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Abstract

We examine the p-harmonic equation div |∇u|p−2∇u=µ where µ is a bounded
Radon measure. We determine a range of p’s for which solutions to the equation
verify an a priori estimate. For such p’s we also prove an higher integrability result.

1. Introduction

The paper is concerned with the non homogeneous p-harmonic equation

div |∇u|p−2∇u = div f on Ω (1.1)

where Ω is a bounded open regular subset of R
n, n ≥ 2. When u is a function in

the Sobolev class W 1,p
o (Ω) and f = (f1, . . . , fn) is a vector field in Lq(Ω; Rn), with

1
p + 1

q = 1, we are in the so-called “natural setting” of the p-harmonic equation. A
function u is referred to as a solution of equation (1.1) if the distributional gradient of
u verifies the integral identity

∫
Ω

|∇u|p−2∇u∇ϕ =
∫

Ω

f∇ϕ (1.2)
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for every ϕ ∈ C∞
o (Ω). Of course, if u ∈W 1,p

o (Ω), by an approximation argument, (1.2)
extends to all ϕ ∈W 1,p

o (Ω) as well. Then we can apply (1.2) to ϕ = u and immediately
obtain the following basic estimate∫

Ω

|∇u|p ≤
∫

Ω

|f |q .

Although Lq(Ω) is the natural space to which the vector field f has to belong, many
recent papers have been devoted to the study of the p-harmonic equation (1.1) when
the right hand side belongs to a space different from Lq.

This study began with a paper by Iwaniec and Sbordone ([14]), where the p-
harmonic equation is examined for f ∈ Lq±ε(Ω; Rn). They proved that if u ∈
W 1,p±ε(Ω) is a solution to the equation (1.1) for a suitable small ε > 0, then
u ∈W 1,p(Ω).

Analogous regularity results have been established later on for more general type
of operators that are power-like in ∇u (see [8], [5]). A motivation for the study of
(1.1) when the right hand side is the divergence of a vector field belonging to a space
different from the natural one can be found in the equation

div |∇u|p−2∇u = µ on Ω (1.3)

where µ is a Radon measure of finite total variation in Ω.
Namely, such a measure µ can be written as µ = divF , with some F ∈ Ls(Ω,Rn)

and s = n−ε
n−1 , for every ε > 0 (see Lemma 3.4 below and the recent paper [3]).

Properties of the distributional solutions to equation (1.3) have been investigated
only when p = n. In that case, in [7, 10] is proved that there exists a unique distribu-
tional solution which belongs to the grand Sobolev space W 1,n)(Ω), i.e. the space of
functions u such that

||∇u||Ln) = sup
0<ε≤n−1

(
ε−
∫

Ω

|∇u|n−ε
)1/(n−ε)

<∞ .

There are of course many more possible spaces in which the equation (1.3) admits
solutions, in case p ≤ n. Such spaces lay beyond the range of our paper. For them we
refer to [1], [2], [6], [12], [17].

As remarked in [15], for investigating properties of the distributional solutions to
the equation

div |∇u|p−2∇u = µ = divF F ∈ L(n−ε)/(n−1)(Ω,Rn)

what we need first are estimates of the form∫
Ω

|∇u|((p−1)(n−ε))/(n−1) ≤ C(n, p)
∫

Ω

|F |(n−ε)/(n−1) (1.4)

that are known only in case p = n (see [7], [10]). In this paper we fix a bounded Radon
measure µ and determine a range of p’s for which solutions of the p-harmonic equation
(1.3) satisfy estimate (1.4). Namely, we have the following.
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Theorem 1

Let f ∈ Lr(Ω), r > 1. There exists δ = δ(n, r) > 0 such that if p > max{ r
r−1 − δ;

1 + 1
r} and g ∈ Lr(p−1)(Ω) then every solution u ∈W 1,r(p−1)

o (Ω) of the equation

div
(
|∇u+ g|p−2(∇u+ g)

)
= div f (1.5)

satisfies the following estimate

||∇u||p−1
Lr(p−1)(Ω)

≤ C||f ||Lr(Ω) + C||g||p−1
Lr(p−1)(Ω)

. (1.6)

Moreover for every r > 1 there exists δ = δ(n, r) > 0 such that if |p−2| < δ then every

solution u ∈W 1,r(p−1)
o (Ω) of the equation (1.5) satisfies estimate (1.6).

Having estimate (1.6) at our disposal, we establish that a solution u ∈ W 1,r(p−1)
o

of equation (1.5) satisfies a reverse Hölder inequality, from which we get the following
higher integrability result.

Theorem 2

Let f ∈ Lr+η(Ω), r > 1, η > 0. If p is related to r as in Theorem 1 and

u ∈ W 1,r(p−1)
o (Ω) is a solution of the equation (1.1), then u ∈ W 1,r(p−1)+σ

loc (Ω), some

σ = σ(r, n, η) > 0.

Our results can be rewritten for the distributional solutions to the equation (1.3)
where µ is a bounded Radon measure.

Theorem 3

Let µ be a bounded Radon measure on Ω. There exists δ > 0 such that if p < n

and one of the two following conditions holds

i) n− δ < p
ii) |p− 2| < δ

a solution u ∈ W
1,

s(p−1)
n−1

o (Ω), with s(p−1)
n−1 > 1, actually belongs to W

1,
r(p−1)
n−1

loc (Ω), for

any s < r < n.

Remark 1.1. A slight modification of the arguments presented here shows that our
results remain valid for the A-harmonic operator

divA(x,∇u)

where A satisfies the usual growth and coercivity conditions.

Remark 1.2. We could obtain similar results also when the ellipticity bounds are not
L∞ but belong to the space BMO of functions of bounded mean oscillation, just using
the arguments developed in [4], [15], [11]. More precisely, let us consider the equation

div(b(x)|∇u|p−2∇u) = divf (1.7)
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where 1 ≤ b(x) is a function in the space BMO(Ω) and f ∈ Lr(Ω). There exists
δ = δ(n, r, ||b||BMO) > 0 such that if p > max{ r

r−1 − δ; 1+ 1
r} or |p− 2| < δ then every

solution u ∈W 1,r(p−1)
o (Ω) of the equation (1.7) satisfies the following estimate

||∇u||p−1
Lr(p−1)(Ω)

≤ C||f ||Lr(Ω) .

To avoid technicalities, we present the proof in the simplest case.

2. Preliminary results

In order to get a priori estimate for the solution to p-Laplace equation one usually
tests the identity (1.2) with functions ϕ such that ∇ϕ are essentially proportional to
∇u. Unfortunately, when p < n, u cannot be used as test function in our problem.
We have to construct admissible test functions and then we need the following.

Theorem 2.1 (Hodge decomposition)

Let w belong to W 1,s
o (Ω), with s > 1 and let −1 < ε < s − 1. Then there exist

φ ∈W 1, s
1+ε

o (Ω) and a divergence free vector field H ∈ L s
1+ε (Ω) such that

|∇w|ε∇w = ∇φ+H. (2.1)

Moreover

||∇φ||
L

s
1+ε

≤ C1||∇w||1+ε
Ls (2.2)

||H||
L

s
1+ε

≤ C2(n, s)|ε|||∇w||1+ε
Ls . (2.3)

Proof. See Theorem 3 in [14]. �

In order to obtain a reverse Hölder inequality for the solutions of our equation,
we shall use the following Poincaré - Sobolev Lemma.

Lemma 2.2

Let B(xo, R) be a ball in R
n and A ∈ L1

loc(B; Rm×n) be a matrix field. There

exists a divergence free matrix field AB ∈ L1
loc(B; Rm×n) such that

(
−
∫
B

|A(x) −AB |r
)1/r

≤ C(r,m, n)R
(
−
∫
B

|divA|s
)1/s

provided s ≥ max{1, nr
n+r} and divA ∈ Ls(B; Rm).
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Proof. See Lemma 6.1 in [14]. �

The higher integrability result follows by applying the well-known.

Theorem 2.3

Let h ∈ L1(Ω) and suppose that for concentric balls B
2 = B(xo, R2 ) ⊂ B =

B(xo, R) ⊂ Ω we have

−
∫
B/2

h(x)dx ≤ C
(
−
∫
B

h(x)mdx
)1/m

+ −
∫
B

k(x)dx

some 0 < m < 1. If k ∈ Lt(Ω), with t > 1 then there exists an exponent r > 1 such

that h ∈ Lr(B2 ) and

−
∫
B/2

hr(x)dx ≤ C
(
−
∫
B

h(x)dx
)r

+ −
∫
B

kr(x)dx .

Proof. See [9]. �

As we have already mentioned, each bounded Radon measure on Ω, can be written
as the divergence of a suitable vector field F belonging to the space L

n
n−1 )(Ω,Rn).

Namely, we have:

Lemma 3.4

Given a bounded Radon measure µ on Ω, there exists a vector field F such that

divF = µ

and

||F ||
L

n
n−1 ) = sup

0<ε≤ 1
n−1

(
ε−
∫

Ω

|F |(n−ε)/(n−1)
)(n−1)/(n−ε)

≤ C
∫

Ω

|dµ| .

Proof. See [7], [10]. �

3. The a priori estimate

In this section we give the proof of Theorem 1. We confine ourselves to the case
p

p−1 > r. When p
p−1 < r, estimate of Theorem 1 has been proved in [13].

Proof of Theorem 1. Hodge decomposition stated in Theorem 2.1 implies that there
exist ϕ ∈W 1, r

r−1
o (Ω) and a divergence free vector field H ∈ L r

r−1 (Ω; Rn) such that

|∇u|r(p−1)−p∇u = ∇ϕ+H
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and

||∇ϕ||
L

r
r−1

≤ C1||∇u||r(p−1)−p+1

Lr(p−1) (3.1)

||H||
L

r
r−1

≤ C2(n, r)|r(p− 1) − p|||∇u||r(p−1)−p+1

Lr(p−1) . (3.2)

Note that ϕ is an admissible test function in equation (1.5). Therefore using the
following Lipschitz property of the p-laplacian∣∣|a+ b|p−2(a+ b) − |a|p−2a

∣∣ ≤ c(p)|b|(|a| + |b|
)p−2 ∀a, b ∈ R

n

and that u is a solution, we get∫
Ω

|∇u|r(p−1) =
∫

Ω

〈|∇u|p−2∇u, |∇u|r(p−1)−p∇u〉

=
∫

Ω

〈|∇u|p−2∇u− |∇u+ g|p−2(∇u+ g), |∇u|r(p−1)−p∇u〉

+
∫

Ω

〈|∇u+ g|p−2(∇u+ g), |∇u|r(p−1)−p∇u〉

≤ c(p)
∫

Ω

|g|(|∇u| + |∇u+ g|)p−2|∇u|r(p−1)−p+1

+
∫

Ω

〈f,∇ϕ〉 +
∫

Ω

〈|∇u+ g|p−2(∇u+ g), H〉 .

Hölder inequality and estimate (3.1) imply

∫
Ω

|∇u|r(p−1) ≤ c
∫

Ω

|g|(|∇u| + |∇u+ g|)r(p−1)−1

+ ||f ||Lr ||∇ϕ||
L

r
r−1

+
∫

Ω

〈|∇u+ g|p−2(∇u+ g), H〉

≤ C||g||Lr(p−1)|||∇u| + |∇u+ g|||r(p−1)−1
Lr(p−1)

+ C1||f ||Lr ||∇u||r(p−1)−p+1

Lr(p−1) +
∫

Ω

〈|∇u+ g|p−2(∇u+ g), H〉 . (3.4)

Using Hodge decomposition again, we have

|∇u+ g|p−2(∇u+ g) = ∇ψ +K (3.5)

where ψ ∈W 1,r
0 (Ω), div K=0 and
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||K||Lr ≤ C̃2(n, r)|p− 2|||∇u+ g||p−1
Lr(p−1) . (3.6)

From this estimate, recalling that H is divergence free and using (3.2) and (3.6) we get∫
Ω

〈|∇u+ g|p−2(∇u+ g), H〉 =
∫

Ω

〈∇ψ,H〉 +
∫

Ω

〈K,H〉

=
∫

Ω

〈K,H〉 ≤ ||H||
L

r
r−1

||K||Lr ≤ C2C̃2|r(p− 1)

− p||p− 2|(||∇u||r(p−1)

Lr(p−1) + ||g||r(p−1)

Lr(p−1)) .

(3.7)

Inserting (3.7) in (3.4) and using Young’s inequality, we obtain∫
Ω

|∇u|r(p−1) ≤ C1||f ||Lr ||∇u||r(p−1)−p+1

Lr(p−1)

+ C2C̃2|r(p− 1) − p||p− 2|(||∇u||r(p−1)

Lr(p−1) + ||g||r(p−1)

Lr(p−1)) . (3.8)

From this inequality if r, p are such that

C2C̃2|r(p− 1) − p||p− 2| < 1 (3.9)

holds, we immediately get

||∇u||r(p−1)

Lr(p−1) ≤ C||f ||rLr + C||g||r(p−1)

Lr(p−1)

as claimed. �

4. Higher integrability

Throughout this section the exponents p and r are related as in Theorem 1 and u ∈
W

1,r(p−1)
o (Ω) is a solution of equation (1.5), with g = 0.

Proof of Theorem 2. Fix a function ϕ ∈ C∞
0 (Ω) and introduce the function w = ϕu.

Routine calculations show that w, belonging to the space W 1,r(p−1)
o (Ω), solves the

equation
div|∇w|p−2∇w = divG

where

G = ϕp−1|∇u|p−2∇u+ |ϕ∇u+ u∇ϕ|p−2(ϕ∇u+ u∇ϕ) − |ϕ∇u|p−2(ϕ∇u) .

Since
|G| ≤ |ϕ|p−1|∇u|p−1 + |u∇ϕ|(|u∇ϕ| + |ϕ∇u|)p−2 ∈ Lr(Ω)
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we are legitimate to apply estimate (1.6) to the function w and find

||∇w||p−1
r(p−1) ≤ C||G||r ≤ C||ϕp−1|∇u|||p−1

r(p−1) + C||u∇ϕ||p−1
r(p−1) . (4.1)

Now, fix a ball B(xo, R) ⊂ Ω and let ϕ ∈ C∞
0 (B) be a cut-off function such that

0 ≤ ϕ ≤ 1, ϕ = 1 on B(xo, R2 ) and |∇ϕ| ≤ c
R . Writing inequality (4.1), using the

properties of ϕ and estimate (1.6) for the function u, we obtain

−
∫
B(xo,R/2)

|∇u|r(p−1) ≤ C

R
−
∫
B(xo,R)

|u|r(p−1) + C −
∫
B(xo,R)

|f |r(p−1) .

Using Sobolev-Poincaré inequality we get to the following reverse Hölder inequality

−
∫
B(xo,R/2)

|∇u|r(p−1) ≤ C
(
−
∫
B(xo,R)

|∇u|s
)(r(p−1))/s

+ −
∫
B(xo,R)

|f |r

provided s ≥ nr(p−1)
n+r(p−1) . The result follows by applying Theorem 2.3. �

Proof of Theorem 3. Using Lemma 3.4 we can express µ as the divergence of a vector
field f belonging to Ls(Ω), for every s < n

n−1 . Then we are legitimate to apply
Theorem 2 to find, for p verifying

C(n)|s(p− 1) − p||p− 2| < 1, (4.2)

that a solution u ∈ W 1,
s(p−1)
n−1

o (Ω) actually belongs to W
1,

s(p−1)
n−1 +η

loc (Ω) some η > 0. We
conclude the proof iterating this process, since the range of p’s found via inequality
(4.2) has positive Lebesgue measure when s tends to n

n−1 . �
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