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Abstract

We associate to every curve on a smooth quadric a polynomial equation that defines
it as a divisor; this polynomial is defined through a matrix. In this way we can
study several properties of these curves; in particular we can give a geometrical
meaning to the rank of the matrix which defines the curve.

Introduction

Plane curves have been studied very much since long time and are well known. The
situation drastically changes when we consider non-degenerate space curves, let us say,
of P

3. The reason of this greater complexity is obvious: to any plane curve we can
associate a principal ideal, while this is not the case for space curves.

In this paper we study properties of curves lying on a smooth quadric surface.
In some sense this is just a step forward: after plane curves we increase by one the
minimal degree of a surface containing the curves we consider. This step is meaningful
because we associate to the quadric Q ∼= P

1×P
1 a bi-graded ring G(Q) = k[u, u′; v, v′]

(the global ring of Q), so that to any effective divisor of Q it corresponds a bi-graded
bi-homogeneous polynomial which gives the equation of the divisor. Note that this
bi-graduation of G(Q) is induced by the Picard group of Q, PicQ ∼= Z

2.
Hence any curve lying on Q can be studied by means of a single equation, i.e. by

a polynomial. The analogy with plane curves is not superficial; although it is explicitly
considered in the last section, this analogy is understood in all the paper.

In Section 1 we fix the notation and give preliminary results. Section 2 deals with
an important tool: the change of reference frame on Q. Unfortunately, this change is
very heavy and is not friendly to be used.
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To any curve of Q we associate a matrix H whose entries are in the fixed field
k. Has the rank of H a geometrical meaning? The surprising reply is contained in
Section 3. The last section contains the definition of affine quadric and precises the
analogy between curves of the affine quadric and curves of the affine plane by means
of a natural isomorphism between them.

As usual, for basic notions we refer to the Hartshorne’s book [9].

1. Notation and preliminaries

Let P
1 = P

1
k (k an algebraically closed field of characteristic zero) and let Q ∼= P

1×P
1

be a quadric and OQ be its structure sheaf. Since PicQ ∼= Z × Z, as usual we can
assume the classes of the two rulings as basis of PicQ. If D ⊂ Q is a divisor, the class
of D is singled out by a couple of integers (m,n), the type of D. If D ⊂ Q is a divisor
of type (m,n), we denote by OQ(m,n) the corresponding sheaf, and, for any sheaf F
on Q we set

F(m,n) = F ⊗OQ(m,n)

We also use the notation

Hi(m,n) = Hi(Q,OQ(m,n)), hi(m,n) = dimk H
i(m,n)

Hi(F(m,n)) = Hi(Q,F(m,n)), hi(F(m,n) = dimk H
i(F(m,n))

for i = 0, 1, 2. The dimensions hi(m,n) (i = 0, 1, 2) are easily computed (see [7], §1);
note that for any divisor D ⊂ Q of type (m,n), effective or not, the Euler characteristic
of OQ(m,n) is

χ(OQ(m,n)) = |(m+ 1)(n+ 1)|

since only one of Hi(m,n) (i = 0, 1, 2) can be different from zero.
Let us consider

S = H0
∗ (m,n) =

⊕
m≥0
n≥0

H0(m,n)

S is in a natural way a k-algebra using product of sections; we call it the global ring
of Q ([4]). It is easy to check that S is generated, as a k-algebra, by H0(1, 0) and
H0(0, 1) (both vector spaces of dimension 2) since for every m,n ≥ 0 the maps

H0(m,n) ⊗H0(1, 0) → H0(m+ 1, n)

H0(m,n) ⊗H0(0, 1) → H0(m,n+ 1)

given by the products are surjective (see Lemma 2.3 of [7] for a generalization).
S is a bi-graded k-algebra taking H0(m,n) = S(m,n) as the bi-homogeneous com-

ponent of degree (m,n). When s ∈ H0(m,n), with (m,n) > (0, 0), its zero locus (s)0
will be called a curve of type (m,n) or an (m,n)-curve; in particular L = (l)0 and
L′ = (l′)0, with l ∈ H0(1, 0) and l′ ∈ H0(0, 1) will be mentioned as (1, 0)-lines and
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(0, 1)-lines respectively. When no confusion can arise we will not distinguish between
curves and their defining forms.

Let u, u′ and v, v′ be bases for H0(1, 0) and H0(0, 1); there is a bi-graded ring
isomorphism

S ∼= k[u, u′] ⊗ k[v, v′] = k[u, u′; v, v′]

by which one can identify elements of k[u, u′; v, v′] with elements of S. We deal only
with bi-homogeneous ideals of S, i.e. ideals generated by elements which are homoge-
neous both with respect to u, u′ and v, v′. From now on we will call them homogeneous
ideals for short.

An ideal a ⊂ S is irrelevant when it contains either a power of u = (u, u′) or a
power of v = (v, v′) (see [7], Section 1).

Let P be any point on Q, i.e. the zero locus of an ideal p = (l(u, u′), l′(v, v′))
where l = au+bu′ and l′ = cv+dv′ are linear forms; the element (b,−a; d,−c) ∈ k2×k2

gives the coordinates of P as subvariety of Q, with respect to the chosen basis. Of
course for any ρ, ρ′ ∈ k \ {0} one has (b,−a; d,−c) = (ρb,−ρa; ρ′d,−ρ′c).

We can embed Q ↪→ P
3 by the Segre map, so that every subscheme X ⊂ Q can

be seen as a subscheme of P
3. Hence we can consider both the ideal sheaves of X,

IX ⊂ OQ, IX ⊂ O
P3

If X ⊂ Q is a curve — i.e. an effective divisor — then the graded Betti numbers of a
minimal free resolution of IX are well known (see [5]).

Considered as subscheme of Q, a curve Γ of type (m,n) is the zero locus of a
homogeneous polynomial of degree (m,n)

F (u, u′; v, v′) =
∑

i=0,...,m
j=0,...,n

hij u
m−iu′i vn−jv′j

Setting
u m = (um, um−1u′, . . . , u′m), v n = (vn, vn−1v′, . . . , v′n)

and H = (hij) ∈ km+1,n+1, the equation of Γ can be written

F (u, u′; v, v′) = u mH tv n = 0

Notice that, given the equation F = 0 of Γ , we can explicitly write a minimal set of
generators for the ideal of Γ as a subscheme of P

3: consider a basis of the image of
the map (suppose m ≤ n)

H0(n−m, 0) ⊗ F → H0(n, n)

these elements give, by the Segre embedding, n − m + 1 forms of degree n in
k[x0, x1, x2, x3] which, together with the equation of Q, generate the ideal of Γ ⊂ P

3.
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2. Changes of frame in Q

A change of coordinates, from (u, u′; v, v′) to (r, r′; s, s′), is given by a couple of auto-
morphisms of H0(1, 0) and H0(0, 1), hence by two invertible 2 × 2 matrices P,Q such
that, setting r = (r, r′), s = (s, s′)

tu = P tr , tv = Q ts

We want to determine how the matrix H of an (m,n)-curve Γ changes under this

transformation. Setting P =
(
a b
c d

)
we can compute

tu m = (P tr )m =


(ar + br′)m

(ar + br′)m−1(cr + dr′)
. . .

(cr + dr′)m

 = P (m) tr m

where P (m) is the (m+ 1) × (m+ 1) matrix whose columns are the (m+ 1)-tuples of
the coefficients of rm, rm−1r′, . . . , r′m. The (i+1)-th row of P (m) consists of the m+1
monomials of the product (a+ b)m−i(c+ d)i for i = 0, . . . ,m. For instance, for m = 3,
we get

P (3) =


a3 3a2b 3ab2 b3

a2c a2d+ 2abc 2abd+ b2c b2d
ac2 2acd+ bc2 ad2 + 2bcd bd2

c3 3c2d 3cd2 d3


Repeating the same argument for tv n we get the new equation for Γ :

Γ : r mH ′ ts n = 0

with H ′ = tP (m)HQ(n).
Now we want to describe the matrices like P (m) in a more general setting.
Let us consider a k-vector space V =< x , y > with basis x , y and the automor-

phism p : V → V determined by the matrix P with respect to this basis. For any
m > 0 we get an automorphism

Smp : SmV → SmV

where SmV is the m-th symmetric power and Smp is induced by p. Let SmP be the
matrix associated to Smp with respect to the basis (x , y )m. A direct computation
shows that

P (m) = t(Sm
tP ) so that u m = r m(Sm

tP )

Note that the relation

H ′ ∼= H ⇐⇒ there exist P,Q ∈ GL2(k) such that H ′ = tP (m)HQ(n)

is an equivalence relation.
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Figure 1

This can be deduced by the commutative diagrams in Figure 1, where
V =< x , y >, P,R ∈ GL2(k); note that, by the functoriality of Sm, one has

SmR · SmP = Sm(R · P )

In particular SmP is an invertible matrix.

Proposition 2.1
Let V =< x , y > be a 2-dimensional vector space; then for any r > 0 there is an

equivariant GL(V )-isomorphism∧r+1(SrV ) ∼= S(r+1
2 )(

∧2
V )

Proof. (Boffi [1]) We had a couple of proofs of this proposition by G. Boffi. The first
one uses properties of plethysms to show that both 1-dimensional vector spaces are
isomorphic to the same Shur module L

}
(
r+1
2

)V .

The second proof is based on the classical characters’ theory (see for instance [11],
Chapter 1). We omit these proofs since they would take us far from the object of this
paper. �

Corollary 2.2
Let V =< x , y > be a k-vector space, p : V → V an isomorphism and P its

matrix with respect to the basis x , y ; then det(P (m)) = det(SmP ) = (detP )(
m+1

2 )

Proof. The linear function p induces the commutative square∧m+1(SmV )
∧m+1

Smp
−−−−−−→ ∧m+1(SmV )�

�
S(m+1

2 )(
∧2

V ) −−−−−−−−→
S(m+1

2 )(
∧2

p)

S(m+1
2 )(

∧2
V )

of isomorphisms. By Proposition 2.1 the scalar which determines the isomorphism in
the upper row of the diagram,

∧m+1
Smp, is just that of the lower row, S(m+1

2 )(
∧2

p),

which is clearly (
∧2

p)(
m+1

2 ), so∧m+1
Smp = (

∧2
p)(

m+1
2 ) . �
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Remark 2.3. To give a base change on Q is equivalent to give two invertible matrices
P,Q ∈ k2,2, i. e. projectivities of P(H0(1, 0)) and P(H0(0, 1)). Each of these projec-
tivities is given by three couples of corresponding lines, so to the lines L1, L2, L3 of
type (1, 0) there correspond the lines R1, R2, R3 of the same type and similarly to the
(0, 1)-lines L′

1, L
′
2, L

′
3 there correspond R′

1, R
′
2, R

′
3. Hence the change of base is fixed by

three couples of corresponding points, Li∩L′
i and Ri∩R′

i, no two collinear (i = 1, 2, 3).
Note that in this way nine couples of corresponding points are fixed: to Pij = Li ∩L′

j

it corresponds P ′
ij = Ri ∩R′

j (i, j = 1, 2, 3). So, given a curve Γ ⊂ Q , one can choose
the new basis in such a way that Γ passes through the points of coordinates, say,
(0, 1; 0, 1), (1, 0; 1, 0), (1, 1; 1, 1). With this choice one gets a matrix H ′ = (h′ij) having
h′00 = h′mn = 0,

∑
h′ij = 0.

Remark 2.4. Given a curve Γ ⊂ Q having equation u mH tv n = 0, by a base change
we get a new matrix, H ′ = tP (m)HQ(n) having the same rank of H since P (m), Q(n)

are invertible.

3. The rank of H

Let Γ ⊂ Q be an (m,n)-curve of equation u mH tv n = 0 with H ∈ km+1,n+1. We want
to study the geometric meaning of the rank of H. We deal with the rows of H, but of
course similar arguments hold for columns.

Let us begin with the case rankH = 1. The reader can find in [6], Section 1, a
detailed discussion on the case when a given curve Γ ⊂ Q contains a (1, 0)-line or a
(0, 1)-line, with multiplicity s ≥ 1.

Theorem 3.1

Let Γ ⊂ Q be an (m,n)-curve of equation u mH tv n = 0. Then Γ is union of m ·n
lines if and only if rankH = 1.

Proof. If Γ contains the (1, 0)-line L : au + bu′ = 0, then the equation of Γ can be
written

(au+ bu′)u m−1K tv n = 0

where K ∈ km,n+1. Setting

H =

 H0

...
Hm

 K =

 K0

...
Km−1


a simple computation gives

H =


aK0

aK1 + bK0

...
aKm−1 + bKm−2

bKm−1


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hence the rows of H are linear combinations of the rows ofK. We conclude by repeating
this argument m times.

Conversely, in order that a line L, of equation au+ bu′ = 0, be contained in Γ it
must happen (see [6], Proposition 1.1 and Remark 1.2) that

(b,−a)m


ρ0v
ρ1v

...
ρmv

 = 0, with 0 �= v ∈ kn+1, (ρ0, ρ1, . . . , ρm) �= 0

hence (b,−a) must be a solution of the homogeneous equation

(y,−x)m


ρ0

ρ1
...
ρm

 = 0

which has m non-zero solutions. The same for (0, 1)-lines. �
One can easily find examples of curves Γ not containing lines, whose matrix has

not maximal rank (see [6], Remark 1.3). In fact the geometric meaning of dropping
rank is not given by the property of containing lines, which is a very special case;
so we give the following definition which introduces the property which is the true
responsible for the matrix of the curve to drop rank.

Definition 3.2. We call horizontal i-grid of type h× k the complete intersection of a
(h, 0)-curve with an (i, k)-curve. Similarly a vertical j-grid of type h×k is the complete
intersection of a (0, k)-curve with a (h, j)-curve. Note that horizontal 0-grids are also
vertical 0-grids; hence they will be called 0-grids. A grid is contained in a curve Γ

when it is a subscheme of Γ .

The following theorem is useful to understand the relevance of the grids for the
rank of the matrix of a curve.

Theorem 3.3

Let Γ ⊂ Q be a reduced curve of type (m,n) not containing lines, of matrix H.

Then the following are equivalent:

1) every pair (L1, L
′
1) consisting of a (1, 0)-line and a (0, 1)-line, such that L1∩L′

1 ∈ Γ

and meeting Γ in distinct points, determine a 0-grid of type m × n contained in

Γ ;

2) Γ contains a 0-grid of type m× n;

3) rankH = 2.
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Proof. Let P11 ∈ Γ be a generic point, belonging to the (1, 0)-line L1 : a1u+ b1u
′ = 0

and to the (0, 1)-line L′
1 : a′1v + b′1v

′ = 0, such that

L1 ∩ Γ = {P11, P12, . . . , P1n} and L′
1 ∩ Γ = {P11, P21, . . . , Pm1}

consist of distinct points. Let P1j ≡ (b1,−a1; b
′
j ,−a′j) j = 1, 2, . . . , n.

Cutting Γ with the (0, 1)-line L′
j , containing P1j , of equation a′jv + b′jv

′ = 0, we
have the non-zero homogeneous polynomials

u mH

(
b′j
−a′j

)n

j = 1, . . . , n (∗)

whose roots give the points of L′
j ∩ Γ . Γ contains the m × n 0-grid generated by the

sides L1 ∩ Γ and L′
1 ∩ Γ if and only if the polynomials (∗) have the same roots, and

this happens if and only if there exist n non-zero constants ρ1, ρ2, . . . , ρn such that

ρiH

(
b′i
−a′i

)n

= ρjH

(
b′j
−a′j

)n

Defining the matrix

B =

((
b′1
−a′1

)n (
b′2
−a′2

)n

. . .

(
b′n
−a′n

)n
)

which has rank n, one sees that Γ contains the above m × n 0-grid if and only if
rank(HB) = 1.

Considering the linear applications associated to H and B we have the commuta-
tive diagram

Figure 2

Since B has maximal rank, if rank(HB) = 1 then rankH ≤ 2 hence rankH = 2
because Γ has no lines (Proposition 3.1). Hence 1) ⇒ 2) ⇒ 3).

Finally, assuming rankH = 2, we choose a generic point P11 ∈ Γ . Using the above
notation we must show that rank(HB) = 1, i.e. ImϕHB �= ImϕH . If not, supposing
ImϕHB = ImϕH , there are i and j, with 1 ≤ i < j ≤ n, such that

ImϕHB =< ϕHB(e i), ϕHB(e j) >=< H

(
b′i
−a′i

)n

, H

(
b′j
−a′j

)n

>
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By a base change we can set(
b1
−a1

)
=

(
1
0

)
,

(
b′i
−a′i

)
=

(
1
0

)
,

(
b′j
−a′j

)
=

(
0
1

)
so that Γ passes through the points (1, 0; 1, 0), (1, 0; 0, 1) and the matrix H has h00 =
h0n = 0.

Now,

ϕHB(e i) = ϕH

(
b′i
−a′i

)n

= ϕH


1
0
. . .
0

 =


h00

h10

. . .
hm0

 =


0
h10

. . .
hm0


and similarly

ϕHB(e j) =


0
h1n

. . .
hmn


hence the first and the last column of H are independent, so rankH = 2 implies that
the first row of H is zero. But this means that Γ must contain the line u′ = 0, a
contradiction. �

So we have proven a characterization for 0-grids which are maximal for the curve
Γ . But we can say more about 0-grids of type h×n or of type m× k; for this we need
more tools.

Let R ⊂ km+1 be the vector space of relations among the rows of H, and let
dimR = r + 1, so that rankH = m − r. R determines in P

m a linear subspace R of
dimension r. Consider the rational normal curve Xm ⊂ P

m and, following the notation
of [8], let Sk(Xm) be the variety of secant k-planes of Xm (every secant k-plane meets
Xm in k + 1 points, so that S0(Xm) = Xm). Recall that the varieties Sk(Xm) can be
obtained as determinantal varieties from the catalecticant matrix (also called Hankel
matrix)

T =


x0 x1 . . . xd
x1 x2 . . . xd+1

. . . . . . . . .
xm−d xm−d+1 . . . xm


built up as square as possible, whose entries are the indeterminates x0, x1, . . . , xm. In
particular S0(Xm) = Xm is the vanishing locus of the 2-minors, and of course has
dimension 1, S1(Xm) is the vanishing locus of the 3-minors, and has dimension 3, . . .,
Ss−1(Xm) (with s such that either m = 2s or m = 2s + 1) is the zero locus of the
(s + 1)-minors. Notice that Ss(Xm) = P

m, Ss−1(Xm) is a hypersurface when m is
even, and for i ≤ s−1 dimSi(Xm) = 2i+1 (see [8] Lec. 9, Lec. 11 Proposition 11.32).

We want to decompose R (and hence R) into the direct sum of subspaces, in order
to obtain a kind of filtration.
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Definition 3.4. Let Γ ⊂ Q be an (m,n)-curve of equation u mH tv n = 0; let R ⊂
km+1 be the vector subspace generated by the relations among the rows of H and let
R ⊂ P

m be the corresponding linear subspace. We consider the points of the variety
Si(Xm) ⊂ P

m as elements of km+1. We set
- R0 =< R ∩ S0(Xm) >, R0 ⊂ P

m the corresponding linear subspace.
- R1 is generated by elements of R ∩ S1(Xm) and is such that R0 ⊕ R1 =< R ∩
S1(Xm) >, R1 ⊂ P

m the corresponding linear subspace.
- . . .

- for any i : 0 < i ≤ s = [m/2]: Ri is generated by elements of R ∩ Si(Xm) and
is such that R0 ⊕ R1 ⊕ . . . ⊕ Ri =< R ∩ Si(Xm) >, Ri ⊂ P

m the corresponding
linear subspace.

Remark 3.5. While R0 is univocally determined, this is not the case for Ri when i > 0.
For instance it can happen that we find γ1, . . . , γr, with γi ∈ (R∩S1(Xm))\R0, which
are not linearly independent. In fact we can construct a curve Γ in which this situation
occurs. Suppose m = 8 and take 10 points in X8, say Pi ≡ (bi,−ai)8 for i = 1, . . . , 10.
These points are linearly dependent, so we have a relation

∑10
i=1 qiPi = 0 with qi �= 0.

Define the five 9-tuples

γ1 = q1P1 + q2P2, . . . , γ5 = q9P9 + q10P10

and observe that γ1, . . . , γ5 are linearly dependent. Now construct a matrix H ∈ k9,r

(say with r ≥ 9) such that γiH = 0 for i = 1, . . . , 5 and R0 = {0}. Now dimR1 < 5.

Remark 3.6. It is easy to check that for any P1, . . . , Pi+1 ∈ Xm there are just two
possibilities for the linear space they generate, denote it by L(P1, . . . , Pi+1):

L(P1, . . . , Pi+1) ∩Ri =
{

Ø
1 point

In fact, if γ, γ′ ∈ L(P1, . . . , Pi+1) ∩ Ri, then the line L(γ, γ′) meets the linear sub-
spaces L(P1, . . . , P̂j , . . . , Pi+1) hence is contained in Ri−1, a contradiction because by
definition Ri−1 ∩Ri = Ø.

Remark 3.7. Note that if δ ∈ Ri ∩ Si(Xm) then there exists a unique secant i-plane
containing δ, unless m = 2s and i = s. In fact in this case Ss(Xm) = P

m and for any
point D ∈ P

m there exists a pencil of secant s-planes.

The geometrical meaning of a generator that we choose in R0, say (b,−a)m ∈
Xm ∩R is that the line of equation au+ bu′ = 0 is a component of the curve Γ .

As a consequence, in the sequel we shall consider curves of Q not containing any
line. With this choice we get R1 =< R ∩ S1(Xm) >. Now we see how the generators
that we choose in R1, R2, . . ., determine grids contained in Γ .

Proposition 3.8

Let Γ ⊂ Q be an (m,n)-curve of equation u mH tv n = 0 not containing lines. If Γ

contains a 0-grid of type h× n ( h < m ) then there exist h− 1 independent relations

among the rows of H. The same result holds for 0-grids of type m × k ( k < n) and

columns of H.
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Proof. Suppose first that the h (1, 0)-lines of the grid are distinct, and let aiu+biu
′ = 0

(i = 1, . . . , h) be their equations. By assumption the polynomials

(bi,−ai)mH tv n (i = 1, . . . , h)

have the same roots, i.e. they have proportional coefficients. Hence

(bi,−ai)mH = ρi(b1,−a1)
mH (i = 2, . . . , h)

and we have the h− 1 relations

γi = (bi,−ai)m − ρi(b1,−a1)
m

If γ2, . . . , γh were linearly dependent one had a relation among h points of Xm, with
h < m, a contradiction.

Suppose now that the h lines of the grid are not distinct. For the sake of simplicity
we take h = 2: we have a 2 × n 0-grid having the line L of equation au + bu′ = 0
with multiplicity 2. Call (di,−ci), i = 1, . . . , n, the roots of the homogeneous poly-
nomial (b,−a)mH tv n; each (0, 1)-line of equation civ + div

′ = 0 meets Γ at the
point (b,−a; di,−ci) with multiplicity 2. Hence the polynomials u mH t(di,−ci)n,
i = 1, . . . , n, have the double root (b,−a); so, using derivatives (see [6] Section 1):( ∂

∂u
u m

)
(b,−a)

H

(
di
−ci

)n

= 0;
( ∂

∂u′
u m

)
(b,−a)

H

(
di
−ci

)n

= 0; i = 1, . . . , n

This means that the polynomials( ∂

∂u
u m

)
(b,−a)

H tv n,
( ∂

∂u′
u m

)
(b,−a)

H tv n

have the same roots; now the conclusion follows as above. The same holds for vertical
0-grids and columns of H. �

Notice that the h− 1 relations among the rows of H in the above proposition are
elements of R∩S1(Xm): γi belongs to the secant line P1Pi of Xm. A kind of converse
of the above proposition holds.

Proposition 3.9

Let Γ ⊂ Q be an (m,n)-curve not containing lines; with the above notation let

γ ∈ R1 ∩S1(Xm). Then Γ contains a horizontal 0-grid of type 2× n determined by γ.

Proof. Suppose first γ ∈ P1P2 with P1, P2 ∈ Xm, P1 �= P2; hence

γ = ρ(b1,−a1)
m − (b2,−a2)

m

this means that
ρ(b1,−a1)

mH = (b2,−a2)
mH

that is the lines L1, L2 of equations aiu+ biu
′ = 0 cut on Γ a 0-grid.
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Suppose now that γ ∈ TP (Xm), where TP (Xm) is the tangent line to Xm at the
point P ≡ (b,−a)m. The three points P, ( ∂

∂uu m)(b,−a), ( ∂
∂u′ u m)(b,−a) belong to the

line TP ⊂ P
m (see [2], page 380), so the relation γ ∈ TP says that the polynomials

(b,−a)mH tv n,
( ∂

∂u
u m

)
(b,−a)

H tv n,
( ∂

∂u′
u m

)
(b,−a)

H tv n

have the same roots (di,−ci), i = 1, . . . , n.
Each line civ+div

′ = 0 is tangent to Γ at the point (b,−a; di,−ci), hence the line
au+ bu′ = 0, with multiplicity 2, gives a 0-grid on Γ . �

If γ ∈ R1 ∩ S1(Xm) belongs to the secant line P1P2, one can consider the cone
C1 projecting Xm from P1. If γ′ ∈ C1 ∩ R, γ �= γ′, then γ and γ′ determine a 0-
grid of type 3 × n. In fact, if γ′ ∈ P1P3, then (b3,−a3)

mH, (b2,−a2)
mH, (b1,−a1)

mH

are proportional. In this way we can embed each 0-grid in a maximal one involving,
say, the points P1, P2, . . . , Pr ∈ Xm. Note that changing the vertex of the projection,
among the points P1, . . . , Pr, the 0-grid does not change.

Summing all we have seen that the elements of R1 ∩S1(Xm) determine horizontal
0-grids on the curve Γ . Of course the same holds for vertical 0-grids and the relations
among the columns of H.

Now we consider the general case, that is we study the horizontal h-grids of Γ .

Theorem 3.10

Let Γ ⊂ Q be an (m,n)-curve not containing lines; with the above notation, for

any integer h such that h+1 ≤ (m−1)/2, there exists a bijection between the horizontal

h-grids of type (h+ 2) × n contained in Γ and the elements of Rh+1 ∩ Sh+1(Xm).

Proof. Let δ ∈ Rh+1 ∩ Sh+1(Xm); δ belongs to a secant (h + 1)-plane Λ of Xm.
Suppose first that Λ cuts Xm in h + 2 distinct points, say δ ∈ L(P1, . . . , Ph+2) with
Pi ≡ (bi,−ai)m ∈ Xm (i = 1, . . . , h+ 2):

δ = λ1(b1,−a1)
m + . . .+ λh+1(bh+1,−ah+1)

m − (bh+2,−ah+2)
m

the equality δH = 0 gives

(bh+2,−ah+2)
mH = λ1(b1,−a1)

mH + . . .+ λh+1(bh+1,−ah+1)
mH

Let Li be the (1, 0)-lines of equation aiu+ biu
′ = 0 (i = 1, . . . , h+ 2) and set for

i = 1, . . . , h+ 1
Li ∩ Γ = {Pi1, . . . , Pin}

The curves of type (h, n) passing through the points Pij (i = 1, . . . , h+1; j = 1, . . . , n)
move in a linear system Φ of dimension h; otherwise one could find a curve of Φ passing
through one more point for each of the lines L1, . . . , Lh+1, and this curve should contain
h+ 1 (1, 0)-lines.
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The equation of Φ can be written:

h+1∑
i=1

µi(a1u+ b1u
′) · . . . · ̂(aiu+ biu

′) · . . . · (ah+1u+ bh+1u
′) · (bi,−ai)mH tv n = 0

using the h+ 1 curves which are union of the (1, 0)-lines L1, . . . , L̂i, . . . , Lh+1 and the
(0, 1)-lines passing through the points of Li ∩ Γ (where ˆ means omitted).

The relation δ gives the equality

(bh+2,−ah+2)
mH tv n =

h+1∑
i=1

λi(bi,−ai)mH tv n (†)

We look for the points cut on Lh+2 by Φ{
ah+2u+ bh+2u

′ = 0∑h+1
i=1 µi(a1u+ b1u

′) · . . . · ̂(aiu+ biu
′) · . . . · (ah+1u+ bh+1u

′) · (bi,−ai)mH tv n = 0

from which, setting cij = aibj − ajbi �= 0, we have

h+1∑
i=1

µi(c1h+2 · . . . · ĉih+2 · . . . · ch+1h+2) · (bi,−ai)mH tv n = 0 (‡)

Intersecting Γ with Lh+2 we have

(bh+2,−ah+2)
mH tv n = 0

from which, by (†), we have

h+1∑
i=1

λi(bi,−ai)mH tv n = 0

Now, comparing with (‡), we see that the points of Lh+2 ∩ Γ are cut by the curve of
type (h, n) obtained by the equation of Φ giving to the parameters the values:

µi =
λicih+2∏h+1
j=1 (cjh+2)

i = 1, . . . , h+ 1

Hence, starting from the relation δ ∈ Rh+1∩Sh+1(Xm) among the rows of H, we have
constructed a horizontal h-grid of type (h+ 2) × n contained in Γ .

Conversely let ∆ be the (h, n)-curve cutting on the (1, 0)-lines L1, . . . , Lh+2 (Li

of equation aiu+ biu
′ = 0) the given h-grid of Γ . ∆ belongs to the linear system Φ of

(h, n)-curves passing through the points of Li ∩ Γ (i = 1, . . . , h+ 1); hence, writing Φ
as in the direct part of the theorem, one gets the equation of ∆ for µi = µi:

∆ :
h+1∑
i=1

µi

h+1∏
j=1
j �=i

(aju+ bju
′) · (bi,−ai)mH tv n = 0
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Since ∆ ∩ Lh+2 = Γ ∩ Lh+2, one gets

h+1∑
i=1

µi

∏h+1
j=1 cjh+2

cih+2

· (bi,−ai)mH tv n = ρ(bh+2,−ah+2)
mH tv n

Renaming parameters we get

h+1∑
i=1

λi(bi,−ai)mH tv n = ρ(bh+2,−ah+2)
mH tv n

So we have found the relation

δ =
h+1∑
i=1

λi(bi,−ai)m − ρ(bh+2,−ah+2)
m ∈ Rh+1 ∩ Sh+1(Xm)

Now we go to the non-reduced case, when the (h + 1)-plane Λ meets Xm in less
than h+ 2 distinct points. If Λ∩Xm contains the point P ≡ (a, b)m r times, then the
points (

∂r−1u m

∂ur−1

)
P

,

(
∂r−1u m

∂ur−2 ∂u′

)
P

, . . . ,

(
∂r−1u m

∂u′ r−1

)
P

of P
m

are r independent generators of Λ (see [2], page 380 for a non-homogeneous version of
this fact).

In order to make the argument more understandable we consider the case h = 1
and suppose that Λ is the osculating 2-plane to Xm at P ≡ (a, b)m. Moreover we can
assume, up to a coordinate change, that P ≡ (0, 1)m and that the (1, 0)-line L : u = 0
cuts Γ in n points Pj ≡ (0, 1;αj , βj) with βj �= 0 (j = 1, . . . , n); we set bj = αj/βj .
This means that the polynomial Hm tv n has degree n with respect to v. Hence the
relation δ ∈ Λ ∩R2 can be uniquely written in the form

δ = d0(0, . . . , 0, 0, 1) + d1(0, . . . , 0, 1, 0) − (0, . . . , 1, 0, 0)

so that δH = 0 means that Hm−2 = d1H
m−1 + d0H

m. Now, as in the reduced case,
we look for the pencil Φ of (1, n)-curves of non-homogeneous equation

G(u, v) = (u, 1)
(
K0

K1

) (
v

1

)n

= 0

passing through P1, . . . Pn and having intersection multiplicity ≥ 2 with Γ at each
point Pj .

The equation of Γ has the following non-homogeneous form

F (u, v) = (u, 1)mH
(
v

1

)n

= 0
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so that a (1, n)-curve passes through P1, . . . , Pn if and only if the polynomials Hm tv n,
K1 tv n have the same roots, i.e. K1 = ρHm. Calling OPj

= K[u, v](u,v−bj) we must
impose (see for instance [3]) for the intersection multiplicity that

I(Pj , F ∩G) = dimk

OPj

(F,G)
≥ 2 j = 1, . . . , n

Now

I(Pj , F ∩G) = I(Pj , (ρF −G) ∩ F ) = I(Pj , u ∩ F ) + I(Pj , (ρF −K0 tv n) ∩ F )

where we have set F := uF +Hm tv n.
Suppose first that I(Pj , u ∩ F ) = 1 for j = 1, . . . , n. So we must require that

I(Pj , (ρF−K0 tv n)∩F ) ≥ 1. This happens if and only if (ρHm−1−K0) tv n ∈ (u, v−bj),
j = 1, . . . , n. This means that the polynomial (ρHm−1 −K0) tv n must have the roots
b1, . . . , bn, so ρHm−1 −K0 = λHm. Hence Φ has the equation

(u, 1)
(
ρHm−1 − λHm

ρHm

) (
v

1

)n

= 0

One can check that the same result follows also in the case when the line L cuts
Γ in less than n distinct points: if Pj has algebraic multiplicity σ in L ∩ Γ then one
must require that I(Pj , (ρF − K0 tv n) ∩ F ) ≥ σ in order that F,G have the correct
intersection multiplicity at Pj .

Now we show that the curve of Φ having intersection multiplicity ≥ 3 at one of
the points Pj has the same multiplicity at any Pi. Denoting again by G the polynomial
of Φ we get

ρF −G = u[ρ(um−1H0 + . . .+ uHm−2) + λHm] tv n := uF1

hence

I(Pj , F ∩G) = I(Pj , (ρF −G) ∩ F ) = I(Pj , u ∩ F ) + I(Pj , F1 ∩ F )

Now we compute

ρF1 − λG = [ρ2u(um−2H0 + . . .+Hm−2) − λu(ρHm−1 − λHm)] tv n := uF2

so that I(Pj , F ∩G) = 2I(Pj , u ∩ F ) + I(Pj , F2 ∩ F ). In order that I(Pj , F2 ∩ F ) ≥ 1
we require that

(ρ2Hm−2 − λρHm−1 + λ2Hm) tv n ∈ (u, v − bj)

Using the relation δ, i.e. Hm−2 = d1H
m−1 + d0H

m, we have[
ρ(ρd1 − λ)Hm−1 + (ρ2d0 + λ2)Hm

]
tv n ∈ (u, v − bj)
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Since Hm tv n ∈ (v − bj) for every j and Hm−1 is not proportional to Hm, for some j
we must have Hm−1 tv n /∈ (v − bj): this means ρd1 − λ = 0 so that at each point Pj

(j = 1, . . . , n) one gets I(Pj , F2 ∩ F ) ≥ 1.
Conversely, if the (1, n)-curve ∆ cutting on Γ the 1-grid is given, the last steps of

the previous proof give
ρHm−2 − λHm−1 = Hm

and this is the relation in R2 ∩ S2(Xm) corresponding to the 1-grid. �

4. The affine quadric

The quadric Q ∼= P
1 × P

1 has the standard covering given by the four open subsets

U00 = {(u, u′; v, v′) | u �= 0, v �= 0} U01 = {(u, u′; v, v′) | u �= 0, v′ �= 0}

U10 = {(u, u′; v, v′) | u′ �= 0, v �= 0} U11 = {(u, u′; v, v′) | u′ �= 0, v′ �= 0}

Each of these open sets is isomorphic to A
1 × A

1, and can be considered an affine
quadric. Referring to U11, we see that its ring is k[u, v], considered as a bi-graded ring.
We use the isomorphism π11 : k[u, v] → k[x, y] defined by u �→ x, v �→ y, to identify
affine curves in U11 with affine plane curves. In the usual embedding Q ⊂ P

3, given by
x = uv′, y = u′v, z = uv, t = u′v′, this corresponds to the stereographic projection
of Q from the point (1, 0; 1, 0) to the plane z = 0.

If Γ ⊂ Q is an (m,n)-curve of equation u mH tv n = 0, its restriction Γa to U11

has equation f(u, v) = (u, 1)mH t(v, 1)n = 0; the corresponding plane curve π11(Γa)
has equation f(x, y) = (x, 1)mH t(y, 1)n = 0.

This plane curve is naturally bi-graded: if Γ does not contain as components
neither the line u′ = 0 nor the line v′ = 0, then its bi-degree is (m,n). As to the total
degree we must look at the matrix H = (hij). Setting r = min{i + j | hij �= 0} we
have deg f(x, y) = m+ n− r. Note that, up to a change of frame in Q, we always can
suppose that π11(Γa) has degree m+ n.

Of course every polynomial in x, y can be seen as a bi-graded one, and can be
written in matricial form (this is a classical point of view; see also [10], where the
bi-graded polynomial is called ‘generating function’ of the matrix).

It is possible to describe the geometrical meaning of the rank of the matrix of a
plane curve f(x, y). Observe that, in the isomorphism π11, to lines of U11 of equation
u = λ, v = µ, there correspond lines of equation x = λ, y = µ respectively.

Conversely, to a generic plane line L : ax + by + c = 0 it corresponds the (1, 1)-
curve π−1

11 (L) : au + bv + c = 0. In particular, to a (1, 1)-curve tangent to Γ at P it
corresponds a line tangent to π11(Γa) at π11(P ).

Let Γ ⊂ Q be an (m,n)-curve of equation u mH tv n = 0. The relations among
the lines of H depend on the existence of <-grids.

The image by πij (i, j = 0, 1) of a horizontal, say, <-grid of type h×n in general is an
<-grid of the same type, cut on πij(Γa) by h lines La of equation x = λa (a = 1, . . . , h)
by a plane curve of bi-degree (<, n).
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But in few particular cases one has to pay attention. For instance, if a horizontal
grid contains the line u′ = 0, then this line ‘disappears’ if we project Γ by π11; it
happens that the points of this line are ‘pushed to infinity’ in direction of x = 0. One
can recover these points looking at the tangent lines to π11(Γa) at x∞. Of course
this problem can be bypassed by a suitable change of frame on Q. The next example
clarifies this situation.

Example 4.1: Let Γ ⊂ Q be the (3, 3)-curve associated to the rank 3 matrix

H =


1 0 −1 0

1 1 0 1

0 −1 1 0

2 0 −2 0

 .

One sees that among the rows of H there is the relation γ = (2, 0, 0,−1) = 2(1, 0)3 −
(0, 1)3; so there exists a 0-grid of type 2 × 3 cut on the lines u = 0, u′ = 0 by the
(0, 3)-curve of equation v(v2 − v′2) = 0. The plane curve π11(Γa) has equation:

x3y3 + x2y3 − x3y + x2y2 − xy2 + 2y3 + x2 + xy − 2y = 0 .

This curve has triple points at x∞, y∞; cutting with the line x = 0, image of u = 0,
one gets the points (0, 0), (0, 1), (0,−1). The remaining three points of the grid are
recovered noting that the lines y = 0, y = 1, y = −1 through the previous points are
tangent at x∞.
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