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Abstract

For the Lerch zeta-functionφ(s, x, λ) defined below, the multiple mean square
of the form (1.1), together with its discrete and hybrid analogues, (1.2) and
(1.3), are investigated by means of Atkinson’s[2] dissection method applied
to the productφ(u, x, λ)φ(v, x,−λ), whereu andv are independent complex
variables (see (4.2)). A complete asymptotic expansion of (1.1) asIm s→ ±∞
is deduced from Theorem 1, while those of (1.2) and (1.3) asq →∞ and (at the
same time) asIm s → ±∞ are deduced from Theorems 2 and 3 respectively.
In the proofs, Atkinson’s method above is enhanced by Mellin-Barnes type of
integral formulae (see (4.1)), which further enable us systematic use of various
properties of hypergeometric functions (see Section 5); especially in the proof
of Theorem 1 crucial r̂oles are played by Lemmas 3 and 5.

1. Introduction

Let s be a complex variable, and let x and λ be real parameters with x > 0. We use
the notation e(λ) = e2πiλ hereafter. The Lerch zeta-function φ(s, x, λ) is defined by

φ(s, x, λ) =
∞∑

n=0

e(λn)(n+ x)−s (Re s > 1),

and its meromorphic continuation over the whole s-plane (cf. [24]). It is an entire
function for λ ∈ R \ Z, while if λ ∈ Z it reduces to the Hurwitz zeta-function ζ(s, x),
and so ζ(s, 1) = ζ(s) is the Riemann zeta-function. We remark that the order of
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the variables in φ above differs from the usual notation, in order to retain notational
consistency with other terminology.

The present paper proceeds further with our previous study [9] of the mean squares
of Lerch zeta-functions. We shall prove a general explicit formula for a multiple average
of the product φ(u, a + x, λ)φ(v, a + x,−λ), where u and v are independent complex
variables and a is a positive real number. This formula leads to a complete asymptotic
expansion of the multiple mean square

(1.1)
∫ 1

0
· · ·

∫ 1

0
|φ(s, a+ x1 + · · ·+ xm, λ)|2dx1 · · · dxm

for any positive integer m, in the descending order of Im s as Im s→ ±∞. The method
of the present paper is also applicable to treat a discrete analogue of (1.1) in the form

(1.2) q−m
q−1∑
r1=0

· · ·
q−1∑

rm=0

∣∣∣φ(
s,

a

qm
+
r1
q

+ · · ·+ rm
qm

, λ
)∣∣∣2,

and their hybridization (with m = 2)

(1.3)
∫ 1

0
q−1

q−1∑
r=0

∣∣∣φ(
s,
a+ r + x

q
, λ

)∣∣∣2dx
for any integer q ≥ 1. We shall prove complete asymptotic expansions of these mean
values in the descending order of q as q →∞; a bonus here is that the expansion of (1.3)
gives (at the same time) a complete asymptotic expansion in the descending order of
Im s as Im s → ±∞. When m = 1 and a = 1, the existence of complete asymptotic
expansions of (1.1) and (1.2) were shown in [9]; however, it is rather remarkable that
similar asymptotic series still exists for more general multiple averages such as (1.1)
and (1.2).

The paper is organized as follows. After a brief overview of the history of research,
we state our first main result (Theorem 1), which implies the asymptotic expansion
of (1.1), in the next section. The second and the third main results (Theorems 2 and
3), which imply the asymptotic expansions of (1.2) and (1.3) respectively, are stated in
Section 3. A fundamental formula for the proofs is prepared in Section 4. Sections 5
and 6 are devoted to the proofs of Theorem 1 and its corollaries, while Theorems 2, 3
and their corollaries are proved in Section 7. A supplementary argument is given in
the final section.

The author would like to thank the referee for valuable comments and refinements
of the first version of the present paper.
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2. History and the first main result

Let u and v be independent complex variables, and let Γ (s) denote the gamma function.
Mikolás [25] in 1956 proved the formula

(2.1)

∫ 1

0
ζ(u, x)ζ(v, x)dx = 2(2π)u+v−2Γ (1− u)Γ (1− v)

× cos
{1

2
π(u− v)

}
ζ(2− u− v)

if max(Reu,Re v,Re(u + v)) < 1; otherwise the integral diverges since ζ(s, x) has a
singularity at x = 0 (see also [26] for variants of (2.1)). It is hence natural to consider
the function ζ1(s, x) = ζ(s, x) − x−s for which the singularity in x is removed. The
mean square

I(s) =
∫ 1

0
|ζ1(s, x)|2dx

was already studied in 1952 by Koksma-Lekkerkerker [23], who proved that I(1/2 +
it) = O(log t) for t ≥ 2. Improvements upon this result were due to Balasubramanian
[3], Rane [29] and Sitaramachandrarao [30] up to the end of 1980’s. (Sitaramachan-
drarao’s result was announced on page 28 of Hardy-Ramanujan Journal 10 (1987),
but it seems unpublished.) Next progress of the research were made in the first half of
1990’s by several mathematicians, independently of each other. Zhang [33] obtained
an asymptotic formula for I(1/2 + it) with the error term O(t−1), while Andersson
[1] proved an explicit formula for the mean value

∫ 1
0 ζ1(u, x)ζ1(v, x)dx, the remainder

term of which involves the sequence ζ(u + n) and ζ(v + n) with n = 0, 1, . . ., and it
leads to the same error estimate O(t−1) for I(s) as in [33]. Another explicit formula
for the same mean value was derived by Katsurada-Matsumoto [17, 18]; a merit of this
formula is that it implies a complete asymptotic expansion of I(s) in the descending
order of Im s. It is also applied in [19] to study I(s) especially when s is an inte-
ger, and further in [20] to derive an asymptotic formula for the mean square of the
derivatives (∂/∂s)hζ1(s, x) for any h ≥ 1. A discrete analogue of I(s) was studied in
[16]. Very recently the direction of Mikolás has been revisited and further pursued by
Espinosa-Moll [6, 7].

As for asymptotic aspects of Lerch zeta-functions, hybrid-type mean value theo-
rems for the weighted mean square∫ ∞

0
|φ(σ + it, x, λ)|2e−2δtdt

as δ → +0 were proved by Klusch [21, 22], while an asymptotic formula for the mean
square

I(s;λ) =
∫ 1

0
|φ1(s, x, λ)|2dx,

where φ1(s, x, λ) = φ(s, x, λ) − x−s, with the error term O(t−1) was derived by
Zhang [32]. The author [9] obtained a complete asymptotic expansion of I(s;λ) in
the descending order of Im s; this is again a consequence of an explicit formula for
the mean value

∫ 1
0 φ1(u, x, λ)φ1(v, x,−λ)dx proved in [9], where Mellin-Barnes type

of integrals were used, combined with Atkinson’s [2] method. This type of integrals



60 Katsurada

were first applied by Motohashi to investigate higher power moments of zeta functions
(see for e.g., [27, 28]). It is worth while noting that applications of the integrals have
advantage over heuristic treatments, in studying asymptotic aspects and transforma-
tion properties of zeta and theta functions (see also [10, 15]). Egami-Matsumoto [4]
recently applied this type of integrals to discrete analogues of higher power moments
of ζ(s, x).

From the observation that φ1(s, x, λ) = e(λ)φ(s, 1 + x, λ), we are naturally led to
extend the formulations above by Mikolás, Koksma-Lekkerkerker and others to a more
general (multiple) average

(2.2)
Im(u, v; a, λ) =

∫ 1

0
· · ·

∫ 1

0
φ(u, a+ x1 + · · ·+ xm, λ)

× φ(v, a+ x1 + · · ·+ xm,−λ)dx1 · · · dxm,

which seems to be interesting from a (multiple) statistical point of view. Let ζλ(s) =
e(λ)φ(s, 1, λ) be the exponential zeta-function, and (s)n = Γ (s + n)/Γ (s) for any
integer n Pochhammer’s symbol. Note in particular that (s)−m = 1/(s− 1) · · · (s−m)
for m = 1, 2, . . .. Then our first main result can be stated as

Theorem 1

Let Im(u, v; a, λ) be defined by (2.2), where m is any positive integer, u and v are

independent complex variables, and a and λ are real numbers with a > 0. Define the

set Ẽm ⊂ C2 by

(2.3) Ẽm = {(u, v); u+ v ∈ Z, u+ v ≤ max(2,m)} ∪ {(u, v); u ∈ Z or v ∈ Z}.

Then for any integer N ≥ 1, in the region 1−N < Reu < m+N and 1−N < Re v <
m+N except the points of Ẽm the formula

(2.4)

Im(u, v; a, λ) = − 1
(1− u− v)m

m−1∑
j=0

(−1)m−1−j

(
m− 1
j

)
(a+ j)m−u−v

+R(u, v;λ) +R(v, u;−λ)−
m−1∑
j=0

(−1)m−1−j

(
m− 1
j

)
× {Sm,N (u, v; a+ j, λ) + Sm,N (v, u; a+ j,−λ)

+ Tm,N (u, v; a+ j, λ) + Tm,N (v, u; a+ j,−λ)}
holds. Here

(2.5) R(u, v;λ) = Γ (u+ v − 1)ζλ(u+ v − 1)
Γ (1− v)
Γ (u)

,

(2.6) Sm,N (u, v;x, λ) =
N−1∑
n=0

(u)n(m)n

(1− v)m+nn!
xm+n−ve(λ)φ(u+ n, 1 + x, λ)

and

(2.7) Tm,N (u, v;x, λ) =
xm+N−v

(m− 1)!
(u)N

(1− v)m+N−1

∞∑
l=1

e(λl)f0,l,m,N (u, v;x),
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where f0,l,m,N (u, v;x) is defined by (2.10) below with K = 0. Furthermore, for any

integer K ≥ 0 the expression

(2.8)

Tm,N (u, v;x, λ) =
xm+N−v

(m− 1)!

×
{ K∑

k=1

(−1)k−1(m+ 1− u− v)k−1(u)N−k

(1− v)m+N−1

∞∑
l=1

e(λl)dk,l,m,N (u;x)

+
(−1)K(m+ 1− u− v)K(u)N−K

(1− v)m+N−1

∞∑
l=1

e(λl)fK,l,m,N (u, v;x)
}

follows in the same region of (u, v) with

(2.9) dk,l,m,N (u;x) =
1

(l + x)u+N−k

( ∂

∂ξ

)m−1 (1 + ξ)m+N−1

(l − xξ)k

∣∣∣∣
ξ=0

and

(2.10)

fK,l,m,N (u, v;x) =
( ∂

∂ξ

)m−1 (1 + ξ)m+N−1

(l − xξ)u+v−m

×
∫ ∞

l

(y − xξ)u+v−m−K−1

(y + x)u+N−K
dy

∣∣∣∣
ξ=0

,

where the empty sums are to be regarded as null.

Remark 1. The exceptional set Ẽm in (2.3) is defined by collecting all singular points
of the factors on the right side of (2.4); formulae similar to (2.4) for the exceptional
points of Ẽm can be deduced as the limiting cases of Theorem 1 (see Corollaries 1.4
and 1.5 below).

Remark 2. On the right side of (2.10), each integral (differentiated with respect to
ξ) converges absolutely in Re v < m + N , since the integrand is at most of order
O(yRe v−m−N−1) as y →∞. It is further shown that dk,l,m,N (u;x) and fK,l,m,N (u, v;x)
are both of order O(l−Re u−N ) as l→∞. The expressions in (2.7) and (2.8) are hence
valid for Reu > 1−N and Re v < m+N .

Remark 3. The case m = 1 and a = 1 of Theorem 1 reduces to [9, Theorem 3], and
further to [18, Theorem] if λ ∈ Z.

Theorem 1 yields various consequences, which are stated in the following Corol-
laries 1.1–1.7. The limiting case N →∞ of Theorem 1 is stated in Corollary 1.1, while
Corollary 1.2 is the case u = σ + it and v = σ − it of Theorem 1, where the expres-
sion (2.8) particularly gives a complete asymptotic expansion as t → ±∞. Corollary
1.3 is the limiting case N → ∞ of Corollary 1.2. Two important exceptional cases
σ = 1/2 and σ = 1 of Corollary 1.2 are supplemented in Corollaries 1.4 and 1.5 respec-
tively. The remaining Corollaries 1.6 and 1.7 show that the direction of Mikolás [25]
can be treated as the limiting case a→ +0 of Theorem 1.

We shall in fact prove in Section 6 that limN→∞ Tm,N (u, v;x, λ) = 0 for any fixed
(u, v) ∈ C2 \ Ẽm. The limiting case N →∞ of Theorem 1 therefore yields.
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Corollary 1.1

Let m, u, v, a, λ, Im, Ẽm and R be as in Theorem 1. Then for any (u, v) ∈ C2\Ẽm

the formula

(2.11)

Im(u, v; a, λ)

= − 1
(1− u− v)m

m−1∑
j=0

(−1)m−1−j

(
m− 1
j

)
(a+ j)m−u−v

+R(u, v;λ) +R(v, u;−λ)−
m−1∑
j=0

(−1)m−1−j

(
m− 1
j

)
× {S∗m(u, v; a+ j, λ) + S∗m(v, u; a+ j,−λ)}

holds, where

(2.12) S∗m(u, v;x, λ) =
∞∑

n=0

(u)n(m)n

(1− v)m+nn!
xm+n−ve(λ)φ(u+ n, 1 + x, λ).

Remark. The case m = 1 and a = 1 of this corollary reduces to [9, Corollary 5], and
further to [18, Corollary 4] if λ ∈ Z.

When u = σ + it and v = σ − it, Theorem 1 particularly yields a complete
asymptotic expansion of (1.1) in the descending order of t as t→ ±∞:

Corollary 1.2

Let m, a, λ, R, Sm,N and Tm,N be as in Theorem 1. Define the set Em ⊂ C by

(2.13) Em = {n/2 + it; n ∈ Z, n ≤ max(1,m/2), t ∈ R} ∪ Z.

Then for any integer N ≥ 1, in the region 1−N < σ < m+N and t ∈ R except the

points of Em the formula

(2.14)

∫ 1

0
· · ·

∫ 1

0
|φ(σ + it, a+ x1 + · · ·+ xm, λ)|2dx1 · · · dxm

= − 1
(1− 2σ)m

m−1∑
j=0

(−1)m−1−j

(
m− 1
j

)
(a+ j)m−2σ

+ 2 ReR(σ + it, σ − it;λ)

− 2
m−1∑
j=0

(−1)m−1−j

(
m− 1
j

)
{ReSm,N (σ + it, σ − it; a+ j, λ)

+ ReTm,N (σ + it, σ − it; a+ j, λ)}
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holds. Furthermore, for any integer K ≥ 0 the expression

(2.15)

Tm,N (σ + it, σ − it;x, λ) =
xm+N−σ+it

(m− 1)!

×
{ K∑

k=1

(−1)k−1(m+ 1− 2σ)k−1(σ + it)N−k

(1− σ + it)m+N−1

∞∑
l=1

e(λl)dk,l,m,N (σ + it;x)

+
(−1)K(m+ 1− 2σ)K(σ + it)N−K

(1− σ + it)m+N−1

∞∑
l=1

e(λl)fK,l,m,N (σ + it, σ − it;x)
}

follows in the same region of σ + it, and this gives a complete asymptotic expansion

in the descending order of t as t → ±∞, where each term of the asymptotic series is

estimated as

(2.16)

(−1)k−1(m+ 1− 2σ)k−1(σ + it)N−k

(1− σ + it)m+N−1
= O(|t|1−m−k),

∞∑
l=1

e(λl)dk,l,m,N (σ + it, x) = O(1),

(−1)K(m+ 1− 2σ)K(σ + it)N−K

(1− σ + it)m+N−1
= O(|t|1−m−K),

∞∑
l=1

e(λl)fK,l,m,N (σ + it, σ − it;x) = O(|t|−1)

for any σ and t with 1 −N < σ < m +N and |t| ≥ 1, and any K ≥ k ≥ 1. Here the

implied O-constants depend at most on m, N , K, x, λ and σ.

Taking u = σ + it and v = σ − it in Corollary 1.1, or letting N → ∞ in Corol-
lary 1.2, we obtain

Corollary 1.3

Let m, a and R be as in Theorem 1, and Em and S∗m defied by (2.13) and (2.12)
respectively. Then for any σ + it ∈ C \ Em the formula

(2.17)

∫ 1

0
· · ·

∫ 1

0
|φ(σ + it, a+ x1 + · · ·+ xm, λ)|2dx1 · · · dxm

= − 1
(1− 2σ)m

m−1∑
j=0

(−1)m−1−j

(
m− 1
j

)
(a+ j)m−2σ

+ 2 ReR(σ + it, σ − it;λ)− 2
m−1∑
j=0

(−1)m−1−j

(
m− 1
j

)
× ReS∗m(σ + it, σ − it; a+ j, λ)

holds.
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We next supplement two exceptional (but important) cases of Theorem 1. For
any integers m ≥ 1 and n ≥ 0, and any real a > 0, we define

(2.18)

Cm,n(a)

=


1

(n− 1)!

m−1∑
j=0

(−1)m−1−j

(
m− 1
j

)
(a+ j)n−1 log(a+ j) if n ≥ 1,

1/a if n = 0.

Let ψ(s) = (Γ ′/Γ )(s) be the digamma function, γ0 = −ψ(1) Euler’s constant, and
ζ ′λ(s) = (∂/∂s)ζλ(s). We first state the limiting case σ → 1/2 of Corollary 1.2:

Corollary 1.4

Let m, a, λ, Sm,N and Tm,N be as in Theorem 1. Then for any integer N ≥ 1 and

any t ∈ R the formula

(2.19)

∫ 1

0
· · ·

∫ 1

0

∣∣∣φ(1
2

+ it, a+ x1 + · · ·+ xm, λ
)∣∣∣2dx1 · · · dxm

= γ0 +
m−1∑
j=1

1
j
− Cm,m(a) + 2 Re

{
ζ ′λ(0)− ζλ(0)ψ

(1
2

+ it
)}

− 2
m−1∑
j=0

(−1)m−1−j

(
m− 1
j

){
ReSm,N

(1
2

+ it,
1
2
− it; a+ j, λ

)
+ ReTm,N

(1
2

+ it,
1
2
− it; a+ j, λ

)}
holds. Furthermore, for any integer K ≥ 0 the expression (2.15) follows in particular

for T (1/2 + it, 1/2 − it;x, λ), and this gives a complete asymptotic expansion in the

descending order of t as t → ±∞ (in the sense of (2.16)). Moreover, we may let

N →∞ in (2.19); the resulting formula holds with the limits limN→∞ Sm,N = S∗m and

limN→∞ Tm,N = 0.

Let {λ} = λ− [λ] denote the fractional part of λ, and

(2.20) ζλ(s) =
γ−1(λ)
s− 1

+ γ0(λ) +O(s− 1)

the Laurent series expansion at s = 1. From the definition it is seen that ζλ(s) =
ζ{λ}(s),

(2.21) γ−1(λ) =

1 if λ ∈ Z,

0 otherwise,

and

(2.22) γ0(λ) =

γ0 if λ ∈ Z,

− log(2 sinπλ)− πi({λ} − 1/2) otherwise,

(cf. [15, (2.7), (6.4) and (7.5)]). The limiting case σ → 1 of Corollary 1.2 then asserts
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Corollary 1.5

Let m, a, λ, Sm,N and Tm,N be as in Theorem 1. Then for any integer N ≥ 1 and

any t ∈ R \ {0} the formula

(2.23)

∫ 1

0
· · ·

∫ 1

0
|φ(1 + it, a+ x1 + · · ·+ xm, λ)|2dx1 · · · dxm

= Cm,m−1(a)− γ−1(λ)
{

2 Re
ψ(1 + it)

it
+

1
t2

}
+

2 Im γ0(λ)
t

− 2
m−1∑
j=0

(−1)m−1−j

(
m− 1
j

)
{ReSm,N (1 + it, 1− it; a+ j, λ)

+ ReTm,N (1 + it, 1− it; a+ j, λ)}

holds. Furthermore, for any integer K ≥ 0 the expression (2.15) follows in particular

for Tm,N (1 + it, 1 − it;x, λ), and this gives a complete asymptotic expansion in the

descending order of t as t → ±∞ (in the sense of (2.16)). Moreover, we may let

N →∞ in (2.23); the resulting formula holds with the limits limN→∞ Sm,N = S∗m and

limN→∞ Tm,N = 0.

Remark. The case m = 1 and a = 1 of this corollary reduces to [18, Corollary 3] if
λ ∈ Z, and to [9, Corollary 2] if 0 < λ < 1.

We now turn to the direction of Mikolás [25]. Formula (2.1) suggests that the
limit

lim
a→+0

Im(u, v; a, λ) = Im(u, v; 0, λ)

exists in a certain restricted domain of (u, v). This is in fact valid, and the following
corollaries are proved.

Corollary 1.6

Let m, u, v, λ, Im, Ẽm, R, Sm,N and Tm,N be as in Theorem 1. Then for any

integer N ≥ 1, in the region 1−N < Reu < m, 1−N < Re v < m and Re(u+ v) < m

except the points of Ẽm the formula

(2.24)

Im(u, v; 0, λ) = − 1
(1− u− v)m

m−1∑
j=1

(−1)m−1−j

(
m− 1
j

)
jm−u−v

+R(u, v;λ) +R(v, u;−λ)−
m−1∑
j=1

(−1)m−1−j

(
m− 1
j

)
× {Sm,N (u, v; j, λ) + Sm,N (v, u; j,−λ)

+ Tm,N (u, v; j, λ) + Tm,N (v, u; j,−λ)}

holds. Moreover, we may let N → ∞ in (2.24); the resulting formula follows for all

(u, v) ∈ C2 \ Ẽm with the limits limN→∞ Sm,N = S∗m and limN→∞ Tm,N = 0.

Remark. The case m = 1 and λ ∈ Z of this corollary reduces to (2.1).
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We lastly supplement two important exceptional cases of Corollary 1.6. For any
integers m ≥ 2 and n ≥ 2, we define

(2.25) C∗
m,n =

1
(n− 1)!

m−1∑
j=1

(−1)m−1−j

(
m− 1
j

)
jn−1 log j.

Corollary 1.7

Let N be any positive integer, and λ, Sm,N and Tm,N as in Theorem 1. Then the
following formulae hold: i) For any integer m ≥ 2 and any t ∈ R,

(2.26)

∫ 1

0
· · ·

∫ 1

0

∣∣∣φ(1
2

+ it, x1 + · · ·+ xm, λ
)∣∣∣2dx1 · · · dxm

= γ0 +
m−1∑
j=1

1
j
− C∗

m,m + 2 Re
{
ζ ′λ(0)− ζλ(0)ψ

(1
2

+ it
)}

−
m−1∑
j=1

(−1)m−1−j

(
m− 1
j

){
ReSm,N

(1
2

+ it,
1
2
− it; j, λ

)
+ ReTm,N

(1
2

+ it,
1
2
− it; j, λ

)}
.

ii) For any integer m ≥ 3 and any t ∈ R \ {0},

(2.27)

∫ 1

0
· · ·

∫ 1

0
|φ(1 + it, x1 + · · ·+ xm, λ)|2dx1 · · · dxm

= C∗
m,m−1 − γ−1(λ)

{
2 Re

ψ(1 + it)
it

+
1
t2

}
+

2 Im γ0(λ)
t

− 2
m−1∑
j=1

(−1)m−1−j

(
m− 1
j

)
{ReSm,N (1 + it, 1− it; j, λ)

+ ReTm,N (1 + it, 1− it; j, λ)}.

3. Results on discrete and hybrid analogues

In this section, the results on (1.2) and (1.3) are stated in a more extended manner.
For this purpose we introduce discrete and hybrid analogues of (2.2) in the form

(3.1)
Îm(u, v; a, λ; q) = q−m

q−1∑
r1=0

· · ·
q−1∑

rm=0

φ
(
u,

a

qm
+
r1
q

+ · · ·+ rm
qm

, λ
)

× φ
(
v,

a

qm
+
r1
q

+ · · ·+ rm
qm

,−λ
)
,

and

(3.2) H(u, v; a, λ; q) =
∫ 1

0
q−1

q−1∑
r=0

φ
(
u,
a+ r + x

q
, λ

)
φ
(
v,
a+ r + x

q
,−λ

)
dx.

Our second main result is then stated as
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Theorem 2

Let Îm(u, v; a, λ; q) be defined by (3.1), where m and q are any positive integers,

u and v are independent complex variables, and a and λ are real numbers with a > 0.

Let Ẽ1 be defined by (2.3) with m = 1, and R by (2.5). Then for any integer N ≥ 1,

in the region 1 −N < Reu < 1 +N and 1 −N < Re v < 1 +N except the points of

Ẽ1 the formula

(3.3)

Îm(u, v; a, λ; q)

= qm(u+v−1)ζ(u+ v, a) +R(u, v;λ) +R(v, u;−λ)

+ ŜN (u, v; a, λ; qm) + ŜN (v, u; a,−λ; qm)

+ T̂N (u, v; a, λ; qm) + T̂N (v, u; a,−λ; qm)

holds, where

(3.4) ŜN (u, v; a, λ; qm) =
N−1∑
n=0

(−1)n(u)n

n!
ζλ(u+ n)ζ(v − n, a)qm(v−n−1),

T̂N (u, v; a, λ; q) is expressed as the vertical integral (7.5) below, and satisfies the esti-

mate

(3.5) T̂N (u, v; a, λ; qm) = O(qm(Re v−N−1))

for any q ≥ 1 with the implied O-constants depending at most on m, N , u, v, a and

λ; the corresponding estimate also holds for T̂N (v, u; a,−λ; qm). Here the right sides

of (3.4) and (3.5) show that Formula (3.3) gives a complete asymptotic expansion in

the descending order of q as q →∞.

Setting u = σ + it and v = σ − it in Theorem 2 we obtain

Corollary 2.1

Let m, a, λ, R, ŜN and T̂N be as in Theorem 2, and E1 defined by (2.13) with

m = 1. Then for any integer N ≥ 1, in the region 1−N < σ < 1+N and t ∈ R except

the points of E1 the formula

(3.6)

q−m
q−1∑
r1=0

· · ·
q−1∑

rm=0

∣∣∣φ(
σ + it,

a

qm
+
r1
q

+ · · ·+ rm
qm

, λ
)∣∣∣2

= qm(2σ−1)ζ(2σ, a) + 2 ReR(σ + it, σ − it;λ)

+ 2 Re ŜN (σ + it, σ − it; a, λ; qm)

+ 2 Re T̂N (σ + it, σ − it; a, λ; qm)

holds, and T̂N satisfies the estimate

(3.7) T̂N (σ + it, σ − it; a, λ; qm) = O{qm(σ−N−1)(|t|+ 1)ν(σ,N,ε)}

for any integer q ≥ 1 and any real σ and t with 1−N < σ < 1 +N , where the implied

O-constant depends at most on m, N , a, λ and σ. Here the exponent ν in (3.7) is
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given by

ν(σ,N, ε) =

{
(4N + 1− 2σ)/2 if 1−N < σ < N ,

(3N + 1− σ + ε)/2 if N ≤ σ < N + 1

with any small ε > 0.

Remark 1. It is reasonable that such a bound as in (3.7) holds, since the term with the
index n(≥ 1) in (3.4) for ŜN (σ+it, σ−it; a, λ; q) is of order O{qm(σ−n−1)(|t|+1)ν(σ,n,ε)}
for q ≥ 1, 1− n < σ < 1 + n and any t ∈ R.

Remark 2. The case m = 1 and a = 1 of this corollary reduces to [9, Theorem 2], and
further to [16, Theorem 2] if λ ∈ Z.

We next supplement two important exceptional cases of this corollary.

Corollary 2.2

Let N be a positive integer, and m, a, λ, q, ŜN and T̂N as in Theorem 2. Then

the following formulae hold: i) For any t ∈ R,

(3.8)

q−m
q−1∑
r1=0

· · ·
q−1∑

rm=0

∣∣∣φ(1
2

+ it,
a

qm
+
r1
q

+ · · ·+ rm
qm

, λ
)∣∣∣2

= m log q − ψ(a) + γ0 + 2 Re
{
ζ ′λ(0)− ζλ(0)ψ

(1
2

+ it
)}

+ 2 Re ŜN

(1
2

+ it,
1
2
− it; a, λ; qm

)
+ 2 Re T̂N

(1
2

+ it,
1
2
− it; a, λ; qm

)
.

ii) For any t ∈ R \ {0},

(3.9)

q−m
q−1∑
r1=0

· · ·
q−1∑

rm=0

∣∣∣φ(
1 + it,

a

qm
+
r1
q

+ · · ·+ rm
qm

, λ
)∣∣∣2

= qmζ(2, a)− γ−1(λ)
{

2 Re
ψ(1 + it)

it
+

1
t2

}
+

2 Im γ0(λ)
t

+ 2 Re ŜN (1 + it, 1− it; a, λ; qm)

+ 2 Re T̂N (1 + it, 1− it; a, λ; qm).

The estimate (3.7) in particular follows for T̂N in (3.8) and (3.9).

Remark. The case m = 1 and a = 1 of (3.8) reduces to [9, Corollary 3], and further
to [16, Theorem 1] if λ ∈ Z, while the same case of (3.9) reduces to [9, Corollary 4] if
0 < λ < 1.

We finally proceed to state the results on the hybrid analogue H(u, v; a, λ; q).

Theorem 3

Let H(u, v; a, λ; q) be defined by (3.2), where u and v are independent complex

variables, a and λ are real numbers with a > 0, and q is any positive integer. Let Ẽ1
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defined by (2.3) with m = 1, and R by (2.5). Then for any integer N ≥ 1, in the region

1−N < Reu < 1 +N and 1−N < Re v < 1 +N except the points of Ẽ1 the formula

(3.10)

H(u, v; a, λ; q) = −(a/q)1−u−v

1− u− v
+R(u, v;λ) +R(v, u;−λ)

− S1,N

(
u, v;

a

q
, λ

)
− S1,N

(
v, u;

a

q
,−λ

)
− T1,N

(
u, v;

a

q
, λ

)
− T1,N

(
v, u;

a

q
,−λ

)
holds, where S1,N and T1,N are defined by (2.6) and (2.7) with m = 1 respectively, and

T1,N satisfies the estimate

(3.11) T1,N

(
u, v;

a

q
, λ

)
= O

{(a
q

)1+N−Re v}
for any real a > 0 and any integer q ≥ 1 with the implied O-constant depending at

most on N , u, v and λ. Here the right sides of (2.6) (with m = 1) and (3.11) show

that Formula (3.10) gives an asymptotic expansion in the ascending powers of a/q

as a/q → +0. Furthermore, for any integer K ≥ 0 the expression (2.8) follows in

particular for T1,N (u, v; a/q, λ).

Setting u = σ + it and v = σ − it in Theorem 3 we obtain

Corollary 3.1

Let a, λ, q, R, S1,N and T1,N be as in Theorem 3, and E1 defined by (2.13) with

m = 1. Then for any integer N ≥ 1, in the region 1−N < σ < 1+N and t ∈ R except

the points of E1 the formula

(3.12)

∫ 1

0
q−1

q−1∑
r=0

∣∣∣φ(
σ + it,

a+ r + x

q
, λ

)∣∣∣2dx
= −(a/q)1−2σ

1− 2σ
+ 2 ReR(σ + it, σ − it;λ)

− 2 ReS1,N

(
σ + it, σ − it;

a

q
, λ

)
− 2 ReT1,N

(
σ + it, σ − it;

a

q
, λ

)
holds, and the estimate (3.11) follows in particular for T1,N (σ+ it, σ− it; a/q, λ). Here

the right sides of (2.6) (with m = 1) and (3.11) show that Formula (3.12) gives an

asymptotic expansion in the ascending powers of a/q as a/q → +0. Furthermore, for

any integerK ≥ 0 the expression (2.8) follows in particular for T1,N (σ+it, σ−it; a/q, λ),
and this gives a complete asymptotic expansion in the descending order of t as t→ ±∞
(in the sense of (2.16)). Moreover, the limiting cases σ → 1/2 and σ → 1 of (3.12) are

also valid; the results are precisely the same as those given on the right sides of (2.19)
and (2.23), respectively, with m = 1 and a/q in place of a.
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4. A fundamental formula

We first prepare the formula (4.2) below, which is fundamental in proving Theorems 1, 2
and 3. For this we suppose temporarily that Reu > 1 and Re v > 1, and define

(4.1) g(u, v;x, λ) =
1

2πi

∫
C

Γ (u+ s)Γ (−s)
Γ (u)

ζλ(−s)ζ(u+ v + s, x)ds

for x > 0 and any real λ, where C is a vertical path which is directed upward and
suitably indented so as to separate the (possible) poles of Γ (−s)ζλ(−s)ζ(u+ v + s, x)
at s = 1− u− v, −1 + n (n = 0, 1, . . .), from the poles of Γ (u+ s) at s = −u− n (n =
0, 1, . . .). Here, and in the sequel, we suppose that the poles which occur are at most
simple poles, since otherwise the results can be deduced by taking the limits. Then
from Atkinson’s [2] dissection method applied to the product φ(u, x, λ)φ(v, x,−λ), we
have shown

Lemma 1 ([9, Lemma 1]).

In the region Reu > 1 and Re v > 1 the formula

(4.2)
φ(u, x, λ)φ(v, x,−λ) = ζ(u+ v, x) +R(u, v, λ) +R(v, u;−λ)

+ g(u, v;x, λ) + g(v, u;x,−λ)

holds, where R is given by (2.5), and g(v, u;x,−λ) is defined similarly to (4.1).

Remark. Formula (4.2) remains valid if the paths of the integral expressions of
g(u, v;x, λ) and g(v, u;x,−λ) are modified according to the location of (u, v), unless
they move across the poles of the corresponding integrands.

5. Proof of Theorem 1

Our previous frame of the proof (see [9], Section 4) is appropriately extended to apply
the present situation. For the purpose, two new key devices (Lemmas 3 and 5) are
needed.

We replace x by a+ x1 + · · ·+ xm in (4.2), and integrate both sides with respect
to x1, . . . , xm; in the process we use

Lemma 2

Let m ≥ 1 be an integer, and a > 0 any real number. Then the formula

(5.1)

∫ 1

0
· · ·

∫ 1

0
ζ(w, a+ x1 + · · ·+ xm)dx1 · · · dxm

= − 1
(1− w)m

m−1∑
j=0

(−1)m−1−j

(
m− 1
j

)
(a+ j)m−w

holds for any complex w 6= 1, 2, . . . ,m.

Proof. We have shown in [9, Lemma 2] that∫ 1

0
ζ(w, a+ x1)dx1 = − a1−w

1− w
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for w 6= 1, which is obtained by integrating the series expression of ζ(w, a + x1), and
then by the analytic continuation. Replacing a by a + x2 + · · · + xm in this equality,
and then integrating both sides repeatedly, we obtain the assertion by induction on
m. �

We therefore find from (4.1), (4.2) and this lemma that

(5.2)

Im(u, v; a, λ) = − 1
(1− u− v)m

m−1∑
j=0

(−1)m−1−j

(
m− 1
j

)
(a+ j)m−u−v

+R(u, v;λ) +R(v, u;−λ)−
m−1∑
j=0

(−1)m−1−j

(
m− 1
j

)
× {g̃m(u, v; a+ j, λ) + g̃m(v, u; a+ j,−λ)},

where

(5.3) g̃m(u, v;x, λ) =
1

2πi

∫
C

Γ (u+ s)Γ (−s)
Γ (u)

ζλ(−s) xm−u−v−s

(1− u− v − s)m
ds.

Here the inversion of the s-integral and the x-integral is justified by the fact that the
integral on the right side of (4.1) converges uniformly in x belonging to any compact
subset in the range (0,+∞), since the estimate Γ (u+ s)Γ (−s) = O(| Im s|Ce−π| Im s|)
as Im s→ ±∞ holds with some constant C > 0 (cf. [8, p. 492, (A. 34)]).

To transform the integral in (5.3) we apply

Lemma 3

Let z and w be complex variables with 0 < Re z < Rew. Then the formula

(5.4)
1

(w − z)m
=

1
2πi

∫
(ρ0)

Γ (z + r)Γ (m+ r)Γ (w)Γ (−r)
Γ (z)Γ (m)Γ (w +m+ r)

eπirdr

holds for any integer m ≥ 1, where ρ0 is a constant satisfying max(−Re z,−m) < ρ0 <

0 and (ρ0) denotes the vertical straight line from ρ0 − i∞ to ρ0 + i∞.

Proof. Let θ be a real number with |θ| < π. Then a Mellin-Barnes formula for Gauss’
hypergeometric function 2F1 (cf. [5, p. 62, 2.1.3(15)]) gives

2F1(z,m;w +m;−eiθ) =
1

2πi

∫
(ρ0)

Γ (z + r)Γ (m+ r)Γ (w +m)Γ (−r)
Γ (z)Γ (m)Γ (w +m+ r)

eiθrdr.

By continuity we may let θ → π − 0 in this equality, provided Re z < Rew, since the
integrand is of order O(e−(π−|θ|)| Im r|| Im r|Re z−Re w−1) as Im r → ±∞. The limit of
the left side can be evaluated by Gauss’ summation formula

2F1(α, β; γ; 1) =
Γ (γ)Γ (γ − α− β)
Γ (γ − α)Γ (γ − β)

for Re γ > Reβ > 0 and Re(γ − α− β) > 0 (cf. [5, p. 61, 2.1.3(14)] ), which implies

2F1(z,m;w +m; 1) =
(w)m

(w − z)m
,

by Γ (s+m) = (s)mΓ (s). The assertion therefore follows. �
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We suppose at this stage that Reu > 1 and Re v < 1. Then the path C in (5.3)
can be taken as a straight line (c0), where c0 is a constant satisfying −Reu < c0 <

min(−1, 1 − Re(u + v)). Under this choice of c0, it is possible to take b0 such as
max(−Reu − c0,−m) < b0 < 0. We substitute (5.4) with z = u + s, w = 1 − v and
ρ0 = b0 into the right side of (5.3) to obtain

(5.5)

g̃m(u, v;x, λ)

=
1

2πi

∫
(c0)

Γ (−s)
Γ (u)

ζλ(−s)xm−u−v−s

× 1
2πi

∫
(b0)

Γ (u+ s+ r)Γ (m+ r)Γ (1− v)Γ (−r)
Γ (m)Γ (1− v +m+ r)

eπirdrds,

where, by the choice of c0, the condition 0 < Re(u + s) < Re(1 − v) of Lemma 3 is
fulfilled on the path Re s = c0. To invert the order of the integrals on the right side of
(5.5), we temporarily restrict ourselves to the case Re(u+ v) < 1/2; Fubini’s theorem
can then be applied (see Section 8 for the details) to give

(5.6)
g̃m(u, v;x, λ) =

1
2πi

∫
(b0)

Γ (u+ r)Γ (m+ r)Γ (1− v)Γ (−r)
Γ (u)Γ (m)Γ (1− v +m+ r)

eπir

× xm+r−ve(λ)φ(u+ r, 1 + x, λ)dr,

where the resulting inner s-integral is evaluated by Lemma 4 below. We note that
(5.6) is now valid for Reu > 1, Re v < 1 and Re(u+ v) < 1 by analytic continuation,
since the integrand is of order O(| Im r|Re(u+v)−2) as Im r → ±∞.

Lemma 4

For any complex w with Rew > 1, and any real x and λ with x > 0 it follows

that

(5.7)
1

2πi

∫
(σ0)

Γ (w + s)Γ (−s)
Γ (w)

ζλ(−s)x−sds = xwe(λ)φ(w, 1 + x, λ),

where σ0 is a constant satisfying −Rew < σ0 < −1.

Proof. We substitute the series expression ζλ(−s) =
∑∞

l=1 e(λl)l
s for Re s = c0(< −1)

into the left side of (5.7), and then perform the term-by-term integration, which is
legitimate by absolute convergence. Each resulting term can be evaluated by the
Mellin-Barnes formula

(1− z)−α =
1

2πi

∫
(σ)

Γ (α+ s)Γ (−s)
Γ (α)

(−z)sds

for −Reα < σ < 0 and | arg(−z)| < π (cf. [31, p. 289, 14.51, Corollary]), which shows
that the left side of (5.7) equals to xw times

(5.8)
∞∑
l=1

e(λl)(l + x)−w = e(λ)φ(w, 1 + x, λ).

Lemma 4 is proved. �

Let N be any positive integer, and bN the constant satisfying N − 1 < bN <

N . Then we can move the path of integration in (5.6) from (b0) to (bN ), provided
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Re(u + v) < 1, since the integrand for Re r ≥ b0 is of order O(| Im r|Re(u+v)−2) as
Im r → ±∞. We collect the residues of the poles at r = n (n = 0, 1, . . . , N − 1) to
obtain

(5.9) g̃m(u, v;x, λ) = Sm,N (u, v;x, λ) + Tm,N (u, v;x, λ),

where Sm,N (u, v;x, λ) is defined by (2.6) and

Tm,N (u, v;x, λ) =
1

2πi

∫
(bN )

Γ (u+ r)Γ (m+ r)Γ (1− v)Γ (−r)
Γ (u)Γ (m)Γ (1− v +m+ r)

eπir

× xm+r−ve(λ)φ(u+ r, 1 + x, λ)dr.

The last integral is further transformed by substituting the series expression (5.8) and
integrating term-by-term, provided Re(u + v) < 1. Then each term in the resulting
expression can be evaluated by changing the variable r = N + s, upon noting Γ (1 +
N + s)Γ (−N − s) = (−1)NΓ (1 + s)Γ (−s), and then by using

1
2πi

∫
(bN−N)

Γ (u+N + s)Γ (m+N + s)(−1)NΓ (1 + s)Γ (−s)
Γ (1− v +m+N + s)Γ (1 +N + s)

( eπix

l + x

)N+s
ds

=
( x

l + x

)N Γ (u+N)Γ (m+N)
Γ (1− v +m+N)Γ (1 +N)

× 3F2

(
u+N, 1,m+N ; 1− v +m+N, 1 +N ;

x

l + x

)
,

where 3F2 denotes the generalized hypergeometric function (cf. [5, p. 202, 5.1(2)]).
The last equality is derived by letting −z → eπix/(l+x) in the Mellin-Barnes formula

Γ (α)Γ (β)Γ (γ)
Γ (δ)Γ (ε) 3F2(α, β, γ; δ, ε; z)

=
1

2πi

∫
(σ)

Γ (α+ s)Γ (β + s)Γ (γ + s)Γ (−s)
Γ (δ + s)Γ (ε+ s)

(−z)sds

for | arg(−z)| < π and max(−Reα,−Reβ,−Re γ) < σ < 0 (cf. [5, p. 207, 5.3(1);
p. 215, 5.6(1)]). We therefore obtain

(5.10)

Tm,N (u, v;x, λ)

= xm+N−v (u)N (m)N

(1− v)m+NN !

∞∑
l=1

e(λl)
(l + x)u+N

× 3F2

(
u+N, 1,m+N ; 1− v +m+N, 1 +N ;

x

l + x

)
.

This is continued to a meromorphic function of (u, v) in the region Reu > 1−N and
any v, because the last infinite series converges absolutely for Reu > 1 − N and any
v 6= 1+m+N +n (n = 0, 1, . . .) by the fact that x/(l+x) → 0 as l→∞, and so that

3F2

(
u+N, 1,m+N ; 1− v +m+N, 1 +N ;

x

l + x

)
∼ 1

by the defining series of 3F2 (see [5, p. 202, 5.1(2)]).
It is in fact possible to reduce 3F2 in (5.10) to a simpler 2F1 by the following

lemma.
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Lemma 5

For any complex α, β, γ and δ with γ, δ 6= −n (n = 0, 1, . . .), and for any integer
k ≥ 0 we have

(5.11) 3F2(α, β, δ + k; γ, δ; z) =
1

(δ)k

( ∂

∂w

)k
wδ+k−1

2F1(α, β; γ; zw)
∣∣∣∣
w=1

.

Proof. For all non-negative integers k and n it is seen that

(δ + k)n

(δ)n
=
Γ (δ + k + n)Γ (δ)
Γ (δ + k)Γ (δ + n)

=
(δ + n)k

(δ)k
,

and hence from (∂/∂w)kwδ+k−1+n = (δ + n)kw
δ−1+n the identity

w1−δ

(δ)k

( ∂

∂w

)k
wδ+k−1(zw)n =

(δ + k)n

(δ)n
(zw)n

is valid for any k, n ≥ 0. Multiplying both sides by (α)n(β)n/(γ)nn! and summing up
over n = 0, 1, . . ., we obtain

w1−δ

(δ)k

( ∂

∂w

)k
wδ+k−1

2F1(α, β; γ; zw) = 3F2(α, β, δ + k; γ, δ; zw)

for |zw| < 1, and the assertion follows. �

We apply (5.11) with k = m − 1, δ = 1 + N , z = x/(l + x) and w = 1 + ξ to
rewrite (5.10) as

(5.12)

Tm,N (u, v;x, λ)

=
xm+N−v

(m− 1)!
(u)N

(1− v)m+N

∞∑
l=1

e(λl)
(l + x)u+N

( ∂

∂ξ

)m−1
(1 + ξ)m+N−1

× 2F1

(
u+N, 1; 1− v +m+N ;

x(1 + ξ)
l + x

)∣∣∣∣
ξ=0

.

The right side is further transformed by substituting

2F1

(
u+N, 1; 1− v +m+N ;

x(1 + ξ)
l + x

)
= (−v +m+N)

∫ 1

0
(1− η)−v+m+N−1

(
1− x(1 + ξ)η

l + x

)−u−N
dη

= (−v +m+N)
(l + x)u+N

(l − xξ)u+v−m

∫ ∞

l

(y − xξ)u+v−m−1

(y + x)u+N
dy

for any x > 0, l ≥ 1 and |ξ| < l/x, where the integrals converge absolutely for
Re v < m+N . Here the first equality is derived by Euler’s formula

2F1(α, β; γ; z) =
Γ (γ)

Γ (β)Γ (γ − β)

∫ 1

0
ηβ−1(1− η)γ−β−1(1− zη)−αdη

for Re γ > Reβ > 0 and |z| < 1, while the second by changing the variable η =
(y − l)/(y − xξ) in the first, upon noting the relations 1 − η = (l − xξ)/(y − xξ) and
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l + x− x(1 + ξ)η = (1− η)(y + x). We therefore obtain

(5.13)

Tm,N (u, v;x, λ) =
xm+N−v

(m− 1)!
(u)N

(1− v)m+N−1

×
∞∑
l=1

e(λl)
( ∂

∂ξ

)m−1 (1 + ξ)m+N−1

(l − xξ)u+v−m
f̃l,m,N (u, v;x, ξ)

∣∣∣∣
ξ=0

with

(5.14) f̃l,m,N (u, v;x, ξ) =
∫ ∞

l

(y − xξ)u+v−m−1

(y + x)u+N
dy,

where the infinite series in (5.13) converges absolutely for Reu > 1 − N and Re v <
m+N , since the estimate

( ∂

∂ξ

)j1 1
(l − xξ)u+v−m

( ∂

∂ξ

)j2
f̃l,m,N (u, v;x, ξ)

∣∣∣∣
ξ=0

� lm−Re(u+v)−j1

∫ ∞

l
y−Re v−m−N−j2−1dy � l−Re u−N−j1−j2

as l → ∞ holds for all j1, j2 ≥ 0. The assertions (2.4)–(2.7) of Theorem 1 are thus
concluded from (5.2), (5.9), (5.13) and the corresponding results for g̃m(v, u;x,−λ),
upon noting that f0,l,m,N is defined by (5.16) below with K = 0. Furthermore, it is
seen from the repeated integration by parts (K-times) that

(5.15)

f̃l,m,N (u, v;x, ξ)

=
K∑

k=1

(−1)k−1(m+ 1− u− v)k−1

(u+N − 1) · · · (n+N − k)
(l − xξ)u+v−m−k

(l + x)u+N−k

+
(−1)K(m+ 1− u− v)K

(u+N − 1) · · · (u+N −K)
f̃l,m,N (u−K, v;x, ξ),

and this with (5.13) yields the assertions (2.8)–(2.10), upon noting (u)N/(u + N −
1) · · · (u+N − k) = (u)N−k for k ≥ 0, defining dk,l,m,N (u;x) by (2.9) and

(5.16) fK,l,m,N (u, v;x) =
( ∂

∂ξ

)m−1 (1 + ξ)m+N−1

(l − xξ)u+v−m
f̃l,m,N (u−K, v;x, ξ)

∣∣∣∣
ξ=0

.

It is in fact possible to interpret the integration process above from a point of view of
hypergeometric functions. The repeated use of a contiguity relation

(β − α)(1− z)2F1(α, β; γ; z) = (γ − α)2F1(α− 1, β; γ; z)− (γ − β)2F1(α, β − 1; γ; z)

(cf. [5, p. 103, 2.8(37)]) yields the identity
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(5.17)

(u)N

(1− v)m+N
2F1

(
u+N, 1; 1− v +m+N ;

x(1 + ξ)
l + x

)
=

K∑
k=1

(−1)k−1(m+ 1− u− v)k−1(u)N−k

(1− v)m+N−1

( l + x

l − xξ

)k

+
(−1)K(m+ 1− u− v)K(u)N−K

(1− v)m+N

( l + x

l − xξ

)K

× 2F1

(
u+N −K, 1; 1− v +m+N ;

x(1 + ξ)
l + x

)
,

which is equivalent to (5.15). A direct substitution of (5.17) into the right side of (5.12)
again implies the assertions (2.8) and (2.9). The proof of Theorem 1 is complete. �

6. Proof of Corollaries 1.1–1.7

We proceed to prove Corollaries 1.1–1.7.

Proof of Corollary 1.1. For the proof we first show the estimate

(6.1) Tm,N (u, v;x, λ) � NRe(u+v)−1
( x

1 + x

)N

for Reu > 1−N , Re v < m+N , (0 <)a ≤ x ≤ a+m−1 and any real λ, where, also in
the proof of Corollary 1, the implied �-constants are irrelevant to l and N . This with
the estimate for Tm,N (v, u;x,−λ) immediately yields the assertion by letting N →∞
in (2.4).

It follows from (5.14) and (5.16) with K = 0 that

f0,l,m,N (u, v;x) �
∑

j1+j2+j3=m−1

j1,j2,j3≥0

(m+N − 1) · · · (m+N − j1)xj2 lm−Re(u+v)−j2

×
( ∂

∂ξ

)j3
f̃l,m,N (u, v;x, 0)

� Nm−1lm−Re(u+v)(l + x)Re v−m−N ,

where the term under differentiation above was estimated as

�
∫ ∞

l

xj3yRe(u+v)−m−1−j3

(y + x)Re u+N
�

∫ ∞

l
(y + x)Re v−m−N−1−j3dy � (l + x)Re v−m−N−j3 ,

upon noting that 1 � a ≤ x ≤ a+m−1 � 1 and y+x� y � y+x for 1 ≤ l ≤ y <∞.
We hence obtain

∞∑
l=1

e(λl)f0,l,m,N (u, v;x) �
∞∑
l=1

Nm−1lm−Re(u+v)(l + x)Re v−m−N

� Nm−1
∞∑
l=1

(l + x)−Re u−N � Nm−1(1 + x)1−Re u−N ,
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since l + x � l � l + x for l ≥ 1. The required estimate (6.1) therefore follows from
(2.7), by combining this bound with (u)N/(1 − v)m+N−1 � NRe(u+v)−m for N ≥ 1.
Corollary 1.1 is proved. �

Proofs of Corollaries 1.2 and 1.3. We first set u = σ + it and v = σ − it in (2.4) and
(2.8) to obtain the assertions (2.14) and (2.15) respectively. Then it remains to show
(2.16) to prove Corollary 1.2. The first and the third estimates are immediate by the
definition of Pochhammer’s symbol, while the second follows from, by (2.9),

(6.2) dk,l,m,N (σ + it;x) � (l + x)−σ−N+kl−k � l−σ−N

for l ≥ 1, where, also in the proof of Corollary 1.2, the implied �-constants are
irrelevant to l and t. Moreover, the case K = 1 of (5.15) with u replaced by u − K

gives

f̃l,m,N (u−K, v;x, ξ) =
1

u+N −K − 1
(l − xξ)u+v−m−K−1

(l + x)u+N−K−1

− m+ 1− u− v +K

u+N −K − 1
f̃l,m,N (u−K − 1, v;x, ξ),

from which the equality

fK,l,m,N (σ + it, σ − it;x) =
1

σ + it+N −K − 1
dK+1,l,m,N (σ + it;x)

− m+ 1− 2σ +K

σ + it+N −K − 1
fK+1,l,m,N (σ + it, σ − it;x)

follows by (2.9) and (5.16). Here the first term on the right side is estimated as
� |t|−1l−σ−N by (6.2), while fK+1,l,m,N in the second term, by (5.14) and (5.16), as

�
∑

j1+j2+j3=m−1

j1,j2,j3≥0

|(m− 2σ) · · · (m− 2σ − j2 + 1)|lm−2σ−j2

×
∫ ∞

l

|(2σ −m−K − 2) · · · (2σ −m−K − 1− j3)|y2σ−m−K−2−j3

(y + x)σ+N−K−1
dy

� lm−2σ

∫ ∞

l
yσ−m−N−1dy � l−σ−N

for σ < m+N and l ≥ 1; these bounds show that fK,l,m,N (σ+it, σ−it;x) � |t|−1l−σ−N ,
and this implies the fourth estimate in (2.16) for 1 −N < σ < m +N . Corollary 1.2
is thus proved. Corollary 1.3 is derived by letting N → ∞ in (2.14). The proofs are
complete. �

Proofs of Corollaries 1.4 and 1.5. For the proofs we first prepare

Lemma 6

For any integer m ≥ 1 and any a > 0 we have

(6.3)
m−1∑
j=0

(−1)m−1−j

(
m− 1
j

)
(a+ j)ν+m−1 =

{
0 if ν = −1, . . . ,−m+ 1,
(m− 1)! if ν = 0.

Proof. The induction on m shows that the left side of (6.3) is equal to
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(ν + 1) · · · (ν +m− 1)
∫ 1

0
· · ·

∫ 1

0
(a+ x1 + · · ·+ xm−1)νdx1 · · · dxm−1,

which immediately implies the assertion. �

To prove Corollary 1.4, we set σ = 1/2 + δ with a small δ in (2.14), and compute
its limiting form as δ → 0. Since

1
(−2δ)m

=
Γ (1− 2δ)

Γ (m− 2δ)(−2δ)
= Γ (m)−1

{
− 1

2
δ−1 − γ0 − ψ(m) +O(δ)

}
,

and
m−1∑
j=0

(−1)m−1−j

(
m− 1
j

)
(a+ j)m−1−2δ = (m− 1)!{1− 2Cm,m(a)δ +O(δ2)}

by (6.3) and (2.18), the first term on the light side of (2.14) is

(6.4)
1
2
δ−1 + γ0 + ψ(m)− Cm,m(a) +O(δ) (δ → 0).

On the other hand, noting
Γ (1/2 + it− δ)
Γ (1/2 + it+ δ)

= 1− 2ψ
(1

2
+ it

)
δ +O(δ2),

form (2.5) we have

(6.5)
R

(1
2

+ it+ δ,
1
2
− it+ δ;λ

)
=

1
2
ζλ(0)δ−1 − ζλ(0)

{
γ0 + ψ

(1
2

+ it
)}

+ ζ ′λ(0) +O(δ).

The assertion (2.19) of Corollary 1.4 is thus concluded by combining (6.4) with (6.5),
because ψ(m) =

∑m−1
j=1 1/j − γ0,

ζλ(0) =

{
−1/2 if λ ∈ Z,
(−1 + i cotπλ)/2 otherwise

(cf. [15, (2.8) and (7.6)]), and the terms Sm,N and Tm,N are continuous when 1−N <

σ < m+N and |t| ≥ 1.
We next set σ = 1 + δ with a small δ in (2.14) to prove Corollary 1.5. If m ≥ 2,

we have
1

(−1− 2δ)m
=

Γ (1− 2δ)
Γ (m− 1− 2δ)(−2δ)(−1− 2δ)

=
1
2
Γ (m− 1)−1{δ−1 +O(1)}

and
m−1∑
j=0

(−1)m−1−j

(
m− 1
j

)
(a+ j)m−2−2δ = −2(m− 2)!Cm,m−1(a){δ +O(δ2)}

by (6.3) and (2.18), and hence the first term on the right side of (2.14) is

(6.6) Cm,m−1(a) +O(δ) (δ → 0),

with the excluded case m = 1 being incorporated. On the other hand, noting (2.20)
and

Γ (it− δ)
Γ (1 + it+ δ)

=
1
it

{
1−

(
2ψ(1 + it)− 1

it

)
δ +O(δ2)

}
,
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from (2.5) we have

(6.7)
R(1 + it+ δ, 1− it+ δ;λ) =

1
it

{1
2
γ−1(λ)δ−1 + γ0(λ)− γ0γ−1(λ)

− γ−1(λ)
(
ψ(1 + it)− 1

2it

)
+O(δ)

}
.

The assertion (2.23) is thus concluded by combining (6.6) with (6.7), upon noting
(2.21) and (2.22). Corollaries 1.4 and 1.5 are proved. �

Proofs of Corollaries 1.6 and 1.7. We first prove Corollary 1.6 by letting a → +0 in
(2.4). On the right side of (2.4), the term with j = 0 in the first sum vanishes when
a → +0 by the condition Re(u + v) < m. Next since φ(u + n, 1 + x, λ) = O(1) and
fK,l,m,N (u, v;x) = O(l−Re v−N ), we see that the term with the index n in (2.6) is of
order O(xm+n−Re v) and Tm,N (u, v;x, λ) = O(xm+N−Re v) as x→ +0. Hence the terms
with j = 0 in the second sum on the right side of (2.4) also vanish by the conditions
Reu < m and Re v < m. We therefore conclude (2.24). Formulae (2.26) and (2.27)
are immediate by letting a → +0 in (2.19) and (2.23) respectively, upon noting that
lima→+0Cm,n(a) = C∗

m,n for m,n ≥ 2. The proofs are complete. �

7. Proofs of Theorems 2, 3 and their corollaries

We first proceed to prove Theorem 2 and their corollaries. In order to take multiple
summation of both sides of (4.2), we need

Lemma 7
Let a and λ be real parameters with a > 0. Then for any positive integers m and

q the relation

(7.1)
q−1∑
r1=0

· · ·
q−1∑

rm=0

ζ
(
w,

a

qm
+
r1
q

+ · · ·+ rm
qm

)
= qmwζ(w, a)

holds for any complex w 6= 1.

Proof. Since r =
∑m

j=1 rjq
m−j with rj ∈ {0, 1, . . . , q − 1} is the unique qm-adic repre-

sentation of an integer r ∈ {0, 1, . . . , qm− 1}, we find that the left side of (7.1) reduces
to

qm−1∑
r=0

ζ
(
w,
a+ r

qm

)
=

qm−1∑
r=0

∞∑
n=0

(
n+

a+ r

qm

)−w
(Rew > 1),

which is further modified into the right side of (7.1). The assertion therefore follows
from the analytic continuation. �

Applying this lemma to (4.1) and (4.2), from (3.1) we obtain

(7.2)
Îm(u, v; a, λ; q) = qm(u+v−1)ζ(u+ v, a) +R(u, v;λ) +R(v, u;−λ)

+ ĝ(u, v; a, λ; qm) + ĝ(v, u; a,−λ; qm)

for Reu > 1 and Re v > 1, where

(7.3) ĝ(u, v; a, λ; qm) =
1

2πi

∫
C

Γ (u+ s)Γ (−s)
Γ (u)

ζλ(−s)ζ(u+ v + s, a)qm(u+v+s−1)ds,
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and ĝ(v, u; a,−λ; qm) is similarly defined. Note that the case m = 1 and a = 1 of (7.3)
was studied in [9, Section 5]; the same treatment as there by path moving is applied
to the present case, and this yields that

(7.4) ĝ(u, v; a, λ; qm) = ŜN (u, v; a, λ; qm) + T̂N (u, v; a, λ; qm),

where ŜN is defined by (3.4) and

(7.5)
T̂N (u, v; a, λ; qm)

=
1

2πi

∫
(cN )

Γ (u+ s)Γ (−s)
Γ (u)

ζλ(−s)ζ(u+ v + s, a)qm(u+v+s−1)ds.

Here the restriction on (u, v) above can now be relaxed to Reu > 1−N and Re v < 1+
N , and then the constant cN in (7.5) is taken with −Reu−N < cN < min(−1,−Reu−
N + 1, 1 − Re(u + v)), by which the path (cN ) separates the (possible) poles of the
integrand at s = −u − n (n = N,N + 1, . . .) from the poles at s = 1− u − v, −1 + n

(n = 0, 1, . . .) and −u − n (n = 0, 1, . . . , N − 1). The assertions (3.3) and (3.4) thus
follow from (7.2)–(7.4). A further path moving in (7.5) form (cN ) to (cN+1) shows

T̂N (u, v; a, λ; qm) =
(−1)N (u)N

N !
ζλ(u+N)ζ(v −N, a)qm(v−N−1)

+ T̂N+1(u, v; a, λ; qm),

which implies (3.5), since the estimate T̂N+1(u, v; a, λ; qm) � qm{Re(u+v)+cN+1−1} holds
with cN+1 < −Reu−N . The proof of Theorem 2 is complete. �

Proof of Corollary 2.1. Formula (3.6) follows by setting u = σ + it and v = σ − it in
(3.3). The same method as in [11, Section 4], where the case m = 1, a = 1 and λ ∈ Z
of (7.5) is treated, is also applicable to the present case; a suitable modification of the
path (cN ) have to be made according to the vertical bounds of the integrand (see [11,
Lemma]), and the estimate (3.7) is concluded. Corollary 2.1 is thus proved. �

Proof of Corollary 2.2. Formula (3.8) is obtained by letting σ → 1/2 in (3.6), upon
noting (6.5) and

ζ(1 + 2δ, a) =
1
2
δ−1 − ψ(a) +O(δ)

as δ → 0 (cf. [5, p. 26, 1.10(9)]), while Formula (3.9) by letting σ → 1 in (3.6), upon
noting (6.7), (2.21) and (2.22). �

We finally proceed to prove Theorem 3 and its corollaries. For the proof of The-
orem 3, note first from (3.2) that

H(u, v; a, λ; q) =
∫ 1

0
Î1(u, v; a+ x, λ; q)dx.

We therefore replace a by a+x in (7.2) and (7.3) with m = 1, and integrate both sides
with respect to x over [0, 1] to obtain, by (5.1) and (5.3) with m = 1, that

H(u, v; a, λ; q) = −(a/q)1−u−v

1− u− v
+R(u, v;λ) +R(v, u;−λ)

− g̃1

(
u, v;

a

q
, λ

)
− g̃1

(
v, u;

a

q
,−λ

)
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for Reu > 1 and Re v > 1. This formula shows that the remaining analysis reduces
precisely to that of the case m = 1 and x = a/q of (5.3). The assertion (3.10) therefore
follows. Furthermore, as shown in the proof of Corollary 1.6, the term with the index
n on the right side of (2.6) (with m = 1 and x = a/q) is of order O{(a/q)1+n−Re v} as
a/q → +0, and also the estimate (3.11) holds. The proof of Theorem 3 is complete. �

Proof of Corollary 3.1. Formula (3.12) is immediate by setting u = σ+it and v = σ−it
in (3.10). The computations of the limiting forms as σ → 1/2 and σ → 1 of (3.12)
reduce precisely to those for Corollaries 1.4 and 1.5, respectively, with m = 1 and a/q
in place of a. �

8. A supplementary argument

The purpose of this section is to show that the inversion of the order of the integrals
in (5.5) is justified by Fubini’s theorem under the conditions Reu > 1, Re v < 1 and
Re(u+ v) < 1/2. For this the following lemma plays a key rôle.

Lemma 8
Let α, β and T be real parameters with α > 0 and β > 0. Then the estimate

(8.1)
∫ ∞

−∞
|Γ (α+ i(T + t))Γ (β − it)|dt� (|T |+ 1)α+βe−π|T |/2

holds for any T , where the implied �-constant depends on α and β.

Proof. We first note that the vertical estimates

(8.2) (|t|+ 1)σ−1/2e−π|t|/2 � Γ (σ + it) � (|t|+ 1)σ−1/2e−π|t|/2

hold for σ > 0 and any t ∈ R, with the implied �-constants depend on σ (cf. [8,
p. 492, (A.34)]). Suppose temporarily that T ≥ 2. We estimate the integral I in (8.1),
say, by dividing I =

∑5
j=1 Ij , where

I1 =
∫ −T−1

−∞
, I2 =

∫ −T+1

−T−1
, I3 =

∫ −1

−T+1
, I4 =

∫ 1

−1
, I5 =

∫ ∞

1
.

Using the upper bound in (8.2), we can show that

I1, I2 � T β−1/2e−πT/2; I3 � Tα+βe−πT/2; I4, I5 � Tα−1/2e−πT/2.

The assertion therefore follows for T ≥ 2, while the case T ≤ −2 is reduced to the
preceding case by the reflection principle. The remaining case |T | ≤ 2 is trivial. �

To justify the inversion, it suffices to show the absolute convergence of the double
integral

(8.3)
∫

(b0)

Γ (m+ r)Γ (−r)eπir

Γ (1− v +m+ r)

∫
(c0)

Γ (u+ r + s)Γ (−s)ζλ(−s)xm−u−v−sdsdr.

We write r = b0 + iτ and s = c0 + it. Noting the inequality ζλ(−s)xm−u−v−s � 1 on
the path Re s = c0(< −1), we see that the inner s-integral is estimated, by (8.1), as

� (| Imu+ τ |+ 1)Re u+b0e−π| Im u+τ |/2 � (|τ |+ 1)Re u+b0e−π|τ |/2,



82 Katsurada

for any τ ∈ R, upon noting Reu+b0+c0 > 0 and−c0 > 0. Moreover, the gamma factors
which are irrelevant to s are estimated, by (8.2), as � (|τ | + 1)Re v−b0−3/2e−π|τ |/2−πτ

for any τ ∈ R, upon noting m + b0 > 0, −b0 > 0 and 1 − Re v + m + b0 > 0. The
double integral in (8.3) is therefore bounded as

�
∫ ∞

−∞
(|τ |+ 1)Re(u+v)−3/2e−π(|τ |+τ)dτ < +∞,

provided Re(u+ v) < 1/2. This establishes the required change.
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E. Manstavǐcius and V. Stak̇enas, eds.), VSP(Utrecht)/TEV(Vilnius), 1997, 119–134.

20. M. Katsurada and K. Matsumoto, Explicit formulas and asymptotic expansions for certain mean
square of Hurwitz zeta-functions III,Compositio Math.131(2002), 239–266.



Mellin-Barnes type integrals to the mean square of Lerch zeta-functions II 83

21. D. Klusch, Asymptotic equalities for the Lipschitz-Lerch zeta-function,Arch. Math. (Basel)49
(1987), 38–43.

22. D. Klusch, A hybrid version of a theorem of Atkinson,Rev. Roumaine Math. Pures Appl.34(1989),
721–728.

23. J.F. Koksma and C.G. Lekkerkerker, A mean value theorem forζ(s,w), Indagationes Math.14
(1952), 446–452.

24. M. Lerch, Note sur la fonctionK(w,x,s)=
P

n≥0 exp{2πinx}(n+w)−s, Acta Math.11 (1887), 19–24.

25. M. Mikolás, Mellinsche transformation und orthogonalität beiζ(s,u), Verallgemeinerung der Rie-
mannschen functionalgleichung vonζ(s), Acta Sci. Math. Szeged17 (1956), 143–164.

26. M. Mikolás, Integral formulae of arithmetical characteristics relating to the zeta-function of Hurwitz,
Publ. Math. Debrecen5 (1957), 44–53.

27. Y. Motohashi, Spectral mean values of Maass waveformL-functions,J. Number Theory42 (1992),
258–284.

28. Y. Motohashi, An explicit formula for the fourth power mean of the Riemann zeta-function,Acta
Math.170(1993), 181–220.

29. V.V. Rane, On Hurwitz zeta-function,Math. Ann.264(1983), 147–151.
30. R. Sitaramachandrarao, A mean value theorem for Hurwitz zeta-function, preprint.
31. E.T. Whittaker and G.N. Watson,A course of Modern Analysis,4th ed., Cambridge University

Press, Cambridge, 1927.
32. W.P. Zhang, On the mean square value formula of the Lerch zeta-function,Adv. in Math. (China)

22 (1993), 367–369.
33. W.P. Zhang, On the mean square value of the Hurwitz zeta-function,Illinois J. Math.38 (1994),

71–78.


