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Abstract

The Castelnuovo-Mumford regularity is one of the most important invariants
in studying the minimal free resolution of the defining ideals of the projective
varieties. There are some bounds on the Castelnuovo-Mumford regularity of
the projective variety in terms of the other basic invariants such as dimension,
codimension and degree. This paper studies a bound on the regularity conjectured
by Hoa, and shows this bound and extremal examples in the case of divisors on
rational normal scrolls.

1. Introduction

Let X be a projective scheme of PN
K over an algebraic closed field K. Let S =

K[x0, · · · , xN ] be the polynomial ring and m = (x0, · · · , xN ) be the irrelevant ideal.
Then we put PN

K = Proj(S). We denote by IX the ideal sheaf of X. Let m be an
integer. Then X is said to be m-regular if Hi(PN

K , IX(m − i)) = 0 for all i ≥ 1. The
Castelnuovo-Mumford regularity of X ⊆ PN

K , introduced by Mumford by generalizing
ideas of Castelnuovo, is the least such integer m and is denoted by reg(X). The inter-
est in this concept stems partly from the well-known fact that X is m-regular if and
only if for every p ≥ 0 the minimal generators of the pth syzygy module of the defining
ideal I of X ⊆ PN

K occur in degree ≤ m + p, see, e.g., [4]. It is important to study
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upper bounds on the Castelnuovo-Mumford regularity for projective schemes in order
to describe the minimal free resolutions of the defining ideals.

In what follows, for a rational number ` ∈ Q, we write d`e for the minimal integer
which is larger than or equal to `, and b`c for the maximal integer which is smaller
than or equal to `.

The starting point of our research on the Castelnuovo-Mumford regularity is an
inequality reg(X) ≤ d(deg(X)−1)/codim(X)e+1 for the ACM, that is, arithmetically
Cohen-Macaulay, nondegenerate projective variety X ⊆ PN

K , which is a consequence of
the Uniform Position Lemma for the generic hyperplane section of the projective curve
for the characteristic zero case and the corresponding weaker result due to Ballico for
the positive characteristic case, see [1, 2]. Moreover, the extremal ACM variety for the
bound have been shown to be a variety of minimal degree in [14, 18] if its degree is
large enough.

In order to study the regularity bounds for the non-ACM projective variety, we
introduce the k-Buchsbaum property. Let k be a nonnegative integer. Then X is
called k-Buchsbaum if the graded S-module Mi(X) = ⊕`∈ZHi(PN

K , IX(`)), which is
called the deficiency module or the Hartshorne-Rao module of X, is annihilated by mk

for 1 ≤ i ≤ dim(X), see, e.g., [9, 10]. We call the minimal nonnegative integer n, if
it exists, such that X is n-Buchsbaum, as the Ellia-Migliore-Miró Roig number of X

and denote it by k(X), see [3, 12]. Further we define k̃(X) as the maximal integer k

such that all successive hyperplane sections of X, that is, X ∩L with codim(X ∩L) =
codim(X) + codim(L) for any linear space L of PN

K , have the k-Buchsbaum property,
see [5]. Note that k(X) < ∞ if and only if k̃(X) < ∞, which is equivalent to saying
that X is locally Cohen-Macaulay and equi-dimensional. In recent years upper bounds
on the Castelnuovo-Mumford regularity of a projective variety X have been given by
several authors in terms of dim(X), deg(X), codim(X) and k(X), see, e.g., [6, 7, 13, 16].
The following bound is the most optimal among the known results. Also, the extremal
cases are classified, see, e.g., [3, 12].

Proposition 1.1 (See [3, 16]).

Let X be a nondegenerate irreducible reduced projective variety in PN
K over an

algebraically closed field K. Then we have

reg(X) ≤ d(deg(X)− 1)/codim(X)e+ max{k(X) dim(X), 1}.

Assume that X is not ACM and that deg(X) ≥ 2 codim(X)2 + codim(X) + 2. Then

the equality holds only if X is a curve on a rational ruled surface.

This motivates us to state a variation of Hoa’s conjecture.

Conjecture 1.2 ([12]).

Let X be a nondegenerate projective variety in PN
K over an algebraically closed field

K. Then we have reg(X) ≤ d(deg(X)− 1)/codim(X)e+ max{k̃(X), 1}. Furthermore,

assume that X is not ACM and that deg(X) is large enough. Then the equality holds

only if X is a divisor on a rational normal scroll.
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We remark that the original Hoa’s conjecture takes k̄(X) instead of k̃(X), where
k̄(X) is the maximal integer k such that all successive hypersurface sections of X have
the k-Buchsbaum property. The Buchsbaum case, that is, k̃(X) = 1, has been proved
in [15, 17, 19].

The purpose of this paper is to prove the conjecture for divisors on rational normal
scrolls and to give extremal varieties for all dimensions.

Theorem 1.3

Let X be a nondegenerate irreducible reduced projective variety in PN
K of dimen-

sion r over an algebraically closed field K. Put k = k̃(X). Assume that X is a divisor on

a rational normal scroll. Then we have reg(X) ≤ d(deg(X)−1)/codim(X)e+max{k, 1}.
Furthermore, there exist extremal examples for all r and k.

Before proving the inequality and describing the extremal cases for divisors on
rational normal scrolls, we prepare the following notations. Let r ≥ 2 be an integer.
Let π : Y = P(E) → P1

K be a projective bundle, where E = OP1
K
⊕OP1

K
(−e1)⊕ · · · ⊕

OP1
K

(−er) for some 0 ≤ e1 ≤ · · · ≤ er. Let Z and F be a minimal section and a
fibre respectively. Now we have an embedding of Y in PN

K by a very ample divisor
H = Z + nF (n > er), where N = rn + r + n − e1 − · · · − er. Then Y is called a
rational normal scroll. Let X be a divisor on Y linearly equivalent to aZ + bF . If X is
nondegenerate, then Γ(Y, IX/Y (1)) = Γ(Y,OY ((1− a)Z + (n− b)F )) = 0. In this case
we see that either a = 1 and b ≥ n+1, or a ≥ 2 and b ≥ 1. Also, we have codim(X) =
rn + n− e1 − · · · − er and deg(X) = (aZ + bF ) · (Z + nF )r = a(rn− e1 − · · · − er) + b,
because Zr+1 = −e1−· · ·− er, Zr ·F = 1 and Zi ·F r+1−i = 0 for 0 ≤ i ≤ r−1. Under
the above conditions, we obtain the following classification of the divisor on a rational
normal scroll with its Castelnuovo-Mumford regularity having such upper bound.

Theorem 1.4

Let X be a nondegenerate irreducible reduced divisor on a rational normal scroll

in PN
K of dimension r constructed as above. Then we have

reg(X) ≤ d(deg(X)− 1)/codim(X)e+ max{k̃(X), 1}.

Furthermore, assume that X is not ACM. Then the equality holds if and only if

a ≥ 1 and an + 2 ≤ b ≤ an + 1− (r + 1)n− e1 − · · · − er.

This result extends that of [12, Theorem 1.3] and give sharp examples for the
conjecture. More precisely, the extremal variety X satisfies codim(X) = (r + 1)n −
e1−· · ·−er, deg(X) = a(rn−e1−· · ·−er)+b, k̃(X) = k(X) = b(b−ar−2)/(n−er)c−a+1
and reg(X) = b(b− aer − 2)/(n− er)c+ 2.

2. Proof of main Theorem

This section is devoted to the proof of the Theorem stated in §1.
Notations being as in (1.4), our proof starts with calculating the Castelnuovo-

Mumford regularity and the Ellia-Migliore-Miró Roig number of the projective variety.
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Let S be the polynomial ring Γ(Y,OY (1)). Note that Γ(Y,OY (1)) ∼= Γ(P1
K , E(n)).

Since Y is ACM, the deficiency module Mi(X) of X in PN
K = Proj(S), 1 ≤ i ≤ r, is

isomorphic to ⊕`∈ZHi(Y, IX/Y (`)) as graded S-modules. Thus we have

Mi(X) ∼= ⊕`∈ZHi(Y,OY ((−a + `)Z + (−b + `n)F )),

for 1 ≤ i ≤ r. Let us calculate the intermediate cohomologies.

Lemma 2.1

Under the above condition, we have

(i) M1(X) ∼= ⊕`∈ZH1(P1
K ,Sym`−a(E)⊗OP1

K
(n`− b)),

(ii) Mi(X) = 0 for 1 < i < r, and

(iii) Mr(X) ∼= ⊕`∈ZH0(P1
K , (Sym−`+a−r−1(E))′ ⊗OP1

K
(n`− b + e1 + · · ·+ er)).

Proof. The assertions immediately follow from [12, (2.13) and (2.14)] and their
proofs. �

Corollary 2.2

Under the above condition, we have

(i) M1(X)` 6= 0 if and only if a ≤ ` ≤ b(b − aer − 2)/(n − er)c. In particular,

M1(X) 6= 0 if and only if b ≥ an + 2. Furthermore,

(ii) Mr(X)` 6= 0 if and only if d(b−e1−· · ·−er−1+(r−a)er)/(n−er)e ≤ ` ≤ a−r−1.

In particular, Mr(X) 6= 0 if and only if b ≤ (a− r − 1)n + e1 + · · ·+ er.

Proof. Note that n > er. By (2.1)(i), M1(X)` 6= 0 if and only if −a + ` ≥ 0 and
−b + `n ≤ er(−a + `) − 2. By (2.1)(iii), Mr(X)` 6= 0 if and only if −a + ` ≤ −r − 1
and −b + `n ≥ er(−a + `) + rer − e1 − · · · − er−1. �

Remark 2.3. From (2.2), X is ACM if and only if (a− r− 1)n+ e1 + · · ·+ er +1 ≤ b ≤
an+1. If b ≥ an+2, then Mj(X) = 0 for j 6= 1, and if b ≤ (a− r− 1)n+ e1 + · · ·+ er,
then Mj(X) = 0 for j 6= r. But both cases are not ACM.

Lemma 2.4

Under the above condition, Hr+1(PN
K , IX(`)) 6= 0 if and only if ` ≤ a− r − 1 and

` ≤ b(b− 2− e1 − · · · − er)/nc.

Proof. From the short exact sequence

0 → Hr+1
∗ (IX) → Hr+1

∗ (IX/Y ) → Hr+2
∗ (IY ) → 0,

we see that Hr+1
∗ (IX) is the kernel of the homomorphism H1(P1

K ,Sym−`+a−r−1(E)′⊗
OP1

K
(n`− b+ e1 + · · ·+ er)) → H1(P1

K ,Sym−`−r−1(E)′⊗OP1
K

(n`+ e1 + · · ·+ er)). Thus
Hr+1(IX(`)) 6= 0 if and only if −` + a− r − 1 ≥ 0 and n`− b + e1 + · · ·+ er ≤ −2. �

Remark 2.5. The a-invariant of the coordinate ring R of X is defined as a(R) =
max{` | [Hdim R

R+
(R)]` 6= 0}. Note that Hr+1

R+
(R) ∼= Hr+1

∗ (PN
K , IX). Therefore we have

a(R) = min{a− r − 1, b(b− 2− e1 − · · · − er)/nc}.

From now on, we assume that X is not ACM.
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Corollary 2.6

Under the above conditions, k(X) = b(b−aer−2)/(n−er)c−a+1 and reg(X) =
b(b− aer − 2)/(n− er)c+ 2 if b ≥ an + 2, and

k(X) = a− r − 1− d(b− e1 − · · · − er−1 + (r − 1)er)/(n− er)e+ 1,

and reg(X) = a, a + 1 if b ≤ (a− r − 1)n + e1 + · · ·+ er.

Proof. It immediately follows from (2.1), (2.2), (2.3) and (2.4). �

Lemma 2.7

Under the above conditions, we have k̃(X) = k(X).

Proof. It immediately follows from [8, (2.4)] and (2.1). �

Before proving the main theorem, we state a basic fact on the regularity bound.

Proposition 2.8 ([16]).

Let X be a nondegenerate projective variety of dimension r with the coordinate

ring R. Let s be a fixed integer with 1 ≤ s ≤ r. Assume that X is not ACM and that

the deficiency module Mi(X) vanishes for any i 6= s. Then we have

reg(X) ≤ a(R/hR) + r + 1 + k(X) ≤ d(deg(X)− 1)/codim(X)e+ k(X),

where h is a general linear form of R.

Proof of Theorem 1.4. The inequality reg(X) ≤ d(deg(X) − 1)/codim(X)e + k̃(X)
follows straightforward from (2.3), (2.7) and (2.8).

First, in order to describe when the equality holds, we consider the case b ≤
(a− r− 1)n + e1 + · · ·+ er. In this case, the intermediate cohomologies appear only in
Mr(X), and we note that max{` | [Mr(X)]` 6= 0} = a−r−1 by (2.2). Also, we see that
a(R) ≤ a−r−1 by (2.5). If a(R) = a−r−1, then reg(X) = (a−r−1)+1+r+1 = a+1
and a(R/hR) = a − r. If a(R) < a − r − 1, then reg(X) = (a − r − 1) + 1 + r = a

and a(R/hR) = a − r − 1. In fact, by the structure of Mr(X), see (2.1), we have
[Mr(X)/hMr(X)]a−r−1 6= 0. In any case, we have

reg(X) = a(R/hR) + r + 1 ≤ d(deg(X)− 1)/codim(X)e+ 1

≤ d(deg(X)− 1)/codim(X)e+ k̃(X),

and the equality holds only if k̃(X) = 1, which is the Buchsbaum case and is classified
by [15].

Next, for the case b ≥ an+2, we see that reg(X) = b(b−aer−2)/(n−er)c+2 and
k̃(X) = b(b−aer−2)/(n−er)c−a+1 by (2.6) and (2.7). Thus the equality holds if and
only if d(a(rn−e1−· · ·−er)+b−1)/((r+1)n−e1−· · ·−er)e = a+1, which is equivalent
to saying that −(rn+n− e1−· · ·− er)+1 ≤ −na− (rn+n− e1−· · ·− er)+ b+1 ≤ 0.
Hence the assertion is proved. �
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Example 2.9 ([11]): Let Y = P1
K ×P1

K ×P1
K be the Segre embedding in P9

K . Let X be
an irreducible reduced divisor linearly equivalent to

p∗1OP1
K

(a)⊗ p∗2OP1
K

(a + b)⊗ p∗3OP1
K

(a + 2b),

where a ≥ 1 and b ≥ 2. Then k(X) = b and k̃(X) > b.
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