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ABSTRACT

The main result of this paper isfC'(((®)) = JC(¢%) = 21/%2~1 under some
condition, where/ C'(¢(®)), JC(¢%) are Jung constants of Orlicz sequence space
¢® equipped with Luxemburg and Orlicz norm, respectively.

1. Introduction

The concept of Jung constant for a normed linear space was introduced by Jung [5]
in 1901 and it was termed by Griinbaum [4]:

DEFINITION 1.1. The Jung constant of a normed linear space X, JC(X) is defined as:

r(A, X)

JC(X) = sup{d(A) : A C X, bounded ,d(A4) > O},

where d(A) = sup{||x — y|| : z,y € A} is the diameter of A, and
r(A, X)=inf {sup||lx — z|| : z € A] : z € X}
is the absolute Chebyshev radius of A.

The definition implies 1/2 < JC(X) < 1. Amir [1] obtained the following equiva-
lent expression which is practical for calculation:
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Proposition 1.2
If X =Y, the dual space of a normed linear space Y, then

(1) JC(X) = sup {T(d/(l;l))() : A C X, finite ,d(A) > 0} .
Jung [5] showed that
JC([%) = m,

where /2 is the Euclidean n—space. He also showed for an n—dimensional normed lin-
ear space X, JC(X,) = 1/2 if and only if X,, = £5°. Also Bohnenblust [3] established
that JC(X,,) < n/(n+ 1) for any n—dimensional normed linear space X,,. For some
infinite dimensional spaces the following results are available:

1

JO(E) = 5, JOL™(0,1]) = JOU) = %

and
JCO(L'[0,1]) = JC(£Y) = JC(cp) = JC(C(T)) = 1

where T is a compact Hausdorff space, without isolated points. Obtaining lower and
upper bounds respectively by Berdyshev [2] and Pichugov [6], the following result was
deduced:

JO(LP[—m, 7]) = max (21/p—1, z—l/p) 1< p< oo

For LP(Q) with © = [0,1] or [0,400) and 7 Ren and Chen [8], Zhang [10] obtained
the similar results. In fact, “estimation of Jung constants is one of the directions of
research of the geometric theory of normed spaces”. However, expression for exact
values of Jung constants has remained a problem. This paper is devoted to the exact
value of Jung constant in a class of Orlicz sequence spaces.

Let

v

Juf
@(u):/o p(t)dt and ¥(v) = P (s)ds

0

be a pair of complementary N —functions, i.e., ¢(t) is right continuous, ¢(0) = 0, and
o(t) /oo ast / co. We call & € Ay(0), if there exist ug > 0 and k > 2 such that
®(2u) < k®(u) for 0 < u < ug. The Orlicz sequence space is defined as the set

* = {x(z) D pa(Ax) = Z D (Az(i)|) < oo for some A > 0} .
n=1
The Luxemburg norm and Orlicz norm are expressed as

Izl (@) = inf{c >0 pq>(§) < 1}

and )
z]le = l}g{) z 1+ pa(kz)],
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respectively. In what follows, we will use Semenov and Simonenko indices of ®(u):

O 1(u) D~ 1(u)
0 _ i - 0 _1;
@) ag = liminf d—1(2u)’ fo = limsup d—1(2u)’
. tp(t) . to(t)
0 ey 0 p—y
(3) Ay = hmt_}(I)lf (1)’ Bg hmtjélp ()

The same indices can be applied to ¥(v). The author [9] obtained
(4) 20505 =1 = 20y 3.
Rao and Ren [7] gave the following interrelations:
(5) 27148 <o < g5 <271/,

If the index function Fg(t) = te(t)/P(t) is monotonic (increase or decrease) at a right
neighborhood of 0, then the limit C = 7}in% to(t)/®(t) must exist, and hence

(6) af =g =271/,

The author [9] founded that Ge(u) = @71 (u)/®~1(2u) is increasing if and only if Fg (t)
is increasing upon the corresponding interval. These relations will play important roles
in our main results.

2. Main results

We need only to observe the case of £(®) and ¢® being reflexive, or equivalently, ® €
A3(0)N'V2(0) since Rao and Ren [7] asserted that JC(£(®)) = JC(¢®) = 1 if and only
if £® is nonreflexive. [7] obtained the following results about the interpolation of Orlicz
spaces:

Proposition 2.1
Let ® be an N—function, ®y(u) = u?, and let ®, be the inverse of

O (u) = [@‘1(11)]178 [@al(u)]s, 0<s<1l,u>0.

Then

1
(7) max <Maﬁ%5> < {JC(E(q)S))a Jc(ﬁbs)} <27¢/2
o,
For any N —function ® with C$ < 2, we produce a function M such that

(8) O (u) = [M~ ()] " [0t ()]
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for some 0 < s < 1, where ®¢(u) = u?. It is important to show that M is an N —function

under some conditions. We take [ such that 1 < < C$ and let s = 2(C2—1)/C%(2-1),
then 0 < s < 1 and M is determined by

(9) M—l(u) _ u—s/2(l—s) [(I)—l(u)] 1/(1-s) )

Theorem 2.2

Let ® be an N—function and Fy(t) be increasing, C9 < 2, Then the function M
determined by (9) satisfies:

(A) lim M(t)/t=0.
(B)M is convex.

Proof. In this case, for a sufficiently small € > 0 there is a ug such that
c? C2+e
u’e < O(u) < u-e
for u > ug, or equivalently,
ul/cg—e < (I)—l(u> < ul/cg_

Therefore,

u o (u2 1/<1—S>< u2=s)/2\ 1/(1=9)
M=)~ \ @ 1(u) =\ l/c5—=

— (u(c(%fz)(zﬂ)/cg(lﬂ)ﬂ)1/(1_5) iy

asu — 0+ . Let M~1(u) =t, then u = M(t) and hence tliI(I)1+ M(t)/t = 0.

To prove (B), it suffices to prove M ~!(u) is concave. Observe that

((I)—l)l/(lfs)

-1 o
M~ (u) = ws/20—s)
d e i(q)—l)s/(l—s) X % . us/2(1—s) _ 2(18_8)u35—2/2(1—s)(q)—1)1/(1—5)
du - ws/(1—=s)
B u(q)fl)s/(lfs) _ %90 . ((I)fl)l/(lfs) . 1
- u27s/2(173)(p 1—3s
_ 1— %«J'i_l . u(cI)—l)S/(l—S) 1— %Cc% . u(cI)—l)S/(l—S)
u2_5/2(1_5)(’0 1—s = u2_5/2(1_5)(’0 1—s
0
= C o

T w2208 1—s >0,
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and that

(1= s)p2us/20-5)"

Let ®1(u) = t, then u = ®(¢). It remains to check that

Lo CaHI=CRl (t9)*) _tf
¢ 209(2—-1) \ @ @

Since Fg(t) = to/®(t) is increasing from C3, we have

2(CY —1)

10 S0 =iy

(te' + )@ — tp?

Fy(t) =

Therefore,
or

Thus,
2(Cg — 1)
(11) f@ém_%«

Since the function

p(41-%)
= > 0.

P2 ) -
ty’
£ 1—7>o
s0+ P
t/
e te
%) )

LQM—I _ i u((I)_l)s/(l_S) o %SO‘ ((I)—l)l/(l—s) 1
du? du u2=s/2(1=s)p 1-s
S 1 s 1 1
— o—1)s/(1—s)—1 = o-1)s/(1—s) _ 2| o-1)s/(1—=s)  — .
{50 Lok e Dy
s . ¢ B _ o 4 - 2—s _
_2(p1 1/1-s | :| QOUQ s/2(1—s) |:u2 s/2(1—s) + sDus/?(l s):|
o (®) "2 @ (1-s)
1 1
Lys/(1=s) _ o 1)1/0=9)) | :
(u QSD ( ) >} (80 _ u27s/2(178))2 1—s5
B /
= [ (u — ol u+ 2 8(<I>_1)2g02> _ P et -u2]
4 @
( )s/(l s)—1 u2— s/2(1—s)—1
X
(1 _ S) (90 . u2—s/2(l—s))
_ |2k (el CR1-CRl (2 N\ ot
1(2-C%) u 209(2-1) u ©
—1\25—1/(1—s)
(@

Lt CRHI-CRL e\ ([t
o 20921 \ @ ) ‘

xR Ch+1-Ch
o) = aop (1 g )~
(=D [CR+1=CYl, Ch2=D
i —O@[ ce-n © cg-r Y

|
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is decreasing for
v < [Ca(l—2)P/[2(Cq +1 - Cgl)(Cg —1)].

If C3 < 2, then
Co <[Co(l = 2)1*/[2(Cg +1 = Cal)(Cy = D)]

for a sufficiently small [ > 1 under the condition C$ < 2 . It follows that

(Ceg—1) [Co+1-C3l, 52 Ca—1),
12 < == 7 -1
since Fg(t) > C3.
We only need to check that
2(CY —1) C +1—CYl 2
D) =2222 Y (100 22~ Y& (0 —(C% -1
0=t (1= %+ Sy (@) ~@-v<0

or equivalently,

hl) = CY [—(C)21 +4C31 + (C3)? — 4CY — 4l + 4] —0
N 1(2-1)(2-0C9)

Let I — 1+, then h(l) — 0. On the other hand, since

, co —[1ICY —2)+2]" —8Co>1—1) -4
W)= —%5 - 1(C ]_22‘1’ <0,
2-CY (20— 12)

we see that h(l) is decreasing on (1,C3), and hence we deduce that h(l) < h(1+) =0
on its domain. Therefore, we proved M is convex. The proof is finished. [

Remark 2.3. If C2 > 2, then the parameter [ can be taken such that C3 < [ < 400 and
I — +o0. But (12) of Theorem 2.2 is no longer substitutable since g(z) is increasing
for x > C2. Thus, the proof of convexity of M have to be restricted to 1 < Cp < 2.

Theorem 2.4
Let ® be an N—function. Fg(t) = tp(t)/®(t) is increasing, 1 < CY < 2, then

(13) JC(I®) = JC(1®) = 21/% -1,

Proof. 1t follows from (7) and (8) that

1
(14) max <0,ﬂ%> < JA®) <270/
200
when Fg(t) is increasing and 1 < C§ < 2. Since Fy(t) is increasing, 515 = 21/Ca—1
b
by (6). On the other hand, in (14) let [ — 1+, then (2 —s)/2 — 1/C2. Therefore, (13)

holds. Tt is obvious to see that (13) also holds for C = 1 since the spaces generated
by @ is nonreflexive. [
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Corollary 2.5
Let ® be an N—function. Fg(t) = te(t)/®(t) is increasing, ¢ is concave, then

(15) JC(®) = JO(?) = 21/Ca-1,

Proof. When ¢ is concave,

o(t) = / o/(5)ds + p(0) = / o (s)ds > t'(1).

Therefore,
[to(t) = 20(1)] = ¢’ — ¢ <0,
and hence tp(t) — 2®(t) < 0, in other words, Fy(t) < 2 which means Cy < 2. If
C$ < 2, then (15) holds by Theorem 2.2. If C$ = 2, then tp(t)/®(t) > 2 since Fy(t)
is increasing form 0, and hence, tp(t)/®(t) = 2 at a neighborhood of 0. This means
that ®(¢) = at?(a > 0), which generates the Hilbert space £2, so (15) holds by the well
known result. OJ

EXAMPLE 2.6: The N—function ®(u) = 2|ul?P + |u|?P, 1 < p < 2 satisfies
£’ (£) ?+1
Fg(t) = =2 >

and C9 = p. Therefore, we have
(16) JC(U®)) = JC(e®) = 21/Ce—1 = gl/r—1,
Let 0 < s <1, then we can produce ®, by

O (u) = (Vu+ 1 —1)379)/pys/2,

Consequently,

0 B9 li @, ! (u) I Vu+1-1 (1=s)/p 1\ °/2 1\ (A=8)/pts/2
= = ]llm ————— = lIlm - - = = _ L .
Oé<I>5 g8 2 u—0 2 + 1—-1 2 9

Since the author [9] proved that the function Gs,_ (u) = ;E 11((21;)) is increasing on (0, +00)
if and only if Fg,(t) is increasing on (0,400), we deduce that Fg_(t) is increasing

although it is impossible to express. Thus,

and hence we obtain the exact value:

(17) JC(U®) = JC (1) = 2V/C,~1 = 9(=s)/pis/2-1,
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EXAMPLE 2.7: Let ®@,(u) = el*l” — 1,1 < p < 2. Rao and Ren ([7], pp. 143) obtained
oM/P=t < JO (1)) < 1.

Since Fg, is increasing on (0, 00) and C’%p = p. Therefore, we have the exact value

(18) JO(U®)) = JO(#%r) = 2/Co,~1 = 9l/p-1,
Moreover, let &, be a function defined as the inverse of

(19) O (u) = In(1 +u)) PP u/2 0 < s < 1.

S

Then ®, is just the interpolation of ®;(u) = el*” — 1 and ®y(u) = u?. Therefore,
analogous to Example 2.6, we obtain

(20) Jc(g@s)) — Jc(ﬁs) _ 91/C3 ~1 _ 9(1—s)/p+s/2—1
Observe that [7] (pp. 144) gave the estimation:
2(1=s)/pts/2-1 < {Jc(g(és)),JC(g@s)} < 978/2,
Particularly, for s = 1/2, we obtain
@}y (u) = [In(1 4 w)]"/? w4,
Therefore,

(21) JOU@12)) = JO((21/2) = 2"/ “0ya ™! = 91/20-3/4
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