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Abstract

In this paper, we study the Marcinkiewicz integral operatorsM
Ω,h

on the product
spaceRn×Rm. We prove thatM

Ω,h
is bounded onLp(Rn×Rm) (1<p<∞) provided

that h is a bounded radial function andΩ is a function in certain block space
B

(0,0)
q (Sn−1×Sm−1) for someq > 1. We also establish the optimality of our

condition in the sense that the spaceB
(0,0)
q (Sn−1×Sm−1) cannot be replaced by

B
(0,r)
q (Sn−1×Sm−1) for any−1<r<0. Our results improve some known results.

1. Introduction

It is well-known that the theory of Marcinkiewicz integral operators is very useful in
harmonic analysis. We refer the readers to [2], [5], [6], [7], [9], [10], [11], [12], [15], [21],
[22], [24], [25] for the applications and the recent advances of this theory.

Our main focus in this paper will be on studying the Lp boundedness of Marcinkiewicz
integral operators on the product space Rn × Rm.

Suppose that Sd−1 (d = n or m) is the unit sphere of Rd (d ≥ 2) equipped with the
normalized Lebesgue measure dσ = dσ (x′) which is normalized so that σ(Sd−1) = 1.

Let h(t, s) be a locally integrable function on R+×R+ and Ω be an integrable function
on Sn−1 × Sm−1 and satisfies the following cancellation conditions:

∫
Sn−1 Ω (u, ·) dσ (u) = 0,

∫
Sm−1 Ω (·, v) dσ (v) = 0.

(1.1)
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The Marcinkiewicz integral operator on the product space Rn ×Rm is defined by

M
Ω,h

f(x, y) =

(∫
(0,∞)×(0,∞)

|Yt,sf(x, y)|2 dtds

(ts)3

)1/2

, (1.2)

where f ∈ S(Rn × Rm) and

Yt,sf(x, y) =
∫
{|u|≤t,|v|≤s}

Ω(u, v)h(|u| , |v|)
|u|n−1 |v|m−1 f(x− u, y − v)dudv.

For the sake of simplicity, we denote M
Ω,h

= MΩ if h(t, s) ≡ 1.

The study of the Lp boundedness of M
Ω,h

has attracted the attention of many
authors in recent years. In the one parameter setting (the non-product case), the
operator MΩ was introduced by E. Stein in [21] as an extension of the notion of
Marcinkiewicz function from one dimension to higher dimensions. Stein showed that
MΩ is bounded on Lp(Rn) for p ∈ (1, 2] if Ω ∈Lipα(Sn−1) (0 < α ≤ 1). Subsequently,
A. Benedek, A. Calderón, and R. Panzone proved that MΩ is bounded on Lp(Rn) for
p ∈ (1,∞) if Ω ∈ C1

(
Sn−1

)
(see [5]). Later on, the case of rough kernels (Ω satisfies

only a size condition and a cancellation condition but no regularity is assumed) became
the interest of many authors. For a sampling of past studies, see ([1], [2], [11], [12],
[20], [24]). On the other hand, the investigations of the Lp boundedness of M

Ω,h
in

the two parameter setting (the product case) began by Y. Ding and subsequently by
many authors (see [7], [8], [9]). For example, by Fourier transform estimates, Ding [9]
proved the L2(Rn×Rm) boundedness of M

Ω,h
when h ∈ L∞(R+×R+) and the kernel

function Ω belongs to L(log L)2(Sn−1 × Sm−1). Subsequently, Chen-Ding-Fan proved
that M

Ω,h
is bounded on Lp(Rn × Rm) (1 < p < ∞) provided that h ∈ L∞(R+ × R+)

and Ω satisfies the stronger condition Ω ∈ Lq(Sn−1 × Sm−1) (q > 1) [7].
Results cited above naturally lead us to the following:

Problem. Determine whether the Lp boundedness of the operator M
Ω,h

holds under

a condition in the form of Ω ∈ B
(0,υ)
q (Sn−1 × Sm−1) for υ > −1, and, if so, what is the

best possible value of υ.

Here, B
(0,υ)
q (Sn−1 × Sm−1) (for υ > −1 and q > 1) represents a block space and

its definition will be recalled in Section 2. We point out that B
(0,υ)
q (Sn−1 × Sm−1) was

introduced in [16] and can be traced back to [18] and [19]. Also, it is known that the
following inclusions hold and are proper:

B(0,υ2)
q

(
Sn−1 × Sm−1

)
⊂ B(0,υ1)

q

(
Sn−1 × Sm−1

)
for − 1 < υ1 < υ2 (1.3)⋃

r>1

Lr(Sn−1 × Sm−1) ⊂ B(0,υ)
q (Sn−1 × Sm−1) (1.4)

for any q > 1 and υ > −1.

The main focus of this paper is to obtain a solution to the above problem. Our
main result in this paper can be stated as follows:
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Theorem 1.1

Let Ω and M
Ω,h

be given as above. Then

(a) If h is a bounded function and Ω ∈ B
(0,0)
q (Sn−1×Sm−1), q > 1, M

Ω,h
is bounded

on Lp(Rn × Rm) for 1 < p < ∞;

(b) There exists an Ω which belongs to B
(0,υ)
q (Sn−1 × Sm−1) for all −1 < υ < 0 and

satisfies (1.1) such that MΩ is not bounded on L2(Rn × Rm).

Remarks.

(1) We point out that the relationship between the spaces B
(0,α−1)
q (Sn−1× Sm−1)

and L(log+ L)
α
(Sn−1×Sm−1) (for α > 0) remains open. One observes that Theorem 1.1

represents an improvement over the main result in [7] because Ω is allowed to be
in the space B

(0,0)
q (Sn−1 × Sm−1) and bearing in mind the relation (1.4) remarked

above. Also, it is worth mentioning that Theorem 1.1 (b) shows that the condition
Ω ∈ B

(0,0)
q (Sn−1 × Sm−1) is nearly optimal.

(2) The complexity of the proof of Theorem 1.1 (b) is much more than we had
anticipated. This is due in part to difficulties arising in product domain settings and
the complexity of the multiplier of the Marcinkiewicz integral operator.

Throughout the rest of the paper, we always use the letter C to denote a positive
constant that may vary at each occurrence, but it is independent of the essential
variables.

2. Certain block spaces on Sn−1×Sm−1

The block spaces originated in the work of M.H. Taibleson and G. Weiss on the con-
vergence of the Fourier series (see [23]) in connection with the developments of the real
Hardy spaces. Below we shall recall the definition of block spaces on Sn−1×Sm−1. For
further background information about the theory of spaces generated by blocks and
its applications to harmonic analysis one can consult the book [18].

The special class of block spaces B
(0,υ)
q (Sn−1× Sm−1) (for υ > −1 and q > 1) was

introduced by Jiang and Lu with respect to the study of singular integral operators on
product domains [16].

Definition 2.1 A q-block on Sn−1 × Sm−1 is an Lq (1 < q ≤ ∞) function b(x, y) that
satisfies

(i) supp(b)⊂ I;
(ii) ‖b‖Lq ≤ |I|−1/q′ ,

where 1/q + 1/q′ = 1, |·| denotes the product measure on Sn−1 × Sm−1, and I is an
interval on Sn−1 × Sm−1, i.e.,

I =
{
x′ ∈ Sn−1 :

∣∣x′ − x′0
∣∣ < α

}
×
{
y′ ∈ Sm−1 :

∣∣y′ − y′0
∣∣ < β

}
for some α, β > 0, x′0 ∈ Sn−1 and y′0 ∈ Sm−1.
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Definition 2.2 The block space B
(0,υ)
q = B

(0,υ)
q (Sn−1 × Sm−1) is defined by

B(0,υ)
q =

Ω ∈ L1(Sn−1 × Sm−1) : Ω =
∞∑

µ=1

λµbµ , M (0,υ)
q

(
{λµ}

)
< ∞

 ,

where each λµ is a complex number; each bµ is a q-block supported on an interval Iµ

on Sn−1 × Sm−1, υ > −1 and

M (0,υ)
q

(
{λµ}

)
=

∞∑
µ=1

∣∣λµ

∣∣ {1 + log(υ+1) ( ∣∣Iµ

∣∣−1 )}
. (2.1)

Let ‖Ω‖
B

(0,υ)
q (Sn−1×Sm−1)

= N
(0,υ)
q (Ω) = inf

{
M

(0,υ)
q

(
{λµ}

)}
, where the infimum is

taken over all q-block decompositions of Ω.
We remark that the definition of B

(0,υ)
q ([a, b]× [c, d]) for a, b, c, d ∈ R will be the

same as that of B
(0,υ)
q (Sn−1 × Sm−1) except for minor modifications.

By following similar arguments as proving Lemma 5.1 in [3], we get the following.

Lemma 2.3

For any υ > −1, a, b, c, d ∈ R,

(i) N
(0,υ)
q is a norm on B

(0,υ)
q ([a, b]× [c, d]) and (B(0,υ)

q ([a, b]× [c, d]), N (0,υ)
q ) is a Ba-

nach space;

(ii) If f ∈ B
(0,υ)
q ([a, b] × [c, d]) and g is a measurable on [a, b] with |g| ≤ |f |, then

g ∈ B
(0,υ)
q ([a, b]× [c, d]) with

N (0,υ)
q (g) ≤ N (0,υ)

q (f);

(iii) Let I1 and I2 be two disjoint intervals in [a, b] × [c, d] with |I1| , |I2| < 1 and

α1, α2 ∈ R+. Then

N (0,υ)
q (α1χI1

+ α2χI2
) ≥ N (0,υ)

q (α1χI1
) + N (0,υ)

q (α2χI2
);

(iv) Let I be a interval in [a, b]× [c, d] with |I| < 1. Then

N (0,υ)
q (χI ) ≥ |I| (1 + logυ+1(|I|−1).

3. Proof of Theorem 1.1 (b)

It is clear that the operatorMΩ is bounded on L2(Rn×Rm) if and only if the multiplier

m(ξ, η) =

∫
(0,∞)×(0,∞)

∣∣∣∣∣
∫
{|u|≤t,|v|≤s}

e−2πi(tξ′·u+sη·′v) Ω (u, v)
|u|n−1 |v|m−1 dudv

∣∣∣∣∣
2

dtds

(ts)3

1/2

is an L∞ function. Now,
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(m(ξ, η))2 = lim
M→∞,ε2→0

lim
N→∞,ε1→0

∫
(Sn−1×Sm−1)2

Ω (u, v) Ω (x, y)

×
(∫

[0,1]2

(∫ N

ε1

e−2πitξ′·(r1u−r2x) dt

t

)
dr1dr2

)

×
(∫

[0,1]2

(∫ M

ε2

e−2πisη′·(w1v−w2y) ds

s

)
dw1dw2

)
dσ(u)dσ(v)dσ(x)dσ(y).

Note that ∫ N

ε1

(
e−2πitξ′·(r1u−r2x) − cos(2πt)

) dt

t
→ log

∣∣ξ′ · (r1u− r2x)
∣∣−1

−i
π

2
sgn(ξ′ · (r1u− r2x))

as N →∞ and ε1 → 0, and also this integral is bounded, uniformly in both ε1 and N ,
by C (1 + |log |ξ′ · (r1u− r2x)||) .

For simplicity, let

S(ξ′, r1, r2, u, x) = log
∣∣ξ′ · (r1u− r2x)

∣∣−1 − i
π

2
sgn(ξ′ · (r1u− r2x)).

Thus, using (1.1) and the Lebesgue dominated convergence theorem, we get

(m(ξ, η))2 =
∫
(Sn−1×Sm−1)2

Ω (u, v) Ω (x, y)

(∫
[0,1]2

S(ξ′, r1, r2, u, x)dr1dr2

)

×
(∫

[0,1]2
S(η′, w1, w2, v, y)dw1dw2

)
dσ(u)dσ(v)dσ(x)dσ(y).

Now, if Ω is a real-valued function,

(m(ξ, η))2 =
∫
(Sn−1×Sm−1)2

∫
[0,1]2

∫
[0,1]2

Ω (u, v) Ω (x, y)

×
[
log

∣∣ξ′ · (r1u− r2x)
∣∣−1 log

∣∣η′ · (w1v − w2y)
∣∣−1

−π2

4
sgn(ξ′ · (r1u− r2x))

× sgn(η′ · (w1v − w2y))
]
dr1dr2dw1dw2dσ(u)dσ(v)dσ(x)dσ(y).

Since if Ω ∈ L1(Sn−1 × Sm−1), the integral∫
(Sn−1×Sm−1)2

Ω (u, v) Ω (x, y)
∫
[0,1]2

∫
[0,1]2

(
π2

4
sgn(ξ′ · (r1u− r2x))

)
×
(
sgn(ηξ′ · (w1v − w2y))

)
dr1dr2dw1dw2dσ(u)dσ(v)dσ(x)dσ(y)

is bounded, uniformly in ξ′ and η′, we only to deal with m0(ξ, η), where

m0(ξ, η =
∫
(Sn−1×Sm−1)2

Ω (u, v) Ω (x, y)
∫
[0,1]2

∫
[0,1]2

log
∣∣ξ′ · (r1u− r2x)

∣∣−1

× log
∣∣η′ · (w1v − w2y)

∣∣−1
dr1dr2dw1dw2dσ(u)dσ(v)dσ(x)dσ(y).
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Now, for non-zero real numbers a and b, by straightforward computations, we have∫
[0,1]2

log |r1a− r2b|−1 dr1dr2

=
a

2b
log |a|−1 +

b

2a
log |b|−1 − (a− b)2

2ab
log |a− b|−1 − 1/2.

Therefore, by the cancellation conditions on Ω, we immediately get

m0(ξ, η) =
∫
(Sn−1×Sm−1)2

Ω (u, v) Ω (x, y) F (u, x, ξ′)F (v, y, η′)dσ(u)dσ(v)dσ(x)dσ(y),

where

F (u, x, ξ′) =
((

1− ξ′ · u
ξ′ · x

)
log

∣∣ξ′ · (u− x)
∣∣−1 +

(
ξ′ · u
ξ′ · x

)
log

∣∣ξ′ · u∣∣−1
)

.

Now, we are ready to prove part (b) of Theorem 1.1. For the sake of simplicity we
shall present the construction of our Ω only in the case n = m = 2 and q = ∞. Other
cases can be obtained by making minor modifications. Also, we shall work on [−1, 1]2

instead of S1 × S1. We notice that the proof Theorem 1.1 (b) will be completed if we
can construct an Ω on [−1, 1]2 with the following properties:∫ 1

−1
Ω (u, ·) du =

∫ 1

−1
Ω (·, v) dv = 0; (3.1)

Ω ∈ B(0,υ)
∞ ([−1, 1]2) for each υ,−1 < υ < 0; (3.2)

Ω /∈ B(0,0)
∞ ([−1, 1]2); (3.3)

∫
[0,1]2

∫
[0,1]2

H(u, v, x, y)dudvdxdy = ∞; (3.4)∫
[−1,1]2\[0,1]2

∫
[0,1]2

|H(u, v, x, y)| dudvdxdy < ∞; (3.5)∫
[0,1]2

∫
[−1,1]2\[0,1]2

|H(u, v, x, y)| dudvdxdy < ∞; (3.6)∫
[−1,1]2\[0,1]2

∫
[−1,1]2\[0,1]2

|H(u, v, x, y)| dudvdxdy < ∞, (3.7)

where

H(u, v, x, y) = Ω (u, v) Ω(x, y)G(u, x)G(v, y),

G(u, x) =
(

1− u

x

)
log |u− x|−1 +

u

x
log |u|−1 .

To this end, for integers k, j ≥ 3, let Ij = [ 1
j+1 , 1

j ) and

αk =
∞∑

j=3

k

(j + 1) [log(k + j)]3
,

βk,j =
jk

[log(k + j)]3
.
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Now, by definition of αk, we have

αk =
k∑

j=3

k

(j + 1) [log(k + j)]3
+

∞∑
j=k+1

k

(j + 1) [log(k + j)]3

≤ k

(log k)3

 k∑
j=3

1
(j + 1)

+ k

 ∞∑
j=k+1

1
(j + 1) (log j)3

 .

Thus there exists a positive constant C independent of k such that

αk ≤ C
k

(log k)2
(3.8)

which easily implies
∞∑

k=3

αk

k(k + 1)
< ∞.

Define Ω on [−1, 1]2 by

Ω (u, v) =
∞∑

j=2

∞∑
k=2

Ck,jχIk×Ij
(u, v),

where, for integers k, j ≥ 3,

C2,2 =

( ∞∑
k=3

αk

k(k + 1)

)
, C2,k = Ck,2 = −αk |Ik| , Ck,j = βk,j |Ik × Ij | ,

b2,2(u, v) = χ
[−1,0]2

(u, v), b2,k(u, v) = |Ik|−1 χ
[−1,0]×Ik

(u, v),

bk,2(u, v) = |Ik|−1 χ
Ik×[−1,0]

(u, v), bk,j(u, v) = |Ik × Ij |−1 χIk×Ij
(u, v)

and χA represents the characteristic function of a set A.
By straightforward calculations, it is easy to see that (3.1)–(3.2) hold. To

prove (3.3) we invoke Lemma 2.3. In fact, we notice that each bk,j is an ∞-block
supported on the interval Ik × Ij . So to prove (3.3), we only need to show that
N

(0,0)
∞ (Ω) = ∞. To this end, by Lemma 2.3 we have for each M,N,

N (0,0)
∞

(
Ω +

∞∑
k=3

C2,kb2,k +
∞∑

k=3

Ck,2bk,2 − C2,2b2,2

)

≥
M∑

j=3

N∑
k=3

C
k,j
|Ik × Ij |−1 N (0,0)

∞ (χIk×Ij
)

≥
M∑

j=3

N∑
k=3

C
k,j

(
1 + log(|Ik × Ij |−1)

)

≥ C
M∑

j=3

N∑
k=3

(log k + log j)
(k + 1)(j + 1) [log(k + j)]3
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for some positive constant C independent of M and N. Letting M,N →∞, and since

∞∑
j=3

∞∑
k=3

(log k + log j)
(k + 1)(j + 1) [log(k + j)]3

≥ C
∞∑

k=3

log k

k + 1

∑
j≥k

1
(j + 1)(log j)3

≥ C
∞∑

k=3

1
(k + 1) log k

= ∞

we get

N (0,0)
∞

(
Ω +

∞∑
k=3

C2,kb2,k +
∞∑

k=3

Ck,2bk,2 − C2,2b2,2

)
= ∞.

Since

N (0,0)
∞

( ∞∑
k=3

C2,kb2,k

)
, N (0,0)

∞

( ∞∑
k=3

Ck,2bk,2

)
, N (0,0)

∞ (C2,2b2,2)

are finite numbers, we obtain N
(0,0)
∞ (Ω) = ∞. This ends the proof of (3.3).

At this point, let us introduce some notations and make some comments that will
be used frequently in the proofs of (3.4)–(3.7).

Let

E(k, l) =
(∫

Ik×Il

G(x, u)dxdu

)
;

E(1)(k, l) =
∫

Ik×Il

(
1− u

x

)
log |u− x|−1 dxdu;

E(2)(k, l) =
∫

Ik×Il

u

x
(log |u− x| − log |u|) dxdu;

E(3)(k, l) =
∫

Ik×Il

log |u− x|−1 dxdu;

E(4)(k, l) =
∫

Ik×Il

u

x
log |u|−1 dxdu;

I(k) =
(∫

Ik

∫ 0

−1
G(x, u)dxdu

)
;

I∗(k) =
(∫ 0

−1

∫
Ik

G(x, u)dxdu

)
;

I1(k) =
∫

Ik

∫ 0

−1
log |u− x|−1 dxdu;

I2(k) =
∫

Ik

∫ 0

−1

u

x
(log |u− x| − log |u|) dxdu;

I3(k) =
∫

Ik

∫ 0

−1

u

x
(log |u− x| − log |u|) dudx.
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By straightforward calculations, it is easy to show that

|I1(j)| ≤ C
1
j2

; (3.9)

E(3)(j, s) ≤ C
log j

j2s2
if s > 2j; (3.10)

E(3)(j, s) ≤ C
log s

j2s2
if j > 2s; (3.11)

E(3)(j, s) ≤ C
log s

s4
if j/2 ≤ s ≤ 2j (3.12)

for some positive constant C independent of j and s.1

Now, we need to point out to the following observations. First, if (x, u) ∈ Ik × Il

with l ≥ 2(k + 1), we have u
x ≤

k+1
l ≤ 1/2 and hence 1 − u

x ≥ 1/2 > 0 which in turn
yields

G(x, u) ≥ log |x− u|−1 . (3.13)

Next, we notice that if (x, u) ∈ Ik × Il with k/2− 1 < l < 2(k + 1), we have u
x ≥

k
l+1 >

k
3k = 1

3 . Thus 1− u
x < 2

3 and hence by (3.12) we get

E(1)(k, l) ≤ 2
3

∫
Ik×Il

log |u− x|−1 dxdu ≤ C
log l

l4
, (3.14)

for some positive constant independent of k, l. Thirdly, by the mean-value theorem we
have ∣∣∣∣ux (log |u− x| − log |u|)

∣∣∣∣ ≤ |u|
min {|u− x| , |u|}

. (3.15)

We notice that if (x, u) ∈ Ik × Il with 3 ≤ l ≤ k/2− 1, we get

u− x ≥ 1
l + 1

− 1
k

=
k − (l + 1)
(l + 1)k

≥ 1
k
≥ x > 0.

Thus u− x < u which yields∣∣∣∣ux (log |u− x| − log |u|)
∣∣∣∣ ≤ u

u− x
=

1
1− x/u

.

Since x/u ≤ 1/2 we obtain ∣∣∣∣ux (log |u− x| − log |u|)
∣∣∣∣ ≤ 2.

Also, if (x, u) ∈ Ik × Il with l ≥ 2(k + 1), we have x− u ≥ u and thus∣∣∣∣ux (log |u− x| − log |u|)
∣∣∣∣ ≤ 1.

So, in either case we have

E(2)(k, l) ≤ C
1

k2l2
(3.16)

1. The author is indebted to Prof. Yibiao Pan for a helpful discussion.
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for some positive constant independent of k and l. Fourthly, if (x, u) ∈ Ik × Il with
k/2 − 1 < l < 2(k + 1), we have u

x ≤
k+1

l ≤ 2l+3
l ≤ 3. Also, notice that if u ∈ Il, we

have log |u|−1 ≤ log(l + 1). Thus, we have

E(4)(k, l) ≤ C
log l

k2l2
. (3.17)

Fifthly, by (3.15), it is easy to see that

|I2(k)| ≤ C
1
k2

; (3.18)

|I3(k)| ≤ C
1
k2

. (3.19)

Now, we turn to the proof of (3.4). By the above remarks, we notice that∫
[0,1]2

∫
[0,1]2

H(u, v, x, y)dudvdxdy

=
∞∑

j=3

∞∑
k=3

∞∑
s=3

∞∑
l=3

βk,jβl,sE(k, l)E(j, s)

≥ S1 + S2 + S3 + S4 + S5 + S6 + S7 + S8 + S9,

where

S1 =
∞∑

j=3

∑
s≥2(j+1)

∞∑
k=3

∑
l≥2(k+1)

βk,jβl,sE
(3)(k, l)E(3)(j, s);

S2 =
∞∑

j=3

∑
s≥2(j+1)

∞∑
k=3

∑
k/2−1<l<2(k+1)

βk,jβl,sE
(1)(k, l)E(3)(j, s);

S3 =
∞∑

j=3

∑
j/2−1<s<2(j+1)

∞∑
k=3

∑
l≥2(k+1)

βk,jβl,sE
(3)(k, l)E(1)(j, s);

S4 =
∞∑

j=3

∑
s≥2(j+1)

∞∑
k=3

∑
3≤l≤k/2−1

βk,jβl,sE
(2)(k, l)E(3)(j, s);

S5 =
∞∑

j=3

∑
3≤s≤j/2−1

∞∑
k=3

∑
l≥2(k+1)

βk,jβl,sE
(3)(k, l)E(2)(j, s);

S6 =
∞∑

j=3

∑
j/2−1<s<2(j+1)

∞∑
k=3

∑
k/2−1<l<2(k+1)

βk,jβl,sE
(1)(k, l)E(1)(j, s);

S7 =
∞∑

j=3

∑
j/2−1<s<2(j+1)

∞∑
k=3

∑
3≤l≤k/2−1

βk,jβl,sE
(2)(k, l)E(1)(j, s);

S8 =
∞∑

j=3

∑
3≤s≤j/2−1

∞∑
k=3

∑
k/2−1<l<2(k+1)

βk,jβl,sE
(1)(k, l)E(2)(j, s);

S9 =
∞∑

j=3

∑
3≤s≤j/2−1

∞∑
k=3

∑
3≤l≤k/2−1

βk,jβl,sE
(2)(k, l)E(2)(j, s).
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It is clear that to prove (3.4), it suffices to prove the following:
(i) S1 = ∞; and (iii)|Si| < ∞ for i = 2, . . . , 9.

To prove (i), we invoke (3.10) to get,

S1 ≥ C
∑

s≥2(j+1)

∑
j=3

∞∑
k=3

∑
l≥2(k+1)

(
jkls

[log(k + j)]3 [log(l + s)]3

)(
log k log j

k2j2s2l2

)

≥ C
∞∑

j=3

∞∑
k=3

∑
l≥2(k+1)

(
log k log j

kjl [log(k + j)]3 [log(l + j)]2

)

≥ C
∞∑

k=3

∞∑
j=3

(
log k log j

kj [log(k + j)]4

)

≥ C
∞∑

k=3

log k

k

∞∑
j≥k

(
1

j (log j)3

)

≥ C
∞∑

k=3

1
k log k

= ∞.

Now, we turn to prove that |S2| < ∞. By (3.10), (3.12) and (3.14), we have

|S2| ≤
∞∑

j=3

∑
s≥2(j+1)

∞∑
k=3

∑
k/2−1<l<2(k+1)

(
jkls

[log(k + j)]3 [log(l + s)]3

)(
log l log j

j2s2l4

)

≤ C
∞∑

j=3

∑
s≥2(j+1)

∞∑
k=3

(
log k log j

kjs [log(k + j)]3 [log(k + s)]3

)

≤ C
∞∑

j=3

∞∑
k=3

(
log k log j

kj [log(k + j)]5

)

≤ C

 ∞∑
j=3

log k

k [log(k + 3)]5/2

( ∞∑
k=3

log j

j [log(3 + j)]5/2

)
< ∞.

Similarly, |S3| < ∞. Now, we verify |S4| < ∞. By (3.10) and (3.16), we get

S4 ≤ C
∞∑

j=3

∑
s≥2(j+1)

∞∑
k=3

∑
3≤l≤k/2−1

(
log j

kjls [log(k + j)]3 [log(l + s)]3

)

≤ C
∞∑

j=3

∑
s≥2(j+1)

∞∑
k=3

(
log j

kjs [log(k + j)]3 [log(k + s)]2

)

≤ C
∞∑

j=3

∞∑
k=3

(
log j

kj [log(k + j)]4

)

≤ C

( ∞∑
k=3

1

k [log(k + 3)]3/2

) ∞∑
j=3

log j

j [log(3 + j)]5/2

 < ∞.
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Similarly, |S5| < ∞. To prove |S6| < ∞, we use (3.12). In fact, by (3.12), we have

S6 ≤ C
∞∑

j=3

∑
j/2−1<s<2(j+1)

∞∑
k=3

∑
k/2−1<l<2(k+1)

(
jk log l log s

s3l3 [log(k + j)]3 [log(l + s)]3

)

≤ C
∞∑

j=3

∞∑
k=3

(
log k log j

kj [log(k + j)]6

)

≤ C
∞∑

j=3

(
log j

j [log(3 + j)]3

) ∞∑
k=3

(
log k

k [log(k + 3)]3

)
< ∞.

Now, we prove |S7| < ∞. By (3.12) and (3.16), we have

|S7| ≤ C
∞∑

j=3

∑
j/2−1<s<2(j+1)

∞∑
k=3

∑
3≤l≤k/2−1

(
j log s

kls3 [log(k + j)]3 [log(l + s)]3

)

≤ C
∞∑

j=3

∞∑
k=3

∑
3≤l≤k/2−1

(
log j

kjl [log(k + j)]3 [log(l + j)]3

)

≤ C
∞∑

j=3

∞∑
k=3

(
log j

kj [log(k + j)]5

)

≤ C
∞∑

j=3

(
log j

j [log(3 + j)]7/2

) ∞∑
k=3

(
1

k [log(k + 3)]3/2

)
< ∞.

Similarly, |S8| < ∞. Now, we need to verify |S9| < ∞. By (3.16), we have

S7 ≤ C
∞∑

j=3

∑
3≤s≤j/2−1

∞∑
k=3

∑
3≤l≤k/2−1

(
jkls

[log(k + j)]3 [log(l + s)]3

)(
1

k2j2l2s2

)

≤ C
∞∑

j=3

∑
3≤s≤j/2−1

∞∑
k=3

∑
3≤l≤k/2−1

(
1

kjls [log(k + j)]3 [log(l + s)]3

)

≤ C
∞∑

j=3

∑
3≤s≤j/2−1

∞∑
k=3

(
1

kjs [log(k + j)]3 [log(k + s)]2

)

≤ C
∞∑

j=3

∞∑
k=3

(
1

kj [log(k + j)]5

)

≤ C

 ∞∑
j=3

1

j [log(3 + j)]5/2

( ∞∑
k=3

1

k [log(k + 3)]5/2

)
< ∞.

This completes the proof of (3.4). Now, we verify (3.5). To this end, we divide
[−1, 1]2\[0, 1]2 into three parts: [−1, 0] × [0, 1], [0, 1] × [−1, 0], and [−1, 0] × [−1, 0].
First the integral over [−1, 0]× [0, 1] ×[0, 1]2 is dominated from above by

X =
∞∑

k=3

∞∑
j=3

∞∑
s=3

βk,jαs |I(k)| |E(j, s)| (3.20)

≤ X1 + X2 + X3, (3.21)
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where

X1 =
∞∑

k=3

∞∑
j=3

∑
s≥2(j+1)

βk,jαs |I(k)| |E(j, s)| ;

X2 =
∞∑

k=3

∞∑
j=3

∑
j/2−1<s<2(j+1)

βk,jαs |I(k)| |E(j, s)| ;

X3 =
∞∑

k=3

∞∑
j=3

∑
3≤s≤j/2−1

βk,jαs |I(k)| |E(j, s)| .

Thus to prove X < ∞, it suffices to prove that each Xi < ∞ for i = 1, 2, 3. To this
end, we notice that

X1 ≤ C
∞∑

k=3

∞∑
j=3

∑
s≥2(j+1)

βk,jαs |I1(k) + I2(k)|
∣∣∣E(2)(j, s)

∣∣∣
+ C

∞∑
k=3

∞∑
j=3

∑
s≥2(j+1)

βk,jαs |I1(k) + I2(k)|
∣∣∣E(3)(j, s)

∣∣∣
= X

(1)
1 + X

(2)
1 .

Now, by (3.8)–(3.9), (3.16) and (3.18),

X
(1)
1 ≤ C

∞∑
k=3

∞∑
j=3

∑
s≥2(j+1)

jks

[log(k + j)]3 (log s)2
1

k2s2j2

≤ C
∞∑

k=3

∞∑
j=3

1
kj [log(k + j)]3 (log j)

≤ C

( ∞∑
k=3

1
k [log(k + 3)]2

) ∞∑
j=3

1
j [log(3 + j)] (log j)

 < ∞.

By (3.8)–(3.10) and (3.18),

X
(2)
1 ≤ C

∞∑
k=3

∞∑
j=3

∑
s≥2(j+1)

jks

[log(k + j)]3 (log s)2
log j

k2s2j2

≤ C
∞∑

k=3

∞∑
j=3

∑
s≥2(j+1)

log j

kjs [log(k + j)]3 (log s)2

≤ C
∞∑

k=3

∞∑
j=3

1
kj [log(k + j)]3

≤ C

( ∞∑
k=3

1

k [log(k + 3)]3/2

) ∞∑
j=3

1

j [log(3 + j)]3/2

 < ∞.

This completes the proof of X1 < ∞. Now, we turn to the proof of X2 < ∞. To this
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end, we notice that

X2 ≤
∞∑

k=3

∞∑
j=3

∑
j/2−1<s<2(j+1)

βk,jαs |I1(k) + I2(k)|
∣∣∣E(1)(j, s)

∣∣∣
+

∞∑
k=3

∞∑
j=3

∑
j/2−1<s<2(j+1)

βk,jαs |I1(k) + I2(k)|
∣∣∣E(4)(j, s)

∣∣∣
= X

(1)
2 + X

(2)
2 .

By (3.8)–(3.9), (3.14) and (3.18),

X
(1)
2 ≤ C

∞∑
k=3

∞∑
j=3

∑
j/2−1<s<2(j+1)

jks

[log(k + j)]3 (log s)2
log s

k2s4

≤ C
∞∑

k=3

∞∑
j=3

1
kj [log(k + j)]3 (log j)

≤ C

( ∞∑
k=3

1

k [log(k + 3)]3/2

) ∞∑
j=3

1

j [log(3 + j)]1/2 (log j)

 < ∞.

On other hand, by (3.8)–(3.9) and (3.17)–(3.18),

X
(2)
2 ≤ C

∞∑
k=3

∞∑
j=3

∑
j/2−1<s<2(j+1)

jks

[log(k + j)]3 (log s)2
log s

k2j2s2

≤ C
∞∑

k=3

∞∑
j=3

1
kj [log(k + j)]3 (log j)

≤ C

( ∞∑
k=3

1

k [log(k + 3)]3/2

) ∞∑
j=3

1

j [log(3 + j)]1/2 (log j)

 < ∞.

A proof of X3 < ∞ can be obtained by following a similar argument as in our
proof of the finiteness of X2. Thus, we get X < ∞ which in turn proves the finiteness
of the integral over [−1, 0] × [0, 1] ×[0, 1]2. Similarly, the integral over [0, 1] × [−1, 0]
×[0, 1]2 is finite. Also, the integral over [−1, 0]× [−1, 0] ×[0, 1]2 is bounded above by

C
∞∑

k=3

∞∑
j=3

βk,j |I(k)| |I(j)|

≤ C
∞∑

k=3

∞∑
j=3

βk,j (|I1(k)|+ |I2(k)|) (|I1(j)|+ |I2(j)|)

≤ C

( ∞∑
k=3

1

k [log(k + 3)]3/2

) ∞∑
j=3

1

j [log(3 + j)]3/2

 < ∞

where the second inequality is obtained from (3.9) and (3.18). This ends the proof
of (3.5).
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Similarly we can prove (3.6). Finally, we verify (3.7). As above, we divide
[−1, 1]2\[0, 1]2 into three parts: [−1, 0] × [0, 1], [0, 1] × [−1, 0], and [−1, 0] × [−1, 0].
We shall only present the proof of the finiteness of the integral over [−1, 0] × [0, 1] ×
[−1, 0] × [0, 1] and over [−1, 0] × [0, 1] × [0, 1] × [−1, 0]. The proof of the other
cases either will be similar or easier. To this end, we notice that the integral over
[−1, 0]× [0, 1]× [−1, 0]× [0, 1] is bounded from above by

C
∞∑

k=3

∞∑
l=3

kl

(log k)2(log l)2
E(k, l)

(∫ 0

−1

∫ 0

−1
G(v, y)dvdy

)

≤ C
∞∑

k=3

∞∑
l=3

kl

(log k)2(log l)2
E(k, l) = S∗.

Now, as above we split S∗ as

S∗ = S∗1 + S∗2 + S∗3 ,

where

S∗1 =
∞∑

k=3

∑
l>2(k+1)

kl

(log k)2(log l)2
E(k, l);

S∗2 =
∞∑
l=3

∑
k/2−1<l<2(k+1)

kl

(log k)2(log l)2
E(k, l);

S∗3 =
∞∑

k=3

∑
3≤l≤k/2−1

kl

(log k)2(log l)2
E(k, l).

Now,

S∗1 ≤
∞∑

k=3

∑
l>2(k+1)

kl

(log k)2(log l)2
∣∣∣E(2)(k, l)

∣∣∣
+

∞∑
k=3

∑
l>2(k+1)

kl

(log k)2(log l)2
∣∣∣E(3)(k, l)

∣∣∣
= S∗1,1 + S∗1,2.

By (3.16), we have

S∗1,1 ≤ C
∞∑

k=3

∑
l>2(k+1)

kl

(log k)2(log l)2
1

k2l2

≤ C
∞∑

k=3

kl

k(log k)3
< ∞. (3.22)

On the other hand, by (3.10)

S∗1,2 ≤ C
∞∑

k=3

∑
l>2(k+1)

kl

(log k)2(log l)2
log k

k2l2

≤ C
∞∑

k=3

1
k(log k)2

< ∞. (3.23)
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Thus, by (3.22)–(3.23) we get S∗1 < ∞. Similarly, S∗3 < ∞. Now,

S∗2 ≤
∞∑
l=3

∑
k/2−1<l<2(k+1)

kl

(log k)2(log l)2
∣∣∣E(1)(k, l)

∣∣∣
+

∞∑
l=3

∑
k/2−1<l<2(k+1)

kl

(log k)2(log l)2
∣∣∣E(4)(k, l)

∣∣∣
= S∗2,1 + S∗2,2.

By (3.14), we have

S∗2,1 ≤ C
∞∑

k=3

∑
k/2−1<l<2(k+1)

kl

(log k)2(log l)2
log l

l4

≤ C
∞∑

k=3

1
k(log k)3

< ∞. (3.24)

On the other hand, by (3.17)

S∗2,2 ≤ C
∞∑

k=3

∑
k/2−1<l<2(k+1)

kl

(log k)2(log l)2
log k

k2l2

≤ C
∞∑

k=3

1
k(log k)2

< ∞. (3.25)

This finishes the proof of the finiteness of the integral over [−1, 0]×[0, 1]×[−1, 0]×[0, 1].
Now, we turn to the proof of the finiteness of the integral over [−1, 0]× [0, 1]× [0, 1]×
[−1, 0]. We notice that the integral over [−1, 0]× [0, 1]× [0, 1]× [−1, 0] is bounded from
above by

C
∞∑

k=3

∞∑
l=3

kl

(log k)2(log l)2
|I(k)I(j)|

≤ C
∞∑

k=3

∞∑
l=3

kl

kl(log k)2(log l)2
(|I1(k)|+ |I2(k)|) (|I1(l)|+ |I2(l)|)

≤ C

( ∞∑
k=3

1
k(log k)2

) ∞∑
j=3

1
j(log j)2

 < ∞.

This ends the proof of (3.7) which in turn completes the proof of Theorem 1.1 (b). �

4. Main lemma

For a suitable family of measures σ = {σt,s : t, s ∈ R+} on Rn × Rm, we define the
square operator Fσ and the corresponding maximal operator σ∗ by

Fσ(f)(x, y) =

(∫
(0,∞)×(0,∞)

|σt,s ∗ f(x, y)|2 dtds

ts

)1/2
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and
σ∗(f)(x, y) = sup

t,s∈R+

||σt,s| ∗ f(x, y)| .

Also, we write t±α = inf {tα, t−α} and ‖σt,s‖ for the total variation of σt,s. The proof
of Theorem 1.1 (a) will rely heavily on the following lemma:

Lemma 4.1

Let a, b ≥ 2, B > 1, C > 0 and q0 ∈ (1,∞). Suppose that the family of measures

{σt,s : t, s ∈ R+} satisfies the following:

(i) ‖σt,s‖ ≤ 1 for t, s ∈ R+;

(ii)
∫ a(k+1)B

akB

∫ b(j+1)B

bjB |σ̂t,s(ξ, η)|2 dtds
ts ≤ CB2(akB |ξ|)

± α
B (bjB |η|)

± α
B for t, s ∈ R+ and

(ξ, η) ∈ Rn × Rm;
(iii) ‖σ∗(f)‖q ≤ C ‖f‖q for all q > q0 and f ∈ Lq(Rn × Rm).

Then, for every p satisfying |1/p− 1/2| < 1/(2q0), there exists a positive constant

Cp which is independent of B such that

‖Fσ(f)‖p ≤ CpB ‖f‖p (4.1)

for f ∈ Lp(Rn × Rm).

Proof. For λ ≥ 2, let {ϕj,λ}∞−∞ be a smooth partition of unity in (0,∞) adapted to
the intervals Ej,λ = [λ−(j+1)B, λ−(j−1)B]. More precisely, we require the following:

ϕj,λ ∈ C∞, 0 ≤ ϕj,λ ≤ 1,
∑
j

ϕj,λ (t) = 1;

supp ϕj,λ ⊆ Ej,λ;∣∣∣∣dsϕj,λ (t)
dts

∣∣∣∣ ≤ C

ts
,

where C can be chosen to be independent of B. Let Ik,a =
[
akB, a(k+1)B

)
, Φ̂k(ξ) =

ϕk,a(|ξ|) and Ψ̂j(η) = ϕj,b(|η|) for (ξ, η) ∈ Rn×Rm. Then for f ∈ S(Rn×Rm) we have

σt,s ∗ f(x, y) =
∑

k,l∈Z

∑
j,r∈Z

(σt,s ∗ (Φk+l ⊗Ψj+r) ∗ f) (x, y)χ
Ik,a

(t)χ
Ij,b

(s)

:=
∑

k,j∈Z
Hk,j(x, y, t, s),

say and define

Fk,jf(x, y) =

(∫
(0,∞)×(0,∞)

|Hk,j(x, y, t, s)|2 dtds

ts

)1/2

.

Then
Fσf(x, y) ≤

∑
k,j∈Z

Fk,jf(x, y).
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Therefore, (4.1) is proved if we can show that

‖Fk,j(f)‖p ≤ CpBa−θp|k|b−θp|j| ‖f‖p (4.2)

for every p satisfying |1/p− 1/2| < 1/(2q0), for all f ∈ Lp(Rn × Rm) and for some
positive constants Cp and θp.

The proof of (4.2) follows by interpolation between a sharp L2 estimate and a
cruder Lp estimate.

First, we compute the L2-norm of Fk,j . By Plancherel’s theorem, we have

‖Fk,j(f)‖2
2

=
∑

l,r∈Z

∫
Rn×Rm

∫
Il,a×Ir,b

|(σt,s ∗ (Φk+l ⊗Ψj+r) ∗ f) (x, y)|2 dtds

ts
dxdy

≤
∑

l,r∈Z

∫
El+k,a×Er+j,b

(∫
Il,a×Ir,b

|σ̂t,s(ξ, η)|2 dtds

ts

) ∣∣∣f̂(ξ, η)
∣∣∣2 dξdη

≤ CB2
∑

l,r∈Z

∫
El+k,a×Er+j,b

∣∣∣alBξ
∣∣∣± α

B
∣∣∣brBη

∣∣∣± α
B
∣∣∣f̂(ξ, η)

∣∣∣2 dξdη

≤ CB2a−α|k|b−α|j| ∑
l,r∈Z

∫
El+k,a×Er+j,b

∣∣∣f̂(ξ, η)
∣∣∣2 dξdη

≤ CB2a−α|k|b−α|j| ‖f‖2
2 .

Therefore,
‖Fk,j(f)‖2 ≤ CBa−

α
2
|k|b−

α
2
|j| ‖f‖2 . (4.3)

On the other hand, we compute the Lp-norm of Fk,j(f). We start first with the
case 2 ≤ p < 2q0(q0 − 1)−1. Choose g in L(p/2)′(Rn ×Rm) with ‖g‖(p/2)′ ≤ 1 such that

‖Fk,j(f)‖2
p

=
∑

l,r∈Z

∫
Rn×Rm

∫
Il,a×Ir,b

|(σt,s ∗ (Φk+l ⊗Ψj+r) ∗ f) (x, y)|2 dtds

ts
|g(x, y)| dxdy

≤ C
∑

l,r∈Z

∫
Rn×Rm

∫
Il,a×Ir,b

|σt,s| ∗ |((Φk+l ⊗Ψj+r) ∗ f) (x, y)|2 dtds

ts
|g(x, y)| dxdy

≤ CB2
∫

Rn×Rm

∑
l,r∈Z

|((Φk+l ⊗Ψj+r) ∗ f) (x, y)|2 σ∗(g̃)(−x,−y)dx

≤ CB2

∥∥∥∥∥∥
∑

l,r∈Z
|(Φk+l ⊗Ψj+r) ∗ f |2

∥∥∥∥∥∥
p/2

‖σ∗(g̃)‖(p/2)′ ,

where g̃(x, y) = g(−x,−y). By using (iii), the Littlewood-Paley theory and Theorem 3
along with the remark that follows its statement in [22, p. 96], we have

‖Fk,j(f)‖p ≤ CB ‖f‖p for 2 ≤ p < 2q0(q0 − 1)−1. (4.4)

Interpolating the two estimates (4.3) and (4.4), we get (4.2) for 2 ≤ p <

2q0(q0 − 1)−1.
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Now we prove (4.2) for 2q0(q0 + 1)−1 < p < 2. By the above argument, we only
need to show that

‖Fk,j(f)‖p ≤ CB ‖f‖p for 2q0(q0 + 1)−1 < p < 2. (4.5)

To this end, we prove the following proposition.

Proposition 4.2

Suppose that (i) and (iii) in Lemma 4.1 are satisfied. Let gk,j(x, y, t, s) be a

measurable function on Rn × Rm × R2
+ and gk,j,t,s(x, y) = gk,j(x, y, t, s) for (x, y) ∈

Rn × Rm and (t, s) ∈ R2
+. If 2 < p < 2q0(q0 − 1)−1, then∥∥∥∥∥∥∥S =:

 ∑
k,j∈Z

∫
Ik,a×Ij,b

|σt,s ∗ gk,j,t,s|2
dtdds

ts

1/2
∥∥∥∥∥∥∥

p

≤ C

∥∥∥∥∥∥∥
 ∑

k,j∈Z

∫
Ik,a×Ij,b

|gk,j,t,s|2
dtds

ts

1/2
∥∥∥∥∥∥∥

p

.

Proof. Since p > 2, there exists a function h ∈ L(p/2)′(Rn × Rm) such that

S =

 ∑
k,j∈Z

∫
Ik,a×Ij,b

|σt,s ∗ gk,j,t,s(x, y)|2 dtds

ts
h(x, y)dxdy

1/2

.

By the same argument as above, we have

S ≤

 ∑
k,j∈Z

∫
Ik,a×Ij,b

|σt,s| ∗ |gk,j,t,s(x, y)|2 dtds

ts
h(x, y)dxdy

1/2

≤


∥∥∥∥∥∥
∑

k,j∈Z

∫
Ik,a×Ij,b

|gk,j,t,s|2
dtds

ts

∥∥∥∥∥∥
p/2

∥∥∥σ∗(h̃)
∥∥∥
(p/2)′


1/2

which ends the proof of the Proposition. �

Now we are ready to prove (4.5) for the case 2q0(q0 + 1)−1 < p < 2. By a duality
argument, there exist functions gk,j,t,s(x, y) = gk,j(x, y, t, s) defined on Rn × Rm × R2

+

such that
∥∥∥∥∥∥∥∥‖gk,j,t,s‖L2(Ik,a×Ik,b,

dtds
ts )

∥∥∥∥
`2

∥∥∥∥
Lp′

≤ 1 and

‖Fk,j(f)‖p =
∫

Rn×Rm

∑
k,j∈Z

∫
Ik,a×Ij,b

(σt,s ∗ (Φk+l ⊗Ψj+r) ∗ f) (x, y)

×gk,j,t,s(x, y)
dtds

ts
dxdy.

By changing variables, Proposition 4.2, Littlewood-Paley theory and Hölder’s inequal-
ity we get (4.5). The proof of Lemma 4.1 is completed. �
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5. Proof of Theorem 1.1 (a)

Assume that Ω ∈ B
(0,0)
q (Sn−1 × Sm−1) for some q > 1 and satisfies (1.1). Thus Ω can

be written as Ω =
∞∑

µ=1
λµbµ , where λµ ∈ C, bµ is a q-block supported on an interval Iµ

on Sn−1 × Sm−1 and M
(0,0)
q

(
{λµ}

)
< ∞. To each block function bµ(·, ·), let b̃µ(·, ·) be

a function defined by

b̃µ(x, y) = bµ(x, y)−
∫

Sn−1
bµ(u, y)dσ(u)−

∫
Sm−1

bµ(x, v)dσ(v)

+
∫

Sn−1×Sm−1
bµ(u, v)dσ(u)dσ(v). (5.1)

Let J =
{
µ ∈ N :

∣∣Iµ

∣∣ < e−1
}

. Let b̃0 = Ω−
∑
µ∈J

λµ b̃µ . Then it is easy to verify that

the following hold:∫
Sn−1

b̃µ (u, ·) dσ (u) =
∫

Sm−1
b̃µ (·, v) dσ (v) = 0; (5.2)∥∥∥b̃µ

∥∥∥
q
≤ C

∣∣Iµ

∣∣−1/q′ ; (5.3)∥∥∥b̃µ

∥∥∥
1
≤ C; (5.4)

Ω =
∑

µ∈J∪{0}
λµ b̃µ (5.5)

for all µ ∈ J ∪ {0}, where I0 is an interval on Sn−1 × Sm−1 with |I0 | = e−2 and C is a
positive constant independent of µ.

Define the family of measures σ(µ) = {σt,s,µ : t, s ∈ R+} and the corresponding
maximal function on Rn × Rm by

∫
Rn×Rm

fdσt,s,µ =
1
ts

∫
{|x|≤t,|y|≤s}

b̃µ(x, y)h(|x| , |y|)
|x|n−1 |y|m−1 f(x, y)dxdy ;

σ∗µ(f) = sup
t,s∈R+

||σt,s,µ| ∗ f | .

For µ ∈ J ∪ {0}, let Bµ = log(
∣∣Iµ

∣∣−1). Then it is easy to see that

‖σt,s,µ‖ ≤ C for t, s ∈ R+, (5.6)

which in turn implies

∫ 2(k+1)Bµ

2kBµ

∫ 2(j+1)Bµ

2jBµ
|σ̂t,s,µ(ξ, η)|2 dtds

ts
≤ CB2

µ (5.7)

for some positive constant independent of µ.
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By the cancellation properties of b̃µ, we have

|σ̂t,s,µ(ξ, η)| ≤ 1
ts

∫
{|x|≤t,|y|≤s}

∣∣∣e−iξ·x − 1
∣∣∣
∣∣∣b̃µ(x, y)

∣∣∣h(|x| , |y|)

|x|n−1 |y|m−1 dxdy

≤ C |ξt| .

Thus, ∫ 2(k+1)Bµ

2kBµ

∫ 2(j+1)Bµ

2jBµ
|σ̂t,s,µ(ξ, η)|2 dtds

ts
≤ C22Bµ

∣∣∣2kBµξ
∣∣∣2 .

By combing this estimate with (5.7), we get∫ 2(k+1)Bµ

2kBµ

∫ 2(j+1)Bµ

2jBµ
|σ̂t,s,µ(ξ, η)|2 dtds

ts
≤ CB2

µ

∣∣∣2kBµξ
∣∣∣1/Bµ

. (5.8)

Similarly, ∫ 2(k+1)Bµ

2kBµ

∫ 2(j+1)Bµ

2jBµ
|σ̂t,s,µ(ξ, η)|2 dtds

ts
≤ CB2

µ

∣∣∣2jBµη
∣∣∣1/Bµ

. (5.9)

On the other hand, by the proof of Corollary 4.1 of [13],∣∣∣∣∣1t
∫
|x|≤t

e−iξ·x b̃µ(x, y)h(|x| , |y|)
|x|n−1 dx

∣∣∣∣∣ ≤ C |tξ|−α/2
(∫

Sn−1

∣∣∣b̃µ(x, y)
∣∣∣q dσ(x)

)1/q

for some positive constant C and α with αq′ < 1. Thus,

|σ̂t,s,µ(ξ, η)| ≤ 1
s

∫
|y|≤s

1
|y|m−1

∣∣∣∣∣1t
∫
|x|≤t

e−iξ·x b̃µ(x, y)h(|x| , |y|)
|x|n−1 dx

∣∣∣∣∣ dy

≤ C |tξ|−α/2
∥∥∥b̃µ

∥∥∥
Lq(Sn−1×Sm−1)

≤ C |tξ|−α/2 ∣∣Iµ

∣∣− 1
q′

which easily implies∫ 2(k+1)Bµ

2kBµ

∫ 2(j+1)Bµ

2jBµ
|σ̂t,s,µ(ξ, η)|2 dtds

ts
≤ CB2

µ

∣∣∣2kBµξ
∣∣∣−α ∣∣Iµ

∣∣−2/q′
.

Therefore, by combining the last estimate with the trivial estimate (5.7) we obtain∫ 2(k+1)Bµ

2kBµ

∫ 2(j+1)Bµ

2jBµ
|σ̂t,s,µ(ξ, η)|2 dtds

ts
≤ CB2

µ

∣∣∣2kBµξ
∣∣∣−α/Bµ

. (5.10)

Similarly, ∫ 2(k+1)Bµ

2kBµ

∫ 2(j+1)Bµ

2jBµ
|σ̂t,s,µ(ξ, η)|2 dtds

ts
≤ CB2

µ

∣∣∣2jBµη
∣∣∣−α/Bµ

. (5.11)

By (5.7)–(5.11) we obtain∫ 2(k+1)Bµ

2kBµ

∫ 2(j+1)Bµ

2jBµ
|σ̂t,s,µ(ξ, η)|2 dtds

ts
≤ CB2

µ

∣∣∣2kBµξ
∣∣∣±α/Bµ

∣∣∣2jBµη
∣∣∣±α/Bµ

. (5.12)
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By the boundedness of the strong maximal operator on R× R we obtain∥∥∥σ∗µ(f)
∥∥∥

Lq(Rn×Rm)
≤ Cq ‖f‖Lq(Rn×Rm) for 1 < q ≤ ∞, (5.13)

where Cq is independent of µ.

By (5.6), (5.12)–(5.13) and invoking Lemma 4.1, we obtain∥∥∥M
b̃µ,h

(f)
∥∥∥

p
≤ CpBµ ‖f‖p for 1 < p < ∞. (5.14)

Finally, by (5.5), Minkowiski’s inequality and (5.14), we have∥∥∥MΩ,h
(f)
∥∥∥

p
≤

∑
µ∈J∪{0}

∣∣λµ

∣∣ ∥∥∥M
b̃µ,h

(f)
∥∥∥

p
(5.15)

≤ Cp

∑
µ∈J∪{0}

∣∣λµ

∣∣Bµ (5.16)

≤ Cp ‖Ω‖B
(0,0)
q (Sn−1×Sm−1)

‖f‖p (5.17)

for 1 < p < ∞ and f ∈ Lp(Rn × Rm) which ends the proof of Theorem 1.1 (a). �
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