to quaternionic
instantons on PHn [22].

The goal of this paper is to extend the discussion in two directions: the inclu-
sion of even-dimensional projective spaces and the analysis of more general sheaves,
allowing non-locally-free sheaves of arbitrary rank. Such extension is motivated by
the concept that in order to better understand moduli spaces of stable vector bundles
over a projective variety one must also consider semistable torsion-free sheaves [11].
It turns out that many of the well-known results regarding mathematical instanton
bundles on P2n+1 generalize in sometimes surprising ways to more general instanton
sheaves.

The paper is organized as follows. We start by studying linear monads and their
cohomologies in Section 1, spelling out criteria to decide whether the cohomology of a
given monad is torsion-free, reflexive or locally-free. We then show that every instanton
sheaf is the cohomology of a linear monad, and that rank r instanton sheaves on Pn

exist if and only if r ≥ n− 1. Further properties of instanton sheaves are also studied
in Section 2.

The bulk of the paper lies in Section 3, where we analyze the semistability (in
the sense of Mumford-Takemoto) of instanton sheaves. It is shown, for instance, that
every rank r ≤ 2n − 1 locally-free instanton sheaf on Pn is semistable, while every
rank r ≤ n + 1 reflexive instanton sheaf on Pn is semistable. We also determine when
a semistable torsion-free sheaf on Pn is an instanton sheaf, showing for instance that
every semistable torsion-free sheaf on P2 is an instanton sheaf.

In Section 4 it is shown that every rank n − 1 instanton sheaf on Pn is simple,
generalizing a result of Ancona and Ottaviani for mathematical instanton bundles [2,
Proposition 2.11]. We then conclude in Section 5 with a few results concerning the
moduli spaces of instanton sheaves.

It is also worth noting that Buchdahl has studied monads over arbitrary blow-ups
of P2 [3] while Costa and Miró-Roig have initiated the study of locally-free instanton
sheaves over smooth quadric hypersurfaces within Pn [5], obtaining some results similar
to ours. Many of the results here obtained are also valid for instanton sheaves suitably
defined over projective varieties with cyclic Picard group, see [16].

Notation. We work over an algebraically closed field F of characteristic zero. It might
be interesting from the algebraic point of view to study how the results here obtained
generalize to finite fields. Throughout this paper, U , V and W are finite dimensional
vector spaces over the fixed field F, and we use [x0 : · · · : xn] to denote homogeneous
coordinates on Pn. If E is a sheaf on Pn, then E(k) = E⊗OPn(k), as usual; by Hp(E)
we actually mean Hp(Pn, E) and hp(E) denotes the dimension of Hp(Pn, E).
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Ottaviani and Rosa Maria Miró-Roig for their valuable comments on the first version of
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1. Monads

Let X be a smooth projective variety. A monad on X is a complex V• of the following
form:

V• : 0→ V−1
α−→ V0

β−→ V1 → 0 (1)

which is exact on the first and last terms. Here, Vk are locally free sheaves on X. The
sheaf E = kerβ/Im α is called the cohomology of the monad V•.

Monads were first introduced by Horrocks, who has shown that every rank 2
locally free sheaf on P3 can be obtained as the cohomology of a monad where Vk are
sums of line bundles [15].

In this paper, we will focus on the so-called linear monads on Pn, which are of
the form:

0→ V ⊗OPn(−1) α−→W ⊗OPn
β−→ U ⊗OPn(1)→ 0, (2)

where α ∈ Hom(V,W )⊗H0(OPn(1)) is injective (as a sheaf map) and β ∈ Hom(W,U)⊗
H0(OPn(1)) is surjective. The degeneration locus Σ of the monad (2) consists of the
set of points x ∈ Pn such that the localized map αx ∈ Hom(V,W ) is not injective; in
other words Σ = supp {cokerα∗}.

Linear monads have appeared in a wide variety of contexts within algebraic geom-
etry, like the construction of locally free sheaves on complex projective spaces and the
study of curves in P3 and surfaces in P4, see for instance [9] and the references therein.
Our main motivation to study them comes from gauge theory; as it is well-known,
linear monads on P2 and P3 are closely related to instantons on R4 [7].

The existence of linear monads on Pn has been completely classified by Fløystad
in [9]; let v = dim V , w = dim W and u = dim U .

Theorem 1 [9]
Let n ≥ 1. There exists a linear monad on Pn as above if and only if at least one

of the following conditions hold:

(i) w ≥ 2u + n− 1 and w ≥ v + u;

(ii) w ≥ v + u + n.

If the conditions hold, there exists a linear monad whose degeneration locus is a codi-
mension w − v − u + 1 subvariety.

In particular, if v, w, u satisfy condition (2) above, then the degeneration locus is
empty.

Remark. A similar classification result for linear monads over n-dimensional quadric
hypersurfaces within Pn+1 has been proved by Costa and Miró-Roig in [5], by adapting
Fløystad’s technique.

Definition. A coherent sheaf on Pn is said to be a linear sheaf if it can be represented
as the cohomology of a linear monad.

The goal of this section is to study linear sheaves, with their characterization in
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mind. First, notice that if E is the cohomology of (2) then

rank(E) = w − v − u, c1(E) = v − u

and
c(E) =

( 1
1−H

)v ( 1
1 + H

)u

.

Proposition 2

If E is a linear sheaf on Pn, then:

(i) for n ≥ 2, H0(E(k)) = H0(E∗(k)) = 0, ∀k ≤ −1;

(ii) for n ≥ 3, H1(E(k)) = 0, ∀k ≤ −2;

(iii) for n ≥ 4, Hp(E(k)) = 0, 2 ≤ p ≤ n− 2 and ∀k;

(iv) for n ≥ 3, Hn−1(E(k)) = 0, ∀k ≥ −n + 1;

(v) for n ≥ 2, Hn(E(k)) = 0 for k ≥ −n;

(vi) for n ≥ 2, Ext1(E,OPn) = cokerα∗ and Extp(E(k),OPn) = 0 for p ≥ 2 and all k.

In particular, note that linear sheaves have natural cohomology in the range
−n ≤ k ≤ −1, i.e. for the values of k in this range at most one of the cohomol-
ogy groups Hq(E(k)) is nontrivial. It also follows that c = −χ(E(−1)) = h1(E(−1)).

Every rank 2n locally-free sheaf on P2n+1 with total Chern class c(E) = (1+H2)−c

and natural cohomology in the rank −2n−1 ≤ k ≤ 0 is linear [21], and therefore satisfy
the stronger conclusion of the proposition above. However, not all sheaves on Pn having
natural cohomology in the range −n ≤ k ≤ −1 are linear, the simplest example being
Ω1

Pn(n).

Proof. Assume that E is the cohomology of the monad (2). The kernel sheaf K = kerβ
is locally-free, and one has the sequences ∀k:

0→ K(k)→W ⊗OPn(k) β−→ U ⊗OPn(k + 1)→ 0 and (3)
0→ V ⊗OPn(k − 1) α−→ K(k)→ E(k)→ 0. (4)

From the first sequence, we see that: Hp(K(k)) = 0 for p = 0, 1 and p + k ≤ −1; for
2 ≤ p ≤ n − 1, ∀k; and for p = n and k ≤ −n. The second sequence tell us that
Hp(K(k)) ∼→ Hp(E(k)) for p = 0 and k ≤ 0, for 1 ≤ p ≤ n − 2 and all k, and for
p ≥ n − 1 and k ≥ −n. Putting these together, we obtain the conditions (i) through
(v) in the statement of the proposition.

Dualizing sequence (3), we obtain that H0(K∗(k)) = 0 for k ≤ −1. Now dualizing
sequence (4), we get, since K is locally-free:

0→ E∗(−k)→ K∗(−k) α∗→ V ⊗OPn(−k + 1)→ Ext1(E(k),OPn)→ 0. (5)

Condition (vi) and the second part of condition (i) follow easily. !

Conversely, linear sheaves can be characterized by their cohomology:
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Theorem 3
If E is a torsion-free sheaf on Pn satisfying:

(i) for n ≥ 2, H0(E(−1)) = Hn(E(−n)) = 0;

(ii) for n ≥ 3, H1(E(−2)) = Hn−1(E(1− n)) = 0;

(iii) for n ≥ 4, Hp(E(k)) = 0, 2 ≤ p ≤ n− 2 and ∀k;

then E is linear, and can be represented as the cohomology of the monad:

0 → H1(E ⊗ Ω2
Pn(1))⊗OPn(−1)

→ H1(E ⊗ Ω1
Pn)⊗OPn → H1(E(−1))⊗OPn(1)→ 0. (6)

Proof. Given a hyperplane ℘ ⊂ Pn, consider the restriction sequence:

0→ E(k − 1)→ E(k)→ E(k)|℘ → 0.

Clearly, H0(E(−1)) = 0 implies that H0(E(k)) = 0 for k ≤ −1, while Hn(E(−n)) = 0
forces Hn(E(k)) = 0 for k ≥ −n.

Since H0(E(−1)) = H1(E(−2)) = 0, it follows that H0(E(−1)|℘) = 0, hence
H0(E(k)|℘) = 0 for k ≤ −1. So we have the sequence:

0→ H1(E(k − 1))→ H1(E(k)), for k ≤ −2

thus by induction H1(E(k)) = 0 for k ≤ −2.
Since Hn(E(−n)) = Hn−1(E(1− n)) = 0, it follows that Hn−1(E(1− n)|℘) = 0,

hence by further restriction Hn−1(E(k)|℘) = 0 for k ≥ 1−n. So we have the sequence:

Hn−1(E(k − 1))→ Hn−1(E(k))→ 0, for k ≥ 1− n

thus by induction Hn−1(E(k)) = 0 for k ≥ 1− n.
The key ingredient of the proof is the Beilinson spectral sequence [20]: for any

coherent sheaf E on Pn there exists a spectral sequence {Ep,q
r } whose E1-term is given

by (q = 0, . . . , n and p = 0,−1, . . . ,−n):

Ep,q
1 = Hq(E ⊗ Ω−p

Pn (−p))⊗OPn(p)

which converges to

Ei =
{

E , if p + q = 0
0 otherwise.

Applying the Beilinson spectral sequence to E(−1), we must show that

Hq(E(−1)⊗ Ω−p
Pn (−p)) = 0 for q += 1 and for q = 1, p ≤ −3. (7)

It then follows that the Beilinson spectral sequence degenerates at the E2-term and
the monad

0 → H1(E(−1)⊗ Ω2
Pn(2))⊗OPn(−2)

→ H1(E(−1)⊗ Ω1
Pn(1))⊗OPn(−1)→ H1(E(−1))⊗OPn → 0 (8)
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has E(−1) as its cohomology. Tensoring (8) by OPn(1), we conclude that E is the
cohomology of (6), as desired.

The claim (7) follows from repeated use of the exact sequence

Hq(E(k))⊕m → Hq(E(k + 1)⊗ Ω−p−1
Pn (−p− 1))

→ Hq+1(E(k)⊗ Ω−p
Pn (−p))→ Hq+1(E(k))⊕m (9)

associated with Euler sequence for p-forms on Pn twisted by E(k):

0→ E(k)⊗ Ω−p
Pn (−p)→ E(k)⊕m → E(k)⊗ Ω−p−1

Pn (−p)→ 0, (10)

where q = 0, . . . , n, p = −1, . . . ,−n and m =
(

n + 1
−p

)

.

For instance, it is easy to see that:

H0(E(k)⊗ Ω−p
Pn (−p)) = 0 for all p and k ≤ −1;

Hq(E(−1)⊗ Ωn
Pn(n)) = Hq(E(−2)) = 0 for all q;

Hq(E(−1)) = 0 for all q += 1;
Hn(E(k)⊗ Ω−p

Pn (−p)) = 0 for all p and k ≥ −n.

Setting q = n− 1, we also obtain:

Hn−1(E(k)⊗ Ω−p
Pn (−p)) = 0 for p ≥ −n + 1 and k ≥ −n− 1,

and so on. !

Clearly, the cohomology of a linear monad is always coherent, but more can be
said if the codimension of the degeneration locus of α is known.

Proposition 4
Let E be a linear sheaf.

(i) E is locally-free if and only if its degeneration locus is empty;

(ii) E is reflexive if and only if its degeneration locus is a subvariety of codimension
at least 3;

(iii) E is torsion-free if and only if its degeneration locus is a subvariety of codimension
at least 2.

Proof. Let Σ be the degeneration locus of the linear sheaf E. From Proposition 2, we
know that Extp(E,OPn) = 0 for p ≥ 2 and

Σ = supp Ext1(E,OPn) = {x ∈ Pn | αx is not injective}.

The first statement is clear; so it is now enough to argue that E is torsion-free if
and only if Σ has codimension at least 2 and that E is reflexive if and only if Σ has
codimension at least 3.

Recall that the mth-singularity set of a coherent sheaf F on Pn is given by:

Sm(F) = {x ∈ Pn | dh(Fx) ≥ n−m}

where dh(Fx) stands for the homological dimension of Fx as an Ox-module:
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dh(Fx) = d ⇐⇒





Extd

Ox
(Fx,Ox) += 0

Extp
Ox

(Fx,Ox) = 0 ∀p > d.

In the case at hand, we have that dh(Ex) = 1 if x ∈ Σ, and dh(Ex) = 0 if
x /∈ Σ. Therefore S0(E) = · · · = Sn−2(E) = ∅, while Sn−1(E) = Σ. It follows that [23,
Proposition 1.20]:

(i) if codim Σ ≥ 2, then dim Sm(E) ≤ m − 1 for all m < n, hence E is a locally
1st-syzygy sheaf;

(ii) if codim Σ ≥ 3, then dim Sm(E) ≤ m − 2 for all m < n, hence E is a locally
2nd-syzygy sheaf.

The desired statements follow from the observation that E is torsion-free if and only if
it is a locally 1st-syzygy sheaf, while E is reflexive if and only if it is a locally 2nd-syzygy
sheaf [20, p. 148-149]. !

A splitting criterion for locally-free linear sheaves. Given a coherent sheaf E
on Pn, we define

Hp
∗ (E) =

⊕

k∈Z
Hp(E(k))

which has the structure of a graded module over Sn =
⊕

k∈Z Hp(O(k)). Kumar,
Peterson and Rao prove the following result [17]:

Theorem 5

Let E be a rank r locally-free sheaf on Pn, n ≥ 4.

(i) If n is even and r ≤ n − 1, then E splits as a sum of line bundles if and only if
Hp
∗ (E) = 0 for 2 ≤ p ≤ n− 2.

(ii) If n is odd and r ≤ n − 2, then E splits as a sum of line bundles if and only if
Hp
∗ (E) = 0 for 2 ≤ p ≤ n− 2.

Thus we obtain as an easy consequence of (3) in Proposition 2 and the previous
theorem:

Corollary 6

Let E be a rank r locally-free linear sheaf on Pn.

(i) If n is even and r ≤ n− 1, then E splits as a sum of line bundles.

(ii) If n is even and r ≤ n− 2, then E splits as a sum of line bundles.

This means that linear monads are not useful to produce locally free sheaves of low
rank on Pn, one of the problems suggested by Hartshorne in [11] and still a challenge
in the subject.
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Let us also point out that Kumar, Peterson and Rao’s result is optimal, in the sense
that there exist rank 2n locally-free sheaves on P2n+1 and on P2n (n ≥ 2) satisfying
Hp
∗ (E) = 0 for 2 ≤ p ≤ 2n−1 which are stable, and hence do not split as a sum of line

bundles. Moreover, as we will see in examples below, it does not generalize to reflexive
or torsion-free sheaves either.

Thus linear monads will only produced interesting locally-free sheaves when r =
w − v − u ≥ n if n is even and when r = w − v − u ≥ n− 1 if n is odd. However, we
can still expect to use monads to produce interesting reflexive sheaves of low rank, see
Example 7 below.

2. Basic properties of instanton sheaves

It follows from Proposition 2 that the cohomology of a linear monad with v = u and
w− 2v ≥ 1 is a torsion-free instanton sheaf of rank w− 2v and charge v. In particular,
by Fløystad’s theorem, there are rank r instanton sheaves on Pn for each r ≥ n − 1.
Moreover, for every r ≥ 2n, there are rank r locally-free instanton sheaves on P2n+1 or
P2n.

By virtue of Theorem 3, every rank r instanton sheaf of charge c is the cohomology
of a monad of the form:

0→ OPn(−1)⊕c α→ O⊕r+2c
Pn

β→ OPn(1)⊕c → 0 (11)

for some injective map α degenerating in codimension at least 2 and some surjective
map β, such that βα = 0. It follows easily from Fløystad’s theorem that there are no
instanton sheaves on Pn of rank r ≤ n− 2.

Corollary 7

If E is an instanton sheaf then:

(i) H0(E∗(k)) = 0, ∀k ≤ −1;

(ii) Extp(E,OPn) = 0 for p ≥ 2;

(iii) Extp(E,E) = 0 for p ≥ 3.

Proof. The first two statements follow easily from Proposition 2 and the fact that every
instanton sheaf is linear. For the last statement, let K = kerβ; taking the sequence:

0→ OPn(−1)⊕c → K → E → 0,

we obtain:

Extp(E,OPn(−1)⊕c)→ Extp(E,K)→ Extp(E,E)→ Extp+1(E,OPn(−1)⊕c). (12)

Thus Extp(E,K) ' Extp(E,E) for all p ≥ 2. Now from the sequence

0→ K → O⊕r+2c
Pn → OPn(1)⊕c → 0
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we obtain:

Extp(E,OPn(1)⊕c)→ Extp+1(E,K)→ Extp+1(E,O⊕r+2c
Pn ). (13)

Hence Extp(E,K) = 0 for p ≥ 3, and the result follows. !

Furthermore, Ext1(E,E) is completely determined by the map α, while Ext2(E,E)
is completely determined by the map β. Indeed, first note that the maps α and β induce
linear maps:

Ext1α : Ext1(E,OPn(−1)⊕c)→ Ext1(E,K)

Ext1β : Ext1(E,O⊕r+2c
Pn )→ Ext1(E,OPn(1)⊕c).

Setting p = 1 on (12) and (13) we get:

Ext1(E,E) = coker {Ext1α} and Ext2(E,E) = coker {Ext1β}.

In particular, note that Ext2(E,E) = 0 is an open condition on Hom(O⊕r+2c
Pn ,OPn(1)⊕c).

Given two linear sheaves, one can produce a new instanton sheaf of higher rank
using the following result:

Proposition 8

An extension E of linear sheaves F ′ and F ′′

0→ F ′ → E → F ′′ → 0

is also a linear sheaf. Moreover, if c1(F ′) = −c1(F ′′), then E is instanton.

Proof. The desired statement follows easily from the associated sequences of cohomol-
ogy:

Hq(F ′(k))→ Hq(E(k))→ Hq(F ′′(k)), ∀q = 0, . . . , n,

so that Hq(E(k)) vanishes whenever Hq(F ′(k)) and Hq(F ′′(k)) do. Note that E is
classified by Ext1(F ′′, F ′). !

Proposition 9

If E is a locally-free instanton sheaf on Pn, then E∗ is also instanton.

Proof. The statement is an easy consequence of Serre duality. In fact, if E arises as
the cohomology of the monad

0→ V ⊗OPn(−1) α−→W ⊗OPn
β−→ U ⊗OPn(1)→ 0,

then E∗ is the cohomology of the dual monad

0→ U∗⊗OPn(−1) β∗−→W ∗⊗OPn
α∗−→ V ∗⊗OPn(1)→ 0. !

In general, if E is not locally-free, its dual might not be an instanton sheaf, see
Example 4 below. However, the dual of every semistable sheaf on P2 is instanton.
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Proposition 10

Let ℘ be a hyperplane in Pn. The restriction E|℘ of an instanton sheaf E on Pn

is also an instanton sheaf, and the restriction map ρ : H1(E(−1)) → H1(E(−1)|℘) is
an isomorphism.

Proof. Follows easily from the definition and the exact sequence

0→ E(k−1) σ→ E(k)→ E|℘(k)→ 0. !

Instanton sheaves and mathematical instanton bundles. Mathematical instan-
ton bundles have been defined in [21] as a rank 2m locally-free sheaf on P2m+1 satisfying
the following conditions:

• c(E) =
(

1
1−H2

)c
= (1 + H2 + H4 + · · · )c;

• E has natural cohomology in the range −2m− 1 ≤ k ≤ 0;
• E is simple;
• E has trivial splitting type (i.e. there exist a line " ⊂ P2m+1 such that

E|! ' O2m
! ).

It was later shown by Ancona and Ottaviani have shown that the simplicity assumption
is redundant [2, Proposition 2.11]: every rank 2m locally-free sheaf on P2m+1 satisfying
the first two conditions is simple (in fact, more is true, see Lemma 23 below). The
last condition is also redundant for m = 1 and for c = 1; there are however rank 2m
locally-free sheaf on P2m+1 satisfying the first two conditions which are not of trivial
splitting type.

Every mathematical instanton bundle as above can be represented as the coho-
mology of a linear monad with v = u = c and w = 2m + 2c [21], hence it is a rank 2m
locally-free instanton sheaf on P2m+1 of charge c.

Conversely, a rank 2m locally-free instanton sheaf E on P2m+1 is a mathematical
instanton bundle as above if H0(E) = 0 and it is of trivial splitting type. We show
that the vanishing of H0(E) is automatic.

Proposition 11

If E is a rank n − 1 instanton sheaf on Pn, then H0(E) = 0. If E is locally-free,
then H0(E∗) = 0.

Proof. Let E be a rank n − 1 locally-free instanton sheaf on Pn, and assume that
H0(E) += 0. So let Q = E/OPn and consider the sequence:

0→ OPn → E → Q→ 0.

Note that c1(Q) = 0, H0(Q(k)) = 0 for k ≤ −1, Hn(Q(k)) = 0 for k ≥ −n and
Hq(Q(k)) = Hq(E(k)) for 1 ≤ q ≤ n − 1. It follows that Q must be a rank n − 2
instanton sheaf, which cannot exist by Fløystad’s theorem.

If E is locally-free, then E∗ is also instanton and the vanishing of H0(E∗) follows
by the same argument. !
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In particular, there are no rank 2m − 1 locally-free instanton sheaves on P2m.
Indeed, by Theorem 5, any such sheaf must split as a sum of line bundles, and this
contradicts c1(E) = 0 and H0(E) = 0.

We also point out that there are rank n − 1 properly reflexive instanton sheaves
E on Pn for which H0(E∗) += 0, see Example 6 below.

3. Semistability of instanton sheaves

Recall that a torsion-free sheaf E on Pn is said to be semistable if for every coherent
subsheaf 0 += F ↪→ E we have

µ(F ) =
c1(F )
rk(F )

≤ c1(E)
rk(E)

= µ(E).

Furthermore, if for every coherent subsheaf 0 += F ↪→ E with 0 < rk(F ) < rk(E) we
have

c1(F )
rk(F )

<
c1(E)
rk(E)

,

then E is said to be stable. A sheaf is said to be properly semistable if it is semistable
but not stable. It is also important to remember that E is (semi)stable if and only if
E∗ and E(k) are.

For any given torsion-free sheaf E of rank r, there is an uniquely determined
integer kE such that

c1(E(kE)) = c1(E) + rkE ∈ {0,−1, · · · ,−r + 1};

Eη = E(kE) is called the normalization of E. A sheaf E is said to be normalized if
−r + 1 ≤ c1(E) ≤ 0.

Lemma 12 ([20, p. 167])

Let E be a normalized torsion-free sheaf on Pn. If E is stable then H0(E) = 0
and

• H0(E∗) = 0 if c1(E) = 0;

• H0(E∗(−1)) = 0 if c1(E) < 0.

If E is semistable then H0(E(−1)) = H0(E∗(−1)) = 0.

For sheaves of rank 2 or 3, the above necessary criteria turns out to be also
sufficient, as we recall in the next two lemmas. We fix n ≥ 2.

Lemma 13

Let E be a normalized rank 2 torsion-free sheaf E on Pn. If c1(E) = 0, then:

• E is stable if and only if H0(E) = H0(E∗) = 0;

• E is semistable if and only if H0(E(−1)) = H0(E∗(−1)) = 0.

If c1(E) = −1, then E is stable if and only if it is semistable if and only if H0(E) =
H0(E∗(−1)) = 0.
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Proof. For E being reflexive, this result is in [20, p. 166]. In general, simply note that
E∗ is reflexive and use the result just mentioned. !

As an easy consequence of Proposition 2 and Lemma 13 we have:

Proposition 14

If E is a rank 2 instanton sheaf on Pn (n = 2, 3), then E is semistable. It is stable
if H0(E) = 0.

This result does not generalizes for higher rank, even if we restrict ourselves to
locally-free instanton sheaves, as we show in the example below.

Example 1 For each n ≥ 2, there are rank 2n locally-free instanton sheaves on Pn

which are not semistable. Indeed, by Fløystad’s theorem, there is a linear monad:

0→ OPn(−1)⊕a+1 α→ O⊕n+2a+1
Pn

β→ OPn(1)⊕a → 0 (a ≥ 1), (14)

whose cohomology F is a locally-free sheaf of rank n on Pn and c1(F ) = 1. The dual
F ∗ is a locally-free sheaf of rank n on Pn and c1(F ∗) = −1. Any extension of E of F ∗

by F :
0→ F → E → F ∗ → 0

is a rank 2n locally-free instanton sheaf which is clearly not semistable. Furthermore,
one can adjust the parameter a depending on n to ensure the existence of nontrivial
extensions.

For instanton sheaves of higher rank, the best statement one can have is the
following:

Theorem 15

Let E be a rank r instanton sheaf on Pn.

• If E is reflexive and r ≤ n + 1, then E is semistable;

• if E is locally-free and r ≤ 2n− 1, then E is semistable.

Example 2 Note that the upper bound in the rank given in the second part of Theo-
rem 15 is sharp, as seen in Example 1. We now show that there are rank n+2 reflexive
instanton sheaves which are not semistable.

Indeed, let X = Pn, n ≥ 3. By Fløystad’s theorem [9], there is a linear monad:

0→ OPn(−1)⊕n−2 α→ O⊕n+1
Pn

β→ OPn(1)→ 0

whose cohomology F is a rank 2 reflexive linear sheaf on Pn and c1(F ) = n− 3.
Next, consider the rank n locally free linear sheaf G associated to the linear

monad:

0→ OPn(−1)⊕a α→ O⊕2n+2a−3
Pn

β→ OPn(1)⊕n+a−3 → 0 (a ≥ 1).

Note that c1(G) = 3− n.



Instanton sheaves on complex projective spaces 81

As in the previous example, an extension of G by F is a rank n + 2 reflexive
instanton sheaf which is not semistable. The choice of a suitable value of the parameter
a guarantees the existence of non-trivial extensions.

The proof of Theorem 15 is based on Hoppe’s criterion [14]: if E is a rank r
reflexive sheaf on Pn with c1(E) = 0 satisfying

H0(ΛqE(−1)) = 0 for 1 ≤ q ≤ r − 1

then E is semistable. Indeed, assume E is not semistable, and let F be a rank q
destabilizing sheaf with c1(F ) = d > 0. Then ΛqF = OPn(d), and the induced map
ΛqF → ΛqE yields a section in H0(ΛqE(−d)), which forces h0(ΛqE(−1)) += 0. Simi-
larly, it is also easy to see that if

H0(ΛqE) = 0 for 1 ≤ q ≤ r − 1

then E is stable.

Proof of Theorem 15. Every rank r reflexive instanton sheaf on Pn can be represented
as the cohomology of the monad (11). Taking the sequence

0→ K → O⊕(r+2c)
Pn

β→ OPn(1)⊕c → 0,

we consider the associated long exact sequence of exterior powers, twisted by OPn(−1):

0→ ΛqK(−1)→ Λq(O⊕(r+2c)
Pn )(−1)→ · · ·

Hence H0(ΛqK(−1)) = 0 for 1 ≤ q ≤ r + c− 1. Now take the sequence:

0→ OPn(−1)⊕c → K → E → 0,

and consider the associated long exact sequence of symmetric powers, twisted by
OPn(−1):

0→ OPn(−q − 1)(
c+q−1

q ) → K(−q)(
c+q−2

q−1 ) → · · ·

→ Λq−1K ⊗OPn(−2)⊕c → ΛqK(−1)→ ΛqE(−1)→ 0.

Cutting into short exact sequences and passing to cohomology, we have obtain that
every reflexive instanton sheaf satisfies:

H0(ΛpE(−1)) = 0, for 1 ≤ p ≤ n− 1. (15)

It follows from (15) that every rank r ≤ n reflexive instanton sheaf is semistable.
If E is a rank n + 1 reflexive instanton sheaf, then because c1(E) = 0:

H0(ΛnE(−1)) = H0(E∗(−1)) = 0,

thus E is also semistable.
Now if E is locally-free, the dual E∗ is also an instanton sheaf on X, so

H0(Λq(E∗)(−1)) = 0, for 1 ≤ q ≤ n− 1. (16)
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But Λp(E∗) ' Λr−p(E∗), since det(E) = OPn ; it follows that:

H0(ΛpE(−1)) = H0(Λr−p(E∗)(−1)) = 0, for 1 ≤ r − p ≤ n− 1
=⇒ r − n + 1 ≤ p ≤ r − 1. (17)

Together, (16) and (17) imply that if E is a rank r ≤ 2n−1 locally-free instanton
sheaf, then:

H0(ΛpE(−1)) = 0, for 1 ≤ p ≤ 2n− 2

hence E is semistable by Hoppe’s criterion. !

Example 3 A similar result for the semistability of torsion-free instanton sheaves
beyond rank 2 is unclear. However, it is easy to construct rank n + 1 torsion-free
instanton sheaves which are not semistable. Indeed, the cohomology of the monad:

0→ OPn(−1)⊕n−1 → O⊕n+1
Pn → OPn(1)→ 0

is of the form IM (n − 2), where IM is the ideal sheaf of a codimension 2 subvariety
M ↪→ Pn [9].

On the other hand, there is a rank n locally-free linear sheaf F on Pn with c1(F ) =
2− n given by the cohomology of the monad:

0→ OPn(−1)⊕c → O⊕2c+2n−2
Pn → OPn(1)⊕c+n−2 → 0.

Thus the sheaf E given by the extension:

0→ IM (n− 2)→ E → F → 0

is a rank n + 1 torsion-free instanton sheaf which is not semistable.
In other words, Proposition 14 is sharp on P2, and the reasonable conjecture seems

to be that every rank r = n− 1, n torsion-free instanton sheaves on Pn are semistable.

On the other hand, we have:

Proposition 16

For r > (n− 1)c, there are no stable rank r instanton sheaves on Pn of charge c.

In other words, every stable rank r instanton sheaf on Pn must be of charge c ≥
r/(n−1), and there are properly semistable rank r instanton sheaves for n ≤ r ≤ 2n−1.

Proof. Any rank r instanton sheaf of charge c is the cohomology of a monad of the
form:

0→ OPn(−1)⊕c α→ O⊕r+2c
Pn

β→ OPn(1)⊕c → 0

and note that
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H0(E) ' H0(ker β) ' ker{ H0β : H0(O⊕r+2c
Pn )→ H0(OPn(1)⊕c)}

thus if r > (n − 1)c, then h0(O⊕r+2c
Pn ) > h0(OPn(1)⊕c) and H0(E) += 0, so that E is

not stable by Lemma 12. !

Let us now analyze the inverse question: are all semistable sheaves of degree
zero on Pn instanton? The answer is positive for n = 2, but there are cohomological
restrictions for n ≥ 3.

Theorem 17

Let E be a torsion-free sheaf on P2 with c1(E) = 0. If E is semistable, then E is
instanton.

Proof. The semistability of E and E∗ immediately implies that H0(E(k)) =
H0(E∗(k)) = 0 for k ≤ −1. If E is a locally-free sheaf, then via Serre duality
H2(E(k)) = 0 for k ≥ −2, thus E is instanton.

Now if E is properly torsion-free, we consider the sequence:

0→ E → E∗∗ → Q→ 0 (18)

where Q = E∗∗/E is supported on a zero dimensional subscheme. Clearly, E∗∗ is
a semistable locally-free sheaf with c1(E) = 0, so it is instanton by the previous
paragraph. It follows from (18) that:

H0(E(k)) ↪→ H0(E∗∗(k)) = 0 for k ≤ −1,

and
H2(E(k)) '→ H2(E∗∗(k)) = 0 for k ≥ −2,

so E is also instanton. !

For n ≥ 3, we have:

Proposition 18

If E is a semistable locally-free sheaf on Pn with c1(E) = 0 such that H1(E(−2)) =
Hn−1(E(1−n)) = 0 and, for n ≥ 4, Hp

∗ (E) = 0 for 2 ≤ p ≤ n−2, then E is instanton.

Proof. If E is semistable, then H0(E(k)) = H0(E∗(k)) = 0 for k ≤ −1, hence
Hn(E(k)) = 0 for k ≥ −n by Serre duality. !

As simple consequence of Proposition 14 and Proposition 18 we have:

• A rank 2 torsion-free sheaf on P3 with c1(E) = 0 is instanton if and only if it is
semistable and H1(E(−2)) = H2(E(−2)) = 0.

• A rank 3 reflexive sheaf on P3 with c1(E) = 0 is instanton if and only if it is
semistable and H1(E(−2)) = H2(E(−2)) = 0.
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• A rank 3 reflexive sheaf on P4 with c1(E) = 0 is instanton if and only if it is
semistable and H1(E(−2)) = H2

∗ (E) = H3(E(−3)) = 0.

• A rank 4 ≤ r ≤ 2n − 1 locally-free sheaf on Pn (n ≥ 3) with c1(E) = 0 is
instanton if and only if it is semistable and H1(E(−2)) = Hn−1(E(1 − n)) = 0
and, for n ≥ 4, Hp

∗ (E) = 0 for 2 ≤ p ≤ n− 2.

Remark. Since every Gieseker semistable torsion-free sheaf on Pn is semistable [20,
p. 174], one can use the results above to decide when a Gieseker semistable torsion-
free sheaf on Pn is instanton. It is easy to see, however, that not all instanton sheaves
are Gieseker semistable; indeed if E is an instanton sheaf satisfying H0(E) += 0, then
E is not Gieseker semistable. Thus, there are Gieseker unstable instanton sheaves of
every rank.

A little more can be said about rank 2 reflexive instanton sheaves on P3 and rank
4 locally-free instanton sheaves on P5.

Proposition 19

Every rank 2 reflexive instanton sheaf on P3 is locally-free and stable.

Proof. Hartshorne has shown that if E is a rank 2 reflexive sheaf on P3 with c3(E) = 0,
then E is locally-free [12], thus every rank 2 reflexive instanton sheaf on P3 is locally-
free. By Proposition 11, we have that H0(E) = 0, hence E is stable by Proposi-
tion 14. !

This result is sharp, in the sense that there are properly semistable rank 2 torsion-
free instanton sheaves on P3 and properly semistable rank 3 properly reflexive instanton
sheaves on P3:

Example 4 Consider the monad:

OP3(−1) α→ O⊕4
P3

β→ OP3(1) (19)

α =





x1

x2

0
0



 and β = (−x2 x1 x3 x4).

Since α is injective provided x1, x2 += 0, its cohomology is a rank 2 properly torsion-free
instanton sheaf of charge 1. Moreover, E is not stable because it is a non-locally-free
nullcorrelation sheaf [8, Remark 1.2.1].

Finally, note that E∗ is a properly semistable rank 2 properly reflexive sheaf on
P3 with c1(E∗) = 0; by Proposition 19, E∗ cannot be instanton.

Example 5 Set w = 5 and v = u = 1 and consider the monad:

OP3(−1) α→ O⊕5
P3

β→ OP3(1) (20)
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α =





x1

x2

0
0
x3




and β = (−x2 x1 x3 x4 0).

It is easy to see that β is surjective for all [x1 : · · · : x4] ∈ P3, while α is injective
provided x1, x2, x3 += 0. It follows that E is reflexive, but not locally-free; its singularity
set is just the point [0 : 0 : 0 : 1] ∈ P3.

In summary, E is a rank 3 properly reflexive instanton sheaf of charge 1 on P3.
Note that E is properly semistable, by Theorem 15 and Proposition 16.

Proposition 20

Every rank 4 locally-free instanton sheaf E on P5 is stable.

Proof. Noting that H0(E) = 0 by Proposition 11, the claim follows from [2, Theo-
rem 3.6]. !

Again, this result is sharp, in the sense that there exists a properly semistable
rank 4 properly reflexive instanton sheaf on P5; it is also not true that every rank 2n
reflexive instanton sheaf on P2n+1 is locally-free or stable, as Hartshorne’s result could
suggest.

Example 6 Consider the cohomology E of the monad:

0→ OP5(−1) α→ O⊕6
P5

β→ OP5(1)→ 0

with the maps α and β given by:

β =
(

x1 x2 x3 x4 x5 x6

)
α =





−x2

x1

−x4

x3

0
0





.

Its degeneration locus is the line {x1 = · · · = x4 = 0}, so its cohomology is indeed
properly reflexive.

Finally, E is properly semistable because it is a non-locally-free nullcorrelation
sheaf [8, Remark 1.2.1], and H0(E∗) += 0.

Remark. It seems reasonable to conjecture that every rank 2n locally-free instanton
sheaf on P2n+1 is stable. In support of this conjecture, see Lemma 23 and Propo-
sition 25 below. Results in this direction were also obtained in [2] for symplectic
mathematical instanton bundles.

Example 7 Indecomposable rank 2 locally-free sheaves on Pn, n ≥ 4, have been
extremely difficult to construct, and linear monads do not help with this problem.
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However, stable rank 2 reflexive sheaves on Pn are easy to construct. Indeed, Fløystad’s
theorem guarantees the existence of linear monad:

0→ OPn(−1)⊕n+a−3 α→ O⊕n+2a−1
Pn

β→ OPn(1)⊕a → 0 (a ≥ 1)

whose cohomology is a rank 2 reflexive linear sheaf with c1(E) = n− 3. To see that it
is also stable, note that Eη = E(k) for some k ≤ −1, thus H0(Eη) = 0 and it follows
from Lemma 13 that E must be stable.

It is interesting to contrast the existence of such stable rank 2 reflexive sheaves
on Pn with Hartshorne’s conjecture: there are no indecomposable rank 2 locally-free
sheaves on Pn for n ≥ 7 [13].

Furthermore, this example implies that Kumar, Peterson and Rao’s result (Theo-
rem 5) is sharp, in the sense it cannot be extended to more general sheaves: there are
rank 2 reflexive sheaves E on Pn with Hp

∗ (E) = 0 for 2 ≤ p ≤ n− 2 which do not split
as a sum of rank 1 sheaves.

For instance, with n = 4 and a = 1, we get the monad:

0→ OP4(−1)⊕2 α→ O⊕5
P4

β→ OP4(1)→ 0

with the maps α and β given by:

β =
(

x1 x2 x3 x4 x5

)
α =





−x2 −x5

x1 x3

−x4 −x2

x3 0
0 x1




,

where [x1 : · · · : x5] are homogeneous coordinates in P4. Note that the degeneration
locus of this monad is given by the union of two lines:

Σ(E) = {x1 = x2 = x3 = x4 = 0} ∪ {x1 = x2 = x3 = x5 = 0}.

One can thus hope to construct stable rank 2 locally-free sheaves on Pn via some
mechanism that turns reflexive into locally-free sheaves without introducing new global
sections.

Lifting of instantons. It is known that for every locally-free instanton sheaf E
of trivial splitting type on P2, there exists a locally-free instanton sheaf Ẽ of trivial
splitting type on P3 and a hyperplane ℘ ⊂ P3 such that Ẽ|℘ ' E [7]. Ẽ is called a
lifting of E.

It would be interesting to see whether this generalizes to higher dimensional pro-
jective spaces and/or to more general sheaves; more precisely, we propose the following
conjecture:

Conjecture. If E is a rank r ≥ 2n locally-free instanton sheaf of trivial splitting type
on P2n of charge c, then there is a rank r locally-free instanton sheaf Ẽ on P2n+1 of
charge c and a hyperplane ℘ ⊂ P2n+1 such that Ẽ|℘ ' E.

Donaldson’s argument in [7] for the n = 1 case is “unashamedly computational”,
relying in the correspondence between instanton sheaves of trivial splitting type on P2
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and P3 and solutions of the ADHM equations, and it is not clear how to generalize
it for n ≥ 2. As far as we know, there is no alternative, more conceptual proof of
Donaldson’s result.

It is not difficult to see that if a locally-free instanton sheaf on P2n can be lifted to
P2n+1, then the lifted sheaf must be instanton. The hard part is determining whether
a given instanton sheaf can be lifted; the condition that the sheaf on P2n is of trivial
splitting type might be crucial here.

Proposition 21
Let E be a locally-free instanton sheaf on Pn (n ≥ 4) of charge c. If there is a

locally-free sheaf Ẽ on Pn+1, and a hyperplane ℘ ⊂ Pn+1 such that Ẽ|℘ ' E, then Ẽ
is also an instanton sheaf of charge c.

Proof. The desired result follows from the restriction sequence:

0→ Ẽ(k − 1)→ Ẽ(k)→ E(k)→ 0

together with repeated use of Serre’s duality and Serre’s vanishing theorem.
Since H0(E(k)) = 0 for all k ≤ −1, we get that

H0(Ẽ(k − 1)) ∼→ H0(Ẽ(k))

for all k ≤ −1. Hence also H0(Ẽ(−1)) = 0.
Similarly, since Hn(E(k)) = 0 for all k ≥ −n, we get that

Hn+1(Ẽ(k − 1)) ∼→ Hn+1(Ẽ(k))

for all k ≥ −n. Hence also Hn+1(Ẽ(−n− 1)) = 0.
Since H1(E(k)) = 0 for all k ≤ −2, we get that

H1(Ẽ(k − 1)) ∼→ H1(Ẽ(k))→ 0

for all k ≤ −2. But H1(Ẽ(l)) = 0 for l 0 0 by Serre’s vanishing theorem, thus it
follows that H1(Ẽ(−2)) = 0.

Similarly, since Hn−1(E(k)) = 0 for all k ≥ 1− n, we get that

0→ Hn(Ẽ(k − 1))→ Hn(Ẽ(k))

for all k ≥ 1 − n. But H1(Ẽ(l)) = 0 for l 1 0 by Serre’s vanishing theorem, thus it
follows that Hn(Ẽ(−n)) = 0. This completes the proof for the case n = 2.

Since n ≥ 4, we have that Hp(E(k)) = 0 for 2 ≤ p ≤ n− 2 and all k; thus

H2(Ẽ(k − 1)) ∼→ H2(Ẽ(k))

for all k ≤ −2. Again Serre’s vanishing theorem forces H2(Ẽ(k)) = 0 for all k ≤ −2.
Moreover, we have that

H2(Ẽ(k − 1))→ H2(Ẽ(k))→ 0

for all k, hence H2(Ẽ(k)) = 0 for all k.



88 Jardim

Finally, for n ≥ 5 we have that

Hp(Ẽ(k − 1)) ∼→ Hp(Ẽ(k))

for 3 ≤ p ≤ n− 2 and all k. It follows that Hp(Ẽ(k)) = 0 for 3 ≤ p ≤ n− 2 and all k,
which completes the proof of the first statement.

Setting k = −1 on the restriction sequence, we get h1(Ẽ(−1)) = h1(E(−1)),
showing that the charge is preserved. !

4. Simplicity of linear sheaves

Recall that a torsion-free sheaf E on a projective variety X is said to be simple if
dim Ext0(E,E) = 1. Every stable torsion-free sheaf on Pn is simple.

Theorem 22

If E is the cohomology of the linear monad

0→ V ⊗OPn(−1) α−→W ⊗OPn
β−→ U ⊗OPn(1)→ 0,

for which K = kerβ is simple, then E is simple.

Proof. Applying Ext∗(·, E) to the sequence

0→ V ⊗OPn(−1)→ K → E → 0,

we get
0→ Ext0(E,E)→ Ext0(K, E)→ · · · (21)

Now applying Ext∗(K, ·) we get:

V ⊗ Ext0(K,OPn(−1))→ Ext0(K, K)→ Ext0(K, E)→ V ⊗ Ext1(K,OPn(−1)).

But it follows from the dual of sequence (3) with k = 1 that h0(K∗(−1)) =
h1(K∗(−1)) = 0, thus

dim Ext0(K, E) = dim Ext0(K, K) = 1

because K is simple. It then follows from (21) that E is also simple. !

As a consequence of [2, Theorem 2.8(a)], we have in particular the following
generalization of [2, Theorem 2.8(b)]:

Lemma 23

Every rank n− 1 linear sheaf on Pn is simple.

The above result is sharp, in the sense that there are rank n instanton sheaves on
Pn which are not simple. For example, recall that a rank 2 locally-free sheaf is simple if
and only if it is stable; since every rank 2 instanton sheaf on P2 of charge 1 is properly
semistable (by Proposition 16), it follows that these are not simple, as desired.
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5. Moduli spaces of instanton sheaves

Let IPn(r, c) denote the moduli space of equivalence classes of rank r instanton sheaves
of charge c on Pn. Let I lf

Pn(r, c) denote the open subset of IPn(r, c) consisting of locally-
free sheaves. Note that I lf

Pn(r, c) might be empty even though IPn(r, c) is not.
Very little is known in general about IPn(r, c); research so far has concentrated

on I lf
P2n+1(2n, c). Here is a summary of some of the known facts:
• I lf

P2n+1(2n, c) is affine [6];

• I lf
P2n+1(2n, 1) is an open subset of Pn(2n+1)−1 [8];

• I lf
P2n+1(2n, 2) is an irreducible, smooth variety of dimension 4n2 + 12n− 3 [2];

• I lf
P3(2, c) is an irreducible, smooth variety of dimension 8c− 3 for 1 ≤ c ≤ 5, see

[4] and the references therein;

• I lf
P2n+1(2n, c) is singular for all n ≥ 2 and c ≥ 3 [19].

The smoothness of I lf
P3(2, c) for arbitrary charge c is still an open problem; it is known

however that its closure in the moduli space of semistable locally-free sheaves with
Chern character 2− cH2 is in general singular, see [1].

In this section, we will generalize the second statement, study the moduli spaces
of instanton sheaves on P2 and conclude with a general conjecture that generalizes the
first statement.

Instanton sheaves and nullcorrelation sheaves. Recall that a nullcorrelation
sheaf N on Pn is a rank n− 1 torsion-free sheaf defined by the short exact sequence:

0→ OPn(−1) σ→ Ω1
Pn(1)→ N → 0,

where σ ∈ H0(Ω1
Pn(2)) = Λ2H0(OPn(1)). If n is odd and σ is generic, then N is locally-

free. If n is even, then N is never locally-free; however, the generic one is reflexive if
n ≥ 4.

It is easy to see that any nullcorrelation sheaf is instanton of charge 1. The
converse is also true: every rank n − 1 torsion-free instanton sheaf of charge 1 is a
nullcorrelation sheaf. Indeed, let E be a rank n−1 instanton sheaf of charge 1, so that
it is the cohomology of the sequence:

0→ OPn(−1) α→ O⊕(n+1)
Pn

β→ OPn(1)→ 0.

Comparing this with the Euler sequence, it follows that kerβ coincides Ω1
Pn(1), up to

an automorphism of Pn. Thus E fits into the sequence:

0→ OPn(−1) α→ Ω1
Pn(1)→ E → 0,

hence E is nullcorrelation.
It follows from the above correspondence and the fact that every nullcorrelation

sheaf is simple that any nullcorrelation sheaf is completely determined by a section
σ ∈ H0(Ω1

Pn(2)). Hence, we have that the set of equivalence classes of nullcorrelation
sheaves on Pn is exactly P

(
H0(Ω1

Pn(2))
)
. Thus we conclude:
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Theorem 24
IPn(n− 1, 1) ' P

n(n+1)
2 −1.

It is known that every nullcorrelation locally-free sheaf is stable, while nullcor-
relation sheaves which are not locally-free are not stable [8, Remark 1.2.1]; they are
however properly semistable. In particular, we have:

Proposition 25

Every rank 2n locally-free instanton sheaf of charge 1 on P2n+1 is stable.

Moduli spaces of instanton sheaves on P2. The simplest possible instanton
sheaves are the rank 1 instanton sheaves on P2. It is not difficult to see that such
sheaves are exactly the ideals of points in P2.

Indeed, let Z be a closed zero dimensional subscheme in P2, and let IZ denote its
ideal sheaf; it fits into the sequence:

0→ IZ → OP2 → OZ → 0. (22)

After tensoring with OP2(k), it follows that H0(P2, IZ(k)) = 0 for k ≤ −1, and
H2(P2, IZ(k)) = 0 for k ≥ −2, so IZ is indeed instanton. Moreover, the charge of
IZ is just the length of Z.

Conversely, let E be a rank 1 instanton sheaf of charge c on P2. Then E∗∗ is a
rank 1 locally-free sheaf with c1(E∗∗) = c1(E) = 0, so E∗∗ = OP2 . Thus E is the ideal
sheaf associated with the zero-dimensional scheme OP2/E, whose length is equal to
the charge of E.

In other words, there is a 1-1 correspondence between rank 1 instanton sheaves of
charge c on P2 and closed zero dimensional subschemes of length c in P2. This gives
us the following identity:

Theorem 26

IP2(1, c) ' (P2)[c].

Remark. Let E be a locally-free instanton sheaf of charge c; by tensoring sequence
(22) with E(k), it is easy to see that EZ = E ⊗ IZ is a properly torsion-free instanton
sheaf of charge c + r · length(Z). Moreover, if H0(P2, E) = 0, then H0(P2, EZ) = 0.
Is it true that every properly torsion-free instanton is a locally-free instanton sheaf
tensored by an ideal of points?

As we have seen in Section 3, rank 2 and 3 instanton sheaves on P2 are in 1-1
correspondence with semistable torsion-free sheaves with zero first Chern class. So we
have:

Corollary 27

For r = 2, 3, IP2(r, c) ' MP2(r, 0, c), the moduli space of rank r semistable
torsion-free sheaves E on P2 with c1(E) = 0 and c2(E) = c. In particular, IP2(2, c)
and IP2(3, c) are quasi-projective varieties.

In general, we conjecture that IPn(r, c) is always a quasi-projective variety.
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