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Abstract

The main result of this paper is:JC(`(Φ)) = JC(`Φ) = 21/C0
Φ−1 under some

condition, whereJC(`(Φ)), JC(`Φ) are Jung constants of Orlicz sequence space
`Φ equipped with Luxemburg and Orlicz norm, respectively.

1. Introduction

The concept of Jung constant for a normed linear space was introduced by Jung [5]
in 1901 and it was termed by Grünbaum [4]:

Definition 1.1. The Jung constant of a normed linear space X, JC(X) is defined as:

JC(X) = sup
{
r(A,X)
d(A)

: A ⊂ X, bounded , d(A) > 0
}
,

where d(A) = sup{‖x− y‖ : x, y ∈ A} is the diameter of A, and

r(A,X) = inf {sup[‖x− z‖ : x ∈ A] : z ∈ X}

is the absolute Chebyshev radius of A.
The definition implies 1/2 ≤ JC(X) ≤ 1. Amir [1] obtained the following equiva-

lent expression which is practical for calculation:
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Proposition 1.2

If X = Y ∗, the dual space of a normed linear space Y, then

(1) JC(X) = sup
{
r(A,X)
d(A)

: A ⊂ X, finite , d(A) > 0
}
.

Jung [5] showed that

JC(`2n) =
√

n

2(n+ 1)
,

where `2n is the Euclidean n−space. He also showed for an n−dimensional normed lin-
ear space Xn, JC(Xn) = 1/2 if and only if Xn = `∞n . Also Bohnenblust [3] established
that JC(Xn) ≤ n/(n+ 1) for any n−dimensional normed linear space Xn. For some
infinite dimensional spaces the following results are available:

JC(`2) =
1√
2
, JC(L∞[0, 1]) = JC(`∞) =

1
2

and
JC(L1[0, 1]) = JC(`1) = JC(c0) = JC(C(T )) = 1

where T is a compact Hausdorff space, without isolated points. Obtaining lower and
upper bounds respectively by Berdyshev [2] and Pichugov [6], the following result was
deduced:

JC(Lp[−π, π]) = max
(
21/p−1, 2−1/p

)
, 1 < p <∞.

For Lp(Ω) with Ω = [0, 1] or [0,+∞) and `p Ren and Chen [8], Zhang [10] obtained
the similar results. In fact, “estimation of Jung constants is one of the directions of
research of the geometric theory of normed spaces”. However, expression for exact
values of Jung constants has remained a problem. This paper is devoted to the exact
value of Jung constant in a class of Orlicz sequence spaces.

Let

Φ(u) =
∫ |u|

0

ϕ(t)dt and Ψ(v) =
∫ |v|

0

ψ(s)ds

be a pair of complementary N−functions, i.e., ϕ(t) is right continuous, ϕ(0) = 0, and
ϕ(t) ↗ ∞ as t ↗ ∞. We call Φ ∈ ∆2(0), if there exist u0 > 0 and k > 2 such that
Φ(2u) ≤ kΦ(u) for 0 ≤ u ≤ u0. The Orlicz sequence space is defined as the set

`Φ =

{
x(i) : ρΦ(λx) =

∞∑
n=1

Φ(λ|x(i)|) <∞ for some λ > 0

}
.

The Luxemburg norm and Orlicz norm are expressed as

‖x‖(Φ) = inf
{
c > 0 : ρΦ

(x
c

)
≤ 1
}

and
‖x‖Φ = inf

k>0

1
k

[1 + ρΦ(kx)] ,
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respectively. In what follows, we will use Semenov and Simonenko indices of Φ(u):

α0
Φ = lim inf

u→0

Φ−1(u)
Φ−1(2u)

, β0
Φ = lim sup

u→0

Φ−1(u)
Φ−1(2u)

,(2)

A0
Φ = lim inf

t→0

tϕ(t)
Φ(t)

, B0
Φ = lim sup

t→0

tϕ(t)
Φ(t)

.(3)

The same indices can be applied to Ψ(v). The author [9] obtained

(4) 2α0
Φβ

0
Ψ = 1 = 2α0

Ψβ
0
Φ.

Rao and Ren [7] gave the following interrelations:

(5) 2−1/A0
Φ ≤ α0

Φ ≤ β0
Φ ≤ 2−1/B0

Φ ,

If the index function FΦ(t) = tϕ(t)/Φ(t) is monotonic (increase or decrease) at a right
neighborhood of 0, then the limit C0

Φ = lim
t→0

tϕ(t)/Φ(t) must exist, and hence

(6) α0
Φ = β0

Φ = 2−1/C0
Φ .

The author [9] founded that GΦ(u) = Φ−1(u)/Φ−1(2u) is increasing if and only if FΦ(t)
is increasing upon the corresponding interval. These relations will play important roles
in our main results.

2. Main results

We need only to observe the case of `(Φ) and `Φ being reflexive, or equivalently, Φ ∈
42(0)∩∇2(0) since Rao and Ren [7] asserted that JC(`(Φ)) = JC(`Φ) = 1 if and only
if `Φ is nonreflexive. [7] obtained the following results about the interpolation of Orlicz
spaces:

Proposition 2.1

Let Φ be an N−function, Φ0(u) = u2, and let Φs be the inverse of

Φ−1
s (u) =

[
Φ−1(u)

]1−s [
Φ−1

0 (u)
]s
, 0 < s ≤ 1, u ≥ 0.

Then

(7) max
(

1
2α0

Φs

, β0
Φs

)
≤
{
JC(`(Φs)), JC(`Φs)

}
≤ 2−s/2

For any N−function Φ with C0
Φ < 2, we produce a function M such that

(8) Φ−1(u) =
[
M−1(u)

]1−s [
Φ−1

0 (u)
]s
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for some 0 < s < 1, where Φ0(u) = u2. It is important to show thatM is anN−function
under some conditions. We take l such that 1 < l < C0

Φ and let s = 2(C0
Φ−l)/C0

Φ(2−l),
then 0 < s < 1 and M is determined by

(9) M−1(u) = u−s/2(1−s)
[
Φ−1(u)

]1/(1−s)
.

Theorem 2.2

Let Φ be an N−function and FΦ(t) be increasing, C0
Φ < 2, Then the function M

determined by (9) satisfies:

(A) lim
t→0+

M(t)/t = 0.

(B)M is convex.

Proof. In this case, for a sufficiently small ε > 0 there is a u0 such that

uC0
Φ ≤ Φ(u) < uC0

Φ+ε

for u ≥ u0, or equivalently,

u1/C0
Φ−ε ≤ Φ−1(u) ≤ u1/C0

Φ .

Therefore,

u

M−1(u)
=
(
u(2−s)/2

Φ−1(u)

)1/(1−s)

≤
(
u(2−s)/2

u1/C0
Φ−ε

)1/(1−s)

=
(
u(C0

Φ−2)(l−1)/C0
Φ(l−2)+ε

)1/(1−s)

→ 0

as u→ 0 + . Let M−1(u) = t, then u = M(t) and hence lim
t→0+

M(t)/t = 0.

To prove (B), it suffices to prove M−1(u) is concave. Observe that

M−1(u) =
(Φ−1)1/(1−s)

us/2(1−s)
,

d

du
M−1 =

1
1−s (Φ−1)s/(1−s) · 1

ϕ · u
s/2(1−s) − s

2(1−s)u
3s−2/2(1−s)(Φ−1)1/(1−s)

us/(1−s)

=
u(Φ−1)s/(1−s) − s

2ϕ · (Φ
−1)1/(1−s)

u2−s/2(1−s)ϕ
· 1
1− s

=
1− s

2
ϕ·Φ−1

u

u2−s/2(1−s)ϕ
· u(Φ

−1)s/(1−s)

1− s
≥

1− s
2C

0
Φ

u2−s/2(1−s)ϕ
· u(Φ

−1)s/(1−s)

1− s

=
2−C0

Φ
2−l

u2−s/2(1−s)ϕ
· u(Φ

−1)s/(1−s)

1− s
> 0,
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and that

d2

du2
M−1 =

d

du

[
u(Φ−1)s/(1−s) − s

2ϕ · (Φ
−1)1/(1−s)

u2−s/2(1−s)ϕ

]
1

1− s

=
{[

s

1− s
(Φ−1)s/(1−s)−1 · 1

ϕ
· u+ (Φ−1)s/(1−s) − s

2
· 1
1− s

(Φ−1)s/(1−s) · 1
ϕ
· ϕ

−s
2
(Φ−1)1/1−s · ϕ

′

ϕ

]
ϕu2−s/2(1−s) −

[
ϕ′

ϕ
u2−s/2(1−s) +

2− s

2(1− s)
ϕus/2(1−s)

]
×
(
u(Φ−1)s/(1−s) − s

2
ϕ · (Φ−1)1/(1−s)

)}
· 1(
ϕ · u2−s/2(1−s)

)2 · 1
1− s

=
[

s

1− s

(
u2 − Φ−1ϕ · u+

2− s

4
(Φ−1)2ϕ2

)
− ϕ′

ϕ
Φ−1 · u2

]
× (Φ−1)s/(1−s)−1u2−s/2(1−s)−1

(1− s)
(
ϕ · u2−s/2(1−s)

)2
=

[
2(C0

Φ − l)
l(2− C0

Φ)

(
1− Φ−1ϕ

u
+
C0

Φ + l − C0
Φl

2C0
Φ(2− l)

(
Φ−1ϕ

u

)2
)
− ϕ′Φ−1

ϕ

]

× (Φ−1)2s−1/(1−s)

(1− s)ϕ2us/2(1−s)
.

Let Φ−1(u) = t, then u = Φ(t). It remains to check that

(10) f(t) :=
2(C0

Φ − l)
l(2− C0

Φ)

(
1− tϕ

Φ
+
C0

Φ + l − C0
Φl

2C0
Φ(2− l)

(
tϕ

Φ

)2
)
− tϕ′

ϕ
< 0.

Since FΦ(t) = tϕ/Φ(t) is increasing from C0
Φ, we have

F ′
Φ(t) =

(tϕ′ + ϕ)Φ− tϕ2

Φ2
=
ϕ
(

tϕ′

ϕ + 1− tϕ
Φ

)
Φ

≥ 0.

Therefore,
tϕ′

ϕ
+ 1− tϕ

Φ
≥ 0,

or
tϕ′

ϕ
≥ tϕ

Φ
− 1.

Thus,

(11) f(t) ≤ 2(C0
Φ − l)

l(2− C0
Φ)

(
1− tϕ

Φ
+
C0

Φ + l − C0
Φl

2C0
Φ(2− l)

(
tϕ

Φ

)2
)
−
(
tϕ

Φ
− 1
)
.

Since the function

g(x) : =
2(C0

Φ − l)
l(2− C0

Φ)

(
1− x+

C0
Φ + l − C0

Φl

2C0
Φ(2− l)

x2

)
− (x− 1)

=
(C0

Φ − l)
l(2− C0

Φ)

[
C0

Φ + l − C0
Φl

C0
Φ(2− l)

x2 − C0
Φ(2− l)
C0

Φ − l
(x− 1)

]
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is decreasing for
x ≤ [C0

Φ(l − 2)]2/[2(C0
Φ + l − C0

Φl)(C
0
Φ − l)].

If C0
Φ < 2, then

C0
Φ ≤ [C0

Φ(l − 2)]2/[2(C0
Φ + l − C0

Φl)(C
0
Φ − l)]

for a sufficiently small l > 1 under the condition C0
Φ < 2 . It follows that

(12) f(t) ≤ (C0
Φ − l)

l(2− C0
Φ)

[
C0

Φ + l − C0
Φl

C0
Φ(2− l)

(C0
Φ)2 − C0

Φ(2− l)
C0

Φ − l
(C0

Φ − 1)
]

since FΦ(t) ≥ C0
Φ.

We only need to check that

h(l) :=
2(C0

Φ − l)
l(2− C0

Φ)

(
1− C0

Φ +
C0

Φ + l − C0
Φl

2C0
Φ(2− l)

(
C0

Φ

)2)− (C0
Φ − 1) < 0,

or equivalently,

h(l) =
C0

Φ

[
−(C0

Φ)2l + 4C0
Φl + (C0

Φ)2 − 4C0
Φ − 4l + 4

]
l(2− l)(2− C0

Φ)
< 0.

Let l→ 1+, then h(l) → 0. On the other hand, since

h′(l) =
C0

Φ

2− C0
Φ

·
−
[
l(C0

Φ − 2) + 2
]2 − 8C0

Φ(l − 1)− 4
(2l − l2)2

< 0,

we see that h(l) is decreasing on (1, C0
Φ), and hence we deduce that h(l) < h(1+) = 0

on its domain. Therefore, we proved M is convex. The proof is finished. �

Remark 2.3. If C0
Φ > 2, then the parameter l can be taken such that C0

Φ < l < +∞ and
l → +∞. But (12) of Theorem 2.2 is no longer substitutable since g(x) is increasing
for x > C0

Φ. Thus, the proof of convexity of M have to be restricted to 1 < CΦ < 2.

Theorem 2.4

Let Φ be an N−function. FΦ(t) = tϕ(t)/Φ(t) is increasing, 1 ≤ C0
Φ < 2, then

(13) JC(l(Φ)) = JC(lΦ) = 21/C0
Φ−1.

Proof. It follows from (7) and (8) that

(14) max
(

1
2α0

Φ

, β0
Φ

)
≤ J(l(Φ)) ≤ 2−s/2

when FΦ(t) is increasing and 1 < C0
Φ < 2. Since FΦ(t) is increasing, 1

2α0
Φ

= 21/C0
Φ−1

by (6). On the other hand, in (14) let l→ 1+, then (2− s)/2 → 1/C0
Φ. Therefore, (13)

holds. It is obvious to see that (13) also holds for C0
Φ = 1 since the spaces generated

by Φ is nonreflexive. �
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Corollary 2.5

Let Φ be an N−function. FΦ(t) = tϕ(t)/Φ(t) is increasing, ϕ is concave, then

(15) JC(`(Φ)) = JC(`Φ) = 21/C0
Φ−1.

Proof. When ϕ is concave,

ϕ(t) =
∫ t

0

ϕ′(s)ds+ ϕ(0) =
∫ t

0

ϕ′(s)ds ≥ tϕ′(t).

Therefore,
[tϕ(t)− 2Φ(t)]′ = tϕ′ − ϕ ≤ 0,

and hence tϕ(t) − 2Φ(t) ≤ 0, in other words, FΦ(t) ≤ 2 which means C0
Φ ≤ 2. If

C0
Φ < 2, then (15) holds by Theorem 2.2. If C0

Φ = 2, then tϕ(t)/Φ(t) ≥ 2 since FΦ(t)
is increasing form 0, and hence, tϕ(t)/Φ(t) = 2 at a neighborhood of 0. This means
that Φ(t) = at2(a > 0), which generates the Hilbert space `2, so (15) holds by the well
known result. �

Example 2.6: The N−function Φ(u) = 2|u|p + |u|2p, 1 < p < 2 satisfies

FΦ(t) =
tΦ′(t)
Φ(t)

= 2p
(
tp + 1
tp + 2

)
≥ p

and C0
Φ = p. Therefore, we have

(16) JC(`(Φ)) = JC(`Φ) = 21/C0
Φ−1 = 21/p−1.

Let 0 < s ≤ 1, then we can produce Φs by

Φ−1
s (u) = (

√
u+ 1− 1)(1−s)/pus/2.

Consequently,

α0
Φs

= β0
Φs

= lim
u→0

Φ−1
s (u)

Φ−1
s (2u)

= lim
u→0

( √
u+ 1− 1√
2u+ 1− 1

)(1−s)/p

·
(

1
2

)s/2

=
(

1
2

)(1−s)/p+s/2

.

Since the author [9] proved that the functionGΦs(u) = Φ−1
s (u)

Φ−1
s (2u)

is increasing on (0,+∞)
if and only if FΦs(t) is increasing on (0,+∞), we deduce that FΦs(t) is increasing
although it is impossible to express. Thus,

C0
Φs

=
1

1−s
p + s

2

∈ (1, 2)

and hence we obtain the exact value:

(17) JC(`(Φ)) = JC(`Φ) = 21/C0
Φs
−1 = 2(1−s)/p+s/2−1.
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Example 2.7: Let Φp(u) = e|u|
p − 1, 1 < p < 2. Rao and Ren ([7], pp. 143) obtained

21/p−1 ≤ JC(`(Φp)) < 1.

Since FΦp
is increasing on (0,∞) and C0

Φp
= p. Therefore, we have the exact value

(18) JC(`(Φp)) = JC(`Φp) = 21/C0
Φp
−1 = 21/p−1.

Moreover, let Φs be a function defined as the inverse of

(19) Φ−1
s (u) = [ln(1 + u)](1−s)/p

us/2, 0 < s ≤ 1.

Then Φs is just the interpolation of Φ1(u) = e|u|
p − 1 and Φ0(u) = u2. Therefore,

analogous to Example 2.6, we obtain

(20) JC(`(Φs)) = JC(`Φs) = 21/C0
Φs
−1 = 2(1−s)/p+s/2−1.

Observe that [7] (pp. 144) gave the estimation:

2(1−s)/p+s/2−1 ≤
{
JC(`(Φs)), JC(`Φs)

}
≤ 2−s/2.

Particularly, for s = 1/2, we obtain

Φ−1
1/2(u) = [ln(1 + u)]1/2p

u1/4.

Therefore,

(21) JC(`(Φ1/2)) = JC(`Φ1/2) = 2
1/C0

Φ1/2
−1

= 21/2p−3/4.
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