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Abstract

Partial intersection subschemes of P
r of codimension cwere used to furnish various

graded Betti numbers which agree with a fixed Hilbert function. Here we study
some further properties of such schemes; in particular, we show that they are not in
general licci and we give a large class of them which are licci. Moreover, we show
that all partial intersections are glicci. We also show that for partial intersections
the first and the last Betti numbers, say m and p respectively, give bounds each
other; in particular, in the codimension 3 case we see that

⌈
p+5
2

⌉
≤ m ≤ 2p+ 1

and eachm and p satisfying the above inequality can be realized.

Introduction

The aim of this paper is to produce some further applications of the partial intersection
schemes which were introduced in [6]. These schemes were used essentially to try to
understand which are all possible graded Betti numbers of aCM schemes with an
assigned Hilbert function. Here we use these schemes, which seem very related to the
class of artinian monomial ideals of the polynomial ring (see for instance [4]), to study
their behavior with respect to the property licci and glicci (i.e. to be ci-linked or g-
linked to a complete intersection). Moreover, for general aCM schemes it is known that
the Hilbert function gives bounds on the graded Betti numbers (hence on the Betti
numbers) but no restriction on the Betti numbers can be done in terms of one of them;
in this paper we will show that for partial intersections schemes the number of last
minimal syzygies gives a bound on the number of minimal generators (see Theorem 3.3)
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and, consequently, conversely, the number of minimal generators limits the number of
minimal last syzygies.

Here is a very short sketch of the paper. The first section is devoted to recall
definitions, properties and facts on partial intersection schemes as in [6]. In Section 2,
after observing that not all partial intersections can be licci, using a very special type
of liaison, “ad hoc” for partial intersections, we give a large class of such schemes
which are licci. Then, using g-liaison and suitable Gorenstein schemes, we show that
all partial intersections are glicci. In the last section, we deal with the problem of
giving relationships between the number of minimal generators and the last Betti
number; precisely, we will first show that in any codimension a partial intersection X
with p last syzygies has a number of minimal generators bounded by f(p), for some
function of p. The codimension 3 case is studied more in details giving as a result that⌈
p+5
2

⌉
≤ ν(IX) ≤ 2p+1 (Corollary 3.8) and each pair ν(IX) and p satisfying the above

inequalities can be reached by some partial intersection.

1. Partial intersections: definitions, properties and facts

Throughout this paper k will denote an algebraically closed field, P
r the r-dimensional

projective space over k,

R=k[x0, x1, . . . , xr]=
⊕
n∈Z

H0(OPr (n)).

If V ⊂ P
r is a subscheme, IV will denote its defining ideal and HV (n) = dimk Rn−

dimk(IV )n its Hilbert function. Moreover, if V ⊂ P
r is a c-codimensional aCM scheme

with minimal free resolution

0 → ⊕R(−j)αcj → · · · → ⊕R(−j)α2j → ⊕R(−j)α1j → IV → 0

then the integers {αij}j will denote the i-th graded Betti numbers.
In this section we recall the construction of the c-codimensional partial intersection

schemes made in [6] and we collect from there the main facts that will be used in this
paper.

Let (P,≤) be a poset. We denote, for every H ∈ P,

SH = {K ∈ P | K < H}, SH = {K ∈ P | K ≤ H}.

Definition 1.1. A subset A of the poset P is said to be a left segment if for every
H ∈ A, SH ⊆ A. In particular, when P = N

c with the order induced by the natural
order on N, a finite left segment will be mentioned as a c-left segment.

Note that every c-left segment A has sets of generators but there is a unique
minimal set of generators consisting of the maximal elements of A; we will denote it
by G(A).
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If πi : N
c → N will denote the projection to the i-th component, and A is a c-left

segment, we set ai = max{πi(H) | H ∈ A}, for 1 ≤ i ≤ c. The c-tuple T = T (A) =
(a1, . . . , ac) will be called the size of A. Moreover we denote by v(H) =

∑c
i=1 πi(H).

A c-left segment is said to be degenerate if ai = 1 for some i.
If A is a c-left segment, F (A) will denote the set of minimal elements of N

c \ A,
i.e.

F (A) = {H ∈ N
c \ A | SH ⊆ A}.

Note that, if H = (m1, . . . ,mc) ∈ F (A) and mi > 1, then Hi = (m1, . . . ,mi −
1, . . . ,mc) ∈ A. Moreover, the elements

T1 = (a1 + 1, 1, . . . , 1), . . . , Tc = (1, 1, . . . , ac + 1)

always belong to F (A), and we will call them canonical c-tuples.
In the sequel we denote the c-tuple (1, . . . , 1) by I and, for every subset Z of ST ,

we denote
CT (Z) = {T + I −H | H ∈ Z}.

Finally, for every c-left segment A we define

A∗ = CT (ST \ A).

Observe that A∗ is a c-left segment.

Proposition 1.2
If A is a c-left segment, then

1. F (A) = CT (G(A∗)) ∪ {T1, . . . , Tc},
2. F (A∗) = CT (G(A)) ∪ {T ∗

1 , . . . , T
∗
c }.

3. If T ∗
i �= Ti, for some i, then T ∗

i ∈ CT (G(A)).

Proof. See Proposition 1.3 in [6]. �
Fix a c-left segment A and consider c families of hyperplanes of P

r, c ≤ r,

{A1j}1≤j≤a1 , {A2j}1≤j≤a2 , . . . , {Acj}1≤j≤ac

sufficiently generic, in the sense that A1j1 ∩ . . .∩Acjc are
c∏

i=1

ai pairwise distinct linear

varieties of codimension c.
For every H = (j1, . . . , jc) ∈ A, we denote by

LH =
c⋂

h=1

Ahjh .

With this notation we have the following.

Definition 1.3. The subscheme of P
r

V =
⋃

H∈A
LH

will be called a c-partial intersection with respect to the hyperplanes {Aij} and support
on the c-left segment A.
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Theorem 1.4

Every c-partial intersection X of P
r is a reduced aCM subscheme consisting of a

union of c-codimensional linear varieties.

Proof. See Theorem 1.9 in [6]. �
Here are the main results on c-codimensional partial intersections.

Theorem 1.5

If V ⊂ P
r is a partial intersection of codimension c with support on A, then the

(r − c+ 1)-th difference of its Hilbert function is

∆r−c+1HV (n) =
{H ∈ A | v(H) = n+ c}

.
Proof. See Theorem 2.1 in [6]. �

Now, if X is a c-codimensional partial intersection with support on A and with
respect to the families of hyperplanes Aij whose defining forms are fij , to every H =
(m1, . . . ,mc) ∈ A we associate the following form

PH =
c∏

i=1

mi−1∏
j=1

fij .

Theorem 1.6

Let V ⊂ P
r be a partial intersection of codimension c with support A. Then a

minimal set of generators for IV is

{PH | H ∈ F (A)}.

Proof. See Theorem 3.1 in [6]. �
Remark 1.7. The previous theorem shows that partial intersection schemes can be
regarded as pseudo-liftings of some monomial ideals (according to the terminology used
in [4]). Nevertheless this combinatorial approach essentially looks at the last syzygies
of the defining ideal and it permits us to have an easier control both of Hilbert function
and of first and last graded Betti numbers.

Corollary 1.8

Let V be as above then its first graded Betti numbers depend only on A and they

are the following integers

dH = v(H)− c ∀ H ∈ F (A)

i.e. the number of minimal generators of degree j is equal to the number of H ∈ F (A)
such that v(H) = j + c.

And finally:
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Theorem 1.9

Let V ⊂ P
r be a partial intersection of codimension c with support A. Then the

last graded Betti numbers of V are

sH = v(H) ∀ H ∈ G(A)

i.e. the number of minimal generators of the last syzygy module of degree j is equal

to the number of H ∈ G(A) such that v(H) = j.

Proof. See Theorem 3.4 in [6]. �

2. Licci and glicci property for partial intersections

Many authors in the last few years studied subschemes of P
n which are linked (by

a complete intersection) to a complete intersection (briefly licci schemes). It is well
known that not all aCM subschemes are licci. The easiest example is given by 4 general
points of P

3, or more generally by
(
d+3
3

)
general points of P

3. Indeed, if X ⊂ P
n is a

c-codimensional aCM scheme, by a result of Huneke and Ulrich (see [2] Theorem 5.8),
if we denote by α the minimum degree of a generator for IX and by θ the maximum
degree of the last graded Betti numbers, if θ ≤ (c − 1)α then X cannot be licci.
Since α and θ are determined by the Hilbert function of X, we deduce that if H is
an admissible Hilbert function for a c-codimensional aCM subscheme of P

n such that
θ(H) ≤ (c− 1)α(H) then every aCM scheme with such an Hilbert function cannot be
licci.

In codimension 2 is well known that every aCM scheme is licci; but in codimension
c ≥ 3 we do not know which are the Hilbert functions for which there exist licci schemes
with such Hilbert function. Therefore it seems interesting to produce classes of aCM
schemes of codimension c ≥ 3 which are licci.

Of course, not all partial intersection schemes (defined in the previous section) are
licci. Here we present some class of partial intersections which are licci.

For partial intersection schemes we can perform liaison using complete intersec-
tions which are partial intersections, i.e. with support A = 〈H〉 .

Definition 2.1. We say that two c-partial intersections, X,Y ⊂ P
n are directly

∗-linked if X ∪ Y = Z where Z is a partial intersection complete intersection (and
X ∩ Y = ∅). More generally, X and Y are said to be ∗-linked if there is a sequence of
partial intersections X = Y1, Y2, . . . , Yt = Y such that each Yi is directly ∗-linked to
Yi+1.

Following the previous definition a partial intersection X is said to be ∗-licci if it
is ∗-linked to a complete intersection.

Next result gives a condition in order to have partial intersections which are ∗-
linked.

LetA be a c-left segment withG(A) = {H1, . . . , Hp} and denote T (A) the smallest
c-tuple greater or equal to each Hi ∈ G(A). Now define, inductively, the following sets
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G1 =




∅ if each T (A)−Hi

has at least two components different from zero;
in this case we set G(A1) = G(A).

{Hi1} where T (A)−Hi1

has only one component different from zero;
in this case we set G(A1) = G(A) \ {Hi1}.

Now, once Gh was built, h < p, we define

Gh+1 =




Gh if each T (Ah)−Hi, Hi ∈ G(Ah)
has at least two components different from zero;
in this case we set G(Ah+1) = G(Ah).

Gh ∪ {Hih+1} where T (Ah)−Hih+1

has only one component different from zero;
in this case we set G(Ah+1) = G(Ah) \ {Hih+1}.

Of course, we have G1 ⊆ G2 ⊆ . . . ⊆ Gp. Notice that, despite the fact we made
choices during the previous construction, Gp does not depend on these choices.

Theorem 2.2

Let X ⊂ P
n be a c-codimensional partial intersection with support on the c-left

segment A and G(A) = {H1, . . . , Hp}. If Gp = G(A) then X is ∗-licci; in particular X

is licci.

Proof. We use induction on p = |G(A)|. The case p = 1 is trivial since X is a complete
intersection. Let us assume the result true for partial intersections whose left segment
support A′ is generated by i < p elements and Gi(A′) = G(A′). Since Gp = G(A) there
are elements Hj ∈ G(A) such that T (A)−Hj have only one component different from
zero. Without loss of generality we can assume that H1, . . . , Ht have this property (of
course, t ≤ p) and moreover (just reordering the components) we can assume that the
only non zero component of T (A)−Hi, i ≤ t, is aii at the i-th position.

Claim. G(A∗∗) = {Hi − (T (A)− T (A∗)) | 1 ≤ i ≤ p} ∩ N
c.

The claim will be proved in the next lemma. Now, it is easy to verify that
Z = T (A) − T (A∗) = (a11, . . . , att, 0, . . . , 0), therefore Hi − Z /∈ N

c for i = 1, . . . , t.
Hence we get G(A∗∗) = {Hi − Z | t + 1 ≤ i ≤ p}. So, |G(A∗∗)| = p − t < p. Let us
denote U = {H1, . . . , Ht} and observe that |Gi(A∗∗)| = |G(Ai+t)\U | for 1 ≤ i ≤ p− t.
Indeed, we see that

H ∈ Gi(A∗∗) ⇐⇒ H + Z ∈ Gi+t(A) \ U ;

now, since Z is constant we get the required equality. In particular, |Gp−t(A∗∗)| = p−t,
hence Gp−t(A∗∗) = G(A∗∗). Now the induction concludes the proof. �
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Lemma 2.3

Let A be a c-left segment with G(A) = {H1, . . . , Hp}. Then

G(A∗∗) = {Hi − (T (A)− T (A∗))} ∩ N
c.

Proof. By part 2) of Proposition 1.2 in [6] we have F (A∗) = CT (G(A))∪{T ∗
1 , . . . , T

∗
c };

now applying to A∗ part 1) of the same proposition we get

F (A∗) = CT∗(G(A∗∗)) ∪ {T ∗
1 , . . . , T

∗
c }.

Hence,
CT (G(A)) ∪ {T ∗

1 , . . . , T
∗
c } = CT∗(G(A∗∗)) ∪ {T ∗

1 , . . . , T
∗
c }.

Apply the operator CT∗(−) to both sides of the previous equality to get

CT∗
(
CT (G(A))

)
∪ {T ∗ + I − T ∗

1 , . . . , T
∗ + I − T ∗

c }
= G(A∗∗) ∪ {T ∗ + I − T ∗

1 , . . . , T
∗ + I − T ∗

c }.

Therefore
[
CT∗

(
CT (G(A))

)
∪ {T ∗ + I − T ∗

1 , . . . , T
∗ + I − T ∗

c }
]
∩ N

c

=
[
G(A∗∗) ∪ {T ∗ + I − T ∗

1 , . . . , T
∗ + I − T ∗

c }
]
∩ N

c.

Finally, since T ∗ + I − T ∗
i /∈ N

c for all i and G(A∗∗) ⊂ N
c we get the conclusion. �

Despite of the fact that not every partial intersection is licci if we generalize
complete intersection liaison to Gorenstein liaison we are able to prove that every
partial intersection is G-linked to a complete intersection, i.e. is glicci. It is still
an open question to understand if every aCM scheme is glicci. Affirmative answers
are, for instance, in [1] by Hartshorne for generic points on quadrics and cubics and
in [3] where the authors show that every standard determinantal projective scheme is
glicci. Migliore and Nagel proved in [5], Theorem 3.1, that schemes which are lifting
of artinian monomial ideals are glicci. Our result is in some sense in this direction.

Theorem 2.4

Every partial intersection is glicci.

Proof. We work by induction on the codimension c. The case c = 1 is trivially true. So
we can assume that every (c− 1)-codimensional partial intersection is glicci. Let X ⊂
P
n be a c-partial intersection with support on A. Then we can writeX =

⋃s
j=1 Vj∩Acj ,

where Vj are (c − 1)-partial intersections and Acj hyperplanes. Now we proceed by
induction on s. If s = 1 X = V1 ∩ Ac1 is trivially glicci since V1 is glicci. Now, let
Y =

⋃s
j=2 Vj ∩Acj , (glicci by inductive hypothesis) we show that X = Y ∪ (V1 ∩Ac1)

is G-linked to Y. Let 〈T 〉 be the smallest rectangle containing the (c− 1)-left segment
A1 = {H ∈ N

c−1 | (H, 1) ∈ A} and denote V ′
1 =

⋃
H∈〈T 〉\A1

LH . Since V1 ∪ V ′
1 is a

complete intersection G = V1 ∩ V ′
1 is a c-codimensional Gorenstein scheme.
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Claim 1. G1 = V1 ∩
( ⋃s

j=2Acj

)
∪G is a Gorenstein scheme.

Thus Y is G-linked by G1 to G ∪ Y ′ where Y ′ = V1 ∩
( ⋃s

j=2Acj

)
\ Y.

Claim 2. G1 ∪ (V1 ∩Ac1) is a Gorenstein scheme.

Then G ∪ Y ′ is G-linked by G2 to Y ∪ (V1 ∩ Ac1) = X. The proofs of the claims
work in the same line. One observes that the module [IV ′

1
+ IV1 ]/IV1 has a minimal

free resolution of Cohen-Macaulay type 1. Now using Lemma 4.8 in [3] we get that
IV1 +[IV ′

1
+ IV1 ]

∏s
j=2 fcj and IV1 +[IV ′

1
+ IV1 ]

∏s
j=1 fcj are Gorenstein (here fcj means

the linear form defining Acj) and the two claims are done. �

3. Bounds between first and last Betti numbers for partial intersections

It is well known that for aCM schemes (of codimension ≥ 3) there is no “a priori”
bound for the last graded Betti numbers of the defining ideal in terms of the minimal
number of generators and conversely the number of minimal last syzygies does not
limit the number of minimal generators. It is enough for this to remark that (at least
in codimension 3) there are arithmetically Gorenstein schemes with any (odd) numbers
of minimal generators. Here we want to show that for partial intersection schemes the
minimal number of generators gives a bound to the last Betti number and conversely
the number of last syzygies furnishes a bound for the minimal number of generators.

If A is a c-left segment with G(A) = {H1, . . . , Hp} we set ai = π1(Hi), for 1 ≤ i ≤
p and we reorder the elements in G(A) in such a way a1 ≤ . . . ≤ ap. Hence we can write
Hi = (ai,Ki) with Ki ∈ N

c−1. Finally, we set for all i Ai = {K ∈ N
c−1 | (i,K) ∈ A}.

Lemma 3.1

Let i, j ∈ N be such that ah + 1 ≤ i ≤ j ≤ ah+1. Then Ai = Aj .

Proof. Since A1 ⊇ . . . ⊇ Ai ⊇ . . . ⊇ Aj ⊇ . . . we need to prove Ai ⊆ Aj . Let K ∈ Ai,

i.e. (i,K) ∈ A; there exists Hr ∈ G(A) such that (i,K) ≤ Hr. Now, Hr = (ar,Kr)
hence from ar ≥ i > ah we get p ≥ r ≥ h + 1. Moreover, form K ≤ Kr we have
(j,K) ≤ (ah+1,Kr) ≤ (ar,Kr) = Hr, which means (j,K) ∈ A, i.e. K ∈ Aj . �

We start proving that the number of minimal generators of the defining ideal of a
partial intersection X is bounded by some integer depending on the last Betti number.
Before we prove the following.

Lemma 3.2

Let A be a left segment minimally generated by p elements. Then there exists a

left segment B, minimally generated by p+ 1 elements such that |F (B)| ≥ |F (A)|.
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Proof. Let G(A) = {H1, H2, . . . , Hp}. We set 2A := 〈2H1, 2H2, . . . , 2Hp〉 . Of
course |G(2A)| = |G(A)|. More precisely we will show that Moreover F (2A) =
{2K − I | K ∈ F (A)} . In fact if 2K − I ≤ 2Hi, with K ∈ F (A) for some i, then
2K ≤ 2Hi + I i.e. K ≤ Hi, since the components of K and H are integers, that is a
contradiction. So 2K − I /∈ A, for every K ∈ F (A). If L < 2K − I, with K ∈ F (A),
then there is L′ having all components even, such that L ≤ L′ < 2K; so 1/2L′ < K,

i.e. there is an integer i such that 1/2L′ ≤ Hi, therefore L ≤ L′ ≤ 2Hi, so each
2K − I is minimal for N

c \ 2A; finally if L /∈ 2A, denote by L′ the c-tuple such that
πi(L′) = 2

⌈
πi(L)

2

⌉
. Then L′ ≥ L and L′ has all components even. So L′ /∈ 2A and

1/2L′ /∈ A, hence there is K ∈ F (A) such that 1/2L′ ≥ K, i.e. L′ ≥ 2K, that implies
L ≥ 2K − I. In particular we have |F (2A)| = |F (A)|.

Let m be the maximum among the first components of the elements of 2A;
it is obvious that T1 = (m + 1, 1, . . . , 1) ∈ F (2A) and the left segment B :=
〈2H1, 2H2, . . . , 2Hp, T1〉 is minimally generated by these p + 1 elements. Moreover
F (2A) \ {T1} ⊆ F (B); indeed if K ∈ F (2A) \ {T1}, K /∈ B, and if L < K then
L ∈ 2A ⊂ B, so K ∈ F (B). But in F (B) there is also (m + 2, 1, . . . , 1), therefore
|F (B)| ≥ |F (2A)| = |F (A)|. �

Theorem 3.3

Let c and p be two integers. Then there is an integer fc(p) such that ν(IX) ≤ fc(p),
for every partial intersection X of codimension c and with last Betti number p.

Proof. Let X be a c-partial intersection with last Betti number p whose support is the
c-left segment A with G(A) = {H1, . . . , Hp)}. We need to show that there is an integer
fc(p), depending only on c and p, such that |F (A)| ≤ f(p). Following the terminology of
the previous lemma we set Hi := (ai,Ki) and a1 ≤ . . . ≤ ap. We proceed by induction
on the codimension c. The case c = 1 is trivial since |G(A)| = |F (A)| = 1 (indeed also
the case c = 2 is trivial as |F (A)| = p+ 1). Therefore suppose the result true for each
(c− 1)-left segment. Observe first that Ai = 〈{Kj | aj ≥ i}〉 ; namely, if K ∈ Ai then
(i,K) ∈ A, therefore (i,K) ≤ (ar,Kr) = Hr, so K ≤ Kr with ar ≥ i. This means
|G(Ai)| ≤ p and by the inductive hypothesis and by Lemma 3.2 |F (Ai)| ≤ fc−1(p).

Now denote α0 = 1, α1 = a1 + 1, . . . , αp = ap + 1 and consider the following set

U = {(αi, L) | 0 ≤ i < p, L ∈ F (Aαi
)} ∪ {(ap + 1, 1, . . . , 1)}

Of course, U ∩ A = ∅. We show that F (A) ⊆ U. Let H ∈ F (A) and set H = (x,K)
(of course, H ∈ N

c \ A). If x > ap then (ap + 1, 1, . . . , 1) ≤ H and since H is
minimal in N

c \ A we get H = (ap + 1, 1, . . . , 1). So we can assume 1 ≤ x ≤ ap, hence
ah + 1 ≤ x ≤ ah+1; notice that K /∈ Ax therefore there exists an element V ∈ F (Ax)
with V ≤ K. Now, by previous lemma Ax = Aah+1 hence V ∈ F (Aah+1 and this
means (ah +1, V ) ∈ U and (ah +1, V ) ≤ (x,K) = H; by the minimality of H in N

c \A
we get H = (ah + 1, V ) ∈ U. In conclusion,

|F (A)| ≤ |U | ≤
p∑

i=0

|F (Aαi)|+ 1 ≤ (p+ 1)fc−1(p) + 1 := fc(p). �
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As consequence of the previous theorem, it makes sense to define the following
function

Φc(p) := max{|F (A)| : A is a c-left segment and |G(A)| = p}.

It is known that Φ1(p) = 1 and Φ2(p) = p+ 1.

Problem 3.4 Compute explicitly Φc for any c.

We will solve this problem for c = 3.

Corollary 3.5

Let X ⊂ P
r be a c-codimensional partial intersection. If IX has m minimal

generators and p minimal last syzygies then

p ≤ Φc(m− c).

Proof. If p = 1 it is trivial. If p > 1, let A be the c-left segment, support of X. Then
A∗ �= ∅ and set m∗ = |F (A∗)|, p∗ = |G(A∗)|; we have that m∗ ≤ Φc(p∗). On the other
hand, by liaison, p ≤ m∗ ≤ p+ c and p∗ = m− c, so we have p ≤ m∗ ≤ Φc(m− c). �

Now we compute explicitly Φ3.

Theorem 3.6

Let X ⊂ P
r be a 3-codimensional partial intersection with support A. If |G(A)| =

p, i.e. if IX has last Betti number p, then ν(IX) ≤ 2p+ 1.

Proof. Denote A = 〈H1, . . . , Hp〉 , i.e. G(A) = {H1, . . . , Hp} and set Hi = (ai, bi, ci),
a = max{ai}, b = max{bi}, c = max{ci}. We first show that if ai �= aj , bi �= bj ,

ci �= cj for all i �= j then |F (A)| = 2p+ 1, that for [6] Theorem XX will mean ν(IX) =
2p + 1. Of course, we can suppose a1 < . . . < ap. Now denote BCi = {(bh, ch) | h ≥
i} and observe that, for every j > h, cannot happen (bh, ch) ≤ (bj , cj). Moreover,
BCi−1 ⊇ BCi, |BCi| = p+ 1− i and BCi−1 \BCi = {(bi−1, ci−1)}. If maxBCi is the
set of maximal elements in the poset BCi, by the previous observations we see that
|maxBCi−1 \maxBCi| = 1. We are interested on the elements in maxBCi which are
not on any maxBCr with r < i; but one notes that if K ∈ maxBCi ∩maxBCr, r < i

then K ∈ maxBCi−1. Therefore we can restrict ourselves to maxBCi \ maxBCi−1.

Finally, set ni = |maxBCi| and mi = |maxBCi \maxBCi−1|.

Claim 1:
p∑

1=1
mi = p.

Indeed, Ui = maxBCi \maxBCi−1 are disjoint sets and
p⋃

i=0

Ui = BC1.

Now denote maxBCi = {(bi1 , ci1), . . . , (bini
, cini

)}; without lost of generality we
can assume bi1 < . . . < bini

; ci1 > . . . > cini
. Consider the element (bi−1, ci−1) and

define the integers h and k as follows

bih < bi−1 < bih+1 ; cik > ci−1 > cik+1 .
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If k ≥ h + 1 then (bi−1, ci−1) < (bih+1 , cih+1) and since ih+1 ≥ i, we have
(ai−1, bi−1, ci−1) < (aih+1 , bih+1 , cih+1) a contradiction with the minimality of the ele-
ments in G(A). So, k ≤ h. Then

maxBCi \maxBCi−1 = {(bik+1 , cik+1), . . . , (bih , cih)}.

Finally, set

Gi = {(ai−1 + 1, bik + 1, cik+1 + 1), . . . , (ai−1 + 1, bih + 1, cih+1 + 1)}

for i = 1, . . . , p+ 1 (here we set bi0 = cini+1 = 0). Note that Gp+1 = {(ap + 1, 1, 1)}).
Notice that, even in the case maxBCi \BCi−1 = ∅, (i.e. h = k) Gi contains 1 element,
precisely (ai−1 + 1, bih + 1, cih+1 + 1). And finally, note that |Gi| = mi + 1 and Gi are
pairwise disjoint sets.

Claim 2: F (A) =
⋃p+1

i=1 Gi.

Once we have Claim 2 we get

|F (A)| =
p∑

1=1

(mi + 1) =
p∑

1=1

mi + p+ 1 = 2p+ 1.

Proof of Claim 2. Take H = (ai−1 + 1, bir + 1, cir+1 + 1) ∈ Gi.

− H /∈ A : since (bir , cir ), (bir+1 , cir+1) are maximal elements in BCi there is
no maximal element (x, y) in BCi with x > bir and y > cir+1 ; if H ∈ A then H ≤
(aj , bj , cj) for some j; now aj ≥ ai−1 + 1 hence j ≥ i therefore (bj , cj) ∈ BCi; now
bj > bir and cj > cir+1 gives a contradiction.

− H ∈ F (A) : we need to verify that H is minimal in N
c \ A.

i) note that (ai−1, bir + 1, cir+1 + 1) ≤ (ai−1, b(i−1)s , c(i−1)s) for some
(b(i−1)s , c(i−1)s) ∈ maxBCi−1 : indeed, if this is not the case (bir , cir ) and/or
(bir+1, cir+1) should be maximal also in BCi−1. Thus (ai−1, bir + 1, cir+1 + 1) ∈ A.

ii) (ai−1 + 1, bir , cir+1 + 1) ≤ (air , bir , cir ) ∈ A.
iii) (ai−1 + 1, bir + 1, cir+1) ≤ (air+1 , bir+1 , cir+1) ∈ A.
To complete this part of the proof we need to show that every element in F (A)

is in
⋃p+1

i=1 Gi or, equivalently, every element which is not in A is greater or equal to
some element in some Gi. So, take H = (x, y, z) /∈ A; we have ai−1 < x ≤ ai for some
i = 1, . . . , p + 1 (here we use a0 := 0, ap+1 := ∞). Then (y, z) cannot be ≤ to the
elements (bi1 , ci1), . . . , (bini

, cini
). Moreover, bih < y ≤ bih+1 and cik ≥ z > cik+1 ≥

cih+1 (note that h ≤ k), hence (bih + 1, cih+1) ≤ (y, z). Now (bik+1 , cik+1), . . . , (bih , cih)
are maximal elements in some BCj but not in BCj−1 for some j ≤ i, therefore (aj−1 +
1, bih + 1, cih+1 + 1) ∈ Gj and (aj−1 + 1, bih + 1, cih+1 + 1) ≤ (x, y, z).

To finish the proof we observe that when the initial condition ai �= aj , bi �= bj ,

ci �= cj for all i �= j is not satisfied, repeating the argument we can just show that
F (A) ⊆ ⋃p+1

i=1 Gi and, moreover, Gi are not necessarily disjoint sets; hence |F (A)| ≤
|⋃p+1

i=1 Gi| ≤ 2p+ 1. �

Corollary 3.7

Φ3(p) = 2p+ 1.
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Proof. From the proof of Theorem 3.6 we can deduce that for every p there exists a
3-left segment A with |G(A)| = p and |F (A)| = 2p+ 1. �

Corollary 3.8

Let X ⊂ P
r be a 3-codimensional partial intersection with support A. If IX has p

minimal last syzygies then

⌈
p+ 5

2

⌉
≤ ν(IX) ≤ 2p+ 1.

Proof. We have to proof only the first inequality. By Corollaries 3.5 and 3.7, p ≤
Φ3(m− 3) = 2(m− 3) + 1 = 2m− 5. �

Corollary 3.9

Let X ⊂ P
r be a 3-codimensional partial intersection with support A. If IX has

m minimal generators then

⌈
m− 1

2

⌉
≤ s(IX) ≤ 2m− 5,

where s(IX) is the number of minimal last syzygies of IX .

Proof. This is an immediate consequence of the previous corollary. �

Now we show that every possibilities between
⌈
p+5
2

⌉
and 2p+ 1 can occur.

Theorem 3.10

Let p ≥ 1 and
⌈
p+5
2

⌉
≤ m ≤ 2p + 1, integers. Then there exists a 3-left segment

A such that |G(A)| = p and |F (A)| = m.

Proof. If p+2 ≤ m ≤ 2p+1, we set h := m−p−1 and let us consider the left segment

Lp,m = 〈{(i, i, p+ 1− i) | 1 ≤ i ≤ h} ∪ {(i, h, p+ 1− i) | h+ 1 ≤ i ≤ p}〉 .

Since these generators are minimal |G(Lp,m)| = p. Moreover

F (Lp,m) = S := {T1, T2, T3} ∪ {(1, j, p+ 2− j) | 2 ≤ j ≤ h}

∪ {(j, 1, p+ 2− j) | 2 ≤ j ≤ p},

where T1 = (p+ 1, 1, 1), T2 = (1, h+ 1, 1), T3 = (1, 1, p+ 1) are the three canonical 3-
tuples. It is trivial that S ⊆ F (Lp,m); to verify that F (Lp,m) ⊆ S take N := (x, y, z) ∈
N

3 \Lp,m; of course we can suppose x ≤ p, y ≤ h and z ≤ p, otherwise N ≥ Ti for some
i. If z ≥ p+ 2− x (that implies x ≥ 2) then N ≥ (x, 1, p+ 2− x) ∈ S. If z ≤ p+ 1− x
let us consider

H := (x, x, p+ 1− x), H ′ := (y, y, p+ 1− y) ∈ Lp,m
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and K := (1, y, p + 2 − y) ∈ S; since N /∈ Lp,m, N �≤ H so y > x and N �≤ H ′ so
z > p+ 1− y; therefore N ≥ K.

Then

|F (Lp,m)| = 3 + h− 1 + p− 1 = 3 +m− p− 1− 1 + p− 1 = m.

If
⌈
p+5
2

⌉
≤ m ≤ p+1, we set p′ := m−3 and m′ := p. Since m ≤ p+1, m′ +1 ≥ p′ +3

i.e. m′ ≥ p′ + 2. So we can build the left segment Lp′,m′ = Lm−3,p. Now we set
U := (m− 2,m− 2,m− 2) and let A := CU (〈U〉 \ Lm−3,p). By liaison we obtain that
|G(A)| = m′ = p and |F (A)| = p′ + 3 = m. �

Corollary 3.8 gives us a further restriction to the schemes whose graded Betti
numbers can be realized using partial intersections; so the following question arises in
a natural way.

Question 3.11 Let X a 3-codimensional aCM scheme, whose first Betti number is m
and whose last Betti number is p, such that

⌈
p+ 5

2

⌉
≤ m ≤ 2p+ 1.

Is there a partial intersection Y having the same graded Betti numbers of X?
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