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Abstract

We study genus 2 covers of relative elliptic curves over an arbitrary base in which
2 is invertible. Particular emphasis lies on the case that the covering degree is 2.
We show that the data in the “basic construction" of genus 2 covers of relative
elliptic curves determine the cover in a unique way (up to isomorphism).

A classical theorem says that a genus 2 cover of an elliptic curve of degree
2 over a field of characteristic "= 2 is birational to a product of two elliptic curves
over the projective line. We formulate and prove a generalization of this theorem
for the relative situation.

We also prove a Torelli theorem for genus 2 curves over an arbitrary base.

Introduction

The purpose of this article is to study covers f : C −→ E where C/S is a (relative,
smooth, proper) genus 2 curve, E/S is a (relative) elliptic curve and the base S is a
locally noetherian scheme over Z[1/2]. Particular emphasis lies on the case that the
covering degree N is 2.

If one studies genus 2 covers of (relative) elliptic curves, it is convenient to restrict
ones attention to so-called minimal covers. These are covers C −→ E which do not
factor over a non-trivial isogeny Ẽ −→ E. If now f : C −→ E is a minimal cover and
x ∈ E(S), then Tx ◦f is also one. This ambiguity motivates the notion of a normalized
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cover introduced in [10]: By definition, such a cover is minimal and satisfies a certain
condition concerning the direct image of the Weierstraß divisor of C on E (for precise
definition see below). Now for every minimal cover f : C −→ E there is exactly one
x ∈ E(S) such that Tx ◦ f : C −→ E is normalized.

To every minimal cover f : C −→ E one can associate in a canonical way an elliptic
curve E′

f/S and an isomorphism of S-group schemes ψf : E[N ]−̃→E′
f [N ] which is anti-

isometric with respect to the Weil pairing; see [10]. It is shown in [10] that for fixed
S, E/S and N ≥ 3, the assignment f (→ (Ef , ψf ) induces a monomorphism from the
set of isomorphism classes of normalized genus 2 covers of degree N of E/S to the set
of isomorphism classes of tuples (E′, ψ) of elliptic curves E/S with an anti-isometric
isomorphism ψ : E[N ]−̃→E′[N ]. Explicit conditions are given when a tuple (E′, ψ)
corresponds to a normalized genus 2 cover C −→ E of degree N over S – this is called
“basic construction” in [10].

In this work, we show that the above assignment is in fact a monomorphism for all
N ≥ 2. Our starting point is a Torelli theorem (Theorem 1) for relative genus 2 curves
which follows rather easily from the detailed appendix of [10]. With the help of this
theorem, we prove a Torelli theorem for normalized genus 2 covers of (relative) elliptic
curves; see Proposition 2.3. This result implies immediately that the “Torelli map”
of [10] is a monomorphism for arbitrary N ≥ 2. In [10], the corresponding statement
is only proved for N ≥ 3 and the proof is more involved; cf. [10, Proposition 5.12].
The injectivity of the above assignment then follows with other results of [10].

For N = 2 (and fixed S and E/S), tuples (E′, ψ) as well as normalized covers
C −→ E have a non-trivial automorphism of order 2. This leads to a certain “non-
rigidity” in the “basic construction”: Any two covers corresponding to the same tuple
(E′, ψ) are isomorphic, but the isomorphism is not unique. We propose a “symmetric
basic construction” which leads to a more rigid statement (and is more explicit than
the “basic construction”).

We then fully concentrate on the case that N = 2. We show in particular that
for every normalized cover f : C −→ E of degree 2, one has a canonical commutative
diagram

C
f

!!!!
!!

!!
!!
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""

""
""

"
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##
##

#
E′

f ,

$$$$
$$

$$
$$

P

where P := E/〈[−1]〉 is a P1-bundle over S and all morphisms are covers of degree
2 such that the induced morphism C −→ E ×P E′

f induces birational morphisms on
the fibers over S; see Theorem 2 in Section 3 and Corollary 3.6. This generalizes
a classical result on genus 2 curves with elliptic differentials of degree 2 over a field
of characteristic "= 2 which follows immediately from Kummer theory applied to the
extension κ(C)/κ(E/〈[−1]〉).

Finally, we discuss a reinterpretation of this result and show that it is closely
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related to a general statement on P1-bundles which we prove in an appendix.

The study of genus 2 curves with split Jacobian has a long history which arguably
started with the task of reducing hyperelliptic integrals of genus 2 of the first kind to
sums of elliptic integrals. Here a substitution of variables gives rise to a genus 2 cover
of an elliptic curve. The study for degree 2 dates back to Legendre who gave the first
examples and Jacobi. More information on this classical material can be found in [11],
pp. 477-482.

It is now also classical that to every minimal cover f : C −→ E one can in
a canonical way associate a “complementary” minimal cover C −→ E′

f of the same
degree (unique up to translation on E); see e.g. [12]. The idea to describe genus 2
covers of a fixed elliptic curve E (over a field) by giving the complementary elliptic
curve E′

f and a suitable anti-isometric isomorphism E[N ]−̃→E′
f [N ], where N is the

covering degree, is due to G. Frey and E. Kani; see [4] and also [9]. The basic results
for genus 2 covers of relative elliptic curves were obtained by E. Kani in [10].

An application of some results presented in this article can be found in [3]. In this
work, examples of relative, non-isotrivial genus 2 curves C/S which possess an infinite
tower of non-trivial étale covers · · · −→ Ci −→ . . . C0 = C such that for all i, Ci −→ C
is Galois and Ci/S is also a curve (in particular has geometrically connected fibers)
are given. The genus 2 curves in question are covers of elliptic curves with covering
degree 2, the base schemes are affine curves over finite fields of odd characteristic.

Terminology and notation

This work is closely related to [10]. With the exception of the following assumption, the
following three definitions and Definition 2.7, all definitions and notations follow this
work. We thus advise the reader to have [10] at hand when he goes through the details
of this article. Note that although the primary emphasis of [10] lies on genus 2 covers
of elliptic curves ES , where E/K is an elliptic curve over a field K of characteristic
"= 2 and S is a K-scheme, as stated in various places of [10], the results of [10] hold for
genus 2 covers of elliptic curves over arbitrary locally noetherian schemes over Z[1/2].

If not stated otherwise, all schemes we consider are assumed to be locally noethe-
rian.

If g ∈ N0, then a (relative) curve of genus g over S is a smooth, proper morphism
C −→ S whose fibers are geometrically connected curves of genus g. (We thus do not
assume that the genus is ≥ 1 or that for g = 1 C/S has a section.)

If C/S is a curve and N ∈ N, g ∈ N0, then a genus g cover of degree N of C is an
S-morphism f : C ′ −→ C, where C ′/S is a genus g curve, which induces morphisms
of the same degree N on the fibers over S. (Note that f is automatically finite, flat
and surjective; cf. [10, Section 7, 7].)

If C/S and C ′/S are two curves of genus ≥ 2, we denote the scheme of S-
isomorphisms from C to C ′ by IsoS(C,C ′); cf. [2].

Following [14], a curve C/S is called hyperelliptic if it has a (by Lemma 1.1
necessarily unique) automorphism σC/S which induces hyperelliptic involutions on the
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geometric fibers. For equivalent definitions of σC/S , see [14, Theorem 5.5].
We have used the following definition in the introduction; cf. [10]:
Let S be a scheme over Z[1/2], let C/S be a genus 2 curve and let E/S be an

elliptic curve. Then a cover f : C −→ E is minimal if it does not factor over a non-
trivial isogeny Ẽ −→ E, and it is normalized if it is minimal and we have the equality
of relative effective Cartier divisors

f∗(WC/S) = 3ε[0E/S ] + (2− ε)E[2]# ,

where WC/S is the Weierstraß divisor of C/S, E[2]# := E[2] − [0E/S ] and ε = 0 if
deg(f) is even and ε = 1 if deg(f) is odd.1 Note that a normalized cover satisfies

f ◦ σC/S = [−1] ◦ f ; (1)

cf. [10, Theorem 3.2 (c)].
We frequently use the following notation:
If f : T −→ S is a morphism of schemes and ϕ : X −→ Y is a morphism of

S-schemes, we denote the morphism induced by base change via f by f∗ϕ : f∗X −→
f∗Y or just ϕT : XT −→ YT .

We use two different symbols to denote isomorphisms: If we just want to state
that two objects X, Y in some category are isomorphic, we write X ≈ Y . If X and
Y are isomorphic with respect to a canonical isomorphism or with respect to a fixed
isomorphism which is obvious from the context, we write X - Y .

Acknowledgments. The author would like to thank G. Frey, E. Kani and E. Viehweg
for various discussions related to this work.

1. A Torelli theorem for relative genus 2 curves

The purpose of this section is to prove the following theorem.

Theorem 1

Let S be a scheme, let C/S and C ′/S be two genus 2 curves. Then the map
IsoS(C,C ′) −→ IsoS((JC , λC), (JC′ , λC′)), ϕ (→ ϕ∗ is an isomorphism.

Here, by λC we denote the canonical polarization of the Jacobian JC of a genus
2 curve C/S and for an isomorphism ϕ : C −→ C ′ of two genus 2 curves over S, we
define ϕ∗ := λ−1

C′ ◦ (ϕ∗)̂ ◦ λC = (ϕ∗)−1. This Torelli theorem for (relative) genus 2
curves is well known in the case that S is the spectrum of an (algebraically closed)
field; cf. e.g. [16, Theorem 12.1] where it is stated with a slightly different formulation
for arbitrary hyperelliptic curves over algebraically closed fields.

Theorem 1 follows from Lemmata 1.2 and 1.6 which are proved below.
Let S be a scheme, and let C/S and C ′/S be curves.

1There are misprints in the definitions in [10, Section 2] and [10, Section 3].
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We will frequently use the fact that the formation of the Jacobian commutes with
arbitrary base-change: Let f : T −→ S be a morphism of schemes. Then we have
canonical isomorphisms

(JCT , λCT ) - ((JC)T , (λC)T ), (JC′
T
, λC′

T
) - ((JC′)T , (λC′)T ).

Moreover, under the obvious identification, we have

(ϕ∗)T = (ϕT )∗ : JCT −→ JC′
T

i.e. f∗(ϕ∗) = (f∗ϕ)∗ . (2)

Lemma 1.1

Let S be a connected scheme, let s ∈ S. Then the restriction map IsoS(C,C ′) −→
Isoκ(s)(Cs, C ′

s) is injective.

Proof. The S-isomorphisms between C and C ′ correspond to sections of the S-scheme
IsoS(C,C ′). As this scheme is unramified over S (see [2, Theorem 1.11]), the result
follows with [5, Exposé I, Corollaire 5.3]. !

Lemma 1.2

Let S be a connected scheme, let s ∈ S. Then the map IsoS(C,C ′) −→
Isoκ(s)((JCs , λCs), (JC′

s
, λC′

s
)), ϕ (→ (ϕs)∗ = (ϕ∗)s is injective.

Proof. This follows from the previous lemma and the classical Torelli Theorem (see
[16, Theorem 12.1]). !

Lemma 1.3

Let S′ −→ S be faithfully flat and quasi compact. Let ϕ′ : CS′ −→ C ′
S′ be an

S′-isomorphism, and let α : JC −→ JC′ be a homomorphism with αS′ = ϕ′∗. Then
there exists an S-isomorphism ϕ : C −→ C ′ with ϕS′ = ϕ′ and α = ϕ∗.

Proof. Let S′′ := S′ ×S S′, let p1, p2 : S′′ −→ S′ be the two projections. We want to
show that p∗1ϕ

′ = p∗2ϕ
′. Then the statement follows by faithfully flat descent; see [1,

Section 6.1, Theorem 6].
By assumption we have p∗1(ϕ′∗) = p∗2(ϕ′∗). Together with (2) this implies that

(p∗1 ϕ′)∗ = (p∗2 ϕ′)∗. Now the equality p∗1ϕ
′ = p∗2ϕ

′ follows with the previous lemma. !

The following lemma is a special case of [17, Proposition 6.1], the “Rigidity
Lemma”.

Lemma 1.4

Let S be a connected scheme, let s ∈ S. Let A/S, A′/S be two abelian schemes.
Then the map HomS(A,A′) −→ Homκ(s)(As, A′

s) is injective.
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Lemma 1.5

Let C/S and C ′/S be genus 2 curves, and assume that both curves have a section.
Then the map IsoS(C,C ′) −→ IsoS((JC , λC), (JC′ , λC′)), ϕ (→ ϕ∗ is surjective.

Proof. Let a : S −→ C be a section. Let ja : C −→ JC be the immersion associated
to a; cf. [10, Section 7, 6]. Analogously, let a′ : S −→ C ′ be a section, and let ja′ :
C ′ −→ JC′ be the associated immersion. Now ja(C) is a Cartier divisor on JC which
defines the principal polarization λC . (Indeed, for all s ∈ S, we have λCs = λO(ja(C)s) :
JCs −→ JC′

s
. The equality λC = λO(ja(C)) follows with Lemma 1.4.) Analogously,

ja′(C ′) is an a Cartier divisor on JC′ which defines the principal polarization λC′ .
Let α : JC −→ JC′ be an isomorphism which preserves the principal polarizations,

i.e. which satisfies α̂ ◦ λC′ ◦ α = λC .
Then λC is given by the divisor α−1(ja′(C ′)). It follows from [10, Lemma 7.1]

that α−1(ja′(C ′)) = T−1
x (ja(C)) for some x ∈ JC(S). This can be rewritten as (α−1 ◦

ja′)(C ′) = (T−x ◦ ja)(C). Note here that α−1 ◦ ja′ : C ′ −→ JC and T−x ◦ ja : C −→ JC

are closed immersions, and we have an equality of the associated closed subschemes of
JC′ . This means that there exists an isomorphism of schemes ϕ : C −→ C ′ such that
α−1 ◦ ja′ ◦ ϕ = T−x ◦ ja, i.e. ja′ ◦ ϕ = α ◦ T−x ◦ ja. A short calculation shows that ϕ is
in fact an S-isomorphism.

The equality ja′ ◦ ϕ = α ◦ T−x ◦ ja immediately implies that ϕ∗ = α. !

Lemma 1.6

Let C/S, C ′/S be two genus 2 curves. Then the map IsoS(C,C ′) −→ IsoS((JC , λC),
(JC′ , λC′)), ϕ (→ ϕ∗ is surjective.

Proof. Let WC/S , WC′/S be the Weierstraß divisors of C/S and C ′/S respectively and
let W := WC/S ×S WC′/S . Now the canonical map W −→ S is faithfully flat and
quasi compact (in fact it is finite flat of degree 36), and CW /W as well as C ′

W /W have
sections (namely the sections induced by WC/S ↪→ C, WC′/S ↪→ C ′). It follows by
the above lemma that IsoW (CW , C ′

W ) −→ IsoW ((JCW , λCW ), (JCW , λCW )), ϕ (→ ϕ∗ is
surjective. The claim now follows with Lemma 1.3. !

The above considerations easily imply:

Corollary 1.7 Let C/S,C ′/S be hyperelliptic curves, let ϕ : C −→ C ′ be an S-
isomorphism. Then

σC′/S ◦ ϕ = ϕ ◦ σC/S .

Proof. We can assume that S is connected. Let s ∈ S. It is well known that (σCs)∗ =
[−1], (σC′

s
)∗ = [−1]. This implies (σC′

s
)∗ ◦ (ϕs)∗ = −(ϕs)∗ = (ϕs)∗ ◦ (σCs)∗. The result

now follows with Lemma 1.2. !
We also have:

Lemma 1.8

Let C/S be a hyperelliptic curve. Then (σC/S)∗ = [−1].
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Proof. This follows from the well known result over the spectrum of a field by
Lemma 1.4. !

2. Review of the “basic construction”

Theorem 1 can be used to prove a Torelli theorem for normalized genus 2 covers of
elliptic curves which in turn can be used to simplify some proofs in [10] as well as to
strengthen the results for the case that the covering degree N is 2. This is done in the
first half of this section. Throughout the section, we freely use results from [10].

Let S be a scheme over Z[1/2]. The following definition is analogous to the
“notation” in Section 3 of [10].

Definition 2.1 Let E/S be an elliptic curve. Let f1 : C1 −→ E, f2 : C2 −→ E be
two genus 2 covers. Then an isomorphism between f1 and f2 is an S-isomorphism
ϕ : C1 −→ C2 such that f1 = f2 ◦ ϕ.

The following lemma shows (in particular) that given two isomorphic genus 2
covers of the same elliptic curve, one of the covers is normalized if and only if the
other is.

Lemma 2.2

Let E1/S, E2/S be an elliptic curves, let C1/S, C2/S be genus 2 curves. Let
f : C2 −→ E2 be a normalized cover, let ϕ : C1 −→ C2 be an S-isomorphism and
α : E2 −→ E1 an isomorphism of elliptic curves. Then α ◦ f ◦ ϕ : C1 −→ E1 is
normalized.

Proof. We can assume that S is connected. Obviously, α ◦ f ◦ ϕ is minimal. By
Corollary 1.7 and (1), we have

α ◦ f ◦ ϕ ◦ σC1/S = α ◦ f ◦ σC2/S ◦ ϕ = α ◦ [−1]E2/S ◦ f ◦ ϕ
= [−1]E1/S ◦ α ◦ f ◦ ϕ : C1 −→ E1.

By [10, Theorem 3.2 (c)] we have to show that for some geometric point s ∈ S,
(α ◦ f ◦ ϕ)s : (C1)s −→ (E1)s is normalized.2

Let s ∈ S. It is well-known that ϕ−1
s (W(C2)s

) = W(C1)s
. We have

#(f−1([0(E2)s
]) ∩W(C2)s

) = #
(
ϕ−1

s

(
f−1(α−1([0(E1)s

])) ∩W(C2)s

))

= #
(
ϕ−1

s

(
f−1(α−1([0(E1)s

]))
)
∩ ϕ−1

s (W(C2)s
)
)

= #
(
(α ◦ f ◦ ϕs)−1([0(E1)s

]) ∩W(C1)s

)
.

Now with [10, Corollary 2.3], the result follows. !

The following proposition can be viewed as a Torelli theorem for normalized genus
2 covers of (relative) elliptic curves.

2In [10, Theorem 3.2 (c)], the condition that S be connected should be inserted.
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Proposition 2.3
Let E/S be an elliptic curve, and let f1 : C1 −→ E, f2 : C2 −→ E be two

normalized genus 2 covers. Then the bijection IsoS(C1, C2) −→ IsoS((JC1 , λC1),
(JC2 , λC2)), ϕ (→ ϕ∗ of Theorem 1 induces a bijection between the set of isomorphisms
between the normalized genus 2 covers f1 and f2

• the set of isomorphisms between the normalized genus 2 covers f1 and f2

and

• the set of isomorphisms α between the principally polarized abelian varieties
(JC1 , λC1) and (JC2 , λC2) satisfying (f1)∗ = (f2)∗ ◦ α.

Proof. We only have to show the surjectivity.
Let α be an isomorphism between (JC1 , λC1) and (JC2 , λC2) satisfying

(f1)∗ = (f2)∗ ◦ α : JC1 −→ E. Let ϕ be the unique S-isomorphism C1 −→ C2

with ϕ∗ = α. We thus have (f1)∗ = (f2 ◦ ϕ)∗. By [10, Lemma 7.2], there exists a
unique x ∈ E(S) such that Tx ◦ f1 = f2 ◦ ϕ. As by Lemma 2.2 both f1 and f2 ◦ ϕ are
normalized, we have in fact f1 = f2 ◦ ϕ. !

Remark 2.4 The equality (f1)∗ = (f2)∗ ◦α in the above proposition can be restated as
α ◦ f∗1 = f∗2 ; cf. the calculation in the proof of [10, Theorem 2.6].

Remark 2.5 If deg(f1) ≥ 3 (or deg(f2) ≥ 3), there is in fact at most one isomorphism
between f1 and f2; cf. [10, Proposition 3.3].

Application to the study of the Hurwitz functor

As in [10], let E/K be an elliptic curve over a field of characteristic "= 2 (or more
generally over a ring in which 2 is invertible or even a scheme over Z[1/2]). As always,
we use the notation of [10].

Proposition 2.3 and Remark 2.4 immediately imply that the “Torelli map”
τ : HE/K,N −→ AE/K,N of [10] is a monomorphism for arbitrary N > 1; cf. [10,
Proposition 5.12].

The functor Ψ : HE/K,N −→ XE,N,−1 of [10, Corollary 5.13] is thus in fact a
monomorphism for arbitrary N > 1. Furthermore, the functor HE/K,N −→ JE/K,N

of [10, Proposition 5.17] is an isomorphism for arbitrary N > 1, and τ : HE/K,N −→
AE/K,N is always an open immersion of functors. This of course shortens the proof of
Theorem 1.1. at the end of Section 5 in [10].

It follows that the covers obtained with the “basic construction” ([10, Corol-
lary 5.19]) are always unique up to isomorphism for any N > 1. For N ≥ 3, one sees
with [10, Proposition 5.4] that given two covers associated to the same anti-isometry
ψ : E[N ] −→ E′[N ], there is a unique isomorphism between them.

Let us again consider genus 2 covers f : C −→ E of an elliptic curve E/S, where
S is a scheme over Z[1/2]. The “basic construction” now reads as follows (as always,
we use the notations of [10], in particular E′

f := ker(f∗)).
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Proposition 2.6 (Basic construction)

Let N > 1 be a natural number. Let E/S, E′/S be two elliptic curves, and let
ψ : E[N ] −→ E′[N ] be an anti-isometry which is “theta-smooth” (in the sense that
the induced principal polarization λJ on Jψ := (E × E′)/Graph(ψ) is theta-smooth).
Then there is a normalized genus 2 cover f : C −→ E of degree N such that (E′, ψ) is
equivalent to (E′

f , ψf ) (where ψf : E[N ] −→ E′
f [N ] is the induced anti-isometry). The

cover f is unique up to isomorphism (up to unique isomorphism if N ≥ 3). Moreover,
every normalized genus 2 cover of degree N arises in this way.

We now give a more symmetric formulation of the “basic construction”. This
“symmetric basic construction” has the advantage that it is more rigid than the basic
construction for N = 2.

For this “symmetric basic construction”, we fix two elliptic curves E/S, E′/S.

Definition 2.7 A symmetric pair (with respect to E/S and E′/S) is a triple (C, f, f ′),
where C/S is a genus 2 curve and f : C −→ E, f ′ : C −→ E′ are minimal covers such
that ker(f∗) = Im((f ′)∗) and ker(f ′∗) = Im(f∗). We say that a symmetric pair is
normalized if both f and f ′ are normalized. By an isomorphism of two symmetric
pairs (C1, f1, f ′1), (C2, f2, f ′2) we mean an S-isomorphism ϕ : C1 −→ C2 such that
f1 = f2 ◦ ϕ and f ′1 = f ′2 ◦ ϕ.

Remark 2.8 It follows from Lemma 2.2 that given two isomorphic symmetric pairs,
one of the symmetric pairs is normalized if and only if the other is.

Remark 2.9 If C/S is a genus 2 curve and f : C −→ E, f ′ : C −→ E′ are minimal
covers such that ker(f∗) = Im((f ′)∗), then by dualization, one also has ker(f ′∗) =
Im(f∗), i.e. (C, f, f ′) is a symmetric pair.

Remark 2.10 If (C, f, f ′) is a symmetric pair, then E′ (with (f ′)∗ ◦ λE′ : E′ −→ JC)
is (canonically isomorphic to) ker(f∗) = E′

f . (If E/S is some elliptic curve, we denote
the canonical polarization E −→ JE = Ê by λE .)

Lemma and Definition 2.11

If (C, f, f ′) is a symmetric pair, then the degrees of f and f ′ are equal; this number
is called the degree of the symmetric pair.

Proof. Let N := deg(f). Then by [10, Theorem 3.2 (f)], f∗ also has degree N . By
[10, Corollary 5.3] and Remark 2.10, (f ′)∗ ◦ λE′ : E′ ↪→ JC has also degree N , and it
follows again with [10, Theorem 3.2 (f)] that deg(f ′) = deg((f ′)∗) = N . !

Lemma 2.12

Let E/S be an elliptic curve, let C/S be a genus 2 curve, and let f : C −→ E be
a minimal cover. Then there exists a unique normalized cover cf : C −→ E′

f such that
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(cf )∗ ◦ λE′
f

is the canonical immersion E′
f ↪→ JC . 3 In particular, if f is normalized,

then (C, f, cf ) is a normalized symmetric pair.

Proof. This is a special case of [10, Theorem 3.2 (f)]. !

Proposition 2.13

Let E/S, E′/S be two elliptic curves, let (C, f, f ′) be a symmetric pair of degree
N associated to E/S and E′/S. Then there is a unique ψ : E[N ]−̃→E′[N ] with
(f∗)|E[N ] = (f ′)∗ ◦ ψ. 4 This ψ is an anti-isometry. Moreover, ψ only depends on the
isomorphism class of (C, f, f ′).

Proof. By Remark 2.10, the existence and uniqueness is [10, Proposition 5.2]. The
fact that ψ only depends on the isomorphism class of (C, f, f ′) is straightforward. !

Proposition 2.14

With the notation of the previous proposition, let

π := f∗ ◦ λE ◦ pr + (f ′)∗ ◦ λE′ ◦ pr′ : E ×S E′ −→ JC ,

where pr : E×S E′ −→ E and pr : E×S E′ −→ E′ are the two projections. Then π has
kernel Graph(−ψ). The pull-back to the canonical principal polarization of JC under
π is N -times the canonical product polarization. In particular, ψ is theta-smooth.

Proof. This is [10, Proposition 5.5]. !

The following “symmetric basic construction” can be viewed as a converse to
Proposition 2.13.

Proposition 2.15 (Symmetric basic construction)

Let N > 1 be a natural number. Let E/S, E′/S be two elliptic curves, and let
ψ : E[N ] −→ E′[N ] be an anti-isometry which is theta-smooth. Then there exists
a normalized symmetric pair (C, f, f ′) with respect to E/S and E′/S with (f∗)|E[N ]

= (f ′)∗ ◦ψ. The normalized symmetric pair with these properties is essentially unique,
i.e. it is unique up to unique isomorphism.

Proof. Let N , E/S, E′/S and ψ : E[N ] −→ E′[N ] be as in the assertion.
To show the existence, one could use the “basic construction”. There is however

also the following more direct approach:
Consider the abelian variety Jψ := (E×SE′)/Graph(−ψ). By [10, Proposition 5.7]

there exists a unique principal polarization λJ on Jψ whose pull-back to E ×S E′ via
the projection map is N -times the canonical product polarization. By assumption and
[10, Proposition 5.14], (Jψ, λJ) is isomorphic to a Jacobian variety of a curve C/S. By
[10, Theorem 3.2 (f)] there exist normalized covers f : C −→ E and f ′ : C −→ E′ with
f∗ ◦λE = hψ, (f ′)∗ ◦λE′ = h′ψ, where hψ : E −→ Jψ and h′ψ : E′ −→ Jψ are defined by

3In [10, Corollary 5.13], (cf )∗ ◦ λE′
f

is denoted by (f ′)∗.
4Note that just as in [10] we tacitly identify E[N ] with JE [N ].
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inclusion into E ×S E′ composed with the projection onto Jψ; cf. [10, Corollary 5.9].
By the exact sequences (28) in [10, Corollary 5.9], the conditions ker(f∗) = Im((f ′)∗)
and ker(f ′∗) = Im(f∗) are fulfilled.

We now show the uniqueness. Let (C1, f1, f ′1), (C2, f2, f ′2) be two normalized sym-
metric pairs associated to E,E′ and ψ. We claim that there exists a unique isomor-
phism α : JC1 −→ JC2 of abelian varieties with α ◦ f∗1 = f∗2 and α ◦ (f ′1)∗ = (f ′2)∗.

Let

π1 := f∗1 ◦ λE ◦ pr + (f ′1)∗ ◦ λE′ ◦ pr′ : E ×S E′ −→ JC1/S ,
π2 := f∗2 ◦ λE ◦ pr + (f ′2)∗ ◦ λE′ ◦ pr′ : E ×S E′ −→ JC2/S ,

where pr : E ×S E′ −→ E and pr′ : E ×S E′ −→ E′ are the two projections.
The two conditions on α are equivalent to α ◦ π1 = π2 : E ×S E′ −→ JC2/S . The

assertion follows since by Proposition 2.14 π1 : E×S E′ −→ JC1/S and π2 : E×S E′ −→
JC2/S both have kernel Graph(−ψ).

The fact that f1, f ′1, f2 and f ′2 all have degree N implies that the pull-backs of
λC1 and λC2 to E ×S E′ via π1 and π2 respectively are N -times the canonical product
polarizations. Together with the definition of α, this in turn implies that α̂ ◦λC2 ◦α =
λC1 , i.e. α preserves the principal polarizations.

Let ϕ : C1 −→ C2 be the unique S-isomorphism such that ϕ∗ = α; cf. Theorem 1.
By Proposition 2.3 and Remark 2.4, we have f1 = f2 ◦ ϕ and f ′1 = f ′2 ◦ ϕ. The
uniqueness of α implies that ϕ : C1 −→ C2 with these two properties is unique. !

Remark 2.16 Let S, E/S, E′/S and ψ : E[N ] −→ E′[N ] be as in the “symmetric
basic construction” but without the assumption that ψ is theta-smooth. Then by [10,
Corollary 5.16] there exists a uniquely determined largest open subscheme U of S such
that ψ|U is theta-smooth. Now U is the largest open subscheme of S over which a
symmetric pair with respect to EU/U and E′

U/U corresponding to ψ exists; this is
obvious from Proposition 2.14 and the very definition of theta-smoothness.

3. Genus 2 covers of degree 2

We now concentrate on the case that the covering degree N is 2. As above, let S be a
scheme over Z[1/2].

In the sequel, by an isomorphism E[2] −→ E′[2], where E/S and E′/S are el-
liptic curves, we always mean an isomorphism of S-group schemes. Note that every
such isomorphism is an anti-isogeny. The following proposition is a special case of [9,
Theorem 3].

Proposition 3.1

Let E/S, E′/S be two elliptic curves, let ψ : E[2] −→ E′[2] be an isomorphism.
Then ψ is theta-smooth if and only if for no geometric point s of S, there exists an
isomorphism α : Es −→ E′

s such that α|Es[2] = ψs : Es[2] −→ E′
s[2].
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Remark 3.2 Under the conditions of the proposition, let s be a geometric point of S.
Assume that Es has j-invariant "= 0, 1728. Then if E′

s is isomorphic to Es (i.e. if the
j-invariants of the two curves are equal), there exist exactly two isomorphisms between
Es and E′

s. If α is one of these, −α is the other. This means that the isomorphisms
between Es and E′

s induce a canonical identification of Es[2] and E′
s[2]. Under the

above assumption on the j-invariant of Es, the following assertions are thus equivalent.

• There does not exist an isomorphism α : Es −→ E′
s such that α|Es[2] = ψs :

Es[2] −→ E′
s[2].

• j(Es) "= j(E′
s) or j(Es) = j(E′

s) and, under the canonical identification of Es[2]
and E′

s[2], ψs "= idEs[2].

Proposition 3.3
Let E/S, E′/S be two elliptic curves with an isomorphism ψ : E[2] −→ E′[2]. Let

C/S be a genus 2 curve, and let (C, f, f ′) be a normalized symmetric pair for E/S and
E′/S. Then (f∗)|E[2] = (f ′)∗ ◦ ψ if and only if ψ ◦ f|WC/S

= (f ′)|WC/S
.

Proof. Let E/S, E′/S, ψ,C, f and f ′ be as in the proposition. We only have to show
the equivalence after a faithfully flat base change. We can thus assume that C/S has 6
distinct Weierstraß sections. Now by [10, Theorem 3.2 (d)], there exists an embedding
j : C −→ JC which satisfies j ◦ σC = [−1] ◦ j, [0JC ] ∩ j(C) = ∅. This implies in
particular that j(WC/S) ⊂ JC [2]#, where JC [2]# := JC [2]− [0J/S ].

Assume that f∗|E[2] = (f ′)∗ ◦ ψ. Then

f∗|JC [2] = λ−1
E ◦ (f∗)̂ ◦ (λC)|JC [2] = λ−1

E ◦ ψ̂ ◦ ((f ′)∗)̂ ◦ (λC)|JC [2]

= ψ−1 ◦ f ′∗|JC [2] : JC [2] −→ E[2].

(We make the usual identification of E[2] with Ê[2] and JC [2] with ĴC [2].) Composition
with j|WC/S

implies f|WC/S
= ψ−1 ◦ (f ′)|WC/S

, i.e. ψ ◦ f|WC/S
= (f ′)|WC/S

.
Let us now assume that ψ ◦ f|WC/S

= (f ′)|WC/S
. We want to show that ψ ◦

f∗|JC [2]# = f ′∗|JC [2]# . As JC [2] = [0J/S ]
·∪ JC [2]# and clearly ψ ◦ f∗|[0J/S ] = f ′∗|[0J/S ],

this implies that ψ ◦ f∗|JC [2] = f ′∗|JC [2] : JC [2] −→ E[2]. The equality (f∗)|E[2] =
((f ′)∗)E[2] ◦ ψ then follows by “dualization” similarly to above.

By the fact that (C, f, f ′) is a normalized symmetric pair, we have ker(f∗)[2] =
ker(f ′∗)[2], i.e. ker(f∗|JC [2]) = ker(f ′∗|JC [2]). Let these (equal) kernels be denoted by K.
Then f∗|JC [2] and f ′∗|JC [2] induce homomorphisms f∗|JC [2] : JC [2]/K −→ E[2], f ′∗|JC [2] :
JC [2]/K −→ E′[2]. Since these homomorphisms are surjective and JC [2]/K, E[2] and
E′[2] are étale over S of degree 4, they are in fact isomorphisms. Let p : JC [2] −→
JC [2]/K be the canonical projection. Then the equality ψ ◦ f∗|J [2] = f ′∗|J [2] implies

ψ ◦ f∗|JC [2] ◦ p ◦ j|WC/S
= f ′∗|JC [2] ◦ p ◦ j|WC/S

.

We claim that p ◦ j|WC/S
: WC/S −→ (JC [2]/K)# is an étale cover.

We have f|WC/S
= f∗|JC [2]◦p◦j|WC/S

. Since f|WC/S
induces an étale cover WC/S −→

E[2]# of degree 2 and f∗|JC [2] is an isomorphism, p ◦ j|WC/S
: WC/S −→ (JC [2]/K)# is

also an étale cover of degree 2.
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As any surjective étale S-cover is an epimorphism in the category of S-schemes
(see [5, Exposé V, Proposition 3.6.]), we can thus derive that ψ ◦ f∗|JC [2]|(JC [2]/K)#

=

f ′∗|JC [2]|(JC [2]/K)#
, in particular ψ ◦ f∗|JC [2]# = f ′∗|JC [2]# : JC [2]# −→ E[2]#. !

With the above two propositions, the “symmetric basic construction” can be
restated as follows:

Proposition 3.4 (Symmetric basic construction for degree 2 – second form)

Let S be a scheme over Z[1/2]. Let E/S, E′/S be two elliptic curves, and let
ψ : E[2] −→ E′[2] be an isomorphism such that for no geometric point s of S, there
exists an isomorphism α : Es −→ E′

s such that α|Es[2] = ψs. Then there exists an
essentially unique (i.e. unique up to unique isomorphism) normalized symmetric pair
(C, f, f ′) with ψ ◦ f|WC/S

= (f ′)|WC/S
.

Let E/S, E′/S be elliptic curves, and let C/S be a genus 2 curve. Let (C, f, f ′)
be a normalized symmetric pair with respect to E/S and E′/S.

Our goal is now to show that there exists a P1-bundle P and covers of degree 2
E −→ P, E′ −→ P such that the induced morphism C −→ E×P E′ induces birational
morphisms on the fibers over S.

Let q̃ : C −→ S, q : E −→ S, q′ : E′ −→ S be the structure morphisms. Let
ωC/S := q̃∗ΩC/S . By Riemann-Roch and “cohomology and base change” ([18, §5,
Corollary 3] and [7, Theorem 12.11]), this is a locally free sheaf of rank 2, and the
canonical S-morphism ρ̃ : C −→ P(ωC/S) is a cover of degree 2.

By the same general theorems q∗L(2[0E ]) is a locally free sheaf of rank 2, and the
canonical S-morphism ρ : E −→ P(q∗ L(2[0E ])) is a cover of degree 2. Analogously,
the canonical S-morphism ρ′ : E′ −→ P(q′∗ L(2[0E′ ])) is a cover of degree 2.

Note that (C, f, [−1] ◦ f ′), (C, [−1] ◦ f, f ′) and (C, [−1] ◦ f, [−1] ◦ f ′) are also
normalized symmetric pairs with respect to E/S and E′/S corresponding to ψ.

There thus exist unique S-automorphisms τ, τ ′, τ̃ : C −→ C with

f ◦ τ = f , f ′ ◦ τ = [−1] ◦ f ′ ,
f ◦ τ ′ = [−1] ◦ f , f ′ ◦ τ ′ = f ′ ,
f ◦ τ̃ = [−1] ◦ f , f ′ ◦ τ̃ = [−1] ◦ f ′ .

Obviously, τ ◦ τ ′ = τ̃ = τ ′ ◦ τ and τ̃ = σC/S .
The automorphisms τ and τ ′ are automorphisms of the covers f and f ′ respec-

tively, and σC/S is an automorphism of the cover C −→ P(ωC/S). We need the following
lemma which is a special case of [14, Lemma 5.6].

Lemma 3.5

Let X and Y be connected schemes over Z[1/2]. Let h : X −→ Y be a finite and
flat morphism of degree 2. Then the automorphism group of h is isomorphic to Z/2Z,
and h is a geometric quotient of X under Aut(h).

As a special case of this lemma we obtain: The cover f : C −→ E is a geometric
quotient of C under 〈τ〉, and f ′ : C −→ E′ is a geometric quotient of C under 〈τ ′〉.
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Furthermore, the canonical morphism ρ̃ : C −→ P(ωC/S) is a geometric quotient
of C under 〈σC/S〉 (see also [10, Lemma 3.1] and [14, Theorem 5.5]), and the canonical
morphisms ρ : E −→ P(q∗ L(2[0E ])), ρ′ : E′ −→ P(q′∗ L(2[0E′ ])) are geometric quotients
of E and E′ under 〈[−1]〉 respectively.

By (1), the automorphism [−1] on E is induced by σC/S , and this implies that
ρ ◦ f : C −→ P(q∗ L(2[0E ])) is a geometric quotient of C under 〈τ, τ ′〉 = 〈τ, σC/S〉.
Similarly, ρ′ ◦ f ′ : C −→ P(q′∗ L(2[0E′ ])) is also a geometric quotient of C under
〈τ, τ ′〉. Keeping in mind that a geometric quotient is also a categorial quotient (see [5,
Exposé V, Proposition 1.3.]), this implies the following theorem.

Theorem 2

Let S be a scheme over Z[1/2]. Let C/S be a genus 2 curve, E/S, E′/S elliptic
curves and f : C −→ E, f ′ : C −→ E′ normalized covers of degree 2 with ker(f∗) =
Im((f ′)∗), ker(f ′∗) = Im(f∗). Let q : C −→ S, q : E −→ S, q′ : E′ −→ S be the
structure morphisms, and let ρ̃ : C −→ P(ωC/S), ρ : E −→ P(q∗ L(2[0E ])), ρ′ : E′ −→
P(q′∗ L(2[0E′ ])) be the canonical covers of degree 2.

Then f and f ′ have unique automorphisms τ and τ ′ respectively which operate
non-trivially on all connected components of C. These automorphisms have order 2
and satisfy τ ◦ τ ′ = τ ′ ◦ τ = σC/S . The cover f : C −→ E is a geometric quotient of C
under 〈τ〉, f ′ : C −→ E′ is a geometric quotient of C under 〈τ ′〉, and ρ̃ : C −→ P(ωC/S)
is a geometric quotient of C under 〈σC/S〉.

Now ρ ◦ f : C −→ P(q∗ L(2[0E ])) as well as ρ′ ◦ f ′ : C −→ P(q′∗ L(2[0E′ ]))
are geometric quotients of C under 〈τ, τ ′〉. We thus have a unique isomorphism
γ : P(q∗ L(2[0E ])) −→ P(q′∗ L(2[0E′ ])) such that γ ◦ ρ ◦ f = ρ′ ◦ f , and we have unique
morphisms f : P(ωC/S) −→ P(q∗ L(2[0E ])) and f ′ : P(ωC/S) −→ P(q′∗ L(2[0E′ ])) such
that ρ ◦ f = f ◦ ρ̃ and ρ′ ◦ f ′ = f ′ ◦ ρ̃. All these morphisms are S-morphisms, and f, f ′

are covers of degree 2.

C

ρ̃
%%

f ′

&&%%%%%%%%%%%%%%%%

f

''&&&&&&&&&&&&&&&&

E

ρ

%%

P(ωC/S)
f ′

&&'''''''''''
f

''(((((((((((
E′

ρ′

%%
P(q∗ L(2[0E ])) ∼

γ (( P(q′∗ L(2[0E′ ]))

Corollary 3.6

Let S be a scheme over Z[1/2], let C/S be a genus 2 curve, let E/S be an elliptic
curve, and let f : C −→ E be a normalized cover of degree 2. Let P := E/〈[−1]〉 =
P(q∗ L(2[0E ])), let ρ : E −→ P be the canonical cover of degree 2, and let cf : C −→ E′

f

be the normalized cover of degree 2 associated to f by Lemma 2.12. Then there exists
a unique S-morphism φ′ : E′

f −→ P such that ρ ◦ f = φ′ ◦ cf . The morphism φ′ is a
cover of degree 2.

The induced morphism C −→ E×PE′
f induces birational morphisms on the fibers

over S.
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Remark 3.7 Let S be a scheme over Z[1/2], let C/S be a genus 2 curve, let E/S be
an elliptic curve and let f : C −→ E be a normalized cover of some degree N . Let
ρ̃ : C −→ P(ωC/S), ρ : E −→ P(q∗ L(2[0E ])) be as above. Then just as in the case that
the covering degree is 2, there exists a unique morphism f : P(ωC/S) −→ P(q∗ L(2[0E ]))
with

f ◦ ρ̃ = ρ ◦ f ,

and this morphism is a cover of degree N .
Indeed, the normalized cover f satisfies f ◦ σC/S = [−1] ◦ f by (1). This implies

that ρ ◦ f ◦ σC/S = ρ ◦ f . Note that as above ρ̃ is a geometric quotient of C under
σC/S . The existence and uniqueness of f is now immediate, and it is straightforward
to check that f is in fact a cover of degree N .

Let us assume that we are in the situation of the theorem.
The canonical maps ρ : E −→ P(q∗ L(2[0E ])) and ρ′ : E′ −→ P(q′∗ L(2[0E′ ])) are

ramified at E[2], E′[2] respectively – these are étale covers of S of degree 4 –, and
the canonical map C −→ P(ωC/S) is ramified at WC/S – this is an étale cover of S of
degree 6. (We use that S is a scheme over Z[1/2]).

Let P and P ′ be the relative effective Cartier divisors of P(q∗ L(2[0E ]))/S and
P(q′∗ L(2[0E′ ]))/S associated to the sections ρ ◦ 0E : S −→ P(q∗ L(2[0E ])) and ρ′ ◦ 0E′ :
S −→ P(q′∗ L(2[0E′ ])).

The maps ρ|E[2]# : E[2]# −→ P(q∗ L(2[0E ])) and (ρ′)|E′[2]# : E′[2]# −→
P(q′∗ L(2[0E′ ])) are closed immersions. Let D and D′ be the corresponding relative
effective Cartier divisors – they are étale covers of degree 3 of S.

Using the theorem, the isomorphism ψ : E[2]−̃→E′[2] corresponding to the iso-
morphism class of (C, f, f ′) can be determined in yet another way.

Proposition 3.8

Let ψ : E[2]−̃→E′[2]. Then ψ ◦ f|WC/S
= (f ′)|WC/S

if and only if ρ′ ◦ ψ|E[2]# =
γ ◦ ρ|E[2]# .

Proof. The equality ψ ◦ f|WC/S
= (f ′)|WC/S

implies ρ′ ◦ψ ◦ f|WC/S
= ρ′ ◦ (f ′)|WC/S

, and
this implies ρ′ ◦ ψ ◦ f|WC/S

= γ ◦ ρ ◦ f|WC/S
. As f|WC/S

: WC/S −→ E[2]# is an étale
cover of degree 2 (thus in particular an epimorphism in the category of étale S-covers)
and ρ′ ◦ ψ|E[2]# : E[2]# −→ D′ as well as γ ◦ ρ|E[2]# : E[2]# −→ D′ are isomorphisms,
we can conclude that ρ′ ◦ ψ|E[2] = γ ◦ ρ|E[2]# .

Now let ψ : E[2] −→ E′[2] satisfy ρ′ ◦ ψ|E[2]# = γ ◦ ρ|E[2]# . We have
ρ′ ◦ ψ ◦ f|WC/S

= γ ◦ ρ ◦ f|WC/S
= ρ′ ◦ (f ′)|WC/S

. As (ρ′)|E[2]# : E′[2]# −→ D′ is
an isomorphism, this implies that ψ ◦ f|WC/S

= (f ′)|WC/S
. !

Let V be the Kähler different divisor of f . By definition, this is the closed sub-
scheme of C which is defined by the zero’th Fitting ideal F 0(ΩC/E) of ΩC/E = Ωf . (For
further information on Kähler different divisors see [13], [14] or the appendix of [8].)

In Section 6 of [14], the Weierstraß divisor of a relative hyperelliptic curve H/S
has been defined as the Kähler different divisor of the canonical map H −→ P(ωH/S).
Now the discussion starting at the exact sequence (6.2) until the end of Section 6 in [14]
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carries over to our case (the only difference being that V has degree 2 and not 2g + 2
over S). We thus have:

Lemma 3.9

• F 0(ΩC/E) = Ann(ΩC/E).
• V is a relative effective Cartier divisor of degree 2 over S.
• V is the fixed point subscheme of C under the action of τ , i.e. V is the largest

subscheme of C with the property that τ restricts to V and τ|V = idV .
• V is étale over S.

Proof. The first assertion, which is written in [14, Remark 6.4], follows from the
exact sequence (6.2) in [14] and the definition of the Kähler different divisor. The
second, third and forth assertion can be adopted from the text below (6.2) in [14], [14,
Proposition 6.5] and [14, Proposition 6.8] respectively. !

Lemma 3.10

If S is reduced, then V is equal to the ramification locus of f endowed with the
reduced induced scheme structure.

Proof. By the first assertion the previous lemma, the support of V is equal to the
set of points where f is ramified, i.e. to the ramification locus of f . Now since S is
reduced and by the previous lemma V is étale over S, V is reduced (see [5, Exposé I,
Proposition 9.2.]), and so the assertion follows. !

Proposition 3.11

Under the conditions of Theorem 2, let ι : V ↪→ C be the canonical closed immer-
sion. Then (f ′)|V = f ′ ◦ ι : V −→ E′ is the zero-element in the abelian group E′(V ).

Proof. Let p : V −→ S be the canonical morphism. We have to show that f ′◦ι = 0E′◦p.
The fact that τ|V = idV implies that [−1] ◦ f ′ ◦ ι = f ′ ◦ τ ◦ ι = f ′ ◦ ι. As E′[2] is

the largest closed subscheme X of E′ with [−1]|X = idX , this implies that f ′ ◦ ι factors
through E′[2].

Let us now assume that S is connected and let s be some geometric point of S.
As E′[2] and V are étale over S, the map E′[2](V ) −→ E′

s[2](Vs) is injective. We thus
only have to check that (f ′ ◦ ι)s = 0E′

s
◦ ps : Vs −→ E′

s, i.e. f ′s(Vs) = [0E′
s
]. This is

equation (4) in Appendix A. !

Remark 3.12 Essentially the same statement as in the above proposition holds if V is
replaced by the ramification locus endowed with the reduced induced scheme structure
(independently of S being reduced). This follows immediately from the proposition
because by definition the canonical immersion of this scheme into C factors through V .

Remark 3.13 Let ∆ := f∗(V ) be the discriminant divisor of f . Then ∆ is a relative
effective Cartier divisor of E/S of degree 2. As the geometric fibers over S consist
of exactly 2 topological points, it is also étale of degree 2 over S. In particular, the
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map f|V : V −→ ∆ is an isomorphism. Furthermore, if S is reduced, ∆ is equal to the
branch locus of f endowed with the reduced induced scheme structure. This can be
proved analogously to Lemma 3.10.

4. A reformulation of Theorem 2

Together with the “symmetric basic construction” (Proposition 2.15) and Proposi-
tion 3.8, a consequence of Theorem 2 is:

Let S be a scheme over Z[1/2], and let E/S, E′/S be two elliptic curves and
ψ : E[2] −→ E′[2] a theta-smooth isomorphism. Then with the notations of the
previous sections, there is an S-isomorphism γ : P(q∗ L(2[0E ]))−̃→ P(q′∗ L(2[0E′ ])) such
that ρ′ ◦ ψ|E[2]# = γ ◦ ρ|E[2]# holds.

The existence of this isomorphism, which is canonically attached to (E,E′, ψ)
maybe at first sight seems a little bit a mystery. In fact, it can easily be derived from
a general statement on P1-bundles:

Let E/S, E′/S be two elliptic curves with an isomorphism ψ : E[2]−→E′[2] (not
necessarily theta-smooth). Let ρ : E −→ P(q∗ L(2[0E ])), ρ′ : E′ −→ P(q′∗ L(2[0E′ ]))
be the corresponding canonical projections. The maps ρ and ρ′ are ramified at E[2]
and E′[2] respectively. In particular, ρ|E[2]# : E[2]# ↪→ P(q∗ L(2[0E ])) and (ρ′)|E′[2]# :
E′[2]# ↪→ P(q′∗ L(2[0E′ ])) are closed immersions. Let D and D′ be the corresponding
closed subschemes – these are étale covers of S of degree 3. (We use that S is a scheme
over Z[1/2].) Now ψ|E[2]# : E[2]#−̃→E′[2]# induces a canonical isomorphism between
D and D′. With Proposition B.4, we conclude:

Proposition 4.1

There is a unique S-isomorphism γ : P(q∗ L(2[0E ]))−̃→P(q′∗ L(2[0E′ ])) such that
the equality ρ′ ◦ ψ|E[2]# = γ ◦ ρ|E[2]# holds.

Let us again assume that ψ : E[2] −→ E′[2] is theta-smooth, and let γ be as in
the proposition. Then we have the following alternative criterion for a triple (C, f, f ′)
to be a normalized symmetric pair.

Proposition 4.2

Let C/S be a genus 2 curve, let f : C −→ E, f ′ : C −→ E′ be covers of degree
2. Then (C, f, f ′) is a normalized symmetric pair corresponding to ψ if and only if
γ ◦ ρ ◦ f = ρ′ ◦ f ′.

Proof. By Theorem 2, Proposition 3.8 and the uniqueness of γ, it is immediate that
a normalized symmetric pair (C, f, f ′) corresponding to γ satisfies γ ◦ ρ ◦ f = ρ′ ◦ f ′ :
C −→ P(q′∗ L(2[0E′ ])).

Let this equality be satisfied. If S is the spectrum of an algebraically closed field,
the statement is proved in Lemma A.2.
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In the general case, we can assume that S is connected. As a morphism between
(relative) elliptic curves over a connected base is either an isogeny or zero and we
already know that f∗ ◦ (f ′)∗ is zero fiberwise, f∗ ◦ (f ′)∗ is zero. As f ′ is obviously
minimal, this implies that ker(f∗) = Im((f ′)∗). Similarly, we have ker(f ′∗) = Im(f∗).

We now want to show that f is normalized. Let τ be the unique non-trivial
automorphism of f which exists by Lemma 3.5, similarly let τ ′ be the unique non-
trivial automorphism of f ′. Then τ ◦ τ ′ = σC/S , τ ′ ◦ τ = σC/S . (It is not difficult to
check these equalities fiberwise, and this suffices by [10, Lemma 3.1].)

We claim that [−1] ◦ f = f ◦ σC/S . Indeed, as τ ◦ τ ′ = τ ′ ◦ τ , τ ′ induces an
automorphism on E over P(q∗ L(2[0E ])). By looking at the fibers, one sees that this is
not the trivial automorphism. It follows that the induced automorphism is [−1]. We
thus have [−1] ◦ f = f ◦ σC/S .

By [10, Theorem 3.2] to show that f is normalized it now suffices to check that
for some s ∈ S, fs : Cs −→ Es is normalized. For this statement, we again refer to
Lemma A.2.

The proof that f ′ is normalized is analogous.
We have ρ′◦ψ◦f|WC/S

= γ◦ρ◦f|WC/S
= ρ′◦(f ′)|WC/S

. As (ρ′)|E′[2]# : E′[2]# −→ D
is an isomorphism, it follows that that ψ ◦ f|WC/S

= (f ′)|WC/S
.

By Proposition 3.3, (C, f, f ′) is a normalized symmetric pair corresponding to
ψ. !

With the help of Lemma A.1, we can give a third form of the “symmetric basic
construction” for N = 2.

Proposition 4.3 (Symmetric basic construction for degree 2 – third form)
Let S be a scheme over Z[1/2], let E/S, E′/S be two elliptic curves, and let

ψ : E[2] −→ E′[2] be an isomorphism. Let

ρ : E −→ P(q∗ L(2[0E ])), ρ′ : E′ −→ P(q′∗ L(2[0E′ ]))

be the canonical covers of degree 2. Let γ : P(q∗ L(2[0E ])) −→ P(q′∗ L(2[0E′ ])) be the
unique S-isomorphism which satisfies ρ′ ◦ ψ|E[2]# = γ ◦ ρ|E[2]# . Assume the following
two equivalent conditions are satisfied:

• For no geometric point s of S, there exists an isomorphism α : Es −→ E′
s with

α|Es[2] = ψs.

• The images of the sections ρ′ ◦ 0E′ and γ ◦ ρ ◦ 0E of P(q′∗ L(2[0E′ ])) −→ S are
disjoint.

Then there exists a curve C/S and covers f : C −→ E, f ′ : C −→ E′ of degree 2
such that γ ◦ ρ ◦ f = f ′ ◦ ρ′. Any such triple (C, f, f ′) is a normalized symmetric pair
corresponding to ψ, and it is unique up to unique isomorphism.

If one assumes that the base-scheme is regular, one can give a more concrete
description of the curve C and the covers f, f ′ (as well as to prove its existence in an
alternative way).
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Proposition 4.4

Under the conditions of the above proposition, let S be regular. Then
E×P(q′∗ L(2[0E′ ]))E

′ (where the product is with respect to γ◦ρ and ρ′) is reduced with to-
tal quotient ring κ(E)×κ(P(q′∗ L(2[0E′ ])))κ(E′). The normalization C of E×P(q′∗ L(2[0E′ ]))E

′

is a genus 2 curve, and the induced maps f : C −→ E, f ′ : C −→ E′ are degree 2
covers which satisfy γ ◦ ρ ◦ f = f ′ ◦ ρ′.

Proof. As S is regular, it is also locally integral, in particular, its connected components
are integral; see [15, Theorem 14.3], [6, I (4.5.6)]. We can thus assume that S is integral.

Let F := ρ′∗ L(2[0E′ ]). We first show that E ×P(F) E′ is integral and that its
function field is κ(E)⊗κ(P(F)) κ(E′).

The ring κ(E)⊗κ(P(F)) κ(E′) is a field because by assumption, the generic points
of ρ′([0E′ ]) and γ(ρ([0E ])) are distinct.

Let A be the coordinate ring of an affine open part U of P(F), let B and C the
corresponding rings of the preimages of U in E and E′. We claim that the canonical
map B ⊗A C −→ κ(B)⊗κ(A) κ(C) - κ(E)×κ(P(F)) κ(E′) is injective.

We have κ(B)⊗κ(A) κ(C) - (B ⊗A C)⊗A κ(A) as B and C are finite over A. We
thus have to show that the map A ⊗B C −→ (B ⊗A C) ⊗A κ(A) is injective. Now,
A −→ κ(A) is injective and B ⊗A C is flat over A (C is flat over A, thus C ⊗A B
is flat over B, and as B is flat over A, B ⊗A C is flat over A). This implies that
B ⊗A C −→ (B ⊗A C)⊗A κ(A) is injective. It follows that B ⊗A C is reduced.

We have seen that B ⊗A C is contained in the field (B ⊗A C) ⊗A κ(A), and
obviously (B⊗A C)⊗A κ(A) is contained in the function field of B⊗A C. This implies
that (B ⊗A C)⊗A κ(A) - κ(E)⊗κ(P(F)) κ(E′) is the function field of B ⊗A C.

We have seen that E ×P(F) E′ is integral (in particular reduced) and its function
field is indeed κ(E)⊗κ(P(F)) κ(E′).

We now show the statements on C.
The field κ(S) is algebraically closed in κ(E)×P(κ(F)) κ(E′), and as S is regular, S

is normal; see [15, Theorem 19.4]. This implies with [6, III (4.3.12)] that the geometric
fibers of C over S are connected.

Let W be the different divisor of E ×P(F) E′ −→ P(F). Then (E ×P1 E′) − W
is normal, because the domain of an étale morphism mapping to a normal scheme is
normal; see [5, Exposé I, Corollaire 9.11.]. It follows that C −→ E×P(F) E′ induces an
isomorphism between the complement of the preimage of W in C and (E×P(F)E

′)−W .
Since the restriction of W to the fibers over S is zero-dimensional, it follows that
C −→ E ×P(F) E′ induces birational morphisms on the fibers over S.

By Abhyankar’s Lemma ([5, Exposé X, Lemme 3.6]) and “purity of the branch
locus” ([5, Exposé X, Théorème 3.1.]), f is étale outside (f ′)−1([0E′ ])) and f ′ is étale
outside f−1([0E ]). Let x be a topological point of C. As by assumption γ(ρ([0E ]))
and ρ′([0E′ ]) are disjoint, x /∈ (f ′)−1([0E′ ]) or x /∈ f−1([0E ]). In the first case, the
morphism f is étale at x, and since E is smooth over S, C over S is smooth at x. In
the second case, the argument is analogous and the conclusion is the same. It follows
that C is smooth over S.

Let s be a geometric point of S. We have already shown that Cs is connected,
and by what we have just seen, Cs is non-singular. We have to show that the genus
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of this curve is 2. We already know that Cs −→ Es ×P1
κ(s)

E′
s is birational. It follows

that Cs −→ Es has degree 2. Since γ(ρ([0E ])) "= ρ′([0E′ ]), the morphism Cs −→ Es

is ramified exactly at the preimages of ρ′([0E′ ]) in Es (here we use again Abhyankar’s
Lemma). This preimage consists of exactly two closed points. It follows that the genus
of Cs is 2. !

A. Genus 2 covers of degree 2 over fields

In this part of the appendix, we provide some results on genus 2 covers of elliptic curves
of degree 2 over algebraically closed fields of characteristic "= 2.

In the following, let κ be an algebraically closed field of characteristic "= 2. Let
E/κ, E′/κ be two elliptic curves, ψ : E[2]−̃→E′[2]. Let φ : E −→ P1

κ, φ′ : E′ −→ P1
κ

be two covers of degree 2 which are ramified at E[2] and E′[2] respectively such that
φ′ ◦ ψ|E[2]# = φ|E[2]# . Let C be the normalization of E ×P1

κ
E′.

Let P := φ([0E ]), P ′ := φ′([0E′ ]). By assumption, ρ(E[2]#) = ρ′(E′[2]#); let this
divisor be denoted by D.

Lemma A.1

The following assertions are equivalent.

a) The points P and P ′ are distinct.

b) E ×P1
κ

E′ is irreducible.

c) C/κ is a genus 2 curve.

d) The two covers φ : E −→ P1
κ and φ′ : E′ −→ P1

κ are not isomorphic (i.e. there
does not exist a κ-isomorphism α : E −→ E′ with φ = φ′ ◦ α).

e) There does not exist an isomorphism of elliptic curves α : E −→ E′ with α|E[2] =
ψ.

Proof. Keeping in mind that C is regular, i.e. smooth over Spec(κ), the equivalence of
the first four assertions is not difficult to show.

Assume that the covers are isomorphic via α : E −→ E′. Then in particular
P = P ′. We have the isomorphisms φ|E[2] : E[2] −→ D ∪ P , (φ′)|E[2] : E[2] −→ D ∪ P .
It follows that α|E[2] = (φ′|D∪P )−1 ◦ φE[2] = ψ. In particular, α is an isomorphism of
elliptic curves.

On the other hand, assume that there exists an isomorphism of elliptic curves
α : E −→ E′ with α|E[2] = ψ. Then φ|E[2] = φ′ ◦ α|E[2]. It is well-known that this
implies that φ = φ′ ◦ α. !

Let us assume that the equivalent conditions of the lemma are satisfied. Then we
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have a commutative diagram

C
f

))))
))

))
))

φ̃
%%

f ′

****
**

**
**

E

φ ###
##

##
##

# P1
κ

f
%%

E′ ,

φ′
$$++

++
++

++

P1
κ

(3)

where all morphisms are covers of degree 2. We have that

• f : P1
κ −→ P1

κ is branched exactly at the set P ∪ P ′,

• φ̃ : C −→ P1
κ is branched exactly at the set f

−1(D),

• f : C −→ E is branched exactly at the set φ−1(P ′),

• f ′ : C −→ E′ is branched exactly at the set (φ′)−1(P ′).

These statements can for example easily be proved with Abhyankar’s Lemma.
Let V ⊂ C be the ramification locus of f . Then (φ◦f)(V ) = P ′, i.e. (φ′◦f ′)(V ) =

P ′, and this implies
f ′(V ) = [0E′ ] . (4)

Lemma A.2

(C, f, f ′) is a normalized symmetric pair with respect to E and E′ corresponding
to ψ.

Proof. It is not difficult to show that we have a commutative diagram

JCs

f∗

++,,
,,

,,
,,

,

JE JE′ .

(f ′)∗
,,---------

(φ′)∗--.........

JP1
κ

= 0
φ∗

../////////

This implies that f∗ ◦ (f ′)∗ is zero. As f ′ is obviously minimal, this implies that
ker(f∗) = Im((f ′)∗). Similarly, we have ker(f ′∗) = Im(f∗).

By the above statements on the branching of f and φ̃, over each point of D, there
lie exactly 2 Weierstraß points. This implies that over each point of E[2]# there also
lie exactly 2 Weierstraß points. It follows that f is normalized.

The proof that f ′ is normalized is analogous.
We have φ′ ◦ψ ◦ f|WC/S

= φ ◦ f|WC/S
= φ′ ◦ (f ′)|WC/S

. As (φ′)|E[2]# : E′[2]# −→ D

is an isomorphism, we can conclude that ψ ◦ f|WC/S
= (f ′)|WC/S

.
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By Proposition 3.3, it follows that (C, f, f ′) is a normalized symmetric pair cor-
responding to ψ. !

Remark A.3 By Proposition 3.1, the last assertion of Lemma A.1 is equivalent to ψ
being irreducible (i.e. theta-smooth).

Lemmata A.1 and A.2 can however also be used to prove Proposition 3.1 (i.e.
[9, Theorem 3] in the special case that the covering degree is 2). By the definition of
Theta-smoothness, we can thereby restrict ourselves to the case that S = k.

If ψ satisfies the conditions of Lemma A.1, then by Lemma A.2 and Proposi-
tion 2.14, ψ is irreducible.

On the other hand, if ψ is irreducible and (C, f, f ′) is the corresponding symmetric
pair, then we have degree 2 covers φ : E −→ P1

κ, E′ −→ P1
κ which ramify at E[2] and

E′[2] respectively with φ ◦ f = φ′ ◦ f ′ (for example by Theorem 2). Consequently, the
equivalent conditions of Lemma A.1 hold.

Also Remark 2.16 can – for covering degree 2 – be derived from Lemma A.2: The
open subset U of S where P and P ′ do not meet obviously has the correct properties.

B. Some results on projective space bundles

In the following, let S be an arbitrary (not necessarily locally noetherian) scheme.
Let P1

S := Proj(Z[X0, X1]) ×Spec(Z) S. Then O(1) on P1
S has two canonical global

generators, X0 and X1.

Lemma B.1
Let s1, s2, s3, s′1, s

′
2, s

′
3 : S −→ P1

S be six sections of P1
S −→ S such that the images

of s1, s2, s3 as well as of s′1, s
′
2, s

′
3 are pairwise disjoint. Then there exists a unique

S-automorphism β of P1
S with β ◦ si = s′i for i = 1, 2, 3.

Proof. By considering an open affine covering, we can restrict ourselves to the case
that S is affine. The general case then follows by the uniqueness of α.

Each of the si, s′i is given by an invertible sheaf with two global sections which
generate it; cf. [7, II, Theorem 7.1.]. Let U = Spec(A) be an affine open subset such
that all these sheaves are trivial. We are going to show the result for (si)|U , (s′i)|U over
U . Again the result in the lemma then follows by the uniqueness of α on U via the
consideration of an open affine covering. Let us denote (si)|U by si, (s′i)|U by s′i.

If β : P1
A −→ P1

A is an automorphism, then β∗(O(1)) ≈ O(1) ⊗ p∗(L), where
p : P1

A −→ Spec(A) is the structure morphism and L is an invertible sheaf on Spec(A);
see [17, 0. §5 b)].

Let us assume that β ∈ AutA(P1
A) satisfies β ◦ si = s′i for some i, and let L be as

above. Then L = (si)∗p∗(L) = (si)∗β∗(O(1)) = (s′i)∗(O(1)) = OSpec(A) by the above
assumption on A.

We can thus restrict ourselves to automorphisms β with β∗(O(1)) ≈ O(1). Fixing
an isomorphism of β∗(O(1)) with O(1), β∗X0 and β∗X1 define two global sections
of O(1). Thus β corresponds to two global section of O(1) which are unique up to
multiplication by an element of A∗. Such elements can be written as aX0 + bX1, cX0 +

dX1 (a, b, c, d ∈ A) such that the matrix
(

a c
b d

)

is invertible. The matrix
(

a c
b d

)



Families of elliptic curves with genus 2 covers of degree 2 23

is thereby unique up to multiplication by an element of A∗.
By assumption on U , any of the sections si, s′i is given by a tuple of two elements

of A which generate the unit ideal. Furthermore, each of these tuples is unique up to
multiplication by an element of A∗. We can thus uniquely represent any of the si, s′i
by an element in A2/A∗.

Let (f, g) ∈ A2/A∗ be such an element corresponding to si. Then β ◦ si is given

by (fa + gb, fc + gd) ∈ A2/A∗, i.e. it is given by the usual application of
(

a c
b d

)

on

(f, g) from the right.
Note that the assumption on the images of the si and s′i is equivalent to the

condition that for all t ∈ S, the restrictions of s1, s2, s3 to the fiber over t as well as the
restrictions of the s′1, s

′
2, s

′
3 are distinct. This in turn is equivalent to the condition that

for all prime ideals P of A, the tuples (f, g) as above stay distinct in (A/P )2/(A/P )∗.
Now the result of this lemma follows from the following lemma which - for conve-

nience - we formulate with the usual left operation. !

We introduce the following notation: For v ∈ A2, we write ṽ for the reduction of
v modulo A∗.

Lemma B.2

Let

(
ai

bi

)

,

(
a′i
b′i

)

∈ A2 for i = 1, 2, 3 be given such that for all prime ideals P of

A, the

(
ai

bi

)

for i = 1, 2, 3 as well as the

(
a′i
b′i

)

for i = 1, 2, 3 define pairwise distinct

elements in (A/P )2/(A/P )∗. Then there exists an invertible matrix B ∈ M2×2(A),

unique up to multiplication by an element of A∗, such that B

(̃
ai

bi

)

= ˜(
a′ib

′
i

)
∈

A2/A∗.

Proof. We show the existence first.
We only have to show the existence for

(̃
a′1
b′1

)

=
(̃

1
0

)

,

(̃
a′2
b′2

)

=
(̃

0
1

)

,

(̃
a′3
a′3

)

=
(̃

1
1

)

.

We claim that the matrix M :=
(

a1 a2

b1 b2

)

∈ M2×2(A) is invertible. Let d be the

determinant of this matrix. By assumption, for all prime ideals P of A, the reduction
of d modulo P is non-zero. It follows that d does not lie in any prime ideal, thus it is
a unit (as otherwise it would lie in a maximal ideal).

Now M−1 maps
(

a1

b1

)

to
(

1
0

)

and
(

a2

b2

)

to
(

0
1

)

. Let
(

a
b

)

be the

image of
(

a3

b3

)

. The assumption remains valid for the images of
(

ai

bi

)

under M−1,
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and it says that a and b are not divisible by any prime ideal, i.e. they are units. The

invertible matrix M ′ :=
(

a−1 0
0 b−1

)

fixes
(̃

1
0

)

and
(̃

0
1

)

and maps
(

a
b

)

to
(

1
1

)

, so B := M ′M−1 has the desired properties.

Given what we have already shown, for the uniqueness it suffices to remark that

only matrices of the form aI (a ∈ A∗) fix
(̃

1
0

)

,

(̃
0
1

)

and
(̃

1
1

)

. !

Lemma B.3
Let D,D′ be two subschemes of P1

S such that D −→ S, D′ −→ S are étale covers
of degree 3, let η : D −→ D′ be an S-isomorphism. Then there exists a unique
S-automorphism of P1

S such that α|D = η.

Proof. As D −→ S is an étale cover, there exists a Galois cover T −→ S such that
DT = D ×S T - T ∪ T ∪ T (isomorphism over T ); cf. [5, Exposé V, 4 g)].

Let t1, t2, t3 : T −→ DT be the three immersions. Then for any α ∈ P1
T , the

condition α|DT
= ηT is equivalent to α ◦ ti = ηT ◦ ti for i = 1, 2, 3.

It follows from Lemma B. that there exists a unique automorphism α of P1
T such

that α|DT
= ηT .

This implies by Galois descent that there exists a unique automorphism α of P1
S

with α|D = η. !

Proposition B.4
Let P,P′ be two P1-bundles over S. Let D be a subscheme of P, D′ a subscheme

of P′ such that D −→ S and D′ −→ S are étale covers of degree 3. Let η : D −→ D′

be an S-isomorphism. Then there exists a unique S-isomorphism α : P −→ P′ such
that α|D = η.

In particular, if P has three sections over S which do not meet, it is S-isomorphic
to P1

S .

Proof. If P and P′ are trivial bundles (i.e. S-isomorphic to P1
S), the result follows

immediately from the previous lemma. The general case follows from the uniqueness
of α by a glueing argument. !

Remark B.5 The subscheme D of P in the proposition is in fact a relative effective
Cartier divisor of P. This follows from [16, Corollary 3.9].
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Algébrique, 1960-61, Institut des Hautes Études Scientifiques, Paris, 1963.
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