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Abstract

We study the structure of Lipschitz and Hölder-type spaces and their preduals on
general metric spaces, and give applications to the uniform structure of Banach
spaces. In particular we resolve a problem of Weaver who asks whether ifM is
a compact metric space and0 < α < 1, it is always true the space of Hölder
continuous functions of classα is isomorphic to`∞. We show that, on the
contrary, ifM is a compact convex subset of a Hilbert space this isomorphism
holds if and only ifM is finite-dimensional. We also study the (related) problem
of when a quotient mapQ:Y → X between two Banach spaces admits a section
which is uniformly continuous on the unit ball ofX.

1. Introduction and description of results

This paper continues the ideas developed in [19]. Let M = (M,d) be a metric space,
with a designated origin (or special point) 0. We denote by Lip(M) the space of all
real-valued Lipschitz functions on M for which f(0) = 0 under the standard Lipschitz
norm,

‖f‖Lip = sup
{
|f(x)− f(y)|

d(x, y)
: x 6= y

}
.

The underlying idea of [19] is to study the Lipschitz structure of a metric space M
(in particular the Lipschitz structure of a Banach space) by understanding the Banach
space geometry of the associated space Lip(M) of real-valued Lipschitz functions and
of its canonical predual F(M), which we termed the free-Lipschitz space on M . This
space is also known as the Arens-Eells space in [48]. The key property of the free-
Lipschitz space F(M) is that a Lipschitz map L : M1 → M2 admits a linearization
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L̂ : F(M1) → F(M2) (whose adjoint is the natural composition f → f ◦L (Lip(M2) →
Lip(M1)). For precise definitions we refer to § 3.

In this paper we are motivated by the problem of understanding uniform homeo-
morphisms between Banach spaces or subsets of Banach spaces. In order to consider
problems of this type it is necessary to consider changes of metric on the underly-
ing space M. Thus if (M,d) is a metric space (with d as the given metric space) we
consider (M,ω ◦ d) where ω is any subadditive function ω : [0,∞) → [0,∞) which
satisfies limt→0 ω(t) = ω(0) = 0. In this case we write Lipω(M) = Lip(M,ω ◦ d)
and Fω(M) = F(M,ω ◦ d). Of particular importance is the choice ω(t) = tα where
0 < α < 1, which is related to the behavior of Hölder continuous maps on M. Re-
placing (M,d) by (M,dα) is sometimes called snowflaking (see e.g. [20]). We denote
the corresponding free space F(M,dα) by F (α)(M), and the corresponding Lipschitz
space Lip(α)(M).

As it turns out, we feel that there is an interesting interplay, between nonlinear
Banach space theory ([7]) and the linear theory of Lipschitz spaces and their preduals.
Let us give an example. The basic theory of spaces of Lipschitz functions and their
preduals is treated in the recent book of Weaver [48]. Although Weaver’s motivation
is to study Lipschitz algebras, he also treats the basic linear structure in some detail.
Of particular interest is the situation when (M,d) is a compact metric space. In this
case, if 0 < α < 1, F (α)(M) is itself the dual of the so-called little Lipschitz space of
all f ∈ Lipα(M) such that

lim
ε→0

sup
{
|f(x)− f(y)|

d(x, y)
: 0 < d(x, y) < ε

}
= 0.

In the special case when M is subspace of Rn (with the standard Euclidean metric)
then an old result of Bonic, Frampton and Tromba [9] (corrected in [48]) asserts that
lip(α)(M) is isomorphic to c0. Weaver asks whether such a result holds for all compact
metric spaces. We will answer this question negatively; in fact, for example, if M is
a compact convex subset of a Hilbert space, then lip(α)(M) is isomorphic to c0 if and
only if M is finite-dimensional (and, indeed, much more general results of this type are
obtained). The technique used to obtain these theorems itself leads to new questions
about the nonlinear structure of Banach spaces, as we explain below.

Let us now describe the paper and its contents. In § 2 we simply gather together
some Banach space preliminaries. In § 3 we similarly gather together known results
about metric spaces and their associated free spaces. In § 4 we study some basic
properties of F(M) and Fω(M) for arbitrary metric spaces. The most important
result here is that if limt→0 ω(t)/t = ∞ then Fω(M) is a Schur space (Theorem 4.6).

In § 5 we apply these results to the study of uniform homeomorphisms between
Banach spaces, in a very similar spirit to the results of [19] for Lipschitz homeomor-
phisms. The key idea is that if X is a Banach space and ω(t) = t for t ≥ 1 then there
is a natural quotient map (the barycentric map) β : Fω(X) → X. Thus one has a short
exact sequence

(1.1) 0 −→ kerβ −→ Fω(X) −→ X −→ 0.
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This sequence splits in a nonlinear sense. Precisely, there is a section δ : X → Fω(X)
of β which assigns to each x ∈ X the corresponding point-evaluation δ(x) ∈ Fω(X) ⊂
Lipω(X)∗. This section has modulus of continuity ω. Using this idea it is easy to
construct many examples of pairs of non-isomorphic separable Banach spaces (X,Y )
which are uniformly homeomorphic with modulus of continuity of the homeomorphism
and its inverse controlled by ω (subject only to limt→0 ω(t)/t = ∞). There are many
known examples of such pairs ([7], [45], [23]) but the approach here is quite different.
We also give applications to nets in Banach spaces.

In § 6, we consider compact metric spaces and Weaver’s problem as described
above, and review and extend the known results. The main new results are that
if M is compact and 0 < α < 1 then lip(α)(M) embeds almost isometrically into
c0 (Theorem 6.6) and an example of a compact metric space failing finite Assouad
dimension for which lip(α)(M) is isomorphic to c0.

We now observe that if ω(t) = t for t ≥ 1 then (1.1) can be modified to

(1.2) 0 −→ kerβ −→ Fω(BX) −→ X −→ 0,

where BX is the unit ball of X. In this case the section δ is uniformly continuous
on BX . Thus to understand the structure of Fω(BX) it becomes useful to understand
when a quotient map Q : Y → X can admit a section which is uniformly continuous
on the ball. (Let us remark here that if Q admits a section which is homogeneous
and uniformly continuous on the entire space then the section is already Lipschitz and
this reduces to the problem considered in [19].) In § 7 this problem is considered for
the case when Y is an L1−space and X = `2; it is shown that in this case no such
uniformly continuous section exists. An immediate deduction is that Fω(B`2) cannot
be a L1−space (and, in particular, is not isomorphic to `1.)

In § 8 we answer Weaver’s question by showing that if K is a compact convex
subset of `2 and is infinite-dimensional then F (α)(K) cannot be isomorphic to `1;
the idea is to show such an isomorphism would imply that F (α)(B`2) is a L1−space
and use the results of the previous section. In fact we prove much more general
results. We conjecture that if K is an infinite-dimensional compact convex subset of
any Banach space X then F (α)(K) cannot be isomorphic to `1 (and hence lip(α)(K) is
not isomorphic to c0 and Lip(α)(K) is not isomorphic to `∞.) We prove this if 0 < α ≤ 1

2

or if X has nontrivial Rademacher type or under certain approximation assumptions
(see Theorems 8.4, 8.5 and 8.8). There are several interesting questions we could not
resolve related to completing this theorem; for example it would be nice to have a good
estimate of the extension constant for functions of Hölder class α when 1

2 < α < 1
from a metric space into a Euclidean space of dimension n. See § 11.

In § 9 we introduce some terminology and study an approximation problem which
seems interesting (but which raises questions we are unable to resolve). If M is a
metric space, we say that M has the uniform compact approximation property (ucap)
if there is an equi-uniformly continuous sequence of maps ϕn : M → M each with
compact range so that limn→∞ ϕn(x) = x for x ∈M. We are particularly interested in
the case when M is a closed bounded convex subset of a Banach space, especially the
case of the closed unit ball. We do not know of any example of a separable Banach
space X for which BX fails (ucap).
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In § 10 we return to the question of the existence of uniformly continuous sections
relative to the ball for a quotient map Q : Y → X. This is motivated by the results of
§ 7; it is natural to ask for which separable Banach spaces X the quotient Q : `1 → X

(which is essentially unique) admits a uniformly continuous section on the ball. Our
main result concerns the construction of a global section when sections exists locally;
in particular, we have in mind the situation when a quotient map Q splits locally (i.e.
kerQ is locally complemented). A rather complete result which characterizes those
spaces where such a construction is always possible, is given in Theorem 10.5. We
should then that if X = L1 or if X is the quotient of L1 by a reflexive subspace then
the quotient map Q : `1 → X admits a uniformly continuous selection on the ball.
We give applications to the uniform classification of the unit balls of Banach spaces.
Similar results could be given for spheres although we note that Problem 9.14 of [7]
asks whether the sphere is always uniformly homeomorphic to the ball.

We are very grateful to Gilles Godefroy and the referee of the paper for many
helpful comments.

2. Banach space preliminaries

In this section we will gather together some basic facts from classical Banach space
theory which will be used later. Most of the material can be found in [32], [49] or [15].

In this paper all Banach spaces will be real. If X is a Banach space we denote its
closed unit ball by BX and the surface of the ball by ∂BX . Recall that the Banach-
Mazur distance dBM (X,Y ) between two Banach spaces is defined by

dBM (X,Y ) = inf
{
‖T‖‖T−1‖ : T is an isomorphism of X onto Y

}
.

If X and Y are linearly isomorphic we write X ≈ Y.

Let us recall that a separable Banach space X is a Lp−space where 1 ≤ p ≤ ∞
if there is an increasing sequence of finite-dimensional subspaces (En) whose union is
dense and such that the Banach-Mazur distances dBM (En, `dimEn

p ) are bounded, i.e.

sup dBM (En, `dimEn
p ) <∞.

Let us recall that a separable Banach space X has bounded approximation prop-
erty (BAP) if there is a sequence of finite-rank operators Tn : X → X such that
limn→∞ Tnx = x for every x ∈ X; if we can take ‖Tn‖ ≤ λ we say X has λ-(BAP). If
λ = 1 then we say that X has the metric approximation property (MAP). If S : X → Y

is any operator we shall say that S is approximable if there is a sequence of finite-rank
operators Tn so that limn→∞ Tnx = Sx for x ∈ X.

It is well-known that if X is a separable dual space and X has (BAP) (or even just
the approximation property) then X has (MAP). We require a routine generalization
of this fact.

Proposition 2.1

Suppose X and Y are separable dual spaces. If S : X → Y is approximable and

is weak∗-continuous then there is a sequence of finite-rank operators T̃n : X → Y with

‖T̃n‖ ≤ ‖S‖ and limn→∞ T̃nx = Sx for x ∈ X.
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Proof. Denote by X∗ and Y∗ the preduals of X and Y . Let Tn : X → Y be a sequence
of bounded finite-rank operators such that limn→∞ Tnx = Sx for x ∈ X. Let Fn
be an increasing sequence of finite-dimensional subspaces of X whose union is dense.
By the Principal of Local Reflexivity (see [49]) for each n there is a linear operator
Vn : T ∗n(Y ∗) → X∗ with ‖Vn‖ ≤ 2 and 〈x, T ∗ny∗〉 = 〈x, VnT ∗ny∗〉 for x ∈ Fn and y∗ ∈ Y ∗.

Since VnT ∗n : Y∗ → X∗ is weak∗-continuous and VnT ∗n(Y ∗) ⊂ X∗ it follows that if we let
R̃n : Y∗ → X∗ be its restriction then R̃∗∗n = VnT

∗
n . Then 〈R̃∗nx, y∗〉 = 〈Tnx, y∗〉 if x ∈ Fn

and y ∈ Y ∗. It follows that R̃∗nx → Sx weakly for x ∈ X; by passing to sequence of
convex combinations (using Mazur’s theorem and the separability of X) we can find a
sequence Rn : Y∗ → X∗ such that R∗nx→ Sx strongly for x ∈ X.

Consider the space K(Y∗, X∗) of all compact operators from Y∗ to X∗. Then
K(Y∗, X∗) embeds isometrically into the space C(BX ×BY ∗) where BX and BY ∗ have
the weak∗-topologies via the embedding K → fK where fK(x, y∗) = 〈K∗x, y∗〉. Then
fRn is a bounded pointwise convergent sequence which converges to fS . Hence fRn is
weakly Cauchy and converges in C(BX × BY ∗)∗∗ to the Borel function fS(x, y∗) =
〈Sx, y∗〉 regarded as an element of the bidual. Hence by using Goldstine’s theorem we
can find a sequence of convex combinations Wn so that W ∗

nx→ Sx strongly for x ∈ X
and ‖fWn‖ ≤ ‖fS‖ + n−1. Thus ‖Wn‖ ≤ ‖S‖ + n−1 and the Proposition follows, by
taking T̃n = cnWn for a suitable sequence cn → 1. �

Let us recall by the Open Mapping Theorem that any bounded linear operator
S : Y → X which is surjective is open and hence one can equip Y with an equivalent
norm so that S becomes a quotient map.

Now suppose Q : Y → X is a quotient map. A section of Q is a map (not
necessarily linear or continuous) ϕ : X → Y such that Q ◦ϕ = IdX . Q induces a short
exact sequence

0 −→ kerQ −→ Y −→ X −→ 0.
This short exact sequence splits if kerQ is complemented in Y or (equivalently) there
is a bounded linear section of Q; it is convenient to say then that Q splits.

We shall say that Q locally splits if the dual sequence

0 −→ X∗ −→ Y ∗ −→ (kerQ)⊥ −→ 0

splits. We recall that E is a locally complemented subspace of Y if E⊥ is comple-
mented in Y ∗ by some bounded projection P. Thus Q locally splits if kerQ is locally
complemented.

The following is a simple consequence of the Principle of Local Reflexivity:

Lemma 2.2

Suppose E is a closed subspace of Y . The following are equivalent:

(1) There is a bounded projection P : Y ∗ → E⊥ with ‖P‖ ≤ λ.

(2) If F is a finite-dimensional subspace of Y/E then for every ε > 0 there is a

bounded linear operator TF,ε : F → Y with ‖T‖ < λ+ ε and QT = IdF .

Proof. (1) implies (2). One version of the Principle of Local Reflexivity ([14]) asserts
that L(F, Y )∗∗ can be identified with L(F, Y ∗∗). Let T0 : F → Y satisfy QT0 = IdF .

Let H be the closed subspace of all T so that QT = 0. Consider P ∗ as a linear
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operator from (Y/E)∗∗ to Y ∗∗. Then it is easy to show by bipolars that P ∗|F − T0

is in the weak∗-closure of H and so P ∗ is in the weak∗-closure of T0 + H. Since P ∗

is also in the weak∗-closure in L(F, Y ∗∗) of ‖P‖BL(F,Y ) it follows that there exists
T ∈ (T0 +H) ∩ (‖P‖+ 1

2ε)BL(F,Y ).

In other direction consider T ∗F,ε : Y ∗ → F ∗. By the Hahn-Banach theorem we can
define a nonlinear map ϕF,ε : Y ∗ → E⊥ so that ϕF,ε(y∗)(f) = 〈TF f, y∗〉 for f ∈ F and
‖ϕF (y∗)‖ ≤ λ‖y∗‖. Regarding (ϕF,ε)F,ε as a net in the space of all functions from Y ∗

to X∗ (where X∗ has the weak∗-topology) we can find a cluster point P . It is easy to
verify that P is bounded projection of Y ∗ onto E⊥ with ‖P‖ ≤ λ. �

It follows that if Q : Y → X locally splits then there exists λ so that for every
finite-dimensional subspace F of X and ε > 0 the quotient Q|Q−1(F ) admits a bounded
linear section S with ‖S‖ < λ+ ε.

Any separable Banach space X is a quotient of `1. The elegant Lindenstrauss-
Rosenthal theorem asserts that the surjection of `1 onto X is essentially unique:

Theorem 2.3 [31]

Let X be a separable Banach space not isomorphic to `1. Let S1, S2 : `1 → X be

two bounded linear surjections. Then there is a automorphism T : `1 → `1 so that

S2 = S1T.

If X is infinite-dimensional and separable then the quotient map Q : `1 → X splits
if and only if X is isomorphic to `1 and locally splits if and only if X is a L1−space
(the latter is clear since it is necessary and sufficient that X∗ is isomorphic to `∞).

We will also need the Johnson-Zippin space C1 [25]. This is defined by taking any
sequence (En) of finite-dimensional Banach spaces which is dense for Banach-Mazur
distance in the collection of all finite-dimensional Banach spaces and consider their
`1−sum `1(En). The space C1 is unique up to almost isometry (i.e. does not depend
on the choice of (En)).

Theorem 2.4

Let X be a separable Banach space. The following conditions on X are equivalent.

(1) Whenever Q : Y → X is a quotient map which locally splits then Q splits.

(2) X is isomorphic to a complemented subspace of C1.

Proof. If (1) holds let (Fn) be an increasing sequence of finite-dimensional subspaces
of X whose union is dense. Consider the quotient map Q : `1(Fn) → X defined by
Q(fn)∞n=1 =

∑∞
n=1 fn. It is trivial to check that Q locally splits. Hence X is isomorphic

to a complemented subspace of `1(Fn) and hence to a complemented subspace of C1.

Conversely let X be a complemented subspace of C1 = `1(En) by a projection P ,
and suppose Q : Y → X is a quotient map which locally splits. For each n we can find
a bounded operator Tn : En → Y with supn ‖Tn‖ < ∞ so that QTne = P (ẽ) where
ẽ is the sequence with e in the nth position and zero elsewhere. Then T : C1 → Y

defined by T (en) =
∑∞

n=1 Tnen satisfies QT = P and in particular T |X is a section of
Q. �



Spaces of Lipschitz and Hölder functions and their applications 177

Let us also recall that a linear operator T : X → Y is called 2-absolutely summing
if there is a constant C so that if x1, · · · , xn ∈ X we have( n∑

k=1

‖Txk‖2
)1/2

≤ C sup
‖x∗‖≤1

( n∑
k=1

|x∗(xk)|2
)1/2

.

The least such constant C is denoted π2(T ). Let us recall the Pietsch Factorization
Theorem [15]:

Theorem 2.5

Let T : X → Y be 2-absolutely summing. Then there is a probability measure µ

on BX∗ (with its weak∗-topology) such that

‖Tx‖ ≤ π2(T )
( ∫

BX∗
|x∗(x)|2dµ(x∗)

)1/2
x ∈ X.

The celebrated Grothendieck inequality gives the following [30], [15].

Theorem 2.6

Let X be an L1-space or an L∞−space. Then every bounded operator T : X → `2
is 2-absolutely summing.

Let us also recall some facts from the isometric theory of Banach spaces. A Banach
space X is called stable if whenever (xn), (yn) are two sequences in X then, provided
all limits exist,

lim
n→∞

lim
m→∞

‖xn + ym‖ = lim
m→∞

lim
n→∞

‖xn + ym‖.
Finally we will need some facts from the so-called concentration of measure phe-

nomenon and the local theory of Banach spaces. First let σn denoted normalized
surface measure on ∂B`n2 .

Theorem 2.7 ([34] p. 5)

Let A ⊂ ∂B`n2 satisfy σn(A) ≥ 1
2 . Let [A]ε = {ξ ∈ ∂B`n2 : d(ξ, A) ≤ ε}. Then

σn([A]ε) ≥ 1−
√

π
8 e

− ε2n
2 .

The concentration of measure phenomenon is used to prove Dvoretzky’s theo-
rem which asserts that every infinite-dimensional Banach space X contains finite-
dimensional subspaces En with dBM (En, `n2 ) → 1. For good Banach spaces these sub-
spaces can be made well-complemented. We recall that X has nontrivial Rademacher
type if for some p > 1 if there is a constant C so that(

E
∥∥ m∑
k=1

εkxk
∥∥p )1/p

≤ C
( m∑
k=1

‖xk‖p
)1/p

x1, · · · , xm ∈ X.

Here (εk)mk=1 indicates a sequence of independent Rademacher random variables.
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Theorem 2.8 [18], [34]

Suppose X is an infinite-dimensional Banach space with nontrivial type. Then X

has a sequence of subspaces En and projections Pn : X → En so that supn dBM (En, `n2 ) <
∞ and supn ‖Pn‖ <∞.

We shall require a local quantitative version of this theorem, without assuming
type.

Theorem 2.9

There are absolute constants c, C with the following property. Let X be an n-

dimensional Banach space. Let b be the least constant so that we have both( n∑
k=1

‖xk‖2
)1/2

≤ b
(
E

∥∥ n∑
k=1

gkxk
∥∥2

)1/2
x1, · · · , xn ∈ X

and ( n∑
k=1

‖x∗k‖2
)1/2

≤ b
(
E

∥∥ n∑
k=1

gkx
∗
k

∥∥2
)1/2

x∗1, · · · , x∗n ∈ X∗

where g1, · · · , gn is a sequence of independent normalized Gaussians. Then there exists

k ≥ cb−2n and linear operators U : `k2 → X and V : X → `k2 with V U = Id`k2
and

‖U‖‖V ‖ ≤ C(1 + log n).

Proof. Let us recall that if H is a finite-dimensional Hilbert space and S : H → X is
any linear operator then we define the `−norm of S by

`(S) =
(
E

∥∥ m∑
k=1

gkSek
∥∥2

)1/2

where (ek)mk=1 is any orthonormal basis of H. We can then choose an isomorphism
S : `n2 → X with `(S)`((S−1)∗) ≤ C0n(1 + log n) where C0 is an absolute constant
(see [43] p. 37). Now by Corollary 15.8 (p. 111) of [34] we can find a subspace E of `n2
with dimE ≥ cb−2n and so that ‖S|E‖‖(S−1)∗|E‖ ≤ 4C0(1 + log n). Let U = S|E and
let V : X → E be such that V ∗ = (S−1)∗|E . Then V U = IdE and we are done. �

3. Metric spaces

We now discuss metric spaces and their associated Lipschitz spaces. A good reference
for much of this material is the recent book of Weaver [48], although his treatment is
slightly different.

In this paper we will always consider pointed metric spaces. A pointed metric
space is a metric space (M,d) with a distinguished point (the origin) which we always
denote by 0. In most of our examples M is a subset of a Banach X and the origin is
the origin of the Banach space. The assumption of an origin is a convenience to avoid
considering spaces of Lipschitz functions modulo constants, and the particular choice
of origin does not affect the theory substantially.
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If A is a subset of M we denote by [A]ε its ε−neighborhood, i.e.

[A]ε = {x ∈M : d(x,A) ≤ ε}.
The radius R of M is defined by

R = sup {d(x, 0) : x ∈M}.
We denote by Lip(M) the space of all real-valued Lipschitz functions f : M → R

with f(0) = 0 under the norm

‖f‖Lip = sup
{
|f(x)− f(y)|

d(x, y)
; x, y ∈ X, x 6= y

}
.

The little Lipschitz space lip(M) is the subspace of Lip(M) of all functions such that

lim
ε→0

sup
{
|f(x)− f(y)|

d(x, y)
; x, y ∈ X, x 6= y, d(x, y) < ε

}
= 0.

In general lip(M) can reduce to {0}; see Weaver [48] for a discussion of conditions so
that lip(M) is sufficiently rich.

The Lipschitz-free space F(M) = F(M,d) is defined to be the canonical predual
of Lip(M) i.e. the closed linear span of the point evaluations

δM (x)(f) = f(x) x ∈M
in Lip(M)∗. In [48] this space is called the Arens-Eells space; note however, that Weaver
generally deals with bounded metrics or restricts Lipschitz functions to be bounded
(which is essentially equivalent to adding a fictitious origin at distance one from every
point). The map δ = δM : M → F(M) is easily seen to be an isometric embedding. It
is convenient to regard F(M) as the completion of the set of all measures µ of finite
support under the norm

‖µ‖F = sup
{∫

f dµ : ‖f‖Lip ≤ 1
}
.

Lemma 3.1
Let M1 and M2 be pointed metric spaces and suppose L : M1 →M2 is a Lipschitz

map such that L(0) = 0. There exists a unique linear map L̂ : F(M1) → F(M2) such

that L̂δM1 = δM2L, i.e. so the following diagram commutes:

M1
L−→ M2

δM1

y yδM2

F(M1)
L̂−→ F(M2)

Furthermore ‖L̂‖ = ‖L‖Lip

In the special case where M1 ⊂ M2 (and both have the same origin) then the
inclusion ι : M1 →M2 induces a linear isometric embedding ι̂ : F(M1) → F(M2). The
fact this is an isometry follows easily from the fact that Lipschitz function f on M1

can be extended with preservation of norm to M2 by the formula
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f̃(y) = inf {f(x) + ‖f‖Lipd(x, y) : x ∈M1} .
It follows that F(M1) can be regarded as a subspace of F(M2).

If X is a Banach space then there is a natural linear operator β = βX : FX → X

(the barycentric map) so that β ◦ δ(x) = x for x ∈ X; see [19]. If M2 in Lemma 3.1 is
replaced by a Banach space X then composing L̂ with βX gives the following Lemma:

Lemma 3.2
Let X be any Banach space and let M be a pointed metric space. Let L : M → X

be a Lipschitz map with L(0) = 0. Then there is a unique linear map L : F(M) → X

so that LδM = L. Furthermore ‖L‖ = ‖L‖Lip.

We define a gauge to be a function ω : [0,∞) → [0,∞) which is a continuous
increasing subadditive function with ω(0) = 0 and ω(t) ≥ t for 0 ≤ t ≤ 1. We say ω is
normalized if ω(1) = 1 and nontrivial if limt→0 ω(t)/t = ∞. The most natural examples
of normalized nontrivial gauges are ω(t) = tα or ω(t) = max(t, tα) when 0 < α < 1.
For our purposes it will be useful to consider those gauges ω for which ω(t) = t for all
t ≥ 1, which we will term strongly normalized; such gauges do not distort the metric at
large distances and are appropriate for the study of uniform homeomorphisms between
Banach spaces. Any gauge ω is equivalent to a concave gauge ω1.

If (M,d) is a pointed metric space then we can form a new metric by putting
dω = ω ◦ d. We remark that the procedure of replacing the metric d by a metric
dα where 0 < α < 1 is sometimes called snowflaking (see [20]). We then define
Fω(M) = F(M,ω◦d). If ω(t) = tα we write F (α)(M) and if ω(t) = max(t, tα) we write
F [α](M). The dual of Fω(M) is the space Lip(M,ω ◦ d). If ω is non-trivial we refer
to this as the Hölder space Lipω(M). In the special case ω(t) = tα we write Lip(α)(M)
and if ω(t) = max(t, tα) we write Lip[α](M). Note that if M has finite radius the spaces
Lip(α)(M) and Lip[α](M) coincide and have equivalent norms.

Let us note that if ω is strongly normalized then Lip(M) ⊂ Lipω(M) and the
inclusion has norm one. It follows that there is a natural norm-decreasing one-one
injection of Fω(M) into F(M) and it is clear that the range is dense. Hence we can
and do regard Fω(M) as a dense subspace of F(M) when ω is strongly normalized.

If ω is nontrivial the little Lipschitz space associated to dω, lip(M,dω) = lipω(M)
is a nontrivial subspace of Lipω(M) as it contains Lip(M,d). Let us recall that if X is
a Banach space and E is a subspace of X∗ then E is called a-norming where a ≥ 1 if

‖x‖ ≤ a sup
x∗∈BE

|x∗(x)| x ∈ X.

If a = 1 we call E norming. This is equivalent to requiring that BX∗ is contained in the
weak∗-closure of aBE . It is clear that on bounded sets the weak∗-topology on Lip(M)
coincides with the topology of pointwise convergence on M. This remark implies easily:
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Proposition 3.3

In order that a subspace E of Lip(M) be a−norming it is necessary and sufficient

that for any finite subset A of M containing the origin and any f ∈ Lip(A) and ε > 0
there exists g ∈ E with g(x) = f(x) for x ∈ A and ‖g‖Lip(M) ≤ (a+ ε)‖f‖Lip(A).

The following Proposition is essentially contained in Weaver [48]:

Proposition 3.4

If E is a subspace of Lip(M) which is also a sublattice then E is a-norming if

and only if for every x, y ∈ M and ε > 0 there exists f ∈ E with ‖f‖Lip ≤ a + ε and

|f(x)− f(y)| = d(x, y).

Proof. We verify Proposition 3.3. If f ∈ Lip(A) and ‖f‖Lip ≤ 1 then we for every
x, y ∈ A we can find fx,y ∈ E with fx,y(x) = f(x) and fx,y(y) = f(y) and ‖fx,y‖Lip ≤
a+ ε. Let

g = max
x∈A

min
y∈A\x

fx,y.

Then ‖g‖Lip ≤ a+ ε and g|A = f. �

Proposition 3.5

If ω is a nontrivial gauge then lipω(M) is a norming subspace of Lipω(M).

Proof. For each n ∈ N let

ωn(t) = inf{ω(s) + n(t− s) : 0 ≤ s ≤ t}.

Suppose y ∈ M . Then let fn(x) = dωn(x, y) − dωn(x, 0). Clearly fn ∈ Lip(M) ⊂
lipω(M) and ‖fn‖Lipω

≤ 1. For any y ∈ M we have fn(y) − fn(x) → dω(x, y). Now
apply Proposition 3.4. �

Let us discuss the notion of a quotient space in the category of pointed metric
spaces. SupposeM is a (pointed) metric space and A is a closed subset ofM containing
the origin. We define the quotient M/A as the space M \ A ∪ {0} with the metric d′

given by

d′(x, y) =

 min(d(x, y), d(x,A) + d(y,A)) x, y 6= 0

d(x,A) y = 0.
We refer to the discussion in Weaver [48] p. 12 (note that Weaver considers more
general quotients but our restricted definition is a special case). It then follows that
we have a natural short exact sequence

0 −→ F(A) −→ F(M) −→ F(M/A) −→ 0.

Indeed the quotient map from F(M) to F(M/A) is induced by the Lipschitz map

ϕ(x) =

x x /∈ A

0 x ∈ A
.

This follows from Proposition 1.4.3 p. 12 of [48] which identifies isometrically with
Lip(M/A) with F(A)⊥ in Lip(M).
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The quotient construction for pointed metric spaces behaves nicely with respect
to gauges. To be precise if dω = ω ◦ d then it is clear that

ω(d′(x, y)) ≤ d′ω(x, y) ≤ 2ω(d′(x, y)) x, y ∈M/A.

Thus, up to a constant 2, we have that Fω(M)/Fω(A) ≈ Fω(M/A). Let us mention
in this context a recent result of Brudnyi and Shvartsman [10], which we restate using
Lemma 3.2:

Theorem 3.6

Suppose M is a pointed metric space and A is a closed subset containing the

origin. Suppose that X is a Banach space with the property that every bounded

operator T : F(A) → X has a bounded extension T̃ : F(M) → X. Then for every

gauge ω, it is also true that every operator T : Fω(A) → X has a bounded extension

T̃ : Fω(M) → X.

Remark. In [10] the gauge is assumed concave, but it is easy to see that any gauge is
equivalent to a concave gauge.

Corollary 3.7

Suppose A is a closed subset of M containing the origin. Then if F(A) is com-

plemented in F(M) it follows that for every gauge ω, we also have that Fω(A) is

complemented in Fω(M).

Proof. Take X = Fω(A) and use Theorem 3.6. �

4. The structure of Lipschitz and Hölder spaces

We first study the Banach-space structure of Lipschitz and Hölder spaces. If M is an
arbitrary metric space let Mk = {x ∈M : d(x, 0) ≤ 2k} for k ∈ Z.

Lemma 4.1

Suppose r1, r2, · · · , rn, s1, · · · , sn ∈ Z and r1 < s1 < r2 < s2 < · · · < rn < sn.

Suppose γk ∈ F(Msk
\Mrk) for 1 ≤ k ≤ n. Let θ = min1≤k≤n(rk+1 − sk). Then

‖γ1 + · · ·+ γn‖F ≥
2θ − 1
2θ + 1

n∑
k=1

‖γk‖F .

Proof. Pick fk ∈ Lip(M) so that 〈γk, fk〉 = ‖γk‖F and ‖fk‖Lip = 1. We consider the
map g defined on {0} ∪ ∪nk=1(Msk

\Mrk) by

g(x) =

0 if x = 0

fk(x) if x ∈Msk
\Msk−1

.
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If x ∈Msk
\Mrk and y ∈Msj \Mrj where j < k then

|g(x)− g(y)| ≤ d(x, 0) + d(y, 0)

≤ (1 + 2−θ)d(x, 0)

≤ 1 + 2−θ

1− 2−θ
d(x, y).

It follows that we can extend g to some f ∈ Lip(M) with ‖f‖Lip ≤ (2θ + 1)(2θ − 1)−1.

Then

‖γ1 + · · ·+ γk‖F ≥
2θ − 1
2θ + 1

n∑
k=1

〈γk, f〉

and the result follows. �

Now for n ∈ Z let Tn : F(M) → F(M) be the linear operator such that

Tnδ(x) =


0 if x ∈Mn−1

(log2 d(x, 0)− n+ 1)δ(x) if x ∈Mn \Mn−1

(n+ 1− log2 d(x, 0))δ(x) if x ∈Mn+1 \Mn

0 if x /∈Mn+1.

Lemma 4.2

For every γ ∈ F(M) we have γ =
∑

n∈Z Tnγ unconditionally and

(4.1)
∑
n∈Z

‖Tnγ‖F ≤ 72‖γ‖F .

Proof. Let us write Tnδ(x) = ψn(x)δ(x). Then we have (for x, y 6= 0),

|ψn(x)− ψn(y)| ≤
∣∣∣ log2

d(x, 0)
d(y, 0)

∣∣∣.
Hence assuming d(y, 0) ≥ d(x, 0),

‖Tnδ(x)− Tnδ(y)‖F ≤ |ψn(y)|d(x, y) + |ψn(x)− ψn(y)|d(x, 0)

≤ d(x, y) + d(y, 0)− d(x, 0)

≤ 2d(x, y).

Let (an)n∈Z be a finitely nonzero sequence and consider the operator S =∑
n∈Z anTn. Then

‖Sδ(x)− Sδ(y)‖ ≤
( ∑
| log2 d(x,0)−n|<1

+
∑

| log2 d(y,0)−n|<1

)
‖Tnδ(x)− Tnδ(y)‖

so that
‖Sδ(x)− Sδ(y)‖ ≤ 8d(x, y).

It follows that ‖S‖ ≤ 8. It is easy to see that
∑

n∈Z Tnδ(x) converges unconditionally
for all x ∈ M and hence it follows that

∑
n∈Z Tnγ converges unconditionally for all

γ ∈ F(M).
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Now by Lemma 4.1 if r = 0, 1, 2∑
n∈Z

‖T3n+rγ‖ ≤ 3‖
∑
n∈Z

T3n+rγ‖ ≤ 24‖γ‖F .

The Lemma follows quickly. �

The next Proposition uses arguments very similar to those employed in [27] to
obtain almost isometries.

Proposition 4.3

If ε > 0 then the space F(M) is (1 + ε)-isometric to a subspace of `1(F(Mk))k∈Z.

Proof. For each ε > 0 we exhibit an operator S = Sε : F(M) → `1(F(Mk))k∈Z so that
‖γ‖F ≤ ‖Sγ‖ ≤ (1 + ε)‖γ‖F .

Let r,m ∈ Z be chosen so that

2r−1 + 1
2r−1 − 1

(
1 +

73
m− 1

)
< 1 + ε.

For 1 ≤ j ≤ m, let Aj,n be the set {mnr+jr+1,mnr+jr+2, · · · ,mnr+(j+m−1)r}.
Let Vjn : F(M) → F(Mmnr+(j+m−1)r+1) be defined by

Vjnγ =
∑
k∈Aj,n

Tkγ.

We can thus induce a map Wj : F(M) → `1(F(Mk)) by setting Wjγ to be sequence
(νk) where νk = Vjnγ if k = mnr + (j +m− 1)r + 1 and 0 otherwise. Then, applying
Lemma 4.1 to the sequence (Vjnγ)n∈Z,

‖Wjγ‖ =
∑
n∈Z

‖Vjnγ‖F ≤
2r−1 + 1
2r−1 − 1

∥∥∥ ∑
n∈Z

Vjnγ
∥∥∥.

Let Bj be the complement of ∪n∈ Z Aj,n. The sets Bj are pairwise disjoint. Then

‖Wjγ‖ ≤
2r−1 + 1
2r−1 − 1

(
‖γ‖+

∑
n∈Bj

‖Tnγ‖
)
.

Hence summing from j = 1, 2, · · · ,m,
m∑
j=1

‖Wjγ‖ ≤
2r−1 + 1
2r−1 − 1

(m+ 72)‖γ‖.

On the other hand
m∑
j=1

∑
n∈Z

‖Vjnγ‖ ≥ (m− 1)‖γ‖.

We thus define
S : F(M) → Y

where Y is `1-sum of m copies of `1(F(Mk)) by

Sγ =
1

m− 1
(Wjγ)mj=1
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and then

‖γ‖ ≤ ‖Sγ‖ ≤ 2r−1 + 1
2r−1 − 1

(
1 +

73
m− 1

)
‖γ‖.

Since Y isometrically embeds into `1(F(Mk)) we are done. �

Proposition 4.4

Let M be uniformly discrete, i.e. suppose θ = infx 6=y d(x, y) > 0. Then F(M) is

a Schur space with the Radon-Nikodym Property and the approximation property.

Proof. It is easy to see that for f ∈ Lip(Mk) we have, assuming Mk nonempty,

2−k‖f‖∞ ≤ ‖f‖Lip ≤ 2θ−1‖f‖∞.

It follows that F(Mk) is isomorphic to `1. The facts that F(M) is has the Radon-
Nikodym property and the Schur property now follow from Proposition 4.3. Note that
each F(Mk) has the approximation property and hence Lemma 4.2 implies that F(M)
has the approximation property. �

Remarks. Although F(M) embeds (in this case) in an `1−sum of spaces isomorphic
to `1 it, of course does not follow that X embeds into `1. We will see examples below.

We also may ask if F(M) has the (BAP) or even (MAP). This is related to the
unsolved problem of whether `1 in every renorming has the (MAP) (see [11]).

If M is not uniformly discrete then F(M) can fail to be a Schur space (cf. e.g.
[19]). However the following Lemma shows that weakly null sequences are almost
supported on “small” sets.

Let E be a subset of M . For γ ∈ F(M) let us define

D(γ,E) = inf {‖γ − µ‖ : µ ∈ F(E)}.

Let us start by noting that for all γ ∈ F(M) we have

inf {D(γ,E) : |E| <∞} = 0.

It follows without difficulty that if K ⊂ F(M) is relatively compact then

inf
|E|<∞

sup
γ∈K

D(γ,E) = 0.

Now if E ⊂M and δ > 0 we define [E]δ = {y : d(x,E) ≤ δ}.

Lemma 4.5

Suppose M has finite radius R. Suppose (γn)∞n=1 is a weakly null sequence. Then,

for δ > 0,

inf
|E|<∞

sup
n∈N

D(γn, [E]δ) = 0.
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Proof. We first note that it suffices to prove the Lemma under the hypothesis that
each γn is a measure of finite support.

Let us assume the contrary statement, that is there exist δ, ε > 0 so that

inf
|E|<∞

sup
n∈N

D(γn, [E]δ) > ε > 0.

We can assume δ < 1
R . We can then construct a subsequence (µn)n∈N and an increasing

sequence (En)∞n=0 of finite subsets of M with E0 = {0}, so that

D(µn, En−1) > ε, n ≥ 1

and
supp µn ⊂ En.

Now by the Hahn-Banach theorem we can find fn ∈ LipM with ‖fn‖Lip = 1,
fn([En−1]δ) = {0} and

〈µn, fn〉 > ε.

Letting gn = max(fn, 0) or max(−fn, 0) we have ‖gn‖Lip ≤ 1, gn ≥ 0, gn([En−1]δ) =
{0} and

|〈µn, gn〉| >
1
2
ε.

Next let
hn(x) = max{0, sup

y∈supp µn

(gn(y)−Rδ−1d(x, y))}.

Since gn(x) ≤ d(x, 0) ≤ R for all x ∈ E we have hn(x) = 0 if d(x, supp µn) ≥ δ. Clearly
0 ≤ hn ≤ gn so that hn([En−1]δ) = {0}. Furthermore ‖hn‖Lip ≤ Rδ−1. It follows that
the sets {x : hn(x) > 0} are disjoint, and so

∑∞
n=1 hn = supn hn = h ∈ Lip(M) and

‖h‖Lip ≤ Rδ−1. However,

|〈µn, hn〉| = |〈µn, gn〉| > 1
2ε

which gives a contradiction. �

Theorem 4.6

Suppose M is any metric space and ω is a non-trivial gauge. Then Fω(M) is a

Schur space.

Proof. It will suffice to prove this on the assumption that M has finite radius; this
follows from Proposition 4.3. Now suppose γn is a normalized weakly null sequence.
Then by Lemma 4.5 we have

inf
|E|<∞

sup
n∈N

Dω(γn, [E]δ) = 0

whenever δ > 0, where Dω(γ,E) denotes the distance D(γ,E) with respect to the
metric space (M,dω), where dω = ω ◦ d. We will show that for any γ0 ∈ Fω(M) we
have

(4.2) lim inf
n→∞

‖γ0 + γn‖ ≥ ‖γ0‖+ 1
2 .

Suppose ε > 0. We pick f0 ∈ lipω(M) with ‖f0‖Lipω
= 1 and 〈γ0, f0〉 > ‖γ0‖ − ε.

Next pick θ > 0 so that if d(x, y) < θ we have |f0(x) − f0(y)| < εdω(x, y). Pick δ < θ

so that 2ω(δ) < εω(θ). We can then find a finite set E containing {0} so that there
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exists µ0 ∈ Fω(E) with ‖µ0 − γ0‖ < ε and for each n ∈ N we can find µn ∈ Fω([E]δ)
with ‖µn − γn‖Fω < ε.

Notice, since E is finite, that we have

lim inf
n→∞

Dω(γn, E) ≥ 1
2 .

Hence we can find fn ∈ Lipω(M) with fn(E) = {0}, ‖fn‖Lipω
≤ 1 and

lim inf
n→∞

〈γn, fn〉 > 1
2 − ε.

Let gn denote the restriction of f0 + fn to [E]δ. If x, y ∈ [E]δ and d(x, y) < θ then

|gn(x)− gn(y)| ≤ |fn(x)− fn(y)|+ εdω(x, y) ≤ (1 + ε)dω(x, y).

If d(x, y) ≥ θ then we can find u, v ∈ E with d(x, u) ≤ δ, d(y, v) ≤ δ and so

|fn(x)− fn(y)| ≤ 2ω(δ) ≤ εdω(x, y).

Hence
|gn(x)− gn(y)| ≤ (1 + ε)dω(x, y) x, y ∈ E.

Thus, since 〈µ0, fn〉 = 0,

‖µ0 + µn‖ ≥ (1 + ε)−1(〈µ0, f0〉+ 〈µn, fn〉+ 〈µn, f0〉).

Now
〈µ0, f0〉 > ‖γ0‖ − 2ε

and
〈µn, fn〉 > 1

2 − ε.

We also have
lim
n→∞

〈γn, f0〉 = 0

and so
lim sup
n→∞

|〈µn, f0〉| ≤ ε.

Combining we obtain
lim inf
n→∞

‖µ0 + µn‖ ≥ ‖γ0‖+ 1
2 − 4ε

and so
lim inf
n→∞

‖γ0 + γn‖ ≥ ‖γ0‖+ 1
2 − 6ε.

This proves (4.2).
Now (4.2) implies that the sequence (γn) has a subsequence equivalent to the unit

vector basis of `1. This is a routine argument. Indeed we may pick a subsequence (γ′n)
so that ∥∥∥ N∑

k=1

akγ
′
k

∥∥∥ ≥ cN

N∑
k=1

|ak|

where (cN ) is any strictly descending sequence with 1
2 > cN > 1

3 for all N. If
(γ′1, · · · , γ′N ) have been chosen we observe that

lim inf
n→∞

∥∥∥ N∑
k=1

akγ
′
k + tγn

∥∥∥ ≥ ∥∥∥ N∑
k=1

akγ
′
k

∥∥∥ + 1
2 |t|
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uniformly for |t| ≤ 3 and |a1| + · · · + |aN | ≤ 1. Hence we may find γ′N+1 = γn for
suitable n to continue the induction. This of course contradicts our initial hypothesis
that (γn) is weakly null. �

5. Applications to Banach spaces; global results

We now consider applications of some of these ideas to the study of uniform homeomor-
phisms on Banach spaces. We follow the same basic idea as in [19]. If X is a Banach
space, we can consider X as a metric space with metric d(x, y) = ‖x− y‖. In this case,
we recall there is a natural map (the barycentric map) β = βX : F(X) → X induced
by the identity map Id : X → X using Lemma 3.2. It is clear that β is a quotient
map of F(X) onto X. Furthermore δ : X → F(X) is a Lipschitz section of this map
(i.e. βXδX = IdX). If ω is a strongly normalized gauge it is also easy to see that the
restriction of β to Fω(X) remains a quotient map and the map δ : X → Fω(X) is a
uniformly continuous section which satisfies

‖δ(x)− δ(y)‖ = ω(‖x− y‖), x, y ∈ X.

Proposition 5.1
If ω is any strongly normalized gauge, there is a uniformly continuous homeomor-

phism ϕ : kerβ ⊕1 X → Fω(X) such that

(5.1) ‖ϕ(ξ1)− ϕ(ξ2)‖ ≤ 2ω(‖ξ1 − ξ2‖)
and

(5.2) ‖ϕ−1(γ1)− ϕ−1(γ2)‖ ≤ 3ω(‖γ1 − γ2‖).

Proof. We define ϕ(γ, x) = γ + δ(x) so that ϕ−1(γ) = (γ − δ(β(γ)), β(γ)). The
calculations are immediate. �

Combining Theorem 4.6 and Proposition 5.1 gives:

Proposition 5.2
Let X be any Banach space. Then for any nontrivial strongly normalized gauge ω

there is a Schur space Y and a Banach space Z which contains a complemented copy

of X so that Y and Z are uniformly homeomorphic via a uniform homeomorphism

ϕ : Z → Y such that both ϕ and ϕ−1 have modulus of continuity dominated by 3ω.

Of course there are many known examples of pairs of separable Banach spaces
which are uniformly homeomorphic but not linearly isomorphic (see [7] pp. 244–
253, [45], [23], [2]). Let us note also that it follows from Proposition 5.2 by taking
X = C[0, 1] that there is a Schur space U such that every separable Banach space is
uniformly homeomorphic to a closed subset of U . We are grateful to the referee for
this last remark.

We next discuss the uniform analogue of the problem considered in [19]. Let us
say that a Banach space X has the uniform lifting property if whenever Q : Y → X is
a quotient map admitting a uniformly continuous section ϕ : X → Y (with Qϕ = IdX)
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then there is a bounded linear section S : X → Y (with QS = IdX) (or, equivalently
kerQ is complemented) . For the corresponding Lipschitz lifting property it is shown
in [19] that every separable Banach space has the Lipschitz lifting property.

On the other hand, for any strongly normalized gauge ω the quotient map β :
Fω(X) → X admits a uniformly continuous section δ. Proposition 5.2 thus shows that
a Banach space with the uniform lifting property must be a Schur space.

Let us define a property even stronger than the uniform lifting property. We
recall that a subset G of a Banach space X, which we always assume to contain the
origin, is called a net for X if there exist 0 < ε1 < ε2 <∞ so that if x, y ∈ G we have
‖x− y‖ ≥ ε1 while if x ∈ X there exists y ∈ G with ‖x− y‖ ≤ ε2. We shall say that G
is then a (ε1, ε2)-net. It is a result of Lindenstrauss, Matouskova and Preiss (see [29])
that, if X is infinite-dimensional, any two nets are Lipschitz isomorphic.

We shall say that a quotient map Q : Y → X has a net-lifting if there is a net
G ⊂ X and a Lipschitz section ϕ : G → Y (so that Qϕ = IdG). We shall say that X
has the net-lifting property if whenever Q : Y → X is a quotient map with a net-lifting
then there is a bounded linear section S : X → Y (i.e. so that QS = IdX .) It is trivial
to see that if Q has a uniformly continuous section, then the restriction to an arbitrary
net is Lipschitz so the net-lifting property implies the uniform lifting property.

Let us remark first that if there is a Lipschitz section of a quotient map on any
net G then there is also a Lipschitz section on any other net, so that in the above
definition we could fix our choice of G.

Lemma 5.3
Let Q : Y → X be a quotient map. Suppose G,H are nets in X. Suppose there

is a Lipschitz section ϕ : G → Y of Q. Then there is a section ϕ̃ : X → Y satisfying

an estimate

‖ϕ̃(x)− ϕ̃(x′)‖ ≤ C(‖x− x′‖+ 1)
and hence then there is a Lipschitz section ψ : H → Y.

Proof. Suppose G is a (ε1, ε2)−net, and ϕ has Lipschitz constant B. If x ∈ X we pick
x′ ∈ G with ‖x− x′‖ ≤ ε2. Then we can find y ∈ Y with ‖y‖ ≤ 2ε2 and Qy = x− x′.

Define ϕ̃(x) = ϕ(x′) + y.

If x1, x2 ∈ X we define y1, y2, x
′
1, x

′
2 as above. Then

‖ϕ̃(x1)− ϕ̃(x2)‖ ≤ ‖y1 − y2‖+B‖x′1 − x′2‖
≤ 4ε2 +B(‖x1 − x2‖+ 2ε2).

This proves the first part of the statement; we obtain ψ by restricting to H. �

Proposition 5.4
Suppose Q : Y → X is a quotient map with a net-lifting. Then kerQ is locally

complemented in Y.

Proof. We recall that there is a bounded projection P of Lip(X) onto its subspace X∗,
given by Pf(x) = Λ(fx) where fx(ξ) = f(x+ ξ)− f(ξ) and Λ is an invariant mean on
the space Cb(X) of bounded continuous functions on X. Let G be any net in X and
let R : Lip(X) → Lip(G) be the restriction map (which is a quotient map). Note that
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if Rf = 0 then f is bounded and so the functions {fx : x ∈ X} are uniformly bounded
in Cb(X) and so Pf is a bounded function: thus Pf = 0. This means P factors to
a contractive projection PG : Lip(G) → X∗ (where X∗ is identified as a subspace of
Lip(G) by restriction).

Now suppose ϕ : G → Y is a Lipschitz section of Q. Define T : Y ∗ → Lip(G)
by Ty∗ = y∗ ◦ ϕ. Then PGT : Y ∗ → X∗ satisfies PGTQ∗ = IdX∗ so that Q∗(X∗) =
(kerQ)⊥ is complemented in Y ∗. �

It follows that any complemented subspace of C1 has the net-lifting property.
However we shall see that there are other examples.

Theorem 5.5

In order that a Banach space X has the net-lifting property it is necessary and

sufficient that X is isomorphic to a complemented subspace of a space F(M) where

M is a uniformly discrete metric space.

In particular X is a Schur space with the Radon-Nikodym property and the ap-

proximation property.

Proof. We suppose that X is a subspace of F(M) and that P : F(M) → X is a
bounded projection. Let Q : Y → X be any quotient map with a net-lifting. By
Lemma 5.3 we can find a section ϕ of Q with

‖ϕ(ξ1)− ϕ(ξ2)‖ ≤ C(‖ξ1 − ξ2‖+ 1) ξ1, ξ2 ∈ X.

Then, since M is uniformly discrete, there is a Lipschitz map ψ : M → Y defined by
ψ(x) = ϕ(Pδ(x)). By Lemma 3.1 there is a bounded linear map L : F(M) → F(Y )
so that L(δ(x)) = δ(ψ(x)). Consider the quotient βY : F(Y ) → Y. Then βY L(δ(x)) =
ψ(x) and so QβY L(δ(x)) = Pδ(x). Hence QβY L = P and so βY L|X is a bounded
linear section of Q.

The converse is easy. Let G be any net in X; then the quotient βX : F(G) → X

admits a net-lifting. Hence X is isomorphic to a complemented subspace of F(G).
The final remarks follow from Proposition 4.4. �

We can now give a simple example of a space which has the net-lifting property
but is not isomorphic to a subspace of the Johnson-Zippin space C1. Our argument is
related to ideas of [44].

Example 5.6: Let G be the integer lattice net in c0 (i.e. G is the space of all (mn)∞n=1 ⊂
ZN which are finitely nonzero equipped with the standard sup-norm metric. We claim
that F(G) is not isomorphic to a subspace of C1. Indeed, the proof is standard since
G cannot be Lipschitz embedded in a stable space. Let fn = e1 + · · ·+ en where (ek)
are the standard basis vectors. Then

lim
n1→∞

lim
m1→∞

· · · lim
nk→∞

lim
mk→∞

∥∥∥ k∑
j=1

fnj −
k∑
j=1

fmj

∥∥∥
∞

= 1

but

lim
n1→∞

lim
n2→∞

· · · lim
nk→∞

lim
m1→∞

· · · lim
mk→∞

∥∥∥ k∑
j=1

fnj −
k∑
j=1

fmj

∥∥∥
∞

= k.
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Now suppose ϕ : G→ Y is a Lipschitz map where Y is stable and ϕ(0) = 0. Then

lim
n1→∞

lim
m1→∞

· · · lim
nk→∞

lim
mk→∞

∥∥∥ϕ( k∑
j=1

fnj −
k∑
j=1

fmj

) ∥∥∥ ≤ K

where K is the Lipschitz constant of ϕ. Thus

lim
n1→∞

lim
n2→∞

· · · lim
nk→∞

lim
m1→∞

· · · lim
mk→∞

∥∥∥ϕ( k∑
j=1

fnj −
k∑
j=1

fmj

) ∥∥∥ ≤ K.

In particular, ϕ cannot be a Lipschitz embedding.

We remark that it is not clear what conditions on a uniformly discrete metric
space imply that it embeds into C1.

6. Duality

In [48] (see also [47]), Weaver uses similar results to Propositions 3.4 and 3.5 to study
conditions when, for M compact, one has lip(M)∗ = F(M). His results (Theorem 3.3.3
and Corollary 3.3.5 of [48]) extend earlier duality results for Hölder classes; see [4], [21]
and [22]). This gives the following duality theorem:

Theorem 6.1

Let M be a compact pointed metric space. Then lip(M) is a predual of F(M)
if and only if lip(M) is a-norming for some a ≥ 1. In particular let ω be a nontrivial

gauge. Then lipω(M)∗ = Fω(M) and lipω(M)∗∗ = Lipω(M).

We will now give a generalization of this result. If τ is some topology on M weaker
than the original topology we denote by Cτ (M) the τ−continuous functions on M.

Theorem 6.2

Let M be a separable complete pointed metric space of finite radius R. Suppose

τ is a metrizable topology on M so that (M, τ) is compact and for every x, y ∈M and

ε > 0 there exists f ∈ lip(M) ∩ Cτ (M) with ‖f‖Lip ≤ 1 and f(y)− f(x) ≥ d(x, y)− ε.

Then the space lip(M) ∩ Cτ (M) is a predual of F(M).

Proof. First we notice that by Proposition 3.4, the subspace lip(M) ∩ Cτ (M) is a
norming subspace of F(M)∗.

Suppose φ ∈ (lip(M)∩Cτ (M))∗. Let K be the subset of (M, τ)× (M, τ)× [0, 2R]
consisting of all (x, y, t) so that t ≥ d(x, y). We show that K is a closed and hence
compact subset. Suppose (xn, yn, tn) ∈ K converges to (x, y, t). Suppose ε > 0; pick
f ∈ lip(M)∩Cτ (M) with ‖f‖Lip ≤ 1 and f(y)−f(x) > d(x, y)−ε. Then f(yn)−f(xn) ≤
d(xn, yn) ≤ tn and so f(y) − f(x) ≤ t. Since ε > 0 is arbitrary this means that
t ≥ d(x, y) and so (x, y, t) ∈ K.

Note that we have essentially proved that the metric d is lower semi-continuous
with respect to the topology τ × τ. It follows that each set of the form [y]ε = {x :
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d(x, y) ≤ ε} is τ−closed. Since M is separable this implies that the identity map
i : (M, τ) →M is Borel.

We define a linear map S : lip(M) ∩ Cτ (M) → C(K) by

Sf(x, y, t) =

t
−1(f(y)− f(x)) t > 0

0 t = 0.

One can easily see that S is an isometry. Hence there exists a Borel measure µ on K

with ‖µ‖ = ‖φ‖ and such that

φ(f) =
∫
K
Sf dµ.

Clearly µ(K0) = 0 if K0 = {(x, y, 0) ∈ K}. Now the map (x, y, t) → t−1(δ(y)− δ(x)) is
Borel from K \K0 into F(M) (since the identity i : (M, τ) → M is Borel). It follows
that the integral ∫

K\K0

δ(y)− δ(x)
t

dµ(x, y, t)

converges as a Bochner integral to some γ in F(M) Hence

φ(f) = 〈γ, f〉 f ∈ lip(M) ∩ Cτ (M).

Since lip(M) ∩ Cτ (M) is norming this shows it is a predual. �

The main application here is to the case when K is a weakly compact subset of a
separable Banach space. The following Proposition is then immediate:

Proposition 6.3

Suppose ω is a nontrivial gauge. Suppose X is a Banach space which is a separable

dual. Let K be a weak∗ compact set, containing the origin. Let lipω,∗(K) denote the

subspace of lipω(K) of all weak∗-continuous functions. Then lipω,∗(K) is a predual of

Fω(K) and thus Fω(K) is a separable dual space.

We may note here as an example that if X is a separable dual space then so is
Fω(BX) (when ω is a nontrivial gauge) and hence Fω(X) has the Radon-Nikodym
property by applying Proposition 4.3.

In the special case whenM is a compact subset of Rn (and hence ifM is a compact
subset of a finite-dimensional normed space) one can go much further and identify the
space lip(M). This result is due to Bonic, Frampton and Tromba (see [9], [48]):

Theorem 6.4

Let M be a compact subset of a finite-dimensional normed space. Then for 0 <
α < 1 the space lip(α)(M) is isomorphic to c0 and hence Lip(α)(M) is isomorphic to

`∞ and F (α)(M) is isomorphic to `1.
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We remark that it is of some interest to determine good estimates on the Banach-
Mazur distance dBM (lip(α)(M), c0) in terms of dimension and the geometry of the
norm.

Let us recall that a metric space (M,d) satisfies the doubling condition ([20] p. 81)
(or has finite Assouad dimension) if there is a integer N so that for any δ > 0 so that
any closed ball B of radius δ can be covered by most N balls of radius δ/2. It is
a theorem of Assouad [3] that if (M,d) satisfies the doubling condition then every
snowflaking (M,dα) with 0 < α < 1 Lipschitz embeds in Rn for some n. Hence we can
restate Theorem 6.4 as:

Theorem 6.5

Let M be a compact metric space satisfying the doubling condition. Then for

0 < α < 1 the space lip(α)(M) is isomorphic to c0 and hence Lip(α)(M) is isomorphic

to `∞ and F (α)(M) is isomorphic to `1.

The question is raised in Weaver [48] p. 98 whether this isomorphism can be
extended to any compact metric space. We will answer this question later (see e.g.
Theorem 8.3). Let us first give a weaker conclusion. The following result is known and
the author is grateful to Yoav Benyamini for showing us the simple proof. Note that
in the statement we do not exclude the possibility that lip(M) reduces to {0}.

Theorem 6.6

Suppose M is a compact metric space. Then for any ε > 0, lip(M) is (1 +
ε)−isometric to a subspace of c0.

Proof. We may suppose ε < 1. Consider M ×M with the metric

d′((x1, x2), (y1, y2)) = max(d(x1, y1), d(x2, y2)).

For n ∈ Z choose a finite 2n−3ε-net Fn in the compact set {(x1, x2) : 2n ≤ d(x1, x2) ≤
2n+1} so that Fn is empty for large enough n. Then F = ∪n∈ZFn is countable. Define
the map T : X → c0(F ) by

Tf(x1, x2) =
f(x1)− f(x2)
d(x1, x2)

.

Thus ‖T‖ ≤ 1. On the other hand if y1 6= y2 we may find n so that 2n ≤ d(y1, y2) ≤
2n+1 and then (x1, x2) ∈ Fn with d(x1, y1), d(x2, y2) ≤ 2n−3ε. Hence

d(x1, x2) ≥ d(y1, y2)− 2n−2ε ≥ d(y1, y2)
(
1− 1

4
ε
)
.

Now for any f ∈ lip(M),∣∣∣∣f(y1)− f(y2)
d(y1, y2)

∣∣∣∣ ≤ ∣∣∣∣f(x1)− f(x2)
d(y1, y2)

∣∣∣∣ +
1
4
ε‖f‖Lip

≤ (1 +
1
2
ε)

∣∣∣∣f(x1)− f(x2)
d(x1, x2)

∣∣∣∣ +
1
4
ε‖f‖Lip

≤ (1 + ε)‖Tf‖.

Hence ‖f‖Lip ≤ (1 + ε)‖Tf‖. �
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Remark. In particular this implies that lip(M) is an M-ideal in Lip(M) when M is
compact and lip(M) is a predual of F(M). See [8] for the case when M = [0, 1].

Corollary 6.7
If M is a compact pointed metric space and ω is a nontrivial gauge then the

following are equivalent:

(1) lipω(M) ≈ c0,

(2) Fω(M) ≈ `1,

(3) Lipω(M) ≈ `∞.

Proof. Any of the three statements imply lipω(M) is an L∞−space and hence by
Theorem 6.6 and [25] is isomorphic to c0. The remainder follows by duality. �

Let us remark at this point that it might appear reasonable to conjecture that if
M is compact then Lip(α)(M) ≈ `∞ if and only if M satisfies the doubling condition
(cf. Theorem 6.5). However, this is false as our next result shows:

Proposition 6.8
There is a compact metric space (M,d) failing the doubling condition such that

lipα(M) ≈ c0 (and Lipα(M) ≈ `∞).

Proof. Let M1 be the closed disk 2B2 of radius two in R2 (two-dimensional Euclidean
space). Let A = B2. Then since there is Lipschitz retraction of M1 onto A the short
exact sequence

0 → F (α)(A) → F (α)(M1) → F (α)(M1/A) → 0
splits; furthermore since the induced projection is weak∗-continuous the predual se-
quence

0 → lip(α)(M1/A) → lip(α)(M1) → lip(α)(A) → 0
also splits. Hence using Theorem 6.4 and the fact that c0 is prime, if M = M1/A then
lip(α)(M) ≈ c0. However M fails the doubling condition. Indeed consider the ball of
radius δ around the origin in M ; assume this can be covered by N balls of radius δ/2.
Then it follows easily that the annulus (1 + δ)B2 \ (1 + 1

2δ)B2 can be covered by N

balls of radius δ/2 in M1. However to cover the circle {x : ‖x‖ = 1 + δ} requires at
least 2π(1 + δ)/δ such balls. �

7. Uniform sections of quotients relative to the ball

Let X be a Banach space and let BX be its unit ball. If ω is a strongly normalized
gauge then we can also consider the subspace Fω(BX) of Fω(X). The barycentric
map β : Fω(BX) → X is easily seen to be a quotient map as long as ω is strongly
normalized. This time the section δ is defined only on BX so the quotient map admits
a uniformly continuous section on the ball.

We summarize these remarks as follows:
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Proposition 7.1

If ω is a strongly normalized gauge the barycentric operator β : Fω(X) → X is

a quotient map and δ : BX → Fω(X) is a (nonlinear) map satisfying βδ = IdBX
and

‖δ(x)− δ(y)‖ = ω(‖x− y‖).

In order to answer the question of Weaver we must discuss general conditions
when a quotient map has a uniformly continuous section on the ball.

Let us note first that if Q : X → Y is a quotient map which admits a uniformly
continuous section ϕ : BY → X then it may be assumed that ϕ is homogeneous if
ϕ(ty) = tϕ(y) when y, ty ∈ BY . Indeed, we can replace ϕ by a homogeneous function
ϕ′ by setting ϕ′(x) = 1

2(ϕ(x)− ϕ(−x)) when ‖x‖ = 1 and extending by homogeneity.
Then

‖ϕ′(y1)− ϕ′(y2)‖ ≤ ‖y1 − y2‖+ ‖y1‖ω
( ∥∥∥ y1

‖y1‖
− y2

‖y2‖

∥∥∥)
≤ ‖y1 − y2‖+ 2‖y1‖ω

(‖y1 − y2‖
‖y2‖

)
≤ ‖y1 − y2‖+ 4ω(‖y1 − y2‖)
≤ Cω(‖y1 − y2‖),

for a suitable constant C. Thus it will be convenient to assume each ϕ is already
homogeneous. If necessary ϕ can then be extended to ϕ : Y → X in such a way that
it remains homogeneous and then it is uniformly continuous on bounded sets.

Let us note one simple deduction from the existence of such a section, which will
be useful later.

Proposition 7.2

Let X be a Banach space and let E be a closed subspace. If the quotient map Q :
X → X/E admits a uniformly continuous section then BX is uniformly homeomorphic

to BE ×BX/E .

Proof. This principle is essentially used in Lemma 9.10 of [7] (for spheres rather than
balls). Consider the map x → (x − ϕ(Qx), Qx) from X into E ⊕∞ X/E which is a
homogeneous surjection is a bijection and induces a uniform homeomorphism between
the unit balls. �

We shall particularly be concerned with the spaces F [α](BX) and Lip[α](BX). Note
that is up to equivalence of norm these spaces coincide with F (α)(BX) and Lip(α)(BX)
since BX has radius one (and diameter two). It is however convenient to use a strongly
normalized gauge so that the map β is an isometric quotient map.

Theorem 7.3

Let Y be a stable Banach space and suppose Q : Y → c0 is a quotient map. Then

there is no uniformly continuous map ϕ : Bc0 → Y with Qϕ = IdBc0
.
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Proof. This is essentially due to Raynaud [44] (see also [7] p. 212–215). We simply
observe that there is no uniform embedding of Bc0 into a stable Banach space. �

Remark. We will use this theorem later in the case when Y is a subspace of some
L1−space. For this application, it suffices to use the earlier result of Enflo [16] that
Bc0 cannot be uniformly embedded in `2 (since bounded subsets of L1 uniformly embed
in `2, [7] Chapter 8).

Lemma 7.4

Let X be an arbitrary Banach space and suppose T : X → `n2 where n ≥ 2 be

any surjective linear operator. Let ϕ : B`n2 → X be any continuous map such that

Tϕ = IdB`n
2
. Then if

ωϕ(ε) = sup {‖ϕ(ξ)− ϕ(η)‖ : ‖ξ − η‖ ≤ ε}

and,

M = sup {‖ϕ(ξ)‖ : ‖ξ‖ ≤ 1},
we have

(7.1) π2(T ) ≥ 1

2ω(2
√

log(2Mn‖T‖)
n )

.

Proof. Let us put ε = 2
√

log(Mn‖T‖)
n and σ = ω(ε).

We first note that it suffices to consider the case when ϕ is homogeneous, as noted
above. We use the Pietsch Factorization Theorem (see Theorem 2.5 above). There
exists a probability measure µ on BX∗ such that

‖Tx‖ ≤ π2(T )
( ∫

|x∗(x)|2 dµ(x∗)
)1/2

.

Let λ denote normalized surface measure on the sphere S = {ξ : ‖ξ‖ = 1}.
Then for fixed x∗ the set A = {ξ : x∗(ϕ(ξ)) ≤ 0} has λ− measure at least 1

2 . Let
B = {ξ ∈ S : d(ξ,A) > ε}. Then using the concentration of measure phenomenon (see
Theorem 2.7 above),we have

λ(B) ≤
√
π

8
e−(ε2n)/2.

Hence

λ(|x∗(ϕ)| ≥ σ) ≤
√
π

2
e−(ε2n)/2.

Thus ∫
S
|x∗(ϕ(ξ))|2dλ ≤M2

√
π

2
e−(ε2n)/2 + σ2.

Hence ∫
Ω

∫
S
|x∗(ϕ(ξ))|2dλ(ξ)dµ(x∗) ≤M2

√
π

2
e−(ε2n)/2 + σ2.

Thus

1 ≤ π2(T )2
(
M2

√
π

2
e−(ε2n)/2 + σ2

)
.
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Now let us recall that ε = 2n−1/2
√

log(2M‖T‖n). We obtain

1 ≤ π2(T )2
(1

2
n−2‖T‖−2 + σ2

)
.

Since π2(T ) ≤ n
1
2 ‖T‖ this implies

1 ≤ 1
2

+ π2(T )2σ2

and so π2(T ) ≥ 1
2σ

−1. �

The following Lemma is immediate:

Lemma 7.5

If we consider the quotient β : Fω(B`n2 ) → `n2 then

(7.2) π2(β) ≥ 1

2ω
(
2
√

log(2n)
n

) .
Theorem 7.6

Let X be a L∞-space or a L1-space. Then any quotient map Q : X → `2 fails to

have a uniformly continuous lift on the ball B`2 .

Proof. It is an immediate consequence of Grothendieck’s theorem thatQ is 2-absolutely
summing and so the conclusion follows from Lemma 7.4. �

8. The structure of F (α)(K) and Lip(α)(K) when K is a closed
bounded convex set.

Suppose 0 < α < 1 and K is a closed bounded convex subset of a separable Banach
space. In this section we will show that F (α)(K) is an L1−space or, equivalently,
Lip(α)(K) is isomorphic to `∞ if and only if K is finite-dimensional.

For an arbitrary Banach space X let define γ1(X) to be the infimum of all con-
stants C so that if E is a finite-dimensional subspace of X then there are linear op-
erators S : E → `1 and T : `1 → X such that TS = IdE and ‖T‖‖S‖ ≤ C. Then X

is a L1-space if and only if γ1(X) < ∞. Furthermore if T : X → `2 is bounded than
π2(T ) ≤ KGγ1(X)‖T‖ where KG is the Grothendieck constant.

Based on the last section we can now state the following.

Proposition 8.1

(1) For any gauge ω the space Fω(Bc0) and Fω(B`2) fail to be L1−spaces.

(2)

γ1

(
F (α)(B`n2 )

)
≥ c

nα/2

(log(2n))α/2

for an absolute constant c > 0.
(3) limn→∞ γ1(F (α)(`n∞)) = ∞.
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Proof. (1) Consider the quotient map β : Fω(B`2) → `2. Then δ : B`2 → Fω(B`2) is
a uniformly continuous section. It follows from Theorem 7.6 that Fω(B`2) cannot be
a L1−space. The argument for c0 is similar based on Theorem 7.3 and the fact that
L1−spaces are isomorphic to subspaces of some L1(µ) and are hence isomorphic to
stable spaces.

(2) Note that dBM (F (α)(B`n2 ),F [α](B`n2 )) ≤ 2. Now by Lemma 7.5 (7.2) we have

π2(β : F [α](B`n2 ) → `n2 ) ≥ nα/2

2(log(2n))α/2
.

Hence

γ1(F [α](B`n2 )) ≥ nα/2

2KG(log(2n))α/2
.

(3) This is routine since ∪∞n=1F (α)(B`n∞) is dense in F (α)(Bc0) if we identify `n∞ as
the span of the first n basis vectors. Hence ∞ = γ1(F (α)(Bc0)) ≤ supnk

γ1(F (α)(B`nk∞
))

for any increasing sequence nk. �

Before attempting to refine this result, let us use it to solve the problem posed by
Weaver mentioned after Theorem 6.4. We need the following preparatory Lemma.

Lemma 8.2

Suppose K is a bounded closed convex set in a Banach space X; suppose 0 is an

internal point ofK and that the linear span ofK is dense. Let E be a finite-dimensional

Banach space and suppose S : E → X and T : X → E are bounded operators such

that TS = IdE . Then, if 0 < α ≤ 1, there are operators U : F (α)(BE) → F (α)(K) and

V : F (α)(K) → F (α)(BE) so that V U = IdF(α)(BE) and ‖U‖‖V ‖ ≤ 4‖S‖α‖T‖α.
In particular γ1(F (α)(BE)) ≤ 4‖S‖α‖T‖αγ1(F (α)(K)).

Proof. Since the linear span ofK is dense we can make a small perturbation of S, T , say
S1, T1 so that T1S1 = IdE , ‖S1‖‖T1‖ ≤ 2‖S‖‖T‖ and S1(E) is contained in the linear
span of K. Now since 0 is internal there exists b > 0 so that bS1(BE) ⊂ K. We define
U by UδE(e) = δK(bS1e). Then ‖U‖ ≤ (b‖S1‖)α. Let rE be the Lipschitz retraction
of E onto BE with Lipschitz constant at most 2. Define V by V δK(x) = rE(b−1T1x).
Then ‖V ‖ ≤ (2b−1‖T1‖)α. The last part is clear. �

Now Weaver [48] p. 98 asks whether it is true that for every compact metric
space M one has that lip(α)(M) is isomorphic to c0. This would require that F (α)(M)
is isomorphic to `1. Let us give a very simple family of counterexamples:

Theorem 8.3

Suppose 0 < α < 1. Let K be any bounded closed convex subset of `2 containing

0. Then F (α)(K) is isomorphic to an L1−space if and only if K is finite-dimensional.

In particular if K is compact then lip(α)(K) ≈ c0 if and only if K is finite-dimensional.
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Proof. Lemma 8.2 and Proposition 8.1. �

We will push this result much further by using some Banach space theory. One
application is:

Theorem 8.4

Suppose 0 < α < 1. Let K be any bounded closed convex subset of a Banach

space X containing 0. Suppose X has nontrivial Rademacher type. Then F (α)(K) is

isomorphic to an L1−space (or equivalently Lip(α)(K) is isomorphic to `∞) if and only

if K is finite-dimensional. In particular, if K is compact, lip(α)(K) ≈ c0 if and only if

K is finite-dimensional.

Proof. We need only observe that if X has nontrivial type and is infinite-dimensional
then X contains uniformly complemented `n2 ’s ([34], [18]) and then use Lemma 8.2 and
Proposition 8.1. �

Remark. Assuming X is the closure of the linear span of K, this argument can be
used to show that the result is valid if we merely have a sequence of subspaces En with
dBM (En, `Nn

2 ) bounded where Nn →∞ and projections Pn onto En with ‖Pn‖ ≤ CNa
n

where a < 1
2 .

It is however likely that the conclusion of this theorem is true for every infinite-
dimensional Banach space. We can prove this only in the case when 0 < α ≤ 1

2 . We
will present some fairly compelling evidence that it is true for all α later.

Theorem 8.5

Suppose 0 < α ≤ 1
2 and that K is an infinite-dimensional closed bounded convex

subset of a Banach space X; then F (α)(K) is not a L1−space, and Lip(α)(K) is not

isomorphic to `∞. If K is compact, lip(α)(K) is not isomorphic to c0.

Proof. We can assume 0 is an internal point of K. Then by Dvoretzky’s theorem
for each n we can find an isomorphism Sn : `n2 → X so that Sn(B`n2 ) ⊂ K and
‖Snξ‖ ≥ 1

2‖Sn‖‖ξ‖ for ξ ∈ `n2 . Consider the map S−1
n : Sn(B`n2 ) → B`n2 . Then

‖S−1
n x1 − S−1

n x2‖ ≤ 2(min(‖Sn‖−1‖x1 − x2‖, 1) ≤ 2‖Sn‖−α‖x1 − x2‖α.

Hence using Corollary 1.15, p. 21 of [7] (or [35]) we can find a map ϕn : K → B`n2 with
ϕn ◦ Sn = IdB`n

2
and

‖ϕ(x1)− ϕ(x2)‖ ≤ 2‖Sn‖−α‖x1 − x2‖α.

The maps Sn, ϕn induce linear operators Ŝn : F (α)(B`n2 ) → F (α)(K) and Φn :
F (α)(K) → F(B`n2 ) with ‖Ŝn‖ = ‖Sn‖α and ‖Φn‖ ≤ 2‖Sn‖−α. Clearly βΦnŜn =
β : F (α)(B`n2 ) → `n2 . Now if F (α)(K) is a L1−space we deduce a uniform bound on
π2(β : F (α)(B`n2 ) → `n2 ) contradicting Lemma 7.5. �

Remark. To obtain the same result for 1
2 < α < 1 by this method one needs some

good information on the existence of extensions of Hölder class α maps into B`n2 . We
will make this problem explicit in the final section.

Let us now consider the case of `1.
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Proposition 8.6

For 0 < α < 1 there is a constant c = c(α) > 0 so that

γ1(F (α)(B`n1 )) ≥ cnα(1−α)(log(2n))−α/2

when 1
2 ≤ α < 1 and

γ1(F (α)(B`n1 )) ≥ cnα/2(log(2n))−α/2

when 0 < α ≤ 1
2 . In particular F (α)(B`1) is not a L1−space.

Proof. Fix p = 1/α when 1
2 ≤ α ≤ 1 and p = 2 otherwise. Let ϕ : B`np → B`n1 be the

Mazur map i.e.
ϕ(ξ)j = ‖ξ‖1−p

p |ξj |psgn (ξj).

We recall that
‖ϕ(ξ)− ϕ(η)‖1 ≤ p‖ξ − η‖p, ξ, η ∈ B`np

while the inverse satisfies

‖ϕ−1(ξ)− ϕ−1(η)‖p ≤ Cp‖ξ − η‖1/p
1 ξ, η ∈ B`n1

(see [7] p. 198).
For each α there exist constants c1, C1 > 0 so that for some k = k(n) with

k ≥ c1 min(n2(1−α), n) there are linear maps Sn : `k2 → `np and Tn : `np → `k2 with
TnSn = Id`k2

and such that ‖Sn‖ = 1 and ‖Tn‖ ≤ C1. Let ψn : B`np → B`k2
be defined

by ψn = r ◦ Tn where r is the standard retraction of `n2 onto B`n2 .
If we denote by Mα the metric space M with metric dα we thus have a sequence

of Lipschitz maps factoring Id : Bα
`k2
→ B`k2

:

Bα
`k2

Sn−→ Bα
`np

ϕ−→ Bα
`n1

ϕ−1

−→ B`np
ψn−→ B`k2

.

The product of the Lipschitz constants is bounded by a constant depending only on
α. It follows that Id : F (α)(B`k2 ) → F(B`k2 ) factors through F (α)(B`n1 ) and hence

k1/2α

4(log(2k))1/2α
≤ π2(β : F (α)(B`k2 ) → `k2)

≤ Cγ1(F (α)(B`n1 )).

Taking into account our estimate on k we have

γ1(F (α)(B`n1 ) ≥

cn
α(1−α)(log(2n))−α/2 1

2 ≤ α < 1

cnα/2(log(2n))−α/2 0 < α ≤ 1
2

where c = c(α). �

We now ready to give a general local result.

Theorem 8.7

For fixed 0 < α < 1, we have

lim
n→∞

inf
dimX=n

γ1(F (α)(BX)) = ∞.
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Proof. If the conclusion fails then there is a constant C0 and a sequence of finite-
dimensional Banach spaces Xn, with dimXn = Nn →∞, and such that

γ1(F (α)(BXn)) ≤ C0.

For a Banach space X let b(X,m) be the least constant b so that for all
x1, · · · , xm ∈ X we have( m∑

k=1

‖xk‖2
)1/2

≤ b
(
E

∥∥∥ m∑
k=1

εkxk

∥∥∥2 )1/2
x1, · · · , xm ∈ X.

If lim supn→∞ b(Xn,m) = m1/2 then there is a subsequence Xnk
so that Xnk

contains
a subspace with Banach-Mazur distance 2 from `m∞. Such a subspace is necessarily at
most 2-complemented and hence

γ1(F (α)(B`m∞)) < 4C0.

By Proposition 8.1 we see that for a suitable m0 we have

lim sup
n→∞

b(Xn,m) < m1/2 m > m0.

We similarly argue that Proposition 8.6 implies that Xn cannot contain uniformly
complemented `m1 ’s of arbitrarily large dimension so that we have for large enough m
we also have

lim sup
n→∞

b(X∗
n,m) < m1/2.

Since b(X,m1m2) ≤ b(X,m1)b(X,m2) this implies the existence of a θ > 0 and a
constant C1 so that

b(Xn,m) ≤ C1m
(1−θ)/2, b(X∗

n,m) ≤ C1m
(1−θ)/2, m, n ∈ N.

This implies also the estimate( m∑
k=1

‖xk‖2
)1/2

≤ C1m
(1−θ)/2

(
E

∥∥∥ m∑
k=1

gkxk

∥∥∥2 )1/2
, x1, · · · , xm ∈ Xn, m, n ∈ N

and( m∑
k=1

‖x∗k‖2
)1/2

≤ C1m
(1−θ)/2

(
E

∥∥∥ m∑
k=1

gkx
∗
k

∥∥∥2 )1/2
x∗1, · · · , x∗m ∈ X∗

n, m, n ∈ N

where (gk) is a sequence of independent normalized Gaussians.
We now apply Theorem 2.9 to find kn ≥ cN θ

n and operators Sn : `kn
2 → Xn, Tn :

Xn → `kn
2 with TnSn = Id

`kn
2

and ‖Tn‖‖Sn‖ ≤ C(1+logNn) for some absolute constant
C. Hence by Lemma 8.2 we have

γ1(F (α)B
`kn
2

) ≤ C1(1 + logNn)αγ1(F (α)(BXn).

Thus
k
α/2
n

(1 + log kn)α/2
≤ C2(1 + logNn)α

for some constant C2. This is a contradiction to the fact that kn ≥ cN θ
n. �

The following is now immediate.
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Theorem 8.8

Suppose 0 < α < 1. Let K be a closed bounded convex subset of a separable

infinite-dimensional Banach space X. Suppose the linear span of K is dense in X.

If there is a sequence of finite-dimensional subspaces En in X which are uniformly

complemented then F (α)(K) is not an L1−space and Lip(α)(K) is not isomorphic to

`∞. If K is compact, lip(α)(K) is not isomorphic to c0.

Remark. In particular if K embeds into some `p for 1 ≤ p < ∞ or c0 this criterion
applies. To summarize our results we see that if K is an infinite-dimensional closed
bounded convex subset of a Banach space X such that F (α)(K) is an L1−space then
we must have:

(1) 0 < α ≤ 1
2 .

(2) X has nontrivial cotype but not nontrivial type.
(3) X does not have finite-dimensional subspaces which are well-complemented.

Obviously the candidate space for a counterexample is Pisier’s space [41], [42]; however
we doubt such a counterexample exists.

Note also that even in the compact case, some convexity assumption is necessary
here. In fact the example of Proposition 6.8 can be embedded in a Banach space (even
into c0 by a result of Aharoni [1]), but not as a convex subset.

If one replaces a power-type gauge by an arbitrary non-trivial gauge one can still
give a similar counter-examples:

Proposition 8.9
Suppose ω is any nontrivial gauge function. Then there is a compact convex

subset of `2 so that Lipω(K) is not isomorphic to `∞.

Proof. Let an ↓ 0 and pick Nn ∈ N so that if ωn(t) = ω(ant)/ω(an) then by Corollary
8.1, γ1(Fωn(B

`Nn
2

)) →∞. Then consider the subsets K of `2(`Nn
2 ) of all sequences (ξn)

such that ‖ξn‖ ≤ an. It is not hard to see that Fω(K) contains a complemented copy
of Fω(anB`Nn

2
) and that this is isometric to Fωn(B

`Nn
2

). Thus Lipω(K) ≈ `∞ would
imply that supn γ1(Fωn(B

`Nn
2

)) <∞. �

9. Approximation properties

Let us say that a metric space (M,d) is a BL-retract if M is a Lipschitz retract of
some Banach space X. We say (M,d) is a BU-retract if it is a uniform retract of some
Banach space X. Obviously a BL-retract is also a BU-retract.

Let us make some elementary observations.

Proposition 9.1

(1) If K is a closed convex subset of a Hilbert space then K is a BL-retract.

(2) For any Banach space X then BX is a BL-retract.
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(3) If K is a closed bounded convex subset of a super-reflexive Banach space X

then K is a BU-retract.

(4) If K is a compact convex subset of any Banach space then K is a BU-retract.

Proof. (1) follows from the fact that the nearest point map is contractive in Hilbert
spaces. There is a Lipschitz retraction of X onto BX for all Banach spaces X; this
gives (2). For (3) we can assume K contained in BX and then the nearest point
map is uniformly continuous on BX (see [7] pp. 40–44). In fact K is an absolute
uniform retract in these circumstances. For (4) we observe that K is affinely uniformly
homeomorphic to a compact convex subset of a Hilbert space. �

Proposition 9.2

(1) A metric space M is a BL-retract if and only if there is a Lipschitz map

θ : F(M) →M such that θ ◦ δ = IdM .

(2) A metric space M is a BU-retract if and only if there is a gauge ω and a

uniformly continuous map θ : Fω(M) →M such that θ ◦ δ = IdM .

Proof. (1) Suppose X is a Banach space and φ : M → X, ψ : X → M are Lipschitz
maps such that ψ ◦ φ = IdM . Then consider φ̂ : F(M) → F(X) as in Lemma 3.1.
Then θ = ψ ◦ βX ◦ φ̂ is the required map.

(2) is similar. Let φ : M → X and ψ : X →M be uniformly continuous maps so
that ψ ◦ φ = idM . Let ω be a normalized gauge so that ‖φ(ξ)− φ(η)‖ ≤ Cω(‖ξ − η‖)
for some constant C. Consider the map φ̂ : Fω(M) → F(X). Then as before let
θ = ψ ◦ βX ◦ φ̂. �

Theorem 9.3

Let K be a bounded closed convex subset of a separable super-reflexive space X.

Then

(1) There is an equi-uniformly continuous sequence of finite-rank maps ϕn : K →
K such that limn→∞ ϕn(x) = x for each x ∈ X.

(2) Given any gauge ω there exists a gauge ω′ ≥ ω such that the inclusion map

Iω′,ω,K : Fω′(K) → Fω(K) is approximable.

Proof. (1) We assume K is contained in BX . Let us note that from Lemma 2.5 of [7]
there is gauge ω1 and constant C1 so that whenever A is a closed convex subset of BX
there is a uniformly continuous retraction r of X onto A with

‖r(x)− r(y)‖ ≤ ω1(‖x− y‖) x, y ∈ X.

(Assume X is uniformly convex: first retract onto BX and then use the nearest point
map.) Let En be an ascending sequence of finite-dimensional subspaces of X whose
union is dense and such that E1∩K is non-empty . It follows that there is a retraction
ϕn of K onto K ∩ En so that the sequence (ϕn) is equi-uniformly continuous: indeed

‖ϕn(x)− ϕn(y)‖ ≤ ω1(‖x− y‖) x, y ∈ X.

Clearly limn→∞ ϕn(x) = x for x ∈ K.
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(2) For some 0 < α < 1 let ω2 = max(ω, ωα) and ω′ = ω2 ◦ ω1 Since

ω2(‖ϕn(x)− ϕn(y)‖) ≤ ω′(‖x− y‖) x, y ∈ X

we can use Lemma 3.1 to induce linear maps Sn = ϕ̂n : Fω′(K) → Fω2(K) so that
limn→∞ Snγ = Iω′,ω2γ for γ ∈ Fω′(K). Note that Sn(Fω′(K)) ⊂ Fω2(En ∩K).

Now the space (En ∩ K,ω ◦ d) (where d(x, y) = ‖x − y‖) satisfies the doubling
condition. Hence lipωα(En ∩ K) is isomorphic to c0 by Theorem 6.5 and thus so is
lipω2

(En∩K). It follows that the dual Fω2(En∩K) is isomorphic to `1 and has (MAP).
Thus for each n we can find finite-rank operators Rnk : Fω2(En ∩K) → Fω2(En ∩K)
so that ‖Rnk‖ ≤ 1 and limk→∞Rnkγ = γ for γ ∈ Fω2(En ∩K). Then Iω′,ω2,K is in the
strong-operator closure of {RnkSn : 1 ≤ n, k <∞}. Hence Iω′,ω2 is approximable and
hence so is Iω′,ω. �

At this point we will introduce an approximation condition. We will say that a
separable BU-retract K has the uniform compact approximation property or (ucap) if
there is an equi-uniformly continuous sequence of maps ϕn : K → K such that ϕn(K)
is relatively compact for each n and limn→∞ ϕn(x) = x for every x ∈ K. It is clear
from the above Theorem 9.3 that we have

Corollary 9.4

Every bounded closed convex subset of a separable super-reflexive space has

(ucap).

We do not know any example of a separable BU-retract which fails (ucap)! How-
ever this condition will be important to us in the next section.

Theorem 9.5

Suppose K is bounded closed convex subset of a Banach space X which is also a

BU-retract. Then the following are equivalent:

(1) K has (ucap)

(2) K is a uniform retract of a Banach space with a basis.

(3) Given any gauge ω there is a gauge ω′ so that the inclusion map Iω′,ω,K is

approximable.

If K = BX these conditions are also equivalent to:

(4) There is a sequence (ϕn) of equi-uniformly continuous finite-rank maps ϕn :
K → K such that limn→∞ ϕn(x) = x for every x ∈ K.

Proof. (1) =⇒ (3). We can assume without loss of generality that ω is a nontrivial
gauge. Let ϕn : K → K be equi-uniformly continuous, have relatively compact range
and satisfy ϕn(x) → x for x ∈ K. We may assume that ω0 ≥ ω is a gauge so that

ω(‖ϕn(x)− ϕn(y)‖) ≤ ω0(‖x− y‖) x, y ∈ K n ∈ N.

Let Kn be the closed convex hull of ϕn(K). We will argue that for each n ∈ N we
can find a gauge ωn ≥ ω so that Iωn,ω,Kn is approximable. Indeed Kn is a compact
convex set and hence is affinely homeomorphic to a compact convex subset K ′

n of
`2 which is super-reflexive. Let h : Kn → K ′

n be an affine homeomorphism (which is
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automatically a uniform homeomorphism since both sets are compact). Suppose νn, ν ′n
are gauges so that

‖h(x)− h(y)‖ ≤ νn(‖x− y‖) x, y ∈ Kn

and

‖h−1(ξ)− h−1(η)‖ ≤ ν ′n(‖ξ − η‖), ξ, η ∈ K ′
n.

Then h−1 induces a norm one operator L1 : Fω◦ν′n(K ′
n) → Fω(Kn). By Theorem 9.3

there exists a gauge ν̃n ≥ ω ◦ ν ′n so that Iν̃n,ω◦ν′n,K′
n

is approximable. Then h induces a
norm one operator L2 : Fν̃n◦νn(Kn) → Fν̃n(K ′

n). If we choose ωn ≥ ν̃n ◦ νn and ωn ≥ ω

then Iωn,ω,Kn = L1L2 is approximable.
Now let ω̃ =

∑∞
n=1 2−nωn. It is clear that Iω̃,ω,Kn is approximable for every n. Now

we use the facts that Fω(Kn) = lipω(Kn)∗ and Fω̃(Kn) = lipω̃(Kn)∗ (Theorem 6.1) and
Iω̃,ω is an adjoint map of norm at most one since ω̃ ≥ ω. By Proposition 2.1 there are
finite-rank operators Rnk : Fω̃(Kn) → Fω(Kn) with ‖Rnk‖ ≤ 1 and limk→∞Rnkγ =
Iω̃,ω,Knγ for γ ∈ Fω̃(Kn). Next let ω′ = ω̃ ◦ ω0. Then if Sn = ϕ̂n : Fω′(K) → Fω̃(K)
it is clear that ‖Sn‖ ≤ 1 and Snγ → γ for all γ ∈ Fω′(K). Combining we see that
Iω′,ω,K is in the strong operator closure of {RnkSn : 1 ≤ k, n < ∞}. Thus we have
(1) =⇒ (3).

(3) =⇒ (2). For this we pick any gauge ω so that there is a uniformly con-
tinuous map ψ : Fω(K) → K with ψ ◦ δ = IdK . Pick ω′ ≥ ω so that Iω′,ω,K is
approximable. Then we can write Iω′,ω,K =

∑∞
n=1An in the strong operator topol-

ogy where An : Fω′(K) → Fω(K) are finite-rank. We now repeat a trick from
[39]. Let En = An(Fω′(K)). Define Y to be the space of sequences (en)∞n=1 with
en ∈ En and such that

∑∞
n=1 en converges. This is a Banach space under the norm

‖(en)∞n=1‖Y = supn ‖
∑n

k=1 ek‖. Define S : Fω′(K) → Y by Sγ = (Anγ)∞n=1 and
T : Y → Fω(K) by T ((en)∞n=1) =

∑∞
n=1 en. Now S ◦ δ : K → Y has a left-inverse ψ ◦T.

Thus K is a uniform retract of Y. Now Y has an (FDD) and so can be embedded as a
complemented subspace of a space with a basis ([38], [24]).

(2) =⇒ (1). This is trivial. If X has basis and φ : K → X, ψ : X → K are
uniformly continuous with ψ ◦ φ = IdK then we let ϕn = ψ ◦ Sn ◦ φ where Sn are the
partial sum operators with respect to the basis.

Finally if K = BX let us show these conditions imply (4). As before there
exist gauges ω′ ≥ ω so that Iω′,ω,K is approximable. Hence β : Fω′(K) → X is
approximable. Let Sn be finite-rank operators Sn : Fω′(K) → X so that Sn → β in
the strong-operator topology. Let r be the natural Lipschitz retraction of X onto BX .
Let ϕn = r ◦ Sn ◦ δ. It is trivial to see that ϕn satisfies the conditions of (4) since r
preserves linear subspaces. �

10. Uniform sections of quotient maps revisited

In § 7 we saw that the quotient maps of `1 onto both `2 and c0 fail to have uniformly
continuous sections on the ball. On the other hand, if X is a super-reflexive space
then any quotient map X → X/E admits a uniformly continuous section on the ball
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([7] Corollary 1.25 p. 28). In this section we will study the problem of the existence of
uniformly continuous sections a little more.

We first refine the result on super-reflexive spaces cited above:

Theorem 10.1

Let X be a Banach space and suppose E is a super-reflexive subspace. Then the

quotient map Q : X → X/E admits a uniformly continuous section on the ball BX/E .

Proof. Our proof is modelled on the renorming arguments in [6] pp. 272–299 (attributed
to Maurey in his proof of the Enflo-Pisier renorming theorems [17], [40]).

Since E is super-reflexive there is exists p <∞ and a constant 0 < c < 1
2 so that

whenever {f0, f1, · · · , fn} is a dyadic martingale (with respect to the standard dyadic
partition) in Lp([0, 1];E) then

‖fn‖pp ≥ 2c
(
‖f0‖pp +

n∑
k=1

‖fk − fk−1‖pp
)
.

Let us consider the space Lp([0, 1];X) and denote by En the condition expectation onto
Lp(Σn) where Σn is the σ−algebra generated by the atoms {[(k − 1)2−n, k2−n); 1 ≤
k ≤ 2n}. Consider the subspace Z of all functions f such that f − E0f ∈ Lp([0, 1];E)
and define for x ∈ X,

(10.1) Φ(x) = inf
{
‖f‖pp − c

( n∑
k=1

‖Ekf − Ek−1f‖pp
)

: f ∈ Z, E0f = x
}
.

Note that c‖x‖p ≤ Φ(x) ≤ ‖x‖p.
We also observe that if f ∈ Z

‖f‖pp − c
( n∑
k=1

‖Ekf − Ek−1f‖pp
)
≥ 1

2
‖f‖pp.

This implies that

Φ(x) = inf
{
‖f‖pp − c

( n∑
k=1

‖Ekf − Ek−1f‖pp
)

: f ∈ Z, ‖f‖p ≤ 2‖x‖, E0f = x
}
.

Thus for any x, y ∈ X, with ‖y‖ ≤ ‖x‖,

Φ(y)− Φ(x) ≤ sup
‖f‖p≤2‖x‖

‖f + y − x‖pp − ‖f‖pp

≤ (2‖x‖+ ‖y − x‖)p − 2p‖x‖p

≤ C‖x‖p−1‖y − x‖

for a suitable constant C. It particular

(10.2) |Φ(x)− Φ(y)| ≤ C(max(‖x‖, ‖y‖))p−1‖x− y‖.

Note suppose x, y ∈ X with x − y ∈ E. Then, for ε > 0, pick g, h ∈ Z with
E0g = x, E0h = y and

‖g‖p − cp
( ∞∑
k=1

‖Ekg − Ek−1g‖pp
)
< Φ(x) + 1

2ε



Spaces of Lipschitz and Hölder functions and their applications 207

and

‖h‖p − cp
( ∞∑
k=1

‖Ekh− Ek−1h‖pp
)
< Φ(y) + 1

2ε.

Let f(t) = g(2t) for t ≤ 1
2 and f(t) = h(2t− 1) for t > 1

2 . Then

Φ
(

1
2(x+ y)

)
≤ ‖f‖p − cp

( ∞∑
k=1

‖Ekf − Ek−1f‖p
)

≤ 1
2(Φ(x) + Φ(y))− 2−pc‖x− y‖p + ε.

It follows that

(10.3) Φ
(

1
2(x+ y)

)
≤ 1

2(Φ(x) + Φ(y))− a‖x− y‖p, x, y ∈ X, x− y ∈ E

where a = 2−pc.
Now if ξ ∈ X/E we define θ(ξ) = inf{Φ(x) : Qx = ξ}. Then c‖ξ‖p ≤ θ(xi) ≤ ‖ξ‖p.

Notice that if Qx,Qy = ξ then Φ(1
2(x+ y)) ≥ θ(ξ). Hence

(10.4)
1
2
(Φ(x) + Φ(y))− θ(ξ) ≥ a‖x− y‖p.

It follows that if (xn) is any sequence with limn→∞ Φ(xn) = θ(ξ) and Qxn = ξ then
(xn) is convergent. Thus there is a unique ϕ(ξ) such that Qϕ(ξ) = ξ and Φ(ϕ(ξ)) =
θ(ξ). We will show that ϕ is a Hölder continuous function on BX/E . First notice that
c‖ϕ(x)‖p ≤ θ(ξ) ≤ ‖ξ‖p so that ‖ϕ(ξ)‖ ≤ c−1/p for ξ ∈ BX/E .

Indeed suppose ξ, η ∈ BX/E . We may pick u ∈ X with Qu = ξ − η and ‖u‖ =
‖ξ − η‖. Then Φ(ϕ(η) + u) ≥ θ(ξ). Now ‖ϕ(η) + u‖ ≤ (1 + c−1/p) and so for some
suitable constant B, using (10.2), we have

Φ(ϕ(η) + u) ≤ θ(η) +B‖ξ − η‖
and

θ(η) ≥ θ(ξ)−B‖ξ − η‖.
Hence

Φ(ϕ(ξ)− u) ≤ θ(ξ) +B‖ξ − η‖ ≤ θ(η) + 2B‖ξ − η‖.
This implies by (10.4) that

a‖ϕ(ξ)− u− ϕ(η)‖p ≤ B‖ξ − η‖
and so

‖ϕ(ξ)− ϕ(η)‖ ≤ (Ba−1)1/p‖ξ − η‖1/p + ‖ξ − η‖.
This completes the proof. �

Notice that we can localize this argument. In particular if En ⊂ `1 is a sequence
of uniformly Euclidean subspaces of `1 with dimEn → ∞ then the quotient map
`1(`1) → `1(`1/En) admits a uniformly continuous selection on the ball. This shows
that there exist some spaces X other than `1 such that every quotient map onto X

admits a uniformly continuous selection on the ball. Let us remark that a Lipschitz
selection on the ball would a global Lipschitz selection and that is enough to imply X
is isomorphic to `1 (see [19]).
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Corollary 10.2
Let X be a reflexive subspace of L1. Then BL1/X is uniformly homeomorphic to

B`2 .

Proof. X is super-reflexive [46] and by Theorem 10.1 there is a uniformly continuous
selection ϕ : BL1/X → L1 of the quotient map Q. By Proposition 7.2, we conclude that
BL1 is uniformly homeomorphic to BX ×BL1/X . Now BL1 is uniformly homeomorphic
to B`2 and also BX is uniformly homeomorphic to B`2 (Corollary 9.11 of [7]). Thus
BL1/X×B`2 is uniformly homeomorphic to B`2 . Now L1/X is isomorphic to `1⊕L1/X

and so we also have a uniform homeomorphism between BL1/X ×B`2 and BL1/X . �

We will next study conditions where the existence of local sections for a quotient
map is already sufficient for the existence of a global section. Let us say that a quotient
map Q : Y → Y/E has a local uniformly continuous section on the ball if there exists a
gauge ω such that for every finite-dimensional subspace F of X/E there is a uniformly
continuous map ϕF : BF → X with

‖ϕ(f)− ϕ(g)‖ ≤ ω(‖f − g‖) f, g ∈ BF
and Q◦ϕF = IdBF

. As before, we can assume that each ϕF is a homogeneous function.
A typical example where local sections exist is the case when Q locally splits (see

Lemma 2.2).
We next introduce a rather technical condition. Let X be a Banach space and ω

a gauge. A sequence of functions an : ∂BX → [0, 1] will be called an ω−partition if

(10.5)
∞∑
k=1

ak(x) = 1 x ∈ ∂BX

(10.6)
∞∑
k=1

|ak(x)− ak(y)| ≤ ω(‖x− y‖) x, y ∈ ∂BX

and given ε > 0 there exists ν > 0 and a sequence of compact sets Kn so that

(10.7)
n∑
k=1

ak(x) ≥ 1− ν ⇒ d(x,Kn) ≤ ε.

Let us note that (10.7) implies that given ε > 0 there exists ν ′ > 0 and a sequence
of finite sets Fn so that

(10.8)
n∑
k=1

ak(x) ≥ 1− ν ′ ⇒ d(x, Fn) ≤ ε.

Indeed take ν ′ = ν(1
2ε) and then cover Kn with finitely many balls of radius 1

2ε.

We will say that X has a good partition if it has an ω−partition for some gauge
ω.
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Lemma 10.3

Suppose X is a separable Banach space with a good partition. Suppose also BX
has (ucap). Then, whenever Q : Y → X is a quotient map admitting a local uniformly

continuous section, there is a uniformly continuous section of Q.

Proof. We assume ω1 is a gauge and ϕn : BX → BX are uniformly continuous homo-
geneous functions with finite-dimensional range En such that ϕn(x) → x for all x and
‖ϕn(x)−ϕn(y)‖ ≤ ω1(‖x−y‖) for x, y ∈ BX .We assume further that for some gauge ω2,

and every finite-dimensional subspace E ofX we can find a uniformly continuous homo-
geneous map ψE : X → Y such that QψE = IdE and ‖ψE(x)−ψE(y)‖ ≤ ω2(‖x− y‖).
Finally we assume (an) is an ω3−partition.

Pick 0 < ε < 1/10 so that ω1(ε) < 1/10. We can then choose ν > 0 and a sequence
Kn of compact sets so that

(10.9)
n∑
k=1

ak(x) ≥ 1− ν ⇒ d(x,Kn) ≤ ε.

Next we define a function h : [0, 1] → [0, 1] to be affine on [0, 1
10 ] and [ 1

10 , 1] and such
that h(0) = 0, h( 1

10) = 1− ν, and h(1) = 1. Let

bk(x) = h
( k∑
j=1

aj(x)
)
− h

( k−1∑
j=1

aj(x)
)
.

We first show that (bn) is also a good partition. Clearly (10.5) and (10.7) hold.
We consider (10.6). Let κ0 = 10(1− ν) and κ1 = 10ν/9 and κ = max(κ0, κ1). Suppose
x, y ∈ ∂BX . Let n1 be the first integer so that

∑n1
k=1 ak(x) ≥ 1 − ν and n2 the first

integer such that
∑n2

k=1 ak(x) ≥ 1− ν. For k 6= n1, n2 it is clear that |bk(x)− bk(y)| ≤
κ|ak(x)− ak(y)|. If k = n1 or k = n2 we have an estimate

|bk(x)− bk(y)| ≤ κ
∣∣∣ k−1∑
j=1

aj(x)−
k−1∑
j=1

aj(y)
∣∣∣+κ

∣∣∣ k∑
j=1

aj(x)−
k∑
j=1

aj(y)
∣∣∣ ≤ 2κω3(‖x− y‖).

Since there are at most two such k we obtain

(10.10)
∞∑
k=1

|bk(x)− bk(y)| ≤ 5κω3(‖x− y‖).

By passing to a subsequence of the (ϕn) we can assume that

(10.11) ‖ϕn(x)− x‖ ≤ 1
10 x ∈ Kn.

If
∑n

k=1 ak(x) ≥ 1− ν then we may find y ∈ Kn so that ‖x− y‖ ≤ ε. Hence

‖ϕn(x)− ϕn(y)‖ ≤ 1
10 .

Hence

(10.12)
n∑
k=1

ak(x) ≥ 1− ν ⇒ ‖ϕn(x)− x‖ ≤ 3
10 .
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Now let ψn = ψEn and define

ρ(x) =
∞∑
k=1

bk(x)ψk(ϕk(x)).

First we consider Q ◦ ρ.

Qρ(x) =
∞∑
k=1

bk(x)ϕk(x).

Suppose ‖x‖ = 1 and let r be the least integer such that
∑r

k=1 ak(x) > 1 − ν. Then
by (10.12) we have ‖x− ϕk(x)‖ ≤ 3

10 for k ≥ r. Thus

‖Qρ(x)− x‖ ≤
r−1∑
k=1

bk(x)‖x− ϕk(x)‖+ 3
10 .

The first sum is estimated by 2
∑r−1

j=1 bk(x) ≤
1
5 . Hence

(10.13) ‖Qρ(x)− x‖ ≤ 1
2 .

Next we show that ρ is uniformly continuous. Indeed,∥∥∥ ∞∑
k=1

bk(x)(ψk(ϕk(x)− ψk(ϕk(y))
∥∥∥ ≤ ω2 ◦ ω1(‖x− y‖)

while by (10.10)∥∥∥ ∞∑
k=1

(bk(x)− bk(y))ψk(ϕk(y)
∥∥∥ ≤ 5ω2(1)κω3(‖x− y‖).

Hence ρ is uniformly continuous with modulus of continuity bounded by C(ω2 ◦
ω1 + ω3). We can now extend ρ to BX by insisting that it is positively homogeneous
and ρ will have the same modulus of continuity up to constant. By (10.13) we have

‖Qρ(x)− x‖ ≤ 1
2‖x‖ x ∈ BX .

We now obtain our section by an iteration procedure. Let g(x) = x−Qρ(x). Then
g is uniformly continuous with modulus of continuity ω4 ≤ C(ω2 ◦ ω1 + ω3). Define

ψ(x) =
∞∑
n=0

ρ(gn(x)).

Since ρ is positive homogeneous it satisfies an estimate ‖ρ(x)‖ ≤ M‖x‖ and we have
‖gn(x)‖ ≤ 2−n‖x‖ so this is well-defined. Note that Qρ(gn(x)) = gn(x) − gn+1(x)
so that Qψ(x) = x. Finally we note that by uniform convergence ψ is uniformly
continuous. �

Remark. In general the modulus of continuity of ψ seems rather poor, but in specific
cases it can be improved. In the special case when Q is the quotient map of `1 onto
L1 we may take ωj(t) ≈ t for j = 1, 2, 3. In this case ρ is Lipschitz and the section
ψ is Hölder-continuous. Unfortunately it does not seem clear exactly what type of
argument Hölder-continuity is optimal for this situation.

We now recall from § 2 the Johnson-Zippin space C1 [25]. This is the `1−sum
of a sequence of finite-dimensional spaces Gn dense in all finite-dimensional spaces for
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Banach-Mazur distance. Clearly any `1−sum of finite-dimensional spaces is embedded
complementably in C1.

Lemma 10.4

Let X be a separable Banach space.

(1) If BX embeds uniformly in a space Y with a good partition then X has a good

partition.

(2) If BX embeds uniformly in C1 then X has a good partition.

(3) If X is super-reflexive and BX embeds uniformly in a super-reflexive space with

(UFDD) then BX has a good partition.

Proof. (1) Let ψ : BX → Y be a homogeneous uniform embedding with ψ(0) = 0.
Then x → ‖ψ(x)‖−1ψ(x) uniformly embeds ∂BX into ∂BY . Therefore we assume
ψ : ∂BX → ∂BY is a uniform embedding. Let (an) be a good partition for Y. Then
bn = an ◦ ψ is a good partition for X. Only the verification of (10.7) requires some
explanation. If ε > 0 then there exists 0 < ε1 < ε so that

‖ψ(x1)− ψ(x2)‖ ≤ ε1 =⇒ ‖x1 − x2‖ ≤ 1
2ε x1, x2 ∈ BX .

Using (10.8) we may find ν > 0 and finite-subsets Fn of ∂BY so that
n∑
k=1

ak(y) ≥ 1− ν =⇒ y ∈ Fn + ε1BY .

Let Gn be the finite subset of ∂BX obtained by taking one point in each non-empty
ψ−1(y + ε1BY ) where y ∈ Fn. Then

ψ−1(Fn + ε1BY ) ⊂ Gn + εBX

and so (10.7) holds with Kn = Gn.

(2) If x = (xn)∞n=1 ∈ C1 define an(x) = ‖xn‖; then (an) is a good partition of C1.

We then appeal to (1).
(3) It is only necessary to show that any super-reflexive space with a UFDD has

a good partition. Let (En) be a UFDD for X and let Rn : X → En be associated
projections. We can assume thatX is uniformly convex and uniformly smooth and that
the UFDD is 1-unconditional. (Just equip X with any uniformly convex, uniformly
smooth norm ‖ · ‖0 and then renorm it by ‖x‖ = (E‖

∑∞
n=1 εnRnx‖2)

1
2 .) Now the

duality map D : ∂BX → ∂BX∗ defined so that 〈x,Dx〉 = 1 is uniformly continuous.
We define

an(x) = |〈Rnx,Dx〉|.
Then for x, y ∈ ∂BX we have

∞∑
n=1

|an(x)− an(y)| ≤
∞∑
n=1

|〈Rn(x− y), Dx〉|+
∞∑
n=1

|〈Rny,Dy −Dx〉|

≤ ‖x− y‖+ ‖Dx−Dy‖.

If ‖x‖ = 1 then ∥∥∥x− n∑
k=1

Rkx
∥∥∥ ≤ 1

2
σ−1
X

(
1−

∥∥∥ n∑
k=1

Rkx
∥∥∥)
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where σX is the modulus of uniform convexity i.e.

σX(ε) = inf
{
1− ‖1

2(x+ y)‖ : ‖x‖, ‖y‖ ≤ 1, ‖x− y‖ ≥ ε
}
.

Hence if
n∑
k=1

ak(x) ≥ 1− ν ⇒
∥∥∥ n∑
k=1

Rk(x)
∥∥∥ ≥ 1− ν ⇒

∥∥∥x− N∑
k=1

Rk(x)
∥∥∥ ≤ 1

2
σ−1
X (ν).

This shows that (an) is a good partition. �

We now can state our main theorem on local sections:

Theorem 10.5

Let X be a separable Banach space. The following conditions on X are equivalent:

(1) Whenever Q : Y → X is a quotient map with locally complemented kernel

then there a uniformly continuous section ψ : BX → Y.

(2) Whenever Q : Y → X is a quotient map with a locally uniformly continuous

section on the ball then there is a uniformly continuous section on the ball.

(3) BX has (ucap) and a good partition.

(4) BX has (ucap) and BX is uniformly homeomorphic to a subset of C1.

(5) BX is a uniform retract of BC1 .

(6) BX is a uniform retract of `1(En) where En is some sequence of finite-

dimensional subspaces of X.

If, additionally, X is super-reflexive, these conditions are equivalent to:

(7) BX is uniformly homeomorphic to a subset of C1.

(8) BX is uniformly homeomorphic to a subset of a super-reflexive space with a

UFDD.

Proof. (6) =⇒ (5) =⇒ (4) is trivial. (4) ⇒ (3) follows from Lemma 10.4 (2).
(3) ⇒ (2) is Lemma 10.3. (2) ⇒ (1) is trivial.

It remains to show (1) =⇒ (6). Let (En)n=1 be any increasing sequence of finite-
dimensional subspaces such that ∪ En is dense. Define the quotient map Q : Y =
`1(En) → X by Q((en)∞n=1) =

∑∞
n=1 en. By (1) there is a uniformly continuous lifting

ψ : BX → `1(En). We can assume ψ(BX) ⊂ cBY where c > 1. Define ρ : cBY → BX
by ρ(y) = Qy/max(‖Qy‖, 1). Then ρ is a uniformly continuous map and ρ◦ψ = IdBX

.
Hence BX is a uniform retract of BY .

If X is super-reflexive then BX is absolute uniform retract and must have (ucap).
Thus we can simplify the conditions to give (7) and (8) using Lemma 10.4 (3). �

Remarks. The space C1 has a stable norm. Hence c0 and any non-reflexive space X
with nontrivial type are examples of spaces for which the theorem fails ([44] and [7]
p. 214). For example there is no uniformly continuous lifting on the ball of a quotient
map of `1(`n∞) onto c0.

The space X = `1(`npn
) where pn → ∞ satisfies the conclusions of the Theorem

but its ball is not an absolute uniform retract [7] p. 30.
Suppose X is a separable dual and is not a Schur space. If ω is nontrivial and

strictly normalized, the quotient map β : Fω(BX) → X has a uniformly continuous
lifting on the ball, but cannot have a linear lifting (since X does not embed into Fω(X)
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by Theorem 4.6). Since β is easily seen to be the adjoint of the canonical embedding of
the predual of X into lipω,∗(BX), it also follows that the kernel of β cannot be locally
complemented (i.e. there is no local linear lifting).

Odell and Schlumprecht [37] showed that any Banach with cotype and an uncon-
ditional basis has BX uniformly homeomorphic to B`2 or, equivalently B`1 . The same
result for Banach lattices is due to Chaatit [12]. For extensions see [7] and [13]. Thus
we have.

Corollary 10.6

If X is a subspace of a separable Banach lattice with cotype then X satisfies

the conditions of Theorem 10.5 if and only if BX has (ucap). In particular if X is a

super-reflexive subspace of a Banach lattice then the conditions of Theorem 10.5 hold.

Corollary 10.7

IfX is a separable L1-space then any quotient map Q : Y → X admits a uniformly

continuous lifting on the ball.

Remark. In particular the quotient map Q : `1 → L1 admits a uniformly continuous
lifting on the ball.

Proof. X has a basis [24] and hence BX has (ucap). It embeds into L1 and so by
Corollary it verifies the conditions of Theorem 10.5. Any quotient map onto X has a
locally complemented kernel. �

Theorem 10.8

Let X be the quotient of a separable L1−space by a reflexive subspace. Then any

quotient map onto X admits a section which is uniformly continuous on the ball.

Proof. Let Y be a separable L1-space and suppose Q : Y → X is a quotient map. Let
QY : `1 → Y be any quotient map. Then combining Corollary and Theorem there
is a uniformly continuous section ψ : BX → `1 of QQY . Now let q : Z → X be any
quotient map. Then by Theorem it follows that if qZ : `1 → Z is any quotient map
then qqZ admits a uniformly continuous section. Thus so does q. �

It has been conjectured that every separable super-reflexive space X has BX uni-
formly homeomorphic to B`2 . This conjecture would imply that every super-reflexive
space satisfies Theorem 10.5. Partial results on this problem can be found in [7]
pp. 199–204; in particular if X is a subspace of a super-reflexive Banach lattice then
BX is uniformly homeomorphic to B`2 . If we relax the assumption of super-reflexivity
we know of no example of a closed subspace X of a Banach lattice with cotype so that
BX is not uniformly homeomorphic to B`2 . Let us consider this problem for subspaces
of L1. Our next theorem shows that the problem is in a certain sense local.

Theorem 10.9

Let X be a closed infinite-dimensional subspace of L1. Suppose (En) is an increas-

ing sequence of finite-dimensional subspaces of X whose union is dense. Then:
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(1) If for each n there is a homeomorphism ϕn : BEn → B
`dim En
2

with uniform

bounds on the modulus of continuity of ϕn and ϕ−1
n , then BX is uniformly

homeomorphic to B`2 .

(2) If the sets (BEn)∞n=1 are uniformly absolute uniform retracts then BX is an

absolute uniform retract.

Proof. In both cases we observe that the sets (BEn)∞n=1 are uniformly absolute uniform
retracts and hence BX has (ucap). SinceX embeds into L1, Lemma guarantees thatX
has a good partition. Consider the natural quotient map Q : Y = `1(En) → X defined
by Q(en) =

∑∞
n=1 en. By Theorem 10.5 we can find a uniformly continuous section

ψ : BX → Y. By Proposition 7.2 this implies that BY is uniformly homeomorphic to
BX ×BkerQ.

In case (1) we argue first that BY and B`1(Y ) are uniformly homeomorphic to
B`2 . We now apply the above argument to `1(X) and deduce the existence of a
space Z so that B`2 is uniformly homeomorphic to B`1(X) × BZ and hence also to
BX × B`1(X) × BZ and thus to BX × B`2 . On the other hand if X is super-reflexive
we are done by Corollary 9.11 of [7]. If X is not super-reflexive then X is isomorphic
to X ⊕ `1 and hence BX × B`2 is uniformly homeomorphic to BX and the proof is
complete.

In case (2) we argue BY is an absolute uniform retract, and this will suffice.
Indeed suppose M is a metric space containing BY . Let h : BY → B`1 be defined by
h((en)n=1) = ‖en‖. Then h can be extended to a uniformly continuous map h̃ : M →
B`1 since B`1 is an absolute uniform retract; let h̃(x) = (h̃n(x))∞n=1. Next for each n

let gn((ek)∞k=1) = en and consider the sequence of maps gn : BY → BEn . The maps
(gn) can be extended to equi-uniformly continuous maps g̃n : M → BEn . Finally define
F : M → BY by

F (x) =
∑∞

n=1 h̃n(x)g̃n(x)
max(1, ‖h̃(x)‖)

.

Then F is uniformly continuous. �

11. Conclusion

We close with a few remarks and unsolved problems. Several of our results can probably
be proved by an alternate approach if we understood more about the Banach space
structure of F(M).

Let us start with Proposition 4.4. It is natural to ask:

Problem 11.1
For which uniformly discrete metric spaces M is it true that F(M) embeds into

C1 (i.e. into an `1−sum of finite-dimensional spaces)? In particular what if M is a net

in arbitrary Banach space X (e.g. X = `2)?

We saw in Example 5.6 that when M is a net associated to c0 then F(M) does
not embed into C1. A similar problem is the following:
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Problem 11.2
If 0 < α < 1, does F (α)(B`2) (or F (α)(`2)) embed into L1? Does it have cotype

two?

A negative answer to this problem would give an alternative route to the results of
§ 8. In fact, one could then complete Theorem 8.5 for the case 1

2 < α < 1. Theorem 8.5
could also be completed if the following problem has the right answer:

Problem 11.3
If n ∈ N and 1

2 < α < 1 what is the least constant cα so that whenever M is a

metric space, E a subset of M and ϕ : E → `n2 is a map satisfying:

‖ϕ(x)− ϕ(y)‖α ≤ d(x, y) x, y ∈ E

then there is an extension ψ : M → `n2 with

‖ψ(x)− ψ(y)‖α ≤ cαd(x, y) x, y ∈M.

Minty’s theorem [35] shows that cα = 1 if 0 < α ≤ 1
2 while it is trivial that

c1 = n
1
2 . It is a natural conjecture that cα ≤ Cnα−

1
2 if 1

2 < α < 1. If this conjecture
is correct it would allow us to extend Theorem 8.5 to 0 < α < 1. The work of Ball [5]
and Naor [36] may well be useful here.

Problem 11.4
Is there any example of a Banach space X so that BX fails (ucap)? What if X

embeds into L1?

Of course such a space would have to fail (BAP) and fail to be super-reflexive.
One way to approach this problem is to find a subspace of C1 whose unit ball fails to
be a uniform retract of BC1 (see Theorem 10.5).

We have remarked before that it has been conjectured that if X is a separable
super-reflexive space thenBX is uniformly homeomorphic toB`2 .We raise the following
problems:

Problem 11.5
If X is a subspace of L1 is BX uniformly homeomorphic to B`2?

Problem 11.6
If X is a subspace of L1 is BX an absolute uniform retract (or equivalently, is

there a uniform retraction from BL1 onto BX)?

Theorem 10.9 suggests that these problems are local in character. In fact let
(En)∞n=1 be a sequence of finite-dimensional subspaces of L1 which is dense in the
Banach-Mazur sense in the collection of all such subspaces. If the answer to Pro-
blem 11.6 is positive then we can use X = `1(En) and hence deduce that the sets
BE are uniformly absolute uniform retracts as E runs through all finite-dimensional
subspaces of L1. Conversely if the sets BE are uniformly absolute uniform retracts
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then Theorem 10.6 already implies that for every subspace X of L1, we have that BX
is an absolute uniform retract.

We remark that we also do not know if there is a subspace of L1 so that BX is an
absolute uniform retract but is not uniformly homeomorphic to B`2 .
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