Collectanea Mathematica (electronic version): http://www.imub.ub.es/collect

Collect. Math. 55, 1 (2004), 11-19
(c) 2004 Universitat de Barcelona

A regularity result for p-harmonic equations with measure data

Menita Carozza
Università del Sannio, Via Calandra 1, 82100 Benevento
E-mail: carozza@unisannio.it
Antonia Passarelli di Napoli
Dipartimento di Matematica e Appl. "R. Caccioppoli", Via Cintia, 80126 Napoli
E-mail: antonia.passarelli@dma.unina.it

Received November 5, 2002. Revised June 17, 2003

Abstract

We examine the p-harmonic equation div $|\nabla u|^{p-2} \nabla u=\mu$ where μ is a bounded Radon measure. We determine a range of p 's for which solutions to the equation verify an a priori estimate. For such p 's we also prove an higher integrability result.

1. Introduction

The paper is concerned with the non homogeneous p-harmonic equation

$$
\begin{equation*}
\operatorname{div}|\nabla u|^{p-2} \nabla u=\operatorname{div} f \quad \text { on } \quad \Omega \tag{1.1}
\end{equation*}
$$

where Ω is a bounded open regular subset of $\mathbb{R}^{n}, n \geq 2$. When u is a function in the Sobolev class $W_{o}^{1, p}(\Omega)$ and $f=\left(f^{1}, \ldots, f^{n}\right)$ is a vector field in $L^{q}\left(\Omega ; \mathbb{R}^{n}\right)$, with $\frac{1}{p}+\frac{1}{q}=1$, we are in the so-called "natural setting" of the p-harmonic equation. A function u is referred to as a solution of equation (1.1) if the distributional gradient of u verifies the integral identity

$$
\begin{equation*}
\int_{\Omega}|\nabla u|^{p-2} \nabla u \nabla \varphi=\int_{\Omega} f \nabla \varphi \tag{1.2}
\end{equation*}
$$

Keywords: p-harmonic operator, a priori estimate, regularity.
MSC2000: 35B45, 35D10, 35J60.
for every $\varphi \in C_{o}^{\infty}(\Omega)$. Of course, if $u \in W_{o}^{1, p}(\Omega)$, by an approximation argument, (1.2) extends to all $\varphi \in W_{o}^{1, p}(\Omega)$ as well. Then we can apply (1.2) to $\varphi=u$ and immediately obtain the following basic estimate

$$
\int_{\Omega}|\nabla u|^{p} \leq \int_{\Omega}|f|^{q}
$$

Although $L^{q}(\Omega)$ is the natural space to which the vector field f has to belong, many recent papers have been devoted to the study of the p-harmonic equation (1.1) when the right hand side belongs to a space different from L^{q}.

This study began with a paper by Iwaniec and Sbordone ([14]), where the pharmonic equation is examined for $f \in L^{q \pm \varepsilon}\left(\Omega ; \mathbb{R}^{n}\right)$. They proved that if $u \in$ $W^{1, p \pm \varepsilon}(\Omega)$ is a solution to the equation (1.1) for a suitable small $\varepsilon>0$, then $u \in W^{1, p}(\Omega)$.

Analogous regularity results have been established later on for more general type of operators that are power-like in ∇u (see [8], [5]). A motivation for the study of (1.1) when the right hand side is the divergence of a vector field belonging to a space different from the natural one can be found in the equation

$$
\begin{equation*}
\operatorname{div}|\nabla u|^{p-2} \nabla u=\mu \quad \text { on } \quad \Omega \tag{1.3}
\end{equation*}
$$

where μ is a Radon measure of finite total variation in Ω.
Namely, such a measure μ can be written as $\mu=\operatorname{div} F$, with some $F \in L^{s}\left(\Omega, \mathbb{R}^{n}\right)$ and $s=\frac{n-\epsilon}{n-1}$, for every $\epsilon>0$ (see Lemma 3.4 below and the recent paper [3]).

Properties of the distributional solutions to equation (1.3) have been investigated only when $p=n$. In that case, in $[7,10]$ is proved that there exists a unique distributional solution which belongs to the grand Sobolev space $W^{1, n)}(\Omega)$, i.e. the space of functions u such that

$$
\|\nabla u\|_{L^{n)}}=\sup _{0<\epsilon \leq n-1}\left(\epsilon f_{\Omega}|\nabla u|^{n-\epsilon}\right)^{1 /(n-\epsilon)}<\infty
$$

There are of course many more possible spaces in which the equation (1.3) admits solutions, in case $p \leq n$. Such spaces lay beyond the range of our paper. For them we refer to [1], [2], [6], [12], [17].

As remarked in [15], for investigating properties of the distributional solutions to the equation

$$
\operatorname{div}|\nabla u|^{p-2} \nabla u=\mu=\operatorname{div} F \quad F \in L^{(n-\epsilon) /(n-1)}\left(\Omega, \mathbb{R}^{n}\right)
$$

what we need first are estimates of the form

$$
\begin{equation*}
\int_{\Omega}|\nabla u|^{((p-1)(n-\epsilon)) /(n-1)} \leq C(n, p) \int_{\Omega}|F|^{(n-\epsilon) /(n-1)} \tag{1.4}
\end{equation*}
$$

that are known only in case $p=n$ (see [7], [10]). In this paper we fix a bounded Radon measure μ and determine a range of p 's for which solutions of the p-harmonic equation (1.3) satisfy estimate (1.4). Namely, we have the following.

Theorem 1

Let $f \in L^{r}(\Omega), r>1$. There exists $\delta=\delta(n, r)>0$ such that if $p>\max \left\{\frac{r}{r-1}-\delta\right.$; $\left.1+\frac{1}{r}\right\}$ and $g \in L^{r(p-1)}(\Omega)$ then every solution $u \in W_{o}^{1, r(p-1)}(\Omega)$ of the equation

$$
\begin{equation*}
\operatorname{div}\left(|\nabla u+g|^{p-2}(\nabla u+g)\right)=\operatorname{div} f \tag{1.5}
\end{equation*}
$$

satisfies the following estimate

$$
\begin{equation*}
\|\nabla u\|_{L^{r(p-1)}(\Omega)}^{p-1} \leq C\|f\|_{L^{r}(\Omega)}+C\|g\|_{L^{r(p-1)}(\Omega)}^{p-1} \tag{1.6}
\end{equation*}
$$

Moreover for every $r>1$ there exists $\delta=\delta(n, r)>0$ such that if $|p-2|<\delta$ then every solution $u \in W_{o}^{1, r(p-1)}(\Omega)$ of the equation (1.5) satisfies estimate (1.6).

Having estimate (1.6) at our disposal, we establish that a solution $u \in W_{o}^{1, r(p-1)}$ of equation (1.5) satisfies a reverse Hölder inequality, from which we get the following higher integrability result.

Theorem 2

Let $f \in L^{r+\eta}(\Omega), r>1, \eta>0$. If p is related to r as in Theorem 1 and $u \in W_{o}^{1, r(p-1)}(\Omega)$ is a solution of the equation (1.1), then $u \in W_{l o c}^{1, r(p-1)+\sigma}(\Omega)$, some $\sigma=\sigma(r, n, \eta)>0$.

Our results can be rewritten for the distributional solutions to the equation (1.3) where μ is a bounded Radon measure.

Theorem 3

Let μ be a bounded Radon measure on Ω. There exists $\delta>0$ such that if $p<n$ and one of the two following conditions holds

$$
\begin{align*}
& n-\delta<p \\
& |p-2|<\delta
\end{align*}
$$

a solution $u \in W_{o}^{1, \frac{s(p-1)}{n-1}}(\Omega)$, with $\frac{s(p-1)}{n-1}>1$, actually belongs to $W_{l o c}^{1, \frac{r(p-1)}{n-1}}(\Omega)$, for any $s<r<n$.

Remark 1.1. A slight modification of the arguments presented here shows that our results remain valid for the \mathcal{A}-harmonic operator

$$
\operatorname{div} \mathcal{A}(x, \nabla u)
$$

where \mathcal{A} satisfies the usual growth and coercivity conditions.
Remark 1.2. We could obtain similar results also when the ellipticity bounds are not L^{∞} but belong to the space BMO of functions of bounded mean oscillation, just using the arguments developed in [4], [15], [11]. More precisely, let us consider the equation

$$
\begin{equation*}
\operatorname{div}\left(b(x)|\nabla u|^{p-2} \nabla u\right)=\operatorname{div} f \tag{1.7}
\end{equation*}
$$

where $1 \leq b(x)$ is a function in the space $B M O(\Omega)$ and $f \in L^{r}(\Omega)$. There exists $\delta=\delta\left(n, r,\|b\|_{B M O}\right)>0$ such that if $p>\max \left\{\frac{r}{r-1}-\delta ; 1+\frac{1}{r}\right\}$ or $|p-2|<\delta$ then every solution $u \in W_{o}^{1, r(p-1)}(\Omega)$ of the equation (1.7) satisfies the following estimate

$$
\|\nabla u\|_{L^{r(p-1)}(\Omega)}^{p-1} \leq C\|f\|_{L^{r}(\Omega)}
$$

To avoid technicalities, we present the proof in the simplest case.

2. Preliminary results

In order to get a priori estimate for the solution to p-Laplace equation one usually tests the identity (1.2) with functions φ such that $\nabla \varphi$ are essentially proportional to ∇u. Unfortunately, when $p<n, u$ cannot be used as test function in our problem. We have to construct admissible test functions and then we need the following.

Theorem 2.1 (Hodge decomposition)
Let w belong to $W_{o}^{1, s}(\Omega)$, with $s>1$ and let $-1<\varepsilon<s-1$. Then there exist $\phi \in W_{o}^{1, \frac{s}{1+\varepsilon}}(\Omega)$ and a divergence free vector field $H \in L^{\frac{s}{1+\varepsilon}}(\Omega)$ such that

$$
\begin{equation*}
|\nabla w|^{\varepsilon} \nabla w=\nabla \phi+H \tag{2.1}
\end{equation*}
$$

Moreover

$$
\begin{align*}
&\|\nabla \phi\|_{L^{\frac{s}{1+\varepsilon}}} \leq C_{1}\|\nabla w\|_{L^{s}}^{1+\varepsilon} \tag{2.2}\\
& \left.\|H\|_{L^{\frac{s}{1+\varepsilon}}} \leq C_{2}(n, s) \right\rvert\, \varepsilon\|\nabla w\|_{L^{s}}^{1+\varepsilon} \tag{2.3}
\end{align*}
$$

Proof. See Theorem 3 in [14].
In order to obtain a reverse Hölder inequality for the solutions of our equation, we shall use the following Poincaré - Sobolev Lemma.

Lemma 2.2

Let $B\left(x_{o}, R\right)$ be a ball in \mathbb{R}^{n} and $A \in L_{l o c}^{1}\left(B ; \mathbb{R}^{m \times n}\right)$ be a matrix field. There exists a divergence free matrix field $A_{B} \in L_{l o c}^{1}\left(B ; \mathbb{R}^{m \times n}\right)$ such that

$$
\left(f_{B}\left|A(x)-A_{B}\right|^{r}\right)^{1 / r} \leq C(r, m, n) R\left(f_{B}|\operatorname{div} A|^{s}\right)^{1 / s}
$$

provided $s \geq \max \left\{1, \frac{n r}{n+r}\right\}$ and $\operatorname{div} A \in L^{s}\left(B ; \mathbb{R}^{m}\right)$.

Proof. See Lemma 6.1 in [14].
The higher integrability result follows by applying the well-known.

Theorem 2.3

Let $h \in L^{1}(\Omega)$ and suppose that for concentric balls $\frac{B}{2}=B\left(x_{o}, \frac{R}{2}\right) \subset B=$ $B\left(x_{o}, R\right) \subset \Omega$ we have

$$
f_{B / 2} h(x) d x \leq C\left(f_{B} h(x)^{m} d x\right)^{1 / m}+f_{B} k(x) d x
$$

some $0<m<1$. If $k \in L^{t}(\Omega)$, with $t>1$ then there exists an exponent $r>1$ such that $h \in L^{r}\left(\frac{B}{2}\right)$ and

$$
f_{B / 2} h^{r}(x) d x \leq C\left(f_{B} h(x) d x\right)^{r}+f_{B} k^{r}(x) d x
$$

Proof. See [9].
As we have already mentioned, each bounded Radon measure on Ω, can be written as the divergence of a suitable vector field F belonging to the space $\left.L^{\frac{n}{n-1}}\right)\left(\Omega, \mathbb{R}^{n}\right)$. Namely, we have:

Lemma 3.4

Given a bounded Radon measure μ on Ω, there exists a vector field F such that

$$
\operatorname{div} F=\mu
$$

and

$$
\|F\|_{\left.L^{\frac{n}{n-1}}\right)}=\sup _{0<\epsilon \leq \frac{1}{n-1}}\left(\epsilon f_{\Omega}|F|^{(n-\epsilon) /(n-1)}\right)^{(n-1) /(n-\epsilon)} \leq C \int_{\Omega}|d \mu|
$$

Proof. See [7], [10].

3. The a priori estimate

In this section we give the proof of Theorem 1. We confine ourselves to the case $\frac{p}{p-1}>r$. When $\frac{p}{p-1}<r$, estimate of Theorem 1 has been proved in [13].

Proof of Theorem 1. Hodge decomposition stated in Theorem 2.1 implies that there exist $\varphi \in W_{o}^{1, \frac{r}{r-1}}(\Omega)$ and a divergence free vector field $H \in L^{\frac{r}{r-1}}\left(\Omega ; \mathbb{R}^{n}\right)$ such that

$$
|\nabla u|^{r(p-1)-p} \nabla u=\nabla \varphi+H
$$

and

$$
\begin{align*}
\|\nabla \varphi\|_{L^{\frac{r}{r-1}}} & \leq C_{1}\|\nabla u\|_{L^{r(p-1)}}^{r(p-1)-p+1} \tag{3.1}\\
\|H\|_{L^{\frac{r}{r-1}}} & \leq C_{2}(n, r) \mid r(p-1)-p\|\nabla u\|_{L^{r(p-1)}}^{r(p-1)-p+1} \tag{3.2}
\end{align*}
$$

Note that φ is an admissible test function in equation (1.5). Therefore using the following Lipschitz property of the p-laplacian

$$
\left||a+b|^{p-2}(a+b)-|a|^{p-2} a\right| \leq c(p)|b|(|a|+|b|)^{p-2} \quad \forall a, b \in \mathbb{R}^{n}
$$

and that u is a solution, we get

$$
\begin{aligned}
\int_{\Omega}|\nabla u|^{r(p-1)}= & \left.\left.\int_{\Omega}\langle | \nabla u\right|^{p-2} \nabla u,|\nabla u|^{r(p-1)-p} \nabla u\right\rangle \\
= & \left.\left.\int_{\Omega}\langle | \nabla u\right|^{p-2} \nabla u-|\nabla u+g|^{p-2}(\nabla u+g),|\nabla u|^{r(p-1)-p} \nabla u\right\rangle \\
& \left.+\int_{\Omega}\langle | \nabla u+\left.g\right|^{p-2}(\nabla u+g),|\nabla u|^{r(p-1)-p} \nabla u\right\rangle \\
\leq & c(p) \int_{\Omega}|g|(|\nabla u|+|\nabla u+g|)^{p-2}|\nabla u|^{r(p-1)-p+1} \\
& \left.+\int_{\Omega}\langle f, \nabla \varphi\rangle+\int_{\Omega}\langle | \nabla u+\left.g\right|^{p-2}(\nabla u+g), H\right\rangle .
\end{aligned}
$$

Hölder inequality and estimate (3.1) imply

$$
\begin{align*}
\int_{\Omega}|\nabla u|^{r(p-1)} \leq & c \int_{\Omega}|g|(|\nabla u|+|\nabla u+g|)^{r(p-1)-1} \\
& \left.+\|f\|_{L^{r}}\|\nabla \varphi\|_{L^{\frac{r}{r}-1}}+\int_{\Omega}\langle | \nabla u+\left.g\right|^{p-2}(\nabla u+g), H\right\rangle \\
\leq & C\|g\|_{L^{r}(p-1)}| | \nabla u\left|+|\nabla u+g| \|_{L^{r}(p-1)}^{r(p-1)-1}\right. \\
& \left.+C_{1}\|f\|_{L^{r}}\|\nabla u\|_{L^{r(p-1)}}^{r(p-1)-p+1}+\int_{\Omega}\langle | \nabla u+\left.g\right|^{p-2}(\nabla u+g), H\right\rangle . \tag{3.4}
\end{align*}
$$

Using Hodge decomposition again, we have

$$
\begin{equation*}
|\nabla u+g|^{p-2}(\nabla u+g)=\nabla \psi+K \tag{3.5}
\end{equation*}
$$

where $\psi \in W_{0}^{1, r}(\Omega)$, div $K=0$ and

$$
\begin{equation*}
\|K\|_{L^{r}} \leq \tilde{C}_{2}(n, r) \mid p-2\| \| \nabla u+g \|_{L^{r(p-1)}}^{p-1} . \tag{3.6}
\end{equation*}
$$

From this estimate, recalling that H is divergence free and using (3.2) and (3.6) we get

$$
\begin{align*}
\left.\int_{\Omega}\langle | \nabla u+\left.g\right|^{p-2}(\nabla u+g), H\right\rangle= & \int_{\Omega}\langle\nabla \psi, H\rangle+\int_{\Omega}\langle K, H\rangle \\
= & \left.\int_{\Omega}\langle K, H\rangle \leq\|H\|_{L^{\frac{r}{r-1}}}\|K\|_{L^{r}} \leq C_{2} \tilde{C}_{2} \right\rvert\, r(p-1) \tag{3.7}\\
& -p \| p-2 \mid\left(\|\nabla u\|_{L^{r(p-1)}}^{r(p-1)}+\|g\|_{L^{r(p-1)}}^{r(p-1)}\right) .
\end{align*}
$$

Inserting (3.7) in (3.4) and using Young's inequality, we obtain

$$
\begin{align*}
\int_{\Omega}|\nabla u|^{r(p-1)} \leq & C_{1}\|f\|_{L^{r}}\|\nabla u\|_{L^{r(p-1)}}^{r(p-1)-p+1} \\
& +C_{2} \tilde{C}_{2}|r(p-1)-p \| p-2|\left(| | \nabla u\left\|_{L^{r(p-1)}}^{r(p-1)}+\right\| g \|_{L^{r(p-1)}}^{r(p-1)}\right) . \tag{3.8}
\end{align*}
$$

From this inequality if r, p are such that

$$
\begin{equation*}
C_{2} \tilde{C}_{2}|r(p-1)-p||p-2|<1 \tag{3.9}
\end{equation*}
$$

holds, we immediately get

$$
\|\nabla u\|_{L^{r(p-1)}}^{r(p-1)} \leq C\|f\|_{L^{r}}^{r}+C\|g\|_{L^{r(p-1)}}^{r(p-1)}
$$

as claimed.

4. Higher integrability

Throughout this section the exponents p and r are related as in Theorem 1 and $u \in$ $W_{o}^{1, r(p-1)}(\Omega)$ is a solution of equation (1.5), with $g=0$.

Proof of Theorem 2. Fix a function $\varphi \in C_{0}^{\infty}(\Omega)$ and introduce the function $w=\varphi u$. Routine calculations show that w, belonging to the space $W_{o}^{1, r(p-1)}(\Omega)$, solves the equation

$$
\operatorname{div}|\nabla w|^{p-2} \nabla w=\operatorname{div} G
$$

where

$$
G=\varphi^{p-1}|\nabla u|^{p-2} \nabla u+|\varphi \nabla u+u \nabla \varphi|^{p-2}(\varphi \nabla u+u \nabla \varphi)-|\varphi \nabla u|^{p-2}(\varphi \nabla u) .
$$

Since

$$
|G| \leq|\varphi|^{p-1}|\nabla u|^{p-1}+|u \nabla \varphi|(|u \nabla \varphi|+|\varphi \nabla u|)^{p-2} \in L^{r}(\Omega)
$$

we are legitimate to apply estimate (1.6) to the function w and find

$$
\begin{equation*}
\|\nabla w\|_{r(p-1)}^{p-1} \leq C\|G\|_{r} \leq C\left\|\varphi^{p-1} \mid \nabla u\right\|_{r(p-1)}^{p-1}+C\|u \nabla \varphi\|_{r(p-1)}^{p-1} \tag{4.1}
\end{equation*}
$$

Now, fix a ball $B\left(x_{o}, R\right) \subset \Omega$ and let $\varphi \in C_{0}^{\infty}(B)$ be a cut-off function such that $0 \leq \varphi \leq 1, \varphi=1$ on $B\left(x_{o}, \frac{R}{2}\right)$ and $|\nabla \varphi| \leq \frac{c}{R}$. Writing inequality (4.1), using the properties of φ and estimate (1.6) for the function u, we obtain

$$
f_{B\left(x_{o}, R / 2\right)}|\nabla u|^{r(p-1)} \leq \frac{C}{R} f_{B\left(x_{o}, R\right)}|u|^{r(p-1)}+C f_{B\left(x_{o}, R\right)}|f|^{r(p-1)}
$$

Using Sobolev-Poincaré inequality we get to the following reverse Hölder inequality

$$
f_{B\left(x_{o}, R / 2\right)}|\nabla u|^{r(p-1)} \leq C\left(f_{B\left(x_{o}, R\right)}|\nabla u|^{s}\right)^{(r(p-1)) / s}+f_{B\left(x_{o}, R\right)}|f|^{r}
$$

provided $s \geq \frac{n r(p-1)}{n+r(p-1)}$. The result follows by applying Theorem 2.3.
Proof of Theorem 3. Using Lemma 3.4 we can express μ as the divergence of a vector field f belonging to $L^{s}(\Omega)$, for every $s<\frac{n}{n-1}$. Then we are legitimate to apply Theorem 2 to find, for p verifying

$$
\begin{equation*}
C(n)|s(p-1)-p||p-2|<1 \tag{4.2}
\end{equation*}
$$

that a solution $u \in W_{o}^{1, \frac{s(p-1)}{n-1}}(\Omega)$ actually belongs to $W_{l o c}^{1, \frac{s(p-1)}{n-1}+\eta}(\Omega)$ some $\eta>0$. We conclude the proof iterating this process, since the range of p 's found via inequality (4.2) has positive Lebesgue measure when s tends to $\frac{n}{n-1}$.

References

1. P. Bènilan, L. Boccardo, T. Gallouët, R. Gariepy, M. Pierre, and J.L. Vázquez, An L^{1}-theory of existence and uniqueness of solutions of nonlinear elliptic equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 22 (1995), 241-273.
2. L. Boccardo and T. Gallouët, Nonlinear elliptic and parabolic equations involving measure data, J. Funct. Anal. 87 (1989), 149-169.
3. J. Bourgain and H. Brezis, On the equation $\operatorname{div} Y=f$ and application to control of phases, J. Amer. Math. Soc. 16 (2003), 393-426.
4. M. Carozza, G. Moscariello, and A. Passarelli di Napoli, Nonlinear equations with growth coefficients in BMO, Houston J. Math. 28 (2002), 917-929.
5. M. Carozza and A. Passarelli di Napoli, On very weak solutions of a class of nonlinear elliptic systems, Comment. Math. Univ. Carolin. 41 (2000), 493-508.
6. G. Dolzmann, N. Hungerbühler, and S. Müller, Uniqueness and maximal regularity for nonlinear elliptic systems of n-Laplace type with measure valued right hand side, J. Reine Angew. Math. 520 (2000), 1-35.
7. A. Fiorenza and C. Sbordone, Existence and uniqueness results for solutions of nonlinear equations with right hand side in L^{1}, Studia Math. 127 (1998), 223-231.
8. D. Giachetti and R. Schianchi, Boundary higher integrability for the gradient of distributional solutions of nonlinear systems, Studia Math. 123 (1997), 175-184.
9. E. Giusti, Metodi Diretti nel Calcolo delle Variazioni, U.M.I. Bologna, 1994.
10. L. Greco, T. Iwaniec, and C. Sbordone, Inverting the p-harmonic operator, Manuscripta Math. 92 (1997), 249-258.
11. L. Greco and A. Verde, A regularity property of p-harmonic functions, Ann. Acad. Sci. Fenn. Math. 25 (2000), 317-323.
12. T. Kilpeläinen and J. Malỳ, Degenerate elliptic equations with measure data and nonlinear potentials, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 19 (1992), 591-613.
13. T. Iwaniec, Projections onto gradient fields and L^{p}-estimates for degenerated elliptic operators, Studia Math. 75 (1983), 293-312.
14. T. Iwaniec and C. Sbordone, Weak minima of variational integrals, J. Reine Angew. Math. 454 (1994), 143-161.
15. T. Iwaniec and C. Sbordone, Quasiharmonic fields, Ann. Inst. H. Poincaré Anal. Non Linéaire 18 (2001), 519-572.
16. F. Murat, Equations nonlinéaires avec second membre in L^{1} ou mésure, Preprint 1994.
17. G. Stampacchia, Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus, Ann. Inst. Fourier (Grenoble) 15 (1965), 189-258.
