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ABSTRACT

We construct wavelet-type frames associated with expansive matrix dilation on the
Anisotropic Triebel-Lizorkin spaces, Fg"q (R™, A, dz). We also show the a.e.
convergence of the frame expansion which includes multi-wavelet expansion as a
special case.

1. Introduction

The basic idea of a frame was used by many authors; in particular, we cite Paley
and Wiener [14], and Duffin and Schaeffer [3]. Paley and Wiener were interested
in the question of which collections {e®®"¢ : x, € R,n € Z} form a Riesz basis for
B, = {f: f e L*-11)}, I > 0. Recall that a Riesz basis of a Hilbert space is
the image of an orthonormal basis under an invertible linear operator. Duffin and
Schaeffer, in fact, considered the “dual” setting of the above problem: what is the
sufficient conditions for {z,, : n € Z} to be a sample set of B;. That is, there exist
constants 0 < C' < B such that, for any f € B;,

CllfIF: < Y 1f(@a)l* < Bl fl 7.
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The results of Duffin and Schaeffer stimulated several directions of research in nu-
merical analysis, sampling theory, and nonharmonic analysis. Their research had an
impact that led to the study of “wavelet frames”. The wavelet frames in R™ is a collec-
tion of functions {p; x(z) = 2"9/2p(2/2 — k)} with the following property: there exist
constants B > C > 0 such that for any f € L?(R"), we have

ClIfIZz <D K ein)® < BlfI7e-
3.k
Furthermore, if {¢; () = 2"7/2¢(27x —k)} is orthonormal, then it is a “wavelet basis”
of L?(R™). We refer to [9] for a complete discussion about wavelets and frames.

There are three main results in this article. The first one, Theorem 4.1, is the
existence of frames on the Anisotropic Triebel-Lizorkin spaces that introduced in [1]
and [11]. The second one, Theorem 4.2, is the study of the smoothness of the dual
frames, and the last one, Theorem 4.3, is the a.e. and LP convergence of the truncated
frame expansions. Theorem 4.1 and Theorem 4.2 are the anisotropic version (That
is, the dilation is an “expansive matrix” defined below) of the results in [6] and [8].
Theorem 4.3 is the anisotropic version of the results obtained in the paper [13].

This article is organized as follow. Section 2 contains some background materials
about anisotropic function spaces. We introduce the notion of strong molecules in
Section 3. The main theorems are presented in Section 4. Section 5 to Section 7 are
the proofs for the main theorems. This is part of the author’s Ph.D. Dissertation and
I would like to thank my Ph.D. supervisor, Guido Weiss, for his patience and teaching.

2. Background materials

This article is based on [1], therefore, we start by some background materials about
anisotropic function spaces. Moreover, with respect to the results of [1], we only
interest in the unweighted version of Fg"q (R™, A, wdz), that is, we take w = 1.

A real n x n matrix A is an ewpansive matriz, if minyc,(a)|A|>1, where o(A) is
the set of all eigenvalues (the spectrum) of A.

A basic notion in our study is a quasi-norm p,4 associated with A, which induces
a quasi-distance making R™ a space of homogeneous type, see Coifman and Weiss [2].

DEFINITION 2.1. A quasi-norm associated with an expansive matrix A is defined by

o0

pa(e)= Y [detAl*xo, (2) (2.1)
k=—c0
where Oy, = Ak(B(O, 1))\ Uf;_loo AY(B(0,1)), and B = B(0,1) = {£ : |¢] < 1} is the
unit ball.

Here are some basic properties of p 4, the proof for these properties can be found
in [1], [11]:

pa(z) >0, for x # 0,
pa(Ax) = |det Alpa(zx) for x € R", (2.2)
pa(z+y) < H(pa(z) + pa(y)) for z,y € R,

where H > 1 is a constant.
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It is clear that p4 given by (2.1) satisfies (2.2) with the constant H = | det A|7°,
where jo is the smallest integer such that (J, g AJ(B(0,2)) C A% (B(0,1)).

Proposition 2.1
For any expansive matrix A, we have

1. there is a constant C' > 0 such that C~!|det A|* < |0y < C|det A|F for any
ke,
2. fB(O,l) pa(z) tdr < 0o and fR"\B(O,l) pa(z) 17¢dx < 0o for any e > 0.

Lemma 2.2

Suppose A is expansive matrix, and A_ and Ay are any positive real numbers

. In A In \_
such that A_ < minye, (4 |A| and Ay > maxyeqo(a) |A|. Let 7 = m, (= m.

Then for any quasi-norm p4 there exists a constant C' such that,

C™'pa(a)® <lz| < Cpa(x)” if pa(z)>1 (2.3)
and

C™'pa(e)” < |z[ < Cpa(x)® if pa(z) <1, (2.4)
Furthermore, if A is diagonalizable over C, we may take A\_ = minyeq, (4 || and

)\+ = maxAEU(A) ’)\’

2.1 Definition of F7 (R", A, dx)
For any j € Z and k € Z", let Qjx = A77([0,1]" + k) be the dilated cube, and
rqQ,, = A7 (k) be its “lower-left corner”. Let
Q= {Q],k’] €7, ke Zn}
be the collection of all dilated cubes. Define

@j(z) = |det A[Y p(ATx) for j € Z,

win(r) = pq(e) = det AP Pp(Aa — k) = Q| ?pj(x —xq)  for Q=Qjk € Q.

The definition for the anisotropic Triebel-Lizorkin spaces is based on the
“Littlewood-Paley function” as used in the definition of classical Triebel-Lizorkin
spaces, see [6].

DEFINITION 2.2. For a € R, 0 < p < o0, and 0 < q¢ < oo, the anisotropic Triebel-
Lizorkin space Fi? (R", A,dx) is the collection of all f € S'JP (P is the class of
polynomials) such that,

1/q
< 00,

Lr(dx)

HfHFg"q(Rn,A,d;c) = H (Z (’ det AP|f * ‘Pj’)q>

JEZL
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where ¢ € S(R™) satisfies (2.5) and (2.6),

supp ¢ C [—m, 7" \ {0}, :
sup |@((A*)€)] >0 for all £ € R™\ {0}. (2.6)
JEZL
In [1], we show that this definition is independent of .

The sequence space, f;"q(A, dzx) is the collection of all complex-valued sequences
s = {sQ}geo such that

1/q

< 00,
Lr(dz)

I8llgoa(a,a0) = H( > (|Q’_a’5Q‘>~CQ)q>

QeQ

where Yg = |Q|™1/?x¢q is the L?-normalized characteristic function of the cube Q.

2.2 ¢ — ) transform

The ¢ — ¢ transform is a basic tool in [6]. They use it to develop the atomic and
molecular decompositions of the classical Triebel-Lizorkin spaces. In [1], we follow that
idea and obtain the corresponding results for the anisotropic Triebel-Lizorkin spaces.
Their basic definition and result is given below.

Suppose that ¢, 1 are test functions in the Schwartz class S(R™) such that

supp ¢, supp ) C [—m, @] \ {0} (2.7)

D G (AP ((A*)¢) =1 for all £ € R™\ {0}, (2.8)

JEZL

where A* is the adjoint (transpose) of A, and the Fourier transform of f is

fE& = fle 4z
Rn

DEFINITION 2.3. The @-transform S, is the map taking each f € S (R™)/P to the
sequence S, f = {(S,f)o}toco defined by (S,f)o = (f,¢q). (This is well-defined,
since [27¢q(x)dz = 0 for any multi-index 7.) The inverse g-transform, T, is the

map taking the sequence s = {sq}qeo to Tys =3 ocg 5Q¥qQ-

Theorem 2.3

Suppose a € R, 0 < p < 00, 0 < ¢ < 00, and ¢, € S(R™) are such that supp ¢,
supp are compact and bounded away from the origin. Then the operators S, :
F 9 (R, A dx) — £579(A,dx) and Ty : £509(A, dr) — Fpd (R”,A,dx‘) are bounded.
In addition, if p, v satisfy (2.7), (2.8) then Ty o S, is the identity on Fy? (R™, A, dx)
and

f=> (f.eqibg.  forany feS /P, (2.9)
QEQ

where the convergence of the above series, as well as the equality, is in S’/ P.
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3. Strong molecules

3.1 Some basis facts about the quasi-norm p4

Let A be an expansive matrix, {\;}; (allowing multiplicities) be the set of
eigenvalues of A which order as |\;| < ||, if j < i and e; = (ey;, €2, ...,€n;) be the
generalized eigenvectors associated with A;. That is, the matrix representation of A in
term of the basis {e;}}, is its Jordan canonical form; in this case, for some r € N,

i=

J 0 .. 0
0 Jy - 0
A= )
0 -~ .0
0o -~ 0 J,

where, if the eigenvalue )\; is real, J; is a k; X k; matrix and each J;, 1 < ¢ < r, is
either a k; x k; diagonal matrix,

A 0
0 X 0
J; =
0 0
0 O A
or a k; X k; Jordan block,

N 10 0
Ai
0 X\

J;, =

0 0 Ao 1

0O 0 O 0 X\

If \; is complex with Re()\;) = ¢; and Im(\;) = d; # 0, then J;, 1 < i < r, is
either

D, 0 0
Ji: where DZ:< > (31)
0 0 —d; ¢
0 0 D;
or
D, Lx O
0 D; Iy
0 0 D;
J; =
Dz 12><2
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For a reference of this decomposition, see [10, p. 129]. (In [10], the matrix is represented
in lower triangular form, it is easy to obtain the upper triangular representation by
taking the transpose.)

For m € Z™, we may define A™ as,

Jp 0
0o Jpr - 0
A" = '
0O --- . 0
0 0o Jr
where J7" is
A0 0 D* 0 0
o Ax* - 0 0 Dy 0
J" = or J;" =
0 O A 0 0 D»

if J; is a diagonal matrix or matrices of the form (3.1). If J; is a k; x k; Jordan block
corresponding to a real eigenvalue \;, we have

)\;n m)\;n—l m(mil))\;n—Z m(mil)(mikl+2)>\:nfkl+1
0! 11 21 (ki—1)!
0 A Tnx\zn_l m(m—l)...(m—ki+3)/\znfki+2
0! 1! T (ki—2)!
J = (3:2)
mA Tt
0 0 0 o
AT
0 0 0 T

or, in the complex case,

D™ mD""! m(m-1)D7""? m(m—1)...(m—k;+2)D" " !
0! 1! 21 (ki—1)!
D7 D"t 1 ki+3)DFit?
0 4 mD] m(m—1)...(m—k;+3)D,
. 0! 1! (ki —2)!
S = - (3:3)
mD™ !
0 0 0 o
D"
0 0 0 o
ln|)\1|

Let a; = praoiap @ = (at,...,ay), notice that Y a; = 1. Let the differential
operators 0;, 1 < i <n, be defined by

9; f(x) —Ze»-a—fi(x)
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and 97 = [[;_, 9]" where v = (y1,...,7,) € N". For any f € C' and m € Z, let

fam(z) = f(A™x). We have

h(fane) = Y- ey Z%Zam@ (A7)

F ()i

where {a] }1<k, i<n is the matrix representation of A™ with respect to the basis {e; }7_;.
Therefore, for any A > 0, there exists a C'aA > 0 such that

10;(fam) (@) < AT+ [mX]H 4+ [m(m = 1) - (m = s)ANT) [V f o (3.4)
< C«A|)\j|(m+|m|A)

for some s > 0. If \; is real, the estimates (3.4) is an easy consequence of the repre-
sentation (3.2). If \; is a complex number, the estimates follows from representation
(3.3) and

1
5]2\ < max(Re(z),Im(z)) < |z| for any complex number z € C.

Furthermore, for any v € N* and any A > 0, there exists a Ca , such that

|07 (fam ()] < Cay [] | det AJ#:(mHmIA) = Cp | det Alle I HmIZ) (3 5)

i=1

From now on, we represent any x € R"™ by the basis {e;}1<i<n. That is, if
T =€) + X003 + - + Tpe, We write x = (11, T2,...,2,) and 2P = T, IL‘ ¢ for any
ﬁ = (ﬁlvﬂ%‘ : 'aﬁn) S/

We have pa(z) = |det A|* for some k € Z, that is, there exist z, with A¥z, =z
and |x,| < 1. (k is determined by the condition z € Oy). Let E C R™ be the reduced
subspace corresponding to the Jordan block with eigenvalue A\. For any = € R, let
xg € F be the orthogonal projection of x onto E. We are going to show that, for any
A > 0, there exists a C'a, such that

lzp| < CA|AFTFIA for any 2 € R™.
By Lemma 2.2, we have the following inequality for any matrices,
|(A*20) | = |AR (o) B < CalMM 2 (2,) 5] < CAAFFHA |2, |
where Ag is the restriction of A to E. We have,
(A2,) 5] < CalA[FHHA
because E is a reduced subspace of A and |z,| is bounded by one. Therefore,
2| < CalAFHES,

Furthermore, we obtain
2| < CalN|FHFIS = Cp | det AfFaitIklais {
for any 1 < i < n.

The extra A in (3.6) and (3.5) shows the difficulty in the analysis involving non-
diagonalizable expansive matrix dilations on R™.
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3.2 Definition of strong molecules and strongly almost diagonal matrix

The basic notion of “molecules” we shall use is given in the following definition.
That definition is motivated by the type I and type II molecules used in [6] for the
isotropic case and [1] in the anisotropic case. Notice that if K and M are large enough,
the “strong molecules” defined below is an anisotropic type I and type II molecules.
Therefore, all results about type I and type II molecules in [1] are still valid for strong
molecules.

DEFINITION 3.1. Let A be an expansive matrix. Let K, M > 0 with M > 1+ K. For
each Q = Q;x € B, we say that {h,}q=q,, is a strong molecule of order K, M, if it
satisfies

/xth(x)dx =0 if (a,v) <K, (3.7)
and, for (a,v) < K,

1

Y -3 < il2

(3.8)

where C' is a positive constant.

The class of these molecules is denoted by Mg nr. Let || - || v, ,, be the infimum
of the C’s in (3.8). It is easy to see that Mg ps with the norm || - || a1, ,, is a Banach
space.

The “almost diagonal” operators associated with strong molecules satisfy a
stronger inequality which is crucial for further estimations.

DEFINITION 3.2. Let K, M > 0, we say that the matrix {aqp}op is a strongly almost
diagonal matriz, or strongly almost diagonal operator, of order K, M, if

sup |agp| /skop(K, M) < C (3.9)
QP

for some constant C, where

. 1/2 1/2 Tg — Tp -
i )= (22 e

The class of these operators is denoted by sk (K, M). Let the norm || - |[s.(x,ar) be the
infimum of the constants C' in (3.9).

Remark 3.1. Notice that P, @ in Definition 3.2 are symmetric. The definition of
the strongly almost diagonal operators is motivated by the “symmetrization” of the
almost diagonal operators in [1], [6]. The matrix {apg} can be thought of as an
operator acting a sequence space f;"q(A, dx), see [6] for the isotropic case and [1] for
the anisotropic case. It is easy to see that if

1 1
K>max|a4+e,—— —1—a—+e and M > ————+e¢
min(1,p,q) min(1,p, q)

for some € > 0, then a strongly almost diagonal operator is an almost diagonal operator.
Therefore, it is bounded on f9(A, dx).
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Theorem 3.1

Let K,M > 0. If {®,} and {¥,} are type III strong molecules of order K', M’
with K’ > K+a,, and M’ > max(M, K'+a,+1), then the matrix {agr }or = (Pg, Vp)
is strongly almost diagonal of order K, M with

H <(I)Q7 \I’P>QPHsm(K,M) < CH{‘I)Q}QHMK/,M/ H{‘I’Q}QHMK/,M/

where C' is an constant depending only on the matrix A.

Proof. Without loss of generality, we may assume

{®otoll M arr = I{¥a}all My = 1.

Let 6 > 0 satisfy 6 < min(K' — K —a,,M' —1—-K' —a,) and A < 6. If |Q| =
|det A|=# < |det A|=* = |P|, by Lemma 8.2 in Appendix with R = M’, i =3, j = A,
Ty = Tq,

9(0) = Bplar —2) and hiz) = Uo(),

we have,
R=M>K +6é6+1+4+a, K >K-+a,+5.

Hence,
(@p, Wo)| = ¥+ (A zy)]
< O det A|~(B-NE+=A+1/2) (14 |det A|*palzpr — 3q)
< C|det A|~ P NEFD (1 4| det AP pa(xr — )

)M

We interchange the role of h, and k., if |Q| = |det A|=% > |det A|=* = |P|, and

we have
(B, Ty < C|det A" A=AEF2 (1 4 | det AP pa(zp —15)) .
Combining these two inequalities, we have

(P, Wo)| < Cskgp(K, M). O

3.3 Molecular decomposition of Fg"q (R™, A, dz)

Let J = cmiapg and N = max(J — 1 —a, —1).

Theorem 3.2 (Smooth molecular decomposition).

Suppose A is an expansive matrix and § > 0. There exists a constant C' > 0,
such that, if f =3 5.0 8QPq, where {®q}q is a family of strong molecules of order
K',M'" with K’ > max(a+ a, + 6, N +6) and M' > max(J + 6,a+a, + 6+ 1), then

1 loa (g aae) < C IHs@Yollioa(an  forall {sqlo € £74(A, da).
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Proof. In [6] (that is, the isotropic case), the proof is made into two steps. The
first part is an estimate on the inner product of molecules, [6] Corollary B.3, and the
second step is a simple application of step 1, [6] Theorem 3.5. We already obtained
the estimate on the inner product of strong molecules on Theorem 3.1.

By Theorem 2.3, we may write

op = (Pr,pq)tq.
Q

If A is the operator on f;’q(A, dx) with matrix {aQP}Q’If = {<(I)p,§(~)Q>}Q7P, then
{agpr}o p is a strongly almost diagonal matrix of order K, M with K = max(a +
6, N+ 6) and M = J + 6.

Returning to the estimate, we have
TyAs = Z ZGQPSJﬂ/JQ = Z sp Z@P, 0Q)Vq = Z sp®p=f
Q P P Q P

and

1flgea@n, a,d0) = ITwASlpoo@n 4,40y < ClASlpoaa 40y < Cllsllgena,an)-

Since Ty, is bounded and A is a strongly almost diagonal and, hence, bounded by
Remark 3.1. O

4. Main theorems

In what follows, we are going to study frames associated with expansive matrices and
obtain some results that generalize the work of Frazier and Jawerth [6] and Glibert,
Han, Hogan, Lakey, Weiland and Weiss [8] of wavelet-type frames associated with
diagonal matrices having identical eigenvalues. In [8], they constructed the wavelet-
type frame by showing that I —F (F is the frame operator that will be defined right the
way) is a Calderén-Zygmund operator having operator norm less than 1. Moreover,
they showed that a class of “molecules” is invariant under the mapping by I — F.
Hence, it makes sense to study the inverse of I — F by using the Neumann series.
Instead of using Calderén-Zygmund operator, we obtain the Anisotropic wavelet-type
frame by a discrete method. Let us first introduce the basic operator of this section,
the frame operator:

DEFINITION 4.1. We say that {¢,},er € F;’;ﬁq (R™, A, dm)ﬂ(F;‘;’q (R™, A, dx))* is a
frame for the Anisotropic Triebel-Lizorkin Spaces, Fg’q (R™, A, dx), if the frame ope-
rator

Fof=Y (frdy)0y

yel

is bounded and invertible on F;"q (R™, A, dx).
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For a given ¢ satisfying the modified Calderén reproducing formula, there are
several ways for constructing a frame associated with it. In [8] one can find a method
for such construction which relies heavily on the Calderén-Zygmund operators. This is
not easily applied in the anisotropic case (see the estimates in Section 2 of [11]). There
is another idea, however, arising from the ¢, transform theory that can be found
on p. 63-69 of Frazier and Jawerth’s paper [6] which does not rely on the Calderén-
Zygmund operators.

Theorem 4.1

Let A be an expansive matrix, a« € R, 0 < p,q < oo and B € M, x,(R) with
| det B| # 0. There exist K, M > 0 such that for any function ¢ satisfies the modified
Calderén reproducing formula,

o0

S e ((AYE G ((AYE) =1 for €0

j=—o00

/x”cp(x)dx =0 (4.1)

if {(a,7v) < K, and
1

(1+ pa(@)™

if {(a,7) < K, there exists an 1o such that, for any fixed n < 1o,

07 ()] < (4.2)

{%,k(l’) = | det AJ7/2| det A|"p (A" ATz — Aan)}

JEZ,kEZ™

is a frame on Fg’q (R™, A, dx).

Remark 4.1. In fact, we may take M > max(J,J —a + a,) and K > max(a+ ay, J —
1—a+ay). That estimates of K and M can be obtained by a detailed investigation of
Theorem 3.2. We state the theorem in this way in order to avoid checking the indices.

Theorem 4.1 shows the invertibility of the frame operator, . In order to begin
the study of the analysis of convergence of the frame expansion, we are going to study
the regularity of the frame operator. By this we mean that the strong molecules are
invariant under the mapping of the frame operators and their inverses. The regularity
of the frame operator in the isotropic case can be found in [8].

The following theorem addresses the problem of regularity of the inverse of the
frame operators.

Theorem 4.2

Suppose A is an expansive matrix and B € M,,,, with |det B| # 0. Let K, M, 6 >
0 satisfy M > K + 2a,, + 1 (This condition comes from Theorem 3.1.). Let K' =
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K+6+a, and M' = M+6. Suppose that o satisfies the modified Calderén reproducing

formula,
o

S e ((AYE) G ((A)YE) =1 for €0

/az'ygo(:z)d:v =0 (4.3)

if {a,v) < K’; and
1

v - -
AN T
if (a,v) < K'+ ay,.

Then, for any LM satisfying 1 + K > M,K>L M>DM (These conditions
arise from Theorem 6.4) and 2K + a,, +1 > M (This condition comes from Corollary
6.3), I — |det B|F,, maps a strong molecule of order K', M’ into a strong molecule
of order L, M. Furthermore, there is an 19 € R such that the dual frame of {¢0},

{F, Lo, Y, consist of a family of strong molecules of order L, M.

The last result is the almost everywhere convergence of the wavelet-type frame.
Notice that it also includes an important case, the convergence of multiwavelet ex-
pansions. The main idea comes from the paper [13] by Kelly, Kon and Raphael. Let
¢ be a function satisfying the condition stated in Theorem 4.2. We have the frame

F=Y" (. 0inbi (4.5)

JEZ kezn

expansion

where ¢ = F1(¢;x), and F is the frame operator. Notice that the ¢; ;’s are not
necessarily translations and dilations of a single function. On the other hand, we have

k() = | det AP 2 (Al ).
This follows from the fact that the frame operator

ff(.’l:) = Z Z <fa (Pj,k>§0j,k(l‘)a

JETL keTn

commutes with dilations,
Daf(x) = |det Al f(Ax)

because,

DaFf(x) =Y > (frpjx)|det AP/*H 1 o(AT (Ax) — BF)

JEZ kezn
- Z Z (f @ikl det A\(H?)/?(p(Ame _ Bk)
JEZL kezn
- Z Z (f,o1-1.1)| det A|FD/20(Aly — BE)
lEZ keZn

by the change of index [ = j + 1.
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Since

o) = / F()]det A[T-D2 (A1, — k)dy

= f(Ay)| det A|HD2p(Aly — k)dy

by the change of variable y — Ay, we have,
DaFf(x) =Y > (Daf @jn)ein(r) = FDaf(x).
JEZ keZn

Therefore,

din(x) = F () (@) = F (| det A|7/°D 45004) ()
= | det A‘_‘j/2f_1(DAjg0()7k)($)
= | det A[ /2D 4s (F oo k) (x) = | det A 792D g (¢ 1) ()
= | det A|77/2| det A7 (¢o.1)(A'x) = | det AJ7/% (o) (A ).

Consider the operator:

INF =D D ik bk

j<N kezZn

We then have what we consider to be the main result of this paper:

Theorem 4.3

Suppose that {¢; } is a frame and {¢; .} is its dual-frame. Then, for any f € LP,
1 < p < oo, Ty f(x) converges to f(z) for every x in the Lebesgue set of f, in the sense
of the space R™ endowed with ps and Lebesgue measure.

5. Frames on F27 (R", A, dx)

First of all, we claim that there exists a function ¢» € S(R™) that satisfies the Calderén
reproducing formula associated with the expansive matrix A.

Theorem 5.1

For any expansive matrix, A, there is a function » € S(R™) such that

S
k=—oc0

Proof. See [1] or [11]. O

&((A*)’ff)fﬂ for €#0.

Corollary 5.2

For any expansive matrix, A, there is a function ¢ € S(R™) such that

oo

Yo oA e (A =1 for £#0 (5.1)

k=—o00

where ¢(z) = p(—x).
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Proof. See [1] or [11]. O

Proof of Theorem 4.1 Let B, = A~7(B([0,1]") + Bk) , B={B, 1}, and
in(z) = ¢p,,(2) = |det AP2p(Ax — BE)  @y(z) = | det A|"p(A"z).

Let the operator F, on Fg"q (R™, A, dz) be the frame operator,

Fof (@)=Y (F: (0n)ie) (pn)sin

Bjk

=> "> |det A7

JEZ kezn
x | det APFNp(AI Ty — ABE).

/ f(z)|det AP Tp(AT T2 — A"BE)dx
Rn

Boundedness of the frame operator:

First of all, we are going to prove the boundedness of F,,. Let

S, s i FOU(R™ A dz) — f29(A,dx) and T, , : f59(A, dz) — F&4 (R, A, dz)

¥n,B ¥n,B

be defined by

(S l)Bx = (f:(n)jk) and Ty, 5= ZSBj,k(<Pn)j,k~
ik

By an easy modification of Theorem 2.3, these operators S, g, T, p are bounded.

Since

fnf(x) = T%,B o Scpn,Bf(x)a

we have the boundedness of the frame operator F,.

A representation of I — | det B|F,:

Here is the first step toward the invertibility of the frame operator. We are going
to represent the operator I — |det B|F, by a series of strong molecules. Let

Zj(,m) = {L € Z" : Bj_n N By # 0}
By the modified Calderén reproducing formula (5.1),

Fl@)=> ;@ f()

JEL
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and a change of variable j — j + 7, we have, for an 1 to be determined later,

F@) =Y @@ f(®) =D @jun* Gjin * [(2)

JEZL JEZL

=D 3D Dl Iy [ I e

JEZL keZ™ J+n.k

=22 2 /B (Bjn * FW)pjin( —y)—pjpn(z — A7 BI))dy

JEL keZM 1ELP (j+n,n)” BitNBitnk

+3 03 > (@t * f(©)@jon(x — A~ Bl)dy

JEL KEL™ 1P (j+n,n) ¥ Bt Bitn.k

and, hence,

f@=>> Y /B (i * FW)[@jn(@ — y)—@jan(z — AT BI)]dy

JEL ke 1P (j+n,n)” Bit N Bitn.k

+ Z Z Z [Bjn * F(Y)—Pjan * f(A_jBl)]¢j+n(x—A_jBl)dy
JEL keZMEL (j+n,n)” Bit"Bitn.k
+ Z Z Z (Gjan * fF(ATIB))pjiy(z — A~ Bl)dy

; ; B. . NB;
JEL kEL™ 1ELT (j+n,n) ¥ it Bitnk

3D DD S I O L e e

X - . NB.
JEZ kEanEZZ(]+77’7]) gl Jjtn.k

DD /B (Biam * F ()= Biam * F(A™T B — A~ Bl)dy

JEZ keZMEL (j4+n,n)” PitNBitn.k
+ | det B|F, f(z).

Replacing the index j + n by 8 and rearranging the last term, we have

(I —[det B|F,)f(x)

=> > > (s * F(W)lps(x —y) — pp(z — AP BI)|dy
BEL keZ 1eZ7(B,n) ¥ Bo-n1NBa.k
DI (25 * f(y)—@p * F(AT"T1BY)ps(z— A~ 1 Bl)dy
BEL keZM Ly (B,m)” Bo—n1NBs.k
=I+11I.

Estimate on I:

We consider the first term. Let ¢ < %,

55y, = | det APP/2|det B| /B 35+ F()ldy
B,k
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and
mp,, () = |det A|"""s _1 |detB| €

« 3 / 5% [ (0)lps(a—y) —pa(z— AT BI)dy.
leZy(Bm) Bp—n1NBp,k

Therefore,

I=>Y" Y |detB[|det A" sp, mp,(x).
BEZL keZ™

We are going to show that each mp, , () is a strong molecule.

The vanishing moment conditions of mp, , (x) is inherited from ¢(z). We only
need to check the size conditions. Notice that if y € Bg_,; and (a,v) < K' = K —ap,
the size conditions of ¢ and inequalities (2.3) and (2.4) yield,

|07 (05(A™ 2 — y) — ps(A™ w — ATPHBI))|

<O |det A°|((A%); — (A"Bk);)|  sup [ (8:07¢)(A%(A Pz — 7))

i=1 2€Bp_n,1

< C’Z | det A|PEHY (yi — (111_’C“"7B/§)i)E sup (1+ pa(z — Aﬁz))_M
i=1 z€Bg 1

< O [ det APPEHD (| det A7+ det BI)*(1+ pa(z — Bk))

i=1

< C|det A°(|det A[|det B|)* (1 + pa(x — AP(A~PBR))) ™,

for an universal constant C' > 0. Hence, for (a,v) < K’, we have
}anBﬁ?k(A—%)\

[det AP (14 pale — APzs, )" Y /B |85 * f(y)|dy

1€z (B,m) * BB

<C
SBE?k

< Oldet AP/ (1 + pa(e — APy, ). (5.2)

Thus, {my, , } is a family of strong molecules of order K', M.

Estimate on I1I:

For the second term, let

to,, =|det A2 3 / 85 % F(y) — @ % F(AH1BI)|dy

12y (B,m) Y Bo—n1NBs.

and, if t5,, #0,

ey, (@) =10 Y / (B % f(y)—@p * F(A™7T"BD)|pg(x— A~ Bl)dy.
tezp (B’ Pooni0Ban
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Therefore,

IT=3"%" tp,np,, ().

BEL keZn

For any | € Z}(3,1m),y € Bg—y, and (a,7v) < K’, we have

|02 (pa(A™ P2 —y) — @g(A Pz — A=FH1BI))| (5.3)
< Cldet AP pa(A%(y — APF1BY) (1 + pale — Aay, )"

< C|det AJ?| det A" (1 + pa(z — A’gwsﬁ,k))_Ma

where the constant C' is independent of y € Bg_y, ;.
Therefore, if we write

hpg,.(x) = | detA|_ﬂ/2 (955(?; — ) — @ﬁ(A_*B+nBl — ,13))7

then hp, , (z) is a strong molecule with the same order as ¢, , . Furthermore, by the
-1 transform reproducing property, we write f = >, rp9), where r = {r,}, satisfies

171204 ,azy < Cllf s a@n 4z I we set

bro = [det A2 3 / 85 % Un(y) — 3 % (A1 BI)|dy,
n Bg_,.1NQ
IGZk(ﬁﬂi) B=m,

where Q = Bg, then [ty < > p|bpgl|rp|. By the estimation in Theorem 3.1, we
have,
(s Q)| < Cldet A" i (K, M).

Hence, for Q = Bg i,

|beo| < |det |72 > / |35 # p(y) — Gp * bp(APT1BI)|dy
1€z (8,m) * Bo-n 1Bk

<cldetdl [ (W ho)ldy
Bg,x

< C|det A|ﬁ/ | det A|" ko (K", M)dy < C|det B|| det A|" spy (K", M),

Bg,k

because
/ dy = |det A| 77| det B].
Bﬁ’k

Therefore, the operator B = {bpg} is bounded on f;“’q(A, dx) if K’, M are large enough.
We now consider np,, . The vanishing moment conditions of n, , is inherited by ¢.
Furthermore, for any (a,v) < K', we see that

|8W(nBﬁyk(A*5w))‘ (5.4)

<o, >/

lezy (B,m) ¥ Bo—n1NBo.k
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X |95,3 * f(y) — @p * f(A_ﬂ—H’Bl)Ha7 (@B(A_ﬁw — A—ﬁ+nBl)) ‘dy
< |det A|ﬁ/2(1 + palx — Aﬁ(A—ﬂ+nBl)))—M
Xty D / |26 % f(y) — Pg * F(A~PHBI)|dy
1€z (8,m) ¥ Bo-n.1NBa.k

< C|det A|’8/2(1 + pa(z — AﬁxBﬁ,k))_M,
because A~P*"Bl € Bg_,; and

sup (1+ pa(z — Aﬁz))_M ~ inf (14 pa(z— Aﬁz))_M.
2€Bg i z€Bg i

Therefore {ny, , }s is a family of strong molecules of order K, M.

Estimate of (I — |det B|F,):
We may write

(1 — | det B|F,) f(x)] < C|det A" +C

E :SBﬁ,kmBﬁ,k

B,k

E :tBa,knBﬁ,k

B,k

Taking the Fg"q (R™, A, dz) norm on both sides, we have

I(I = [det B|Fy) f (@)l 1 (mn 4,da)

E :SBB,kmBB,k

167k

< C|det A" +C

Fy 9 (R, A,dx)

E IBs «"Bg
8,k F29(R",A,d)

For the first term, if K/, M are large enough, by Theorem 3.2 and

$By, = |det A|”/?| det B |5 % f(y)ldy < C|det A% sup |@g = f(y)l,
Bgk z€Bg,k
we have
Z 5B, MBg i < ClsBas oo a,d0) < ClSflpeo@mn, a0
B,k F29(R,A,dz)

because {mp, , }s, is a family of strong molecules. For the second term, if K, M are
large enough, we have

< Cl{tBs i Hlgza(a,an) < Cldet A" {4 }Hljea (4 gy
Fp9(R", A, de)
< Cldet A["|[fll g9 e a,d0)

E IBs « B,
B,k

because tq = > p broTe, ”THf";’q(A,da:) < CHfHFg’q(R",A,d:c) and

bro| < C|det A" kpo (K, M).
Q Q
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Therefore,
(I — [ det BIFy) f (@)l goa@n a,a2) < Cldet A" [l goa@n a,dz)-
Choose an 19 < 0 so that C|det A|"® < 1, for any 1 < ny; we then have
||I - |det B|f77||F§’q(R",A,dm)%F:"q(R",A,dz) < 1
and by the Neumann series (I —T) ' =T +T+T?+ ... = >0 T,
|det B|F,, =1 — (I —|det B|F,)

is invertible, and, hence, F,, is invertible because | det B| # 0. O

6. Regularity of the frame operator

We begin with some lemmas. The following is an anisotropic version of Lemma B.2
of [6].

Lemma 6.1
Let |R| = |det A|7% > |det A|=* = |P|, i,5,k € Z, M > 1, x € R", we have

-M -M
Z (1 + pa(rq — xx) > (1 i pa(x —zq) )
i as U max(QLTRI) max([P]. Q)
-M
pa(T — ) ) < !PI)
<C <1 4+ — max | 1, —
max(|Ql, |R|) Q|
for a constant C > 0 depending only on M.

Proof. Without loss of generality, we may assume k = 0. First, we deal with the case
|[R| =1>|P| > |Q|. For any y € Q, we have

_ -M -M
C 1+ pa(zn—y) < (1+palzqg—2r)  <C(1+palzs —y))
because |R| =1 > |det A7 = |Q| ; moreover,
o1 (1+ pA(x—y))_M - <1+ pA<x—:cQ>>‘M <o (1+ pA(w—y))_M
Pl - Pl - Pl
because |P| > |Q|. Notice that C' depends continuously on M. Hence,

—-M

1 1
Z (1+ palzq —zp))M (1 4 L2LZTa) )M

Q| =| det A|—J 7=
<c Y |det A|j/ ! L
< — T

|Q|=| det A|—J Q 1+ palzr —y))™ (14 ‘pA\p| y_))M

Al 4 1 1

< oLt AP, g 4 _ dy

| det A? rr (L+pa(ze —y)M (14 pA|(;|fy))M

1P| 1

= QI+ pale —za)M
by Lemma 8.1 in Appendix.
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For the case |R| =1 > |Q| > |P|, we have

-M
1 pa(rg — Tx > <1 pa(r —x4) >
,QH%A,_J.( " max(1Q],IR)) max(|PL,]Q)

= Y (14 palee —xa) M<1+ x_:UQ))M

+

|Q|=| det A|~3
co S gy [ o
Ql=idot Al @ I+ palzr—y)™M (1+ o)
. 1 1 1
<C detAj/ dy <C .
| | r (L palzn —y)M (1 4 afz-shym V=07 pale —azn))M

Similarly, for the last case |Q| > |R| > |P|, we have

|QI=] det A]~4

. 1 1
<C E ]detAP/ dy
- pa(ZrR=Y)\M pa(®—y)\Mm
Q=] det 4|~ Q (L+ =g )M (1+ =4gr™)
. 1 1 1
g(J|detA|J/ dy < C O
y))M

n pa(TrR=Y)\M pa(z— - pa(z—TR)\M
e (L4 55 L+ Hhg I+ =5g)

With these lemmas, we can show the following theorem which guarantees that
the composition of two strongly almost diagonal matrices is a strongly almost diagonal
matrix.

Theorem 6.2

Let K,L,M,M > 0 satisfy K # L and K + L + 1 > min(M, M). Suppose
A={apg}pg € sk(K,M) and B = {bgr}or € sk(L, M) be strongly almost diagonal
matrices. Then the matrix Ao B =C = {cpr}pr where

CPR = Z apqQbop
Q

is a strongly almost diagonal matrix and C = {cpr}pr € sr(min(K, L), min(M, M)).
Moreover, we have a constant C' > 0, depending continuously on M, M only, such that

{epr} PR skmin(re,1),min(v,0m)) < ClH{aPQ}Pollsni,an {0or}Y QR g1, 31

Proof. Let |P| = 27% |Q| = 277 and |R| = 27%. Without loss of generality, we may
assume |P| < |R|, K > L, M > M, [{apq}rllscix,m) =1 and [{bor}orll su(r i) =
1. We split cpgr into three terms

leprl < Y largllborl+ Y. larellborl+ Y. larllberl
IPI<|RI<|Q| |PI<IQIL|R| |QISIPI<|R|

=I+IT+111
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For I, we have

[P\ pa(zo —zp)\ M (IR FT?
= (o) 25 ()
|PI<|RI<IQ @l Q| Q)

(14 2t —wR>>‘M
Q|
Because M > M,

_r B
1< ‘P‘K+1/2’R‘L+l/2 Z ’Q‘foLfl (1 n M) (1 N M)

|PI<|R[<|Q| <l @l
. - -
<|p|E+1/2|pIL+1/2 9J (K+L+1) (1 + palzqg — xp)> <1 T pa(zg — »’UR))
SIPRAREEE )y Q @

Therefore, by Lemma 6.1,

a i1
I < O|P|E+1/2|RjE+1/2 Z 9 (K+L+1) <1 n w '
< | 5

j=—00

Because |Q[ > [R|, we have

PA(fUp — l‘R)

St A QI ek
2] Q| " IR

Hence, we have

1+ palzr —z5) |Q| _ |Q|<1+M)'

Q)

- Q™ (r — )
[ < CIPKH2|RIA12 § giLen) ] <1+w)

y = y (xp —p) —M
< C|P|KFV2|RIEMEL2 N gl (K LA =A) <1+pAyPT\R>
j=—o00

y . _ M
< O|P|K+V/2|RL—M+1/2| g|-K—-L-1+M (1 n W)

PK+1/2 b —-M PL+1/2 . _
o) i (1 i M) <clnrr (1 pal xR>>

Since K+ L +1> M, K > L and |P| < |R)|.
For 11, we have

m< Y <%>K+1/2(1+WyM(%)Hm(H%)_M

|P|<|QI<|R|
\P‘K+1/2 kel pa(zo — p) -M palze — 7n) Y
< —Tm DL QR (e e 1 PAlTe —Tn)
L+1/2
R G Q| R
‘P‘K-&-I/Q @ -

Z 9i(K—L) Z <1+ pa(Tq —xp)>M<1+ pa(Tq —:cR)>M
- !R|L+1/2 Q| R

|Q|=2-7
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Because K > L,

|| paler —a)\ M
II<C———|P + 14+
— ‘R’L'Hﬂ | ‘ + ’R|

<C’P‘L+1/2 <1+ ,OA(xP_fI:R))M
= Y |R|L+1/2 R|
For the last term, we have

r@|>K+“2 ( palzq — m)‘M (\m)“”
1171 < — 14+ == -7 =
> (|P| T IR]
QILIP|L|R]

y <1 N m(fo’ xR>>‘M

1 K+L+1 palrg —xp)\
< |P|K+1/2| R|L+1/2 E : Q| L+ |P|
|QILIPIL|R]

(0 285)

By Lemma 6.1,

©0 -M
: - P
III < C|P|_K_1/2‘R|_L_1/2Z (2—](K+L+1) (1 + pA(IrR’ -TR)) %)

=i
K+1 1 - (K pa(Tp — Tg) M
< Clp[ R Ry S (gaten (1.4 ealze )

j=i

1
< O|P|~K+1/2| R E1/2 pj+ (1 + %>

[PIFH2 0 pa(ae —an)\
<C 1
=YREE TR

Combining these inequalities, we show that {cpr}pr satisfies condition (3.9) and
{eprY PRl o, ir) < Cl{arql}pollscix,mn{bortorll sn(r, i1y B
By iterating the estimates, we obtain the following corollary.

Corollary 6.3
Let K', M’ > 0. Suppose A;, 1 < i < m, are strongly almost diagonal matrices
with order K', M', then for any K, M > 0 satisfying K' > K, M’ > M, and K + K' +
1 > M, the composition of A;, Ay o Ay---0 A, Is a strongly almost diagonal matrix
with order K, M and
Ay 0 Az -+ 0 Apllsureary < O™ At lswirer vy | A2llswcrermry -+ 1Amllswcrr )

for a constant C' > 0 depending only on M, M’.
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We are now going to prove the main result of this section that asserts that the
class of strong molecule is invariant under the mapping by a strongly almost diagonal
operator. Moreover, it also generalizes a result of Frazier and Jawerth [6], Lemma 9.14.

Theorem 6.4

Let K> L >0, M>Mand1+ K > M. Let {ko}q,. be a family of strong
molecules with order L, M, and {apq} be a strongly almost diagonal matrix with order
K, M. Let

ho(r) = apoke().

We have
/x"’hQ(m)da; =0 if (a,v) <L (6.1)
and, for a constant C' depending only on the matrix A and M,
: . 1
07 (ho(A™z))| < C| det A[P/2 _ (6.2)

(1+ palz — Alxg))M
if {(a,7) < L.
Moreover, we have
{haotollm, 5 < Cl{aretrollscir,anl{kotellm, 4

for a constant C > 0.

Proof. Without loss of generality, we assume |[{arq}rolls(x,ar) = [{katollm, 5, = 1.
To estimate |07he ()| for |{a,~)| < L, with |Q| = | det A|~%, we split the sum into two
terms.

lav(hQ(A_%))‘g Z ’aPQH87(k:P(A_ix))‘
IPI<|Ql

+ Y apo|[07(kp(A72))| =1 +11.
PI>|Q]

By the definition of strong molecules and strongly almost diagonal matrices, we
have,

E D3 (1+M%T|—%>>‘M(%>K“/2

j=i |P|=|det A|~

x | det A[F/2+H (@ G=i+li=ilA <1 n pA(A_% - xp)>_

o0 -M
<det A2y Y (1 + %) [ det A|-I+IK
j=i |P|=|det A|~J

x| det A|(—IHD/2+ =0/ 24+ am) G-+l (1 + PA(AE; — r) ) )
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because M > M. Therefore,

I's (|detA|i/2Z|detA|_(j_i)(K—<aﬂ>)+(j—i)A)

j=i

x> <1 + %) o (1 4 PA(A|;0| - mp)>_M

|P|=|det A|—i

because j > i and (a,v) < L < K — A if we take A < K — L. Furthermore, by
Lemma 6.1, we have,

M
) < C|det A['/? (14 pa(z — A'zy))

(A7 — x5) —M

Q)

[ < C|det Ali/? <1+pA

For 11, we have

i—1 -M K+1/2

pa(Tq — Tp) Q|

< rANs o7 i)

ne ¥y () (i
j=—00 |P|=|det A|~J

; —
« | det A/2H@n)G=D+i=io (1 L paldTe - W)
1P|
i—1 -M
<ldetA”2 3% <1 N W) ot A|FHD0/245)
j=—00 |P|=|det A|~ |7

A—i —M
x | det A|U=9/2+(@) =) +i—ilo <1 L palATie - xp)>

1P|
i—1 . M
. .. .. det A‘_]
<C det A[/2+G=0) (1@ m)+E)+]j—i| & | |
- j;oo| A | det A7/ + pa(A~"z — 2q)
and; hence,
i—1 ' M
. L. ~ . det A|7'L
I<c det A[i/2+G=D+H (@) +K—1D)— (- < | | >
- j:z:w’ | |det A|=% + pa(A~x — zq)

M 1
)> < C|det A|"/?

(14 pale = Azg)) ¥

| det A|~*
|det A|=% + pa(A~ 'z — zq

< 0|detA|i/2<

We use |P| > |Q| and choose A > 0 small enough, so that 1+ K > M + A in the
summation over j. Hence,

) ) 1
|07 (ho(A™'2))| < C|det A|'/? _

(14 pa(z — Alxgy))M

if (a,7) < L.
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The vanishing moment conditions,
/a:”hQ(a:)da: =0 if (a,7) <L (6.3)
are well defined because M > 1+ L and

[ lhe@lde = [ 1271 lascllbo(e)ide < 00 it (a,7) < L.
P

The vanishing moment is inherited by h, form the corresponding conditions on k, . U

Proof of Theorem 4.2: Fix a € < %. Let {¢p}p be strong molecules of order

K',M’'. From Theorem 4.1, we have, for P = B, j, v € Z and h € Z" (recall that
ZZ(ﬁ?ﬁ) = {l S/ B,B—n,l N B,@,k ?é (b}),

(I — [ det B|F)dp(z)

- Z Z Z (95,3 * ¢P(y)) [‘Pﬁ(iﬂ —y) — sl — A_ﬁ""”Bl)]dy
BEL ke €27 (B,n) ¥ Bo-n1MBak
DIDIDD (@5 % 60 (y) =P % 6o (AT BE)|0g(x— A~ 7 Bl)dy.

n n B_ ﬂB
BEZ kLML (B,n) ¥ ZB—m I 126k

For QQ = Bg,, we have

(I — | det B|Fy)¢r(z) = Z | det A["sqpmq(z) + Z torna(T)

Q=Bg Q=DBg i
where
Sqr = | det A|"/?| det B| ; |65 * dr(y)ldy,
B,k
| det A|~" - _
meo(x) = Sor|det BIF Z @p* dp(y)es(z —y) — pple— AT BI)|dy;
QP lEZZ(ﬁm) Bﬁfn,LnBﬁ,k
and
tor = |det AP Y [ 85+ 60 (y) — B * du( AP B dy,
ez (8,m)” Po-niNBsk
1 N B _
@ = > (85 % 600) — B % 60 (A7 B0)
OF tezy (B Bo—minBek

x @g(z — A=PH1BI)dy.
First of all, since ¢, (y — ) is a strong molecule for any y € Q = Bg j, we have

ey = I3Mpr arr ~ IHPQE) M My -
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Therefore, by Theorem 3.1,

Sop = |det A|?/?| det B 55 % ¢p(y)|dy < |det A|7P/2 sup |pg * dp
or = | ¢ y)ldy P y
B,k yEBg.k
< swp | [ Galy = 0)0n(a)da| < CpQY e 82 sty 5ar (K1),
Y B,k

Similarly, we have, for any y € Bg,,

ltarllsnire,an < Cl{ba(y =) = (AT Bl = Vol My {Er} ol Mocr
< Oldet A" |{eotol Moy a, ar I{OrF el Muer oo

Similar to the estimates for I and II in the proof of Theorem 4.1, {m,} and {n,} are
families of strong molecules of order K’, M’ with

{me (@) Mo < Cl{@pY el s and {10 (@) H My < Cl{GRYrllMyer -

Hence, by Theorem 6.4, we have

I{( = | det BIFy)¢r}elrm,
< Cldet A" [{pa el aol{0r}elre s + Clltallsnian {a el My, ae
< Cldet A" |[{eq}alliy . I} ellate -
Therefore, we have shown that {(I — |det B|F,)¢r}p is a family of strong molecules
of order L, M.

For the last result, we are going to estimate (I — |det B|F,)'¢»(x), i > 0. For
i = 2, we have

(I—|det BIF,)’¢p(x) = Y [det A["sq,(I — |det BIF,)mq(x)
Q=Bg,k

+ Y toe(I —|det B|F,)ng(x).
Q=DBg

Since m, and n, are strong molecules, by Theorem 4.1, there exist strongly almost
. ) [2] [2] e
diagonal matrices {sor}op and {tor }op satisfying
2
I{sE+Yap lantcan < ClH{eQMtrr o o
2
I{t5= Y apllancan) < Cldet A" [ {eq} |,

+anaM/

(2] 2]

and strong molecules m¢' and ng' satisfying

2 2
1mEN ayer e < Cldet A [l @ollayer,. e and 08| aper 0 < Clivalliger . o
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such that
(I—|detB|f)mQ()— s2 mE(z) and
(I — | det B|F,))no(x ZtQQ Q

Hence,

(I — | det B|F,)? ZydetAyne ZSQQ,m[jJ —i—Zt PZt[2Q,n[2]( )
—Z|detA|”5<ZstsQQ ) m(m)
+Z<Zt@1’tm ) ().

Therefore, by Corollary 6.3 with K + K’ + 1 > M, the matrices

(Setl} i St}
Q PQ’ Q PQ’

are strongly almost diagonal matrices with order K, M. Hence, we have

{(I — | det BIF,) %02} el n,

< Ol det A" |[{sortopllsncir am {380 Yo s am Imé [ e o
+ Cli{tar Yorllsnixran 1{tar Yor lonir a1 | Mter ar

< Cldet AP [{}ollhurr . o {8} PIMoer oo 20 1 oo

Similarly, for any 7 > 0, we have

(I = det BIF,) 0r}ella, , < C'ldet A [{gq}ollRh,, I{@}Pllnper ari-

+an, M’

We know that, if the operator norm of I — | det B|F, is strictly less than one, we
have

= |det B] ) (I — | det B|F,)’

by the Neumann series.
Hence, we can estimate the operator norm of F,° L

K7 ortelim, ;< |det Bl Z (I = | det BIF) ¢r}ellm,

<!detB\ZCZ!detA!”“H{SDP} X o g O Pl -
=0
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Hence, if we choose an 79 such that

| det A < 7 {er}rllaf,, o} plIxg,,

+an,M’ M’

then F,, is invertible because M, ;; is a Banach space. [

7. Convergence of the frame operator

We postpone the proof until we establish the following results. We study the kernel

T(z,y) defined by,
Z Z ¢jk (P]k )

JEL keZm

= > donr(@)por(y) = Y dox(x)p(y — Bk).

kezm kezn

Define

Since Dy F = FD4 (see discussion preceding Theorem 4.3), we can write

|det A ®(ATx, Aly) = | det A Z B0k (A72) 0o k( vor(Aly) Z Gjk(T)0j k(Y ik (Y).
kezn kezr

Therefore, we have T'(z,y) = 3,5 |det A ®(A/z, A7y). By Theorem 4.2, we may
assume that {¢; 1 }jez rezn is a family of strong molecules of order N, J for any N, J
satisfying 1 + K > N > 1+ J and ¢;; has the same center as ¢; .

Lemma 7.1

Let ¢,¢ be as above, we then have, for any N satisfying 1 + K > N,

CH{SOP}PHMM,K ||{¢P}P”MN,J

S T e - )

for a constant C' > 0 depending only on A.

Proof. This is a simple consequence of Lemma 6.1 with the size conditions

[0k W) < IH{er}ellmu 1+ paly—k)~Y and
60,6 (z)| < [{r}rllmy, (1 +palz—k)~N. O

Define the operator,

ZZ f‘P]k(ﬁjk

“‘~\

(ZZ¢3k )@k (Y ))f(y)dy

§<0 kezn R™ \ j<0 kezn
ZZ (f i) Pjk(x / (ZZ%k )@k (Y ))f(y)dy-
>0 kezn R™ \ j>0 kezn
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Denote the kernels of the operators P and Q by P(z,y) and Q(z,y) respectively, so
that we have

P(z,y) = |det AP®(Alz, A7y) and
71<0
Qz,y) = |det APD(Ax, ATy).

Jj>0
Next, we are going to show P(x,y) is well-defined on R xR"™ and Q(z, y) is well-defined
in R” x R"\{(z,z) : z € R"}.
Theorem 7.2

The sum defining Q(x,y) converges uniformly to a continuous function bounded by
Cpa(z—y)~ with constant C > 0, and the sum defining P(x,y) converges uniformly
to a bounded continuous function on sets at a positive distance from the diagonal.
Furthermore,

P(x,y) + Q(z,y) =0 in R" xR"\{(z,z) : 2z € R"}.
Proof. For any m € Z, let

P (z,y) = Z |det A ®(Ax, A7y) and
—m<j<0
Qm(z,y) = > |det APO(Alz, Aly).

0<j<m
Hence,
, , , | det A]J
Pu(zp)l < ) [det AP|@(Az, Aly)| <C ) 4 ~
L 2 T (il — )

<C ) |detAf <C

—m<j<0

uniformly on R™ x R"™, for a constant C' > 0. Since m is arbitrary, we show that
P,,(x,y) converges uniformly to P(z,y) on R” x R"™ and |P(z,y)| < C. For Q. (z,vy),
we have

Qm (2, y)] < |det A |@(Az, Aly)| < C :
e 2, TG i)
|det A|=IN
<C .
2 T@AT+pG =)
<C Y |det AN pa(w —y)V
0<j<m

< Cpalz—y)~ V.
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Therefore Q,,(z,y) converges uniformly to Q(x,y) on any compact subset of R™ x
R™\{(z,z) : z € R"} and

1Q(z,y)| < Cpalz —y)~V.

Finally, we only need to show that

P(z,y)+Q(z,y) =0  xz#uy.

Let By, By C R™ be closed balls with By (\By = 0. Let fi(z), fo(z) be bounded
non-negative functions supported in B; and Bs respectively. Let

Tm(x>y) = P(.ﬁlﬁ,y) + Qm(x>y)'

By the assumption that {¢;x} and {¢;x} are a frame and its dual frame for L?(R"™),
we have

/ (9 fa(0)dy — ()

on L?(R") as m — oo. Therefore,

//fl T(z,y)f2(y )dydl‘:n}iiﬂoo//fl (z,y) f2(y)dydx

= // f1(z) fa(y)dydx = 0

because [Ty, (z,y)f2(y)dy — f2(y) in L*(R™).
Since fi(z) and fa(x) are arbitrary functions on By and B and we may pick
By, Bo C R" to be disjoint closed balls, we have

That is,

Corollary 7.3
Let P(z,y) be the above function, then,

C
(I+pa(z—y)N

Proof. We already know |P(z,y)| < C on R™ x R™ and

[Pz, y)| <

C
’Q(Ivy)yﬁm for x#y.

Since
P(z,y) = —Q(x,y) on xz#y,
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we have

C
x,y)| = |Q(z,y _ on x#uy.
[P(z,y)| = |Q(z,y)| < PRCEE
Combining this with |P(z,y)| < C, we have
C
|P(z,y)| < on R"xR"™ O

(1+pa(z—y)N

Recall that the operator 7,,, for any m € Z, satisfies

=3 > (L pik)dix(@).

j<m kezn

Then the kernel of 7,, is

Ton(x,y) = > |det AP®(ATz, Aly) = |det A|"P(A™z, A™y)  Ym € N.

j<m
In order to prove Theorem 4.3, we need the following lemma:

Lemma 7.4

There is a constant ¢ € R such that, for every x € R"™, we have

P(x,y)dy = c.
]Rn

Proof. Let a(z) = [z, P(x,y)dy. We want to show a(x) = ¢ for a constant ¢. We have
already shown that P(z,y) is the uniform limit of continuous functions, it follows that
a(x) is continuous. We are going to show that a(Ax) = a(z). Since

P(x,y) + ®(z,y) Z|detA|7 (AVz, Aly) = | det A|P(Ax, Ay)

7<0

and both P(z,y) and ®(z,y) are majorized by L' functions. So we may take the
integral with respect to y on both sides and we see that

/n (P(z,y) + ®(x,y)) dy = /Rn | det A|P(Ax, Ay)dy = / P(Az,y)dy

n

by the change of variable Ay — y. Since

/ﬂ (zy)dy = > ikl /Wdy

kezn

and ¢(z) satisfies the vanishing moment conditions (4.3); in particular ¢(z) has the
first vanishing moment condition. Therefore,

/n (. y)dy = 0.
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Hence,
a(zr) = /n P(z,y)dy = /n P(Az,y)dy = a(Ax).

Furthermore, we have

a(z) = a(Alx) Vj € Z.

Fix a x € R™ and let j — —oo in the above identity, we see that a(z) = a(0), that is,
a(z) is a constant function. [J

Having make these preparations, we are now ready to prove Theorem 4.3.

Proof of Theorem 4.3: By the definition of 7;, we have
7 f (x)] =

| det A7
<O | T gy @l

/ | det A P(A7x, Aly) f(y)dy
R’VL

Therefore,

rzfmﬂgc(/ | | det AP |£(y)|dy
pa(Ai(z—y))<1

w3 ‘Mm]rmwo
k=2"1

det A|F=1<p 4 (Ad (z—y))<| det A|* pa(Ai(x —y))N

gmme/ 1F()ldy

pa((z—y))<|det A|~J

+C Y |det A|7FNED /

k=2 P

1

a((w—y))<|det Ajp—i | det AR~

|.f(y)|dy

J

and hence,
T3 f ()] < C(Mp, (£)(x) + Y | det A|TFN"IM,, (f) ().
k=2

Summing over k, by the L!-majorization of P(z,y), we have
g

|75 f ()] < OM,, (f)(z)

for a constant C' > 0 depending only on A. It is easy to see that 7; f(z) — cf(x) (c
is the constant in Lemma 7.4) if f(x) is a continuous function. Since the continuous
functions are dense in L? and 7; f(z) is majorized by the maximal function M, (f)(x),
it follows that 7 f(x) converges to cf(x) for any f € LP. On the other hand, since
{¢jr} is a frame and {¢; 1} is its dual-frame, we have

F=> (f 056005k,

j?k:

therefore ¢ = 1 and, hence, obtain our desired result. [
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Remark 7.1. Notice that ¢ = 1 is a consequence of the assumption that {¢;;} is a
frame and {¢;} is its dual-frame. If we define the operator P and Q by {cy;}
and {¢; 1} with constant ¢ # 1, then our argument is still valid but, in this case, the
convergence 7, f(x) — cf(x) with ¢ # 1.

8. Appendix

Lemma 8.1

Suppose A is an expansive matrix, R > 1, 4,7 € Z, i > j and xg € R™. Suppose
g,h € L'(R™) satisfy

lg(2)| < |det AP/? (1+ pa(Alz)) " (8.1)

and
Ih(x)| < |det A["/2 (14 pa(Ai(z — 20))) ", (8.2)

then
g% h(x)] < C|det A" D72 (1 4 pa(AT (z — 20))) " (8.3)

for a constant C' > 0.
Proof. It is a simple modification of the one for the isotropic case [6]. O

Lemma 8.2

Suppose A is an expansive matrix, L€ Z,,6 >0, R>L+6+ 1+ ay, i,j € Z,
i > j, and xo € R™. Suppose g,h € L*(R™) and they satisfy

|07 (9(A72))| < [det AP/ (1+ pa(a)) ™" (84)

if (a,7) <L+ 6+ an,
|h(A™"z)| < | det Al'/? (1+palz — Aixo))_R ; (8.5)
/w”h(:c)d:n =0 if (a,7)<L+56. (8.6)

Then for any 0 < A < min(é, a,,), there exists a constant Ca > 0, depending only on
A, such that,

-R

|9 % h(z)| < Caldet A|C-DEFOTYD (1 4 p (A (2 — 20))) (8.7)

where g = 6 — /.
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Proof. In order to have a better understanding of the following proof, the reader is
recommended to read the corresponding estimates for the isotropic case, [6] p.150-152.
The proof for the anisotropic case is much more tedious than the isotropic case. We
provide a detailed proof for the completeness for the anisotropic case and indicate the
difference between the anisotropic and the isotropic cases. The first difference is found
on the Taylor expansion:

Theorem 8.3 (Anisotropic Taylor’s series).

Let a; > 0, 1 < i < n satistying a; < a; ifi < j and a = (a1, a2, -, ay). For any
v = (V1,72," " Yn) € Z", recall that {(a,v) denotes the “inner product” of a and =,
that is, (a,y) = Y i, a;iv;. Then, for any L > 0, y € R™ and f(x) such that 0" f exist
for (a,v) < L+ 6+ a,, there exists a collection {&,} 1< (a,y)<L+a,, & € R", satisfying
|z —&| < |z —y| and a collection of constants {C,} (4 y<L+a, independent on f(x)
and y € R"™ such that

f@)= Y Cyz—=y) (@ Nly) +Be

(a,v)<L

where

Ri= Y G-y @)

L<({a,y)<L+an

Sketch of the proof. First, for any fixed x5, - - x,,, we consider f(z1,xo, - z,)
as a function of z; and represent it by the one-variable Taylor series to the order [L/a1].
That is, for any y; € R, there exist a & € R with |z — & | < |z1 — y1| such that

1

flzy,@a, -, x,) = Z —|(:1c1 —y)" (O )y, 22, ... 2n) + R (8.8)
Y1
"Yl|§[L/a1}
where .
R=————(zy — y) /T (9l /It ey T
(Lo + 131 &~ v (/I f) (61, , )

Therefore, for v = ([L/a1] + 1,0,---,0), & = (&1, 22,...,2,) is the variable for the
expansion for Ry.

Next, for each term (0! f)(y1,22,...,%n) on the right hand side of (8.8), we
consider it as a function of xo and expand it by the one-variable Taylor series with
order [(L — a17y1)/asz]. Hence, for any y, € R, we have

(8zif)(xlax27 e 7:1:71,)
1
~ol

- ¥

(372 — y2)72 (8;*18}; )(yl, Y2,T3, ... 7$n) + R (89)
2| <[(L—a1m1)/az] 12

where

B 1

~ ([(L = aim)/ag] +1)!
x (urollb—am)/azl+l £y ) pa L xy)

T1 T2

R )[(L—alm)/azHl

(1‘2 — Y2
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for some & € R with |§&o — x| < |22 — y2|. Hence, for any v1 < [L/aq], if v =

(’Yh [(L - alfyl)/aQ] + L 0’ e 70)7 then f’Y = (y17§27 cee 7xn>'
We expand each term (972972 f)(y1,y2, x3, ..., Ty) on the right hand side of (8.9)

X1 "I
by Taylor’s series with respect to the variable x5 and repeat the above procedure until

we reach the variable x,,. This, then, give us our desired result. [J

The proof of Lemma 8.2 is based on the decomposition of R™ into three domains,
Dy, Dy and D3. On D; the estimate of the remainder term in the Taylor expansion
provides the desired result. On D, and D3, the estimates rely on the decay satisfied
by molecules.

Using translation and dilation, we may assume j =0 and xg = 0. Let D; = {y €
R™:paly —x) <1}, D2 ={y € R" : pa(y —x) > 1 and pa(y) < pa(z)/2H} and
Ds={yeR":pa(y—xz)>1 and pa(y) > pa(x)/2H} where H is the constant of
the quasi-subadditivity inequality. Then, for any collection of constants C,, using the
vanishing moment conditions satisfied by h(z), we have

g * h(z)| < /Rn gy) = Y Cyly—2)"(079)(@)llh(x —y)ldy

(a,7)<L+6
[ )+
D1 D2 D3

Case 1: Estimate on D

For y € D1, using the Anisotropic Taylor expansion, Theorem 8.3, to the order
L + 6, we have a collection of constants C such that

gy — Y. Cly—2)(@g)(x) = > Cy(y —2)7(07g)(wy) (8.10)

(a,7)<L+6 L+6<{a,y)<L+6&+an

for some w, € R™ that satisfies pa(w, —x) < C for a constant C' > 0. We have
|w,, — x| < |z — y| by the Anisotropic Taylor’s Theorem, therefore, by Lemma 2.2, we
have

pa(wy — ) < Cmax(fo — w,|€, 2 — wy|7) < Cmax(|z — yI, o — yI")
< Cmax(pa(z —y)T, palz —y)" ) < C

because pa(x —y) < 1.
By (2.4) or (3.6), for any A > 0, there is a constant Ca > 0 such that

27| < Capa(z){® =2 forany pa(z) <1 and (a,7) < L+ 6+ apn.

Therefore, we may replace |(y — )| by Capa(z — y)(»?" =%, Furthermore, we can
replace pa(wy) by pa(z) because

pa(@) < Hlpa(e — w,) + paw,)] < HIC + pa(w,)] < CL+ palw,)].
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Therefore, for any A > 0, there exists C'a > 0 such that,

> oo @a@lca( X pale-n)©0 A0+ pale) ")

a,7)<L+6 L+6<(a,v)
(a,7)< (a,7v)<L+6+an

by conditions (8.4). Hence, we have

/D< Cal|det A2 (14pa(x) [ > /DPA r—y)' " (1+PA(Ai(x—y)))Rdy}

1 L+8<(a,vy)
(a,v)<L+bé+ap

Furthermore, replacing the domain of integration by R™ and using a change of
variable in the integral, we have

/<0Aldetz4! 2 (14pa() [ > /pA (z—y) <‘W>A(1+pA(fc—y))Rdy]-
D

1 L+6<(a,v)
(a,v)SL+6+an

Therefore,

/ SCA(1+/)A($))R[ 37 [ det A[7/2THemFiA
Dy

L+8<(a,v)
(a,y)<L+é+an

x / pa(z — )21+ pax — ) Fdy

< CA\det A‘—i(L+6—A+1/2)(1 +PA(-%'))_R
because R > L+ 6+a, +1,i>0.

Case 2: Estimate on D,

For y € D5, we have

pa(z —y) = pa(x)/H — paly) = pa(z)/H — pa(z)/2H = pa(z)/2H.

On the other hand,
pa(e —y) < H(pa(x) + pa(y)) < Hpa(e) + pa(x)/2 = (H +1/2)pa();
therefore,
[ =ctaea [l path " (den Al pate ) "
D»> Do

@D et Al — )R
+(am>§S:L+6(1 +palx)ft (Idet APpa(z —y)) dy

and, hence, replacing |(y — )| by Capa(z —y) M+ (since pa(x —y) > 1), we have
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/ scA|detA|“2{ [ o) (v lpata =) "
Dz D2
_ ) am+A . _
+ Y pal —y) — (| det A'pa(z)) " |dy,

wzies (1t pal@))

where we use pa(z —y) ~ pa(x) for the last term. Because pa(z) ~ pa(z —y) > 1,
we have

/ < Caldet A7 E1D(1 1 ()R
D»>

(a, )+

XU <1+p1< DL 2 fAfLm))R/,JA@)S,JA@)/szy}

AV<L+6
< COpldet A|7HE-Y2) (1 4 pA(x)) B < Onldet A|7HEHHYD (1 4 py(z) B

pA(x)<amr)+A+1

as needed. Since R > L+ 6+ a, + 1, and a,, > A\, hence, (tpa@®

v satisfies (a,v) < L +6.

< 1 for those

Case 3: Estimate on Dj

For y € D3, we have pa(y) > pa(x)/2H and, hence,

Jo=¢]
D3 D3

x | det A[/2(1 + | det Al'pa(z — ))‘Rdy

SCA/

x | det A"/ (| det A" pa(z — y)) " "dy
< COpldet A|7/ =12 (1 4 py(z) 8

X/ ( > pA<x—y><“”>‘R+A>dy.
1<pa(z—y)

(a,y)<L+6

[(z —y)”
(14 pa(y)t +<a,w>ZS:L+5(1 + pA(l’))R]

< 7’Y>+A]

PA
AT, omE T 2 7
(1+PA T ¢ +PA )

Since A < min(é, a,,), v € Z", above, satisfies (a,7) < L+, R> L+ 6+ a, + 1 and
1 > 0 we have,

/ < Cpldet A| 7' E=Y2(1 4 py(2) ™8 < Cp|det A|7HEFFY2D(1 4 py(2)E. O
D3
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