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ABSTRACT

In this paper, we study the Marcinkiewicz integral operatars, on the product
spacer™ xR™. We prove thaiv, , is bounded om? (R" xR™) (1<p<co) provided
that i is a bounded radial function angis a function in certain block space
B9 (sn-1xsm-1) for someq > 1. We also establish the optimality of our
condition in the sense that the spag® (s»—!xsm-1) cannot be replaced by
B (sn—1xsm—1) for any —1<r<0. Our results improve some known results.

1. Introduction

It is well-known that the theory of Marcinkiewicz integral operators is very useful in
harmonic analysis. We refer the readers to [2], [5], [6], [7], [9], [10], [11], [12], [15], [21],
[22], [24], [25] for the applications and the recent advances of this theory.

Our main focus in this paper will be on studying the L? boundedness of Marcinkiewicz
integral operators on the product space R™ x R™.

Suppose that ST (d = n or m) is the unit sphere of R? (d > 2) equipped with the
normalized Lebesgue measure do = do (z') which is normalized so that o(S!) = 1.
Let h(t, s) be a locally integrable function on Ry x R, and € be an integrable function
on S"1 x S™~1 and satisfies the following cancellation conditions:

Jon—1 Q2 (u, ") do (u) =0,
(1.1)
Jsm—1 Q (-, v) do (v) = 0.
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The Marcinkiewicz integral operator on the product space R™ x R™ is defined by

1/2
dtds
‘M ) = / Y S b 2 )
Q,hf(x y) ( (0,00)><(07oo)| t, f(l' y)‘ (t8)3>

where f € S(R™ x R™) and

(1.2)

Q(u, v)h(lul ; [v])

‘u|n71 |’U|m71

Viefay) = | Fa =,y — v)dudv.

{lul<t,|v|<s}

For the sake of simplicity, we denote M, , = M, if h(t,s) = 1.

The study of the L? boundedness of M, , has attracted the attention of many
authors in recent years. In the one parameter setting (the non-product case), the
operator M, was introduced by E. Stein in [21] as an extension of the notion of
Marcinkiewicz function from one dimension to higher dimensions. Stein showed that
M., is bounded on LP(R") for p € (1,2] if Q €Lip,(S"!) (0 < a < 1). Subsequently,
A. Benedek, A. Calderén, and R. Panzone proved that Mg is bounded on LP(R™) for
p € (1,00) if @ € C (S"71) (see [5]). Later on, the case of rough kernels ({2 satisfies
only a size condition and a cancellation condition but no regularity is assumed) became
the interest of many authors. For a sampling of past studies, see ([1], [2], [11], [12],
[20], [24]). On the other hand, the investigations of the L boundedness of M, , in
the two parameter setting (the product case) began by Y. Ding and subsequently by
many authors (see [7], [8], [9]). For example, by Fourier transform estimates, Ding [9]
proved the L*(R™ x R™) boundedness of M,,, when h € L*(R; x Ry ) and the kernel
function Q belongs to L(log L)2(S*~! x S™~1). Subsequently, Chen-Ding-Fan proved
that M, ,is bounded on LP(R™ x R™) (1 < p < oo) provided that h € L>(Ry x Ry)
and () satisfies the stronger condition Q € L4(S"~! x S™71) (¢ > 1) [7].

Results cited above naturally lead us to the following:

Problem. Determine whether the LP boundedness of the operator M, , holds under
a condition in the form of Q) € Béo’v) (S"=1 x §™71) for v > —1, and, if so, what is the

best possible value of v.

Here, Béo’“)(S"* x S™~1) (for v > —1 and ¢ > 1) represents a block space and
its definition will be recalled in Section 2. We point out that B(SO’U) (S"=1 x S™~1) was
introduced in [16] and can be traced back to [18] and [19]. Also, it is known that the

following inclusions hold and are proper:

B (snt x ™)

U LT(Sn—l % Sm—l)
r>1

C Bj

0,v n—1 m—1
c BPV(S"t x g™ (1.4)
for any ¢ > 1 and v > —1.

The main focus of this paper is to obtain a solution to the above problem. Our
main result in this paper can be stated as follows:
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Theorem 1.1

Let © and M be given as above. Then

Q,h

(a) If h is a bounded function and ) € Béo’o) ("1 x ™), ¢ > 1, M,,, is bounded

on LP(R™ x R™) for 1 < p < oo;

(b) There exists an 2 which belongs to BCSO’U) (S"1 x §™1) for all -1 < v < 0 and
satisfies (1.1) such that M., is not bounded on L*(R™ x R™).

Remarks.

(1) We point out that the relationship between the spaces Béo’a_l)(S”*1 x Sm=1)
and L(logt L)" (S"~'xS™~1) (for & > 0) remains open. One observes that Theorem 1.1
represents an improvement over the main result in [7] because Q) is allowed to be
in the space Béo,o) (S"~1 x S™1) and bearing in mind the relation (1.4) remarked
above. Also, it is worth mentioning that Theorem 1.1 (b) shows that the condition
Qe Béo’o) (S*=1 x S™71) is nearly optimal.

(2) The complexity of the proof of Theorem 1.1 (b) is much more than we had
anticipated. This is due in part to difficulties arising in product domain settings and
the complexity of the multiplier of the Marcinkiewicz integral operator.

Throughout the rest of the paper, we always use the letter C' to denote a positive
constant that may vary at each occurrence, but it is independent of the essential
variables.

2. Certain block spaces on Srlx §m—1

The block spaces originated in the work of M.H. Taibleson and G. Weiss on the con-
vergence of the Fourier series (see [23]) in connection with the developments of the real
Hardy spaces. Below we shall recall the definition of block spaces on S"~! x S™~!. For
further background information about the theory of spaces generated by blocks and
its applications to harmonic analysis one can consult the book [18].

The special class of block spaces Béo’v) (S*=t x S™~1) (for v > —1 and ¢ > 1) was
introduced by Jiang and Lu with respect to the study of singular integral operators on

product domains [16].

DEFINITION 2.1 A g-block on S~ ! x S~ is an L7 (1 < ¢ < oo) function b(x,y) that
satisfies

(i) supp(b)C I;

(i) [1bll . < 17177
where 1/q+1/¢' = 1, |-| denotes the product measure on S"~! x S™~! and [ is an
interval on 8"~ x S™71 j.e.,

I= {:E' esrt. 2" — 25| < a} X {y' e smt. lv" — ol <ﬁ}

for some o, B > 0, 2, € S*"! and y} € S~ L.
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DEFINITION 2.2 The block space B = B (sn=1 x §m~1) is defined by

B0 = {Q e LN (S xS™) =3 Ab,, MO ({A,}) < OO} :
pn=1

where each A, is a complex number; each b, is a g-block supported on an interval I,
on S" ! xS 1 v> -1 and

M (0,0) = 32 Il {1106 (11,7} @)
p=1

Let HQHB(O,U)(S,L,WST”A) = N"(Q) = inf{MéO’U) ({)\u})}, where the infimum is
q

taken over all g-block decompositions of €2.

We remark that the definition of B ([a, ] x [¢, d]) for a,b,c,d € R will be the

same as that of Béo’v) (S"~1 x §™~1) except for minor modifications.

By following similar arguments as proving Lemma 5.1 in [3], we get the following.
Lemma 2.3

For any v > —1,a,b,c,d € R,

(i) Nq(o’v)is a norm on B},O’”([a, b] x [c,d]) and (Béo’v)([a, b] x [¢,d]), Nq(o’v)) is a Ba-
nach space;

(ii) If f € Béo’v)([a, b] x [¢,d]) and g is a measurable on [a,b] with |g| < |f|, then
g€ B ([a,b] x [c,d]) with

0,v 0,v .
NOV(g) < NPOV(f);

(iii) Let I} and Is be two disjoint intervals in [a,b] X [c,d]| with |I],|I2] < 1 and
ay,ap € Ry. Then

N(I(O’U)(Ollxh + azx,,) = NéO,v)(alle) + NéO,v)(angg);
(iv) Let I be a interval in [a,b] X [¢,d] with |I| < 1. Then

N (x,) 2 ] (1 + log" (7)),

3. Proof of Theorem 1.1 (b)

It is clear that the operator M,, is bounded on L?(R"™ x R™) if and only if the multiplier

2 1/2
m(ga 77) = / ‘/ e—27’ri(tf’.u+8n./'[})(2(1%v)1dudv’ dtds
(0.00)%(0.50) [ ful<t ol <) " jo ™ t5)°

is an L* function. Now,
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2 . .
(mem)? = m im0 @000
N

e_QWitE"(Tlu—sz)Cit> d7“1d7’2>

1

(el

X (/ , </ 62”577/'(“’1”“’23/)6&9> dwldw2> do(u)do(v)do(z)do(y).
0,12 \ /e s

2

Note that
" —2mite’-(riu—rax) dt / -1
(6 1 2%) COS<27Tt)) ? — log |§ . (rlu — 7'21‘)‘
€
1 o /
—z§sgn(§ - (ru —rax))

as N — oo and €, — 0, and also this integral is bounded, uniformly in both €, and N,
by C (1 + |log & - (r1u — rex)l])
For simplicity, let
S(E€,r1,72,u,2) = log € - (r1u —raz)| ' = i%sgn(f’ - (riu —rax)).

Thus, using (1.1) and the Lebesgue dominated convergence theorem, we get

(mi&.n)? = |

(Sn—l XSm—l)

Q(U,U)Q(l‘,y) (/ S(£I7T17T2)u7$)d’rldr2>
’ [0,1)2

% (/[0 1)2 5(77,7 w1, W2, U, y)dwldw2> dU(U)dO’(U)dO’(x)do'(y)‘

Now, if Q is a real-valued function,

2 _
e = [ [ e @00

X {log €'+ (ru = rom)| " log [0’ - (wv — way)| !
72 ,
T sen(€ (o)
x sgn(n’ - (wiv — wgy))}drldrgdwldwgda(u)da(v)da(m)da(y).

Since if Q € L1(S"~1 x S™~1), the integral

7'1'2 ,
/(S”I xSm—1)2 2w e, y) /[0,1}2 /[0,1]2 (48gn(g ~(ru— 7"233))>
X (sgn(ng’ - (wiv — wey))) dridradwidwedo (u)do (v)do(z)do(y)

is bounded, uniformly in & and 7/, we only to deal with mg(&,n), where

— /_ _ -1
mo&n = [ oL 0wo0Ey) [ ol (riu )
x log|n' - (wyv — wgy)‘_l dridrodwidwedo (u)do(v)do(z)do(y).
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Now, for non-zero real numbers a and b, by straightforward computations, we have

/[0 " log |ria — rgb]_l dridro

-1 (a —b)? -1
57 log|a — b|

~ % ogla T+ 2
—2blog|a\ +2alog\b\

Therefore, by the cancellation conditions on 2, we immediately get

mo&n) = [ L0 0) 0w y) . €)F o,y 0o (w)do(0)do () do y),

where

F(u,x,{’):((1—?:2)10g|§’-(u—a})‘1 (? )log|§ ul” )

Now, we are ready to prove part (b) of Theorem 1.1. For the sake of simplicity we
shall present the construction of our € only in the case n = m = 2 and g = co. Other

cases can be obtained by making minor modifications. Also, we shall work on [—1, 1]
instead of S! x S'. We notice that the proof Theorem 1.1 (b) will be completed if we

can construct an  on [—1,1]? with the following properties:

/Q du—/ Q(-,v) dv = 0;

Q e BV ([—1,1]?) for each v, —1 < v < 0;
Q¢ BLO(-1,1%);

/ H(u,v,z,y)dudvdzdy = oo;
[0,1]2 J[0,1]2
/ / |H (u,v,x,y)| dudvdzdy < o0
[_1’1]2\[071}2 [071]2
/ / |H (u, v, z,y)| dudvdzdy < o0;
[071]2 [_111}2\[071]2

/[_171]2\[071]2 /[_171}2\[0’1]2\H(u,v,x,y)|dudvd$dy < 00,

where
H(u,v,2,y) = Q(u,v) Uz, y)G(u, 2)G(v, y),
G(u,x) = (1 - u) log |u — x| + z log u| ™!
x x

To this end, for integers k,j > 3, let I; = []%, %) and

o
=3

k
G+ 1) [logk + )°
_ Jk

log(k + 5)]*

(3.1)

(3.4)
(3.5)
(3.6)

(3.7)
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Now, by definition of aj, we have
k k > k

+ 2

i (U + 1) [log(k + Dk iom (G + 1) [log(k +5))°
k | > 1
- +k T 3|
(log k:)3 (];3 (7 + 1)) (j:;rl (j+1) (logj)?’)
Thus there exists a positive constant C' independent of k such that

k
ap < C 5
(log k)

(3.8)

which easily implies
oo

A _
— < 0.
= k(k+1)
Define Q on [—1,1]? by

Q (u’ U) = Z Z Ck,jxlkxlj (uv v)’

=2 k=2
where, for integers k,j > 3,

g
- T o~ — = —Q I ;= ] I I
02,2 <k§ . k(/ﬂ 1)> aCQ,k Ck:,Q k ‘ k‘ 7Ck,] /6145,] | kX ]’,

b272(ua U) = X[*LO]Q (U, U)a b27k(u7 U) = |Ik|_1 X[-1,0x1 (U, U),

bi,2(u,v) = |Ik|71 XIkX U, v), bp,j(u,v) = |1 x Ij|71 X1 x1; (u; v)

[-1,0] (

and y 4 represents the characteristic function of a set A.

By straightforward calculations, it is easy to see that (3.1)—(3.2) hold. To
prove (3.3) we invoke Lemma 2.3. In fact, we notice that each by ; is an oco-block
supported on the interval I x I;. So to prove (3.3), we only need to show that

ég’o) () = oo. To this end, by Lemma 2.3 we have for each M, N,

NGO (Q + Z Cokbok + Z Ch,2bk2 — C2726272>
k=3 k=3

M N
-1
> Z Z C,; ik x I thg)’O)(kaX’j)

j=3k=3
M N

>y ¢, (1 + log(|I); % ij—l))
7=3k=3

ZC%‘E% (log k + log j)

=3 k=3 (k+1)(j + 1) [log(k +j)]3
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for some positive constant C' independent of M and N. Letting M, N — oo, and since

ii (log k + log j) >0 Zlogkz
S DG+ D) logk+ ) T k15 G+ logj)

>
- Cz k:+1 logk:

we get

00 00
NSO (Q + > Corbag+ ) Crabra - 02,252,2> = 00.
k=3 k=3

Since

N (Z Cs,1:b2 k) NGO <Z Ck2bg, 2> N9 (Cy2b0)

k=3

are finite numbers, we obtain N 0)(9) = 00. This ends the proof of (3.3).

At this point, let us introduce some notations and make some comments that will
be used frequently in the proofs of (3.4)—(3.7).

Let

EW (k1) = /I » glog|u]_l dxdu;
k l

I(k) = (/Ik _01 G(x,u)dxdu) ;
(k) = (/0 . G(w,u)dmdu) ;

T (k) = // log |u — | ™! dadu;

/ / (log |u — z| — log |u|) dzdu;
Iy,

Ty(k) :/1 /1;(10g|u—x|—10g\u|)dudaz.
ya
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By straightforward calculations, it is easy to show that

. 1
Z:(5)| < CP; (3.9)
’
E®(j,s) < Ojfsi if s > 25; (3.10)
1
E®(j,5) < C;gsj if j > 2s; (3.11)
1
E®(j,5) < C fis if /2 <s<2j (3.12)

for some positive constant C' independent of j and s.!

Now, we need to point out to the following observations. First, if (z,u) € I} x [

with { > 2(k + 1), we have % < #H < 1/2 and hence 1 — % > 1/2 > 0 which in turn
yields

G(z,u) > log|z —u|™". (3.13)

>

Next, we notice that if (z,u) € I x I; with k/2 -1 <1 < 2(k+1), we have % > Hil
% = % .Thus 1 — 2 < % and hence by (3.12) we get

2 log!
EM (k1) < f/ log |u — x| ! dadu < C%, (3.14)
3 IkXIl l

for some positive constant independent of k,[. Thirdly, by the mean-value theorem we

have
§ Ju

’Z (log [t — 2| — log |u]) (3.15)

min {|u — 2|, [ul}
We notice that if (z,u) € I x [; with 3 <1 < k/2—1, we get

1 kE—(1+1)

1
> = T
e N N (Y

>—->xz>0.

1
k
Thus v — z < u which yields

U 1

u
2 (log [u — x| — 1 <
‘x(oglu x| —log |ul)| < —

—r l-z/u

Since z/u < 1/2 we obtain

<2

u
% (log u — | ~ log Ju]
Also, if (z,u) € Iy x I; with [ > 2(k + 1), we have  — u > u and thus

<1

u
" (g Ju ~ | - loglu)

So, in either case we have
1

k202

1. The author is indebted to Prof. Yibiao Pan for a helpful discussion.

E® (k1) <C (3.16)
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for some positive constant independent of k£ and [. Fourthly, if (z,u) € I} x I; with
k/2—1<1<2(k+1), we have & < k+1 < % < 3. Also, notice that if u € I;, we
have log |u|™* < log(l + 1). Thus, we have

log
EW (k1) < Croa- (3.17)
Fifthly, by (3.15), it is easy to see that
1
|Zo (k)| < Cﬁ; (3.18)
1
Z(k)] < Crg. (3.19)

Now, we turn to the proof of (3.4). By the above remarks, we notice that

/ H(u,v,z,y)dudvdzdy
(0,12 J[0,1]2

=22 2% BribE(kDE(s)
j=3 k=

3s5=31=3
>S1+ 85+ 8534+ 854+ S5+ Sg+ 57+ S+ S,

where

Si=> > Z Yo BriBuEW (k,DE® (4, );
J=3 s>2(j+1) k=3 1>2(k+1)

SQ = Z Z Z 5k,jﬁl,sE(1)(kal)E(3)(ja 5)7
J=35>2(j+1) k=3 k/2— 1<l<2(k+1)
e}

Sy = Z Z Z Z /6k,]/6l8 ) )( 3);
J=37/2—1<s<2 (j+1)k 31>2(k+1)

Sy = Z Z S Y G Bk DEO,5)

<.
Il
w

>2(j+1) k=3 3<l<k/2 1

> Z S BriBsE® (k) EA(j, s);

=3 3<s<j/2—1k=31>2(k+1)

5= Y Y GusEOR)ED ()

j=3j/2— 1<s<2(g+1)k 3k/2—1<1<2(k+1)

57—2 S Y Y b EOw B, s)

3j/2— 1<s<2(]+1)k 33<i<k/2—1

8
I
8TM8

g 1

Ss=> Z > BriBusEW (k1)) E@ (5, 5);
J=33<s<j/2—1k= 3k/2 1<I<2(k+1)
So=> D Z S BB E@(k,NEP(), ).

33<s<j/2—1 k=3 3<I<k/2—1

<.
Il
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It is clear that to prove (3.4), it suffices to prove the following:
(i) S1 = o0; and (iii)|S;| < oo for i =2,...,9.
To prove (i), we invoke (3.10) to get,

S1

v

Jkls log klog 5
c > ZZ > ([log(k—i—j 3 3) < k2j232l2>

§>2(j4+1) j=3 k=3 [>2(k-+1) )] [log(l + )]

sz Z log k log j )

J=3 k=3 1>2(k+1) (kjl log(k + j)] log(I + 4)]?

ZCii( log klog j >

kj [log(k + 5)]*

v

k=3 j=3
log k & < )
> C
Z ; (log j)°
= Zk:logk

Now, we turn to prove that |Sz| < co. By (3.10), (3.12) and (3.14), we have

o . .
Jkls logllog j
S0l < ( . ) ()
JZ;*» zj:+1) kz;%k/z 1<Zl<:2 (k+1) [log(k + J)]3 [log(l + 5)]3 2?1t
> log k log j )
<
J;; ZJ:H ;;», (kjs log(k + /)I° [log(k + s)]°
log k log j )
< o TeJ
;&;3 <’<17 log(k + 7))
<

> log k > log j
¢ (2_23 k [log(k + 3)]5/2) (;é,g [log (3 +j>15/2> -

Similarly, |S3| < co. Now, we verify |S4| < co. By (3.10) and (3.16), we get

ssey ¥ 5% (kﬂs[log( i 3)

J=35>2(j+1) k=3 3<I<k/2—1 k+j)]" [log(l + s)]

log j
oS S S (i)

J=3s>2(j+1) k=3

XS ()

j=3 k=3 kj lOg(k+])]

> 1 > log j
C E E < 00.
(k:g k [log(k +3) 3/2> (]:3 j [log(3 + J)Pﬂ)

IN

IN

IN
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Similarly, |S5| < co. To prove |Sg| < 0o, we use (3.12). In fact, by (3.12), we have

Se <CZ Z Z Z jklogllog s >

=3 j/2—1<s<2(j+1) k=3 k/2—1<1<2(k+1) (3313 [log(k + j)]” [log(l + s)]

e log k log j
"L (i o)

j=3 k=3 [log(k + j)]

o~ logj N\~ logk ) _
= C;, (]’ [log(3 +j)]3> kz::;», <k [log(k +3)]3> =

Now, we prove |S7| < co. By (3.12) and (3.16), we have

 log s
|57] < CZ 2 Z 2 <k153[log( P 3)

§=37/2—1<s<2(j+1) k=3 3<I<k/2—1 k+ )" [log(l + s)]

log j
XY Y (i S

=3 k=33<I<k/2—1 k+ 7)) [log(l + j)]

=3 k=3 log(k + j)]

log j > 1
: Z ( [log( 3+m7/2> 2 (k[log<k+3>]3/2> =

IN

IN

IN

Similarly, |Sg| < co. Now, we need to verify |Sg| < co. By (3.16), we have

— . kil 1
S7 < CZ Z Z Z <[log(k:—|—j]3 3) <k2j21232>

j=33<s<j/2—1k=33<I<k/2—1 )]” [log(l + )]

(o) o 1

C

: 3233<S<Zg/2 112 ;k/Q 1 (kjls [log(k + 5)]° [log(1 + 5)]3>
1

C
- ;’):ng;z 1;;3 kjs [log(k + 5)I° [log(k:+s)]2>

C - -
- jzskzg (kj log(k + /)]’ )
<

> 1 > 1
¢ (Z;J [log(3 +j>15/2) <kzg k [log(k + 3)]5/2> -

This completes the proof of (3.4). Now, we verify (3.5). To this end, we divide
[—1,1]2\[0,1])? into three parts: [—1,0] x [0,1], [0,1] x [~1,0], and [~1,0] x [1,0].
First the integral over [—1,0] x [0,1] x[0,1]? is dominated from above by

[o.olue ol o]

X =320 Brjos|Z(K) B, 5)] (3.20)

k=3 j=3 s=3
< X1+ X9+ X3, (3.21)
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where

:ZZ S Brjas|Z(R)EG, 9)];

k=3 j=3 s>2(j+1)

=3 > X Beas|ZR)IIEG,s)|;

k=3 j=3 j/2—1<s<2(j+1)

Xs=> > > Brjas|Z(k)|[EG,s)].

k=3 j=33<s<j/2—1
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Thus to prove X < oo, it suffices to prove that each X; < oo for ¢ = 1,2,3. To this

end, we notice that

X <O Y G T + L) |EGs)|

k=3 j=3 s>2(j+l)
FCY Y Y G D) + L) [EOGL9)
k=3 j=35>2(j+1)

~ x4 x®
Now, by (3.8)~(3.9), (3.16) and (3.18),

1) o= jks 1
X <C § E E -
b )uog<k+j>]3<1ogs>2k252ﬂ

k=3 j=3 s>2(j+1

ey

75 =3 kj [log( k+])} (log )

| /\

IN

By (3.8)~(3.10) and (3.18),

5@ < o jks log j
oy s 8 [log(k + )] (log )2 k2572

k=3j=3 s>2(j+1)

D3P D PR

k=3 j= 35>2(3+1 kJS[log(kJrJ)]g (log 5)?

ey

k=3 j= 3k.7 log k+3)]

=¢ <,;3 k [log(k + 3)]3/2> (;Z:sj [log(3 +j)]3/2> -

IN

| A

= 1 = 1
¢ (;;3 k [log(k + 3)]2> (]2_;, j[log(3 + )] (logj)) =

This completes the proof of X; < co. Now, we turn to the proof of X9 < oco. To this
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end, we notice that

<Y Y G Tk + Tk [EVG,s)

k=3j=3j/2—1<s<2(j+1)

FYY Y Guadn) + T [EOG, )

k=3 j=3j/2—1<s<2(j+1)
= xV+x3.

By (3.8)—(3.9), (3.14) and (3.18),

ks log s
X(l) <C J
’ 1;33234/2 1<§<2 (1) log(k +5))° (log 5)2 k?s*
<oy 1

i3 j=s ki [log (k + 5)]? (log 5)

o 1 >0 1
C 0.
<kzg K llog(k + 3)}342) (]Zzg jlog 3+ )17 <logj>) )

On other hand, by (3.8)—(3.9) and (3.17)—(3.18),

> & jks log s
k—3j—3j/2 1<s<2(j+1) log(k + )] (log 5)2 k%55

ey

i—s =3 kJj [log k+J)] (log )

e 1 e 1
C 00.
(;é klog(k + 3)}3/2> (]-Zzg jllog 3+ )17 aogj)) )

A proof of X3 < oo can be obtained by following a similar argument as in our
proof of the finiteness of X5. Thus, we get X < oo which in turn proves the finiteness
of the integral over [—1,0] x [0,1] x[0,1]2. Similarly, the integral over [0,1] x [—1,0]
%[0, 1]? is finite. Also, the integral over [—1,0] x [—1,0] x[0, 1] is bounded above by

IN

x5

IN

IN

IN

€Y s W2
k= 3] 3
<OX S g (TR + B0 (1) + 200D
k=3 j=3

o 1 o 1
C o0
: (%k[log(kmn?’”) (;,j[log(smﬁ/?) )

where the second inequality is obtained from (3.9) and (3.18). This ends the proof
of (3.5).
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Similarly we can prove (3.6). Finally, we verify (3.7). As above, we divide
[—1,1]2\[0,1])? into three parts: [—1,0] x [0,1], [0,1] x [~1,0], and [~1,0] x [~1,0].
We shall only present the proof of the finiteness of the integral over [—1,0] x [0, 1] x
[—1,0] x [0,1] and over [—1,0] x [0,1] x [0,1] x [—1,0]. The proof of the other
cases either will be similar or easier. To this end, we notice that the integral over
[—1,0] x [0,1] x [-1,0] x [0, 1] is bounded from above by

o) D) Pl . — kl(//Gvydvdy)
(=, = (log k)*(log 1)?
<CY > M E(k,l) = S*

where
5i- ) 2 T D
k=31>2(k+1) g g
S; = Z Z (IO,IC)I;:Z(IOZ)QE(]C’Z);
= 3k/2 1<1<2(k+1) VOB g
ki
S s<iShra 1 (logk)?(logl)
Now,
k=3 1>2(k+1) 1ng) 10gl) ’ ‘
k=31>2(k+1) logk) 10gl) ’ ‘
= Sl,l + SLQ.
By (3~16), we have
kl 1
Si1 < C’Z Z
k=31>2(k+1) (log k)%(log1)? k212
< K
= & Fliog )7 ' 3.22
< gk(logk)3<oo 3.22)

On the other hand, by (3.10)

kl log k
Oz Cz 2 2 5 12)2
k=3 1>2(k+1) (log k)*(log 1)* k21
— 1
<O Toghy <™ (3.23)

2
7= k(log k)
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Thus, by (3.22)—(3.23) we get ST < oco. Similarly, S5 < co. Now,

* 2 : 2 : o e
B , (log k)?(log1)? 0w

1=3 k/2—1<1<2(k+1

o kl
I DN oL T 29|

1=3 k/2—1<1<2(k+1
= 531+ S22
By (3.14), we have
> kl log
o<
Si1 <02 2 (log k)2(log1)? 14

k=3 k/2— 1<l<2(k+1)

gcz 10 e < 0. (3.24)

On the other hand, by (3.17)

kl log k
522 = CZ Z 2 2 1.272
k= 316/2 1<i<2(k+1) (logk)?(log1)* k21

<C 3.25

Z log k)? <00 ( )
This finishes the proof of the finiteness of the integral over [—1, 0] x [0, 1] x[—1,0] %[0, 1].
Now, we turn to the proof of the finiteness of the integral over [—1,0] x [0, 1] x [0, 1] x
[—1,0]. We notice that the integral over [—1,0] x [0, 1] x [0, 1] x [—1, 0] is bounded from
above by

k=3 =3 log!
O35 v otios (B + 0D (T ()] + 20

> 1 > 1
=€ (kzg K(log k)?) (]Zg j(logj)?) =

This ends the proof of (3.7) which in turn completes the proof of Theorem 1.1 (b). O

4. Main lemma

For a suitable family of measures o = {0y : t,s € Ry} on R” x R™, we define the
square operator F and the corresponding maximal operator ¢* by

) dtds) 12

F,(Pay) = ( Loyl £
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and

o (), y) = sup |lovs|* f(x,y)|.
t,s€Ry

Also, we write t¥ = inf {t*,t=°} and ||oy || for the total variation of o; . The proof

of Theorem 1.1 (a) will rely heavily on the following lemma:

Lemma 4.1

Let a,b>2, B> 1,C > 0 and qy € (1,00). Suppose that the family of measures
{o1s : t,s € Ry} satisfies the following:

(i) lloesl| <1 fort,s € Ry;

i) fa5 " R ouse )P s < CB2(aRE |€) P 0B In)) P fort,s € Ry and
(E.m) € R* x R™
(iii) [[o* (), < ClIfll, forallq>qo and f € LIR" x R™).

Then, for every p satisfying |1/p — 1/2| < 1/(2qo), there exists a positive constant
C), which is independent of B such that

IE,(Hll, < CoB £, (4.1)
for f € LP(R"™ x R™).

Proof. For A > 2, let {p;}>_ be a smooth partition of unity in (0,00) adapted to
the intervals F; \ = A=GHDB \=G=DB] More precisely, we require the following:

m

COO’ 0< PN < 1, Z(p]”)\ (t) = 1;
J

(12BN

supp @jx € Ej»;
d*pj (1) C

< -
dts = s’

where C' can be chosen to be independent of B. Let I, , = [akB,a(kH)B) , Ci;k(f) =
©k.a(|€]) and \I/’\](n) = p;u(|n]) for (§,m) € R® x R™. Then for f € S(R" x R™) we have
ors * f(z,9) Z Z ot * (Pt ® Ujpy) * f) (2, y)X (t)XI (s)

"
kIEZ jreZ J

Z Hk,j(xa y7t7 S)a
k,JEZ

say and define

1/2
dtds

Fi i f(x, :/ H‘l‘,,t,827 .

kg f (2, 9) ((O’OO)X(OQO)I ki (7,95, ) ts)

Then
Fof(gj»y) < Z Fk,jf(x>y)'

k,jEZ
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Therefore, (4.1) is proved if we can show that
1Fes (£, < CpBa~®e =il | 7| (42)

for every p satisfying |1/p —1/2| < 1/(2qo), for all f € LP(R™ x R™) and for some
positive constants C), and 6,

The proof of (4.2) follows by interpolation between a sharp L? estimate and a
cruder LP estimate.

First, we compute the L?-norm of F}. ;. By Plancherel’s theorem, we have

1 Fx ()3

dtds
Ol N B CRRCWES IR R IE e
R xR™ JI, aXLnb

dxdy
l,rez

dtds A 2
= Z/ (/ 16,5(&,m) ) f(f,n)‘ d&dn
lrez” BrtkaXErijp \i,axIrp

te
<cery [ a8 [Pl B | fle.m)| dean
LreZ” Bitk,a X Erijb

. . 2
gCB%—a‘Mb_a'Jl Z/ f(Eﬂ?)‘ dédn

ez Bitk,aXErtjp
< OB~ My=ell| 7|13

Therefore, '
1P (F)lly < CBa 2 Mo 30l 1], (4.3)

On the other hand, we compute the LP-norm of Fj, ;(f). We start first with the
case 2 < p < 2qo(go — 1)~*. Choose g in L¥P/?)'(R™ x R™) with 191l(/2), < 1 such that

I1Fs (DI
dtds

S Lo e @@ W) s D) )P S ()| dudy

LreZ R xR™ IlaXI'rb
dtds

<Y [ ol (@ @ W) < ) @) S5 Lo,y dady

l'I‘EZ R xR™ IlaX b
<CB [ S (@ © V) # ) (@) P (§) (- )

"R ez,

<CB| 3 1@kt @ W) < 2 10" @l g2y

IREYA p/2

where g(z,y) = g(—x, —y). By using (iii), the Littlewood-Paley theory and Theorem 3
along with the remark that follows its statement in [22, p. 96], we have

1F5s(HIl, < CBfl, for 2 <p < 2go(go —1)7". (4.4)

Interpolating the two estimates (4.3) and (4.4), we get (4.2) for 2 < p <
2qo(qo — 1)
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Now we prove (4.2) for 2qo(qo +1)™' < p < 2. By the above argument, we only
need to show that

1E5; (N, < CBfl, for 2qo(q0 +1)" <p < 2. (4.5)

To this end, we prove the following proposition.

Proposition 4.2

Suppose that (i) and (iii) in Lemma 4.1 are satisfied. Let gy j(x,y,t,s) be a
measurable function on R" x R™ x R2  and g j1s(®,y) = gk j(z,y,t,s) for (z,y) €
R™ x R™ and (t,s) € R2. If 2 < p < 2qo(qo — 1), then

1/2
dtdds
2
S =: Z / |04, * Gkt ] 7
k,jez” TeaxTjp s

1/2
dtds
<C / w 2 2e
(kz Ik,a,X[j,b ’g 7j,t,s| ts

p

p

Proof. Since p > 2, there exists a function h € L®/?(R" x R™) such that

S = Z / ’Ut,s * gk,j,t,s(xu y)|
kjez” !

k,ax1jp

oy 1/2
t

2 Sh(az, y)dxdy) .
s

By the same argument as above, we have

1/2

dtds

S< X [ ol lawsaslm )l S e ydudy
k,jez” Tkax1jp S

1/2
dtds ~
< / |9 jitsl” —— o*(h)

,wzez To.axIip / ts p/Z‘ H(11/2)’

which ends the proof of the Proposition. [J
Now we are ready to prove (4.5) for the case 2qo(qo +1)~! < p < 2. By a duality
argument, there exist functions gy ;¢ s(z,y) = gk j(x,y,t,s) defined on R™ x R™ x Ri

<1 and
v’

/ (01 * (Ppyt @ Tj0) * f) (2,7)
Ik,a XIj’b

such that H H 9,5, 1l 1 2 (Lo x T, 2202

)|
170, = [,
dtds

X Gkjits (T, Y) ?dxdy.

nxR™ kjeZ

By changing variables, Proposition 4.2, Littlewood-Paley theory and Holder’s inequal-
ity we get (4.5). The proof of Lemma 4.1 is completed. [J
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5. Proof of Theorem 1.1 ()

Assume that 2 € B(go,o) (S"=1 x S™~1) for some ¢ > 1 and satisfies (1.1). Thus € can
[o¢]

be written as = > A,b,, where A\, € C, b, is a g-block supported on an interval I,
pn=1

on S*1 x S™~! and Mq(o,o) ({\.}) < oo. To each block function b, (-, ), let ISH(-, -) be
a function defined by

m—

bo(e) = bew) = [ b wpdo) = [ b (@ 0o

+ b, (u,v)do(u)do(v). (5.1)

Sn—1y§m—1 s

Let J={peN:|I,| <e'}.Let b, = Q— 3 A,b,. Then it is easy to verify that
peJ
the following hold:

[ by dotw = [ b () do(o) =0; (5:2)
Sn—1 S§m—1
b < oV (5.3)
q
b, < G (5.4)
Q = > D, (5.5)
neJu{o}

for all u € JU {0}, where I, is an interval on S"~! x S™~! with |I,| = e 2 and C is a
positive constant independent of .

Define the family of measures 0 = {0, , :t,s € R} and the corresponding
maximal function on R™ x R™ by

1 bu(, y)h(|z], |y])
fdovsu = 7/ - n— m— fl@,y)dzdy ;
/Ranm Pts Jeiselyi<sy )"y

0. (f) = sup |lowspul* f].
t,S€R+

For pp € JU {0}, let B, = log(’]url). Then it is easy to see that

lotsull <C for t,s € Ry, (5.6)
which in turn implies
o(k+1)By  .9(i+1)Bpu dtd
~ 2 S 2
Lo Lo &P 5 < cB2 (57)

for some positive constant independent of p.
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By the cancellation properties of ISM, we have

1

e < & O UGRD

n1|’m1 ray

efi&a: _ ‘
{|z|<t,|y|<s} ||

< Clet|.

Thus,

2(k+1)BH

2(j+1)Bu dtd
N 2 S 2B,
, < (C2
/szu /y’Bu |at’s’“(£ )l ts

By combing this estimate with (5.7), we get

2kBH£

20+ DB ol B dids
/QkBu AJBM 16t,5,u(, )|2 = 032 ‘QkBué (5.8)
Similarly,
2U+DB - 2GHDBy dtds 1/B,
2
/ZkBu /2]-3M |Ot,8,u(§ )" —— < CB? ’QJB (5.9)

On the other hand, by the proof of Corollary 4.1 of [13],

L eabubr (el ), o
L | R

- o
for some positive constant C' and o with aq’ < 1. Thus,

o) o))

. 1 1|1 it bul, )(Ix\ D),
o) , < f/ _ f/ e il dzx|d
Pronl&N =5 Je, ™ |t el x| !
< —a/2 |1
= Clig] Hb”’Lq(Snflemfl)
< Olegl 2|1,
which easily implies
o(k+1)By, 2(i+1)By dtds ,
2 2 |okB ]
R T T T

Therefore, by combining the last estimate with the trivial estimate (5.7) we obtain

9(k+1)By 2(i+1)By dids o/B
/QkBM [NB” |6, (&, 77)!2 <CB? ‘2’63% " (5.10)
Similarly,
o(k+1)By  .9(i+1)By dtds /B
/ZkBM /W'Bu |Gt,5,u(&, 77)|2 < CB? ‘QJB“?] " (5.11)
By (5.7)*(5.11) we obtain
9(k+1)By  .9(i+1)By dids o/B B
/QkBu /2jB# ’&t,s,u(fanﬂz . < 032 ‘QkBﬂf s un’ K (5.12)
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By the boundedness of the strong maximal operator on R x R we obtain

’ aZ(f)’ < Co |l fll paqmnxmrmy for 1 <gq < oo, (5.13)

La(RnxRm™)

where Cj is independent of p.

By (5.6), (5.12)—(5.13) and invoking Lemma 4.1, we obtain

HMEu’h(f)Hp < CyBy|If]l, for 1 < p < cc. (5.14)

Finally, by (5.5), Minkowiski’s inequality and (5.14), we have

Moo < X M, 0] (5.15)
peJu{0}
<C, Y. |AIB (5.16)
neJu{0}
< Gyl 500 gt ggmoy 171, (5.17)

for 1 <p<ooand f € LP(R™ x R™) which ends the proof of Theorem 1.1 (a). O
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