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Abstract

We construct wavelet-type frames associated with expansive matrix dilation on the
Anisotropic Triebel-Lizorkin spaces, Ḟα,qp (Rn, A, dx). We also show the a.e.
convergence of the frame expansion which includes multi-wavelet expansion as a
special case.

1. Introduction

The basic idea of a frame was used by many authors; in particular, we cite Paley
and Wiener [14], and Duffin and Schaeffer [3]. Paley and Wiener were interested
in the question of which collections {eixnξ : xn ∈ R, n ∈ Z} form a Riesz basis for
Bl = {f̂ : f ∈ L2(−l, l)}, l > 0. Recall that a Riesz basis of a Hilbert space is
the image of an orthonormal basis under an invertible linear operator. Duffin and
Schaeffer, in fact, considered the “dual” setting of the above problem: what is the
sufficient conditions for {xn : n ∈ Z} to be a sample set of Bl. That is, there exist
constants 0 < C ≤ B such that, for any f ∈ Bl,

C‖f‖2
L2 ≤

∑
n∈Z

|f(xn)|2 ≤ B‖f‖2
L2 .

Keywords: Anisotropic Triebel-Lizorkin spaces, molecules, frames, almost diagonal matrices, con-
vergence of frame expansions.
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The results of Duffin and Schaeffer stimulated several directions of research in nu-
merical analysis, sampling theory, and nonharmonic analysis. Their research had an
impact that led to the study of “wavelet frames”. The wavelet frames in R

n is a collec-
tion of functions {ϕj,k(x) = 2nj/2ϕ(2jx− k)} with the following property: there exist
constants B ≥ C > 0 such that for any f ∈ L2(Rn), we have

C‖f‖2
L2 ≤

∑
j,k

|〈f, ϕj,k〉|2 ≤ B‖f‖2
L2 .

Furthermore, if {ϕj,k(x) = 2nj/2ϕ(2jx−k)} is orthonormal, then it is a “wavelet basis”
of L2(Rn). We refer to [9] for a complete discussion about wavelets and frames.

There are three main results in this article. The first one, Theorem 4.1, is the
existence of frames on the Anisotropic Triebel-Lizorkin spaces that introduced in [1]
and [11]. The second one, Theorem 4.2, is the study of the smoothness of the dual
frames, and the last one, Theorem 4.3, is the a.e. and Lp convergence of the truncated
frame expansions. Theorem 4.1 and Theorem 4.2 are the anisotropic version (That
is, the dilation is an “expansive matrix” defined below) of the results in [6] and [8].
Theorem 4.3 is the anisotropic version of the results obtained in the paper [13].

This article is organized as follow. Section 2 contains some background materials
about anisotropic function spaces. We introduce the notion of strong molecules in
Section 3. The main theorems are presented in Section 4. Section 5 to Section 7 are
the proofs for the main theorems. This is part of the author’s Ph.D. Dissertation and
I would like to thank my Ph.D. supervisor, Guido Weiss, for his patience and teaching.

2. Background materials

This article is based on [1], therefore, we start by some background materials about
anisotropic function spaces. Moreover, with respect to the results of [1], we only
interest in the unweighted version of Ḟα,qp (Rn, A, ωdx), that is, we take ω ≡ 1.

A real n × n matrix A is an expansive matrix, if minλ∈σ(A) |λ|>1, where σ(A) is
the set of all eigenvalues (the spectrum) of A.

A basic notion in our study is a quasi-norm ρA associated with A, which induces
a quasi-distance making R

n a space of homogeneous type, see Coifman and Weiss [2].

Definition 2.1. A quasi-norm associated with an expansive matrix A is defined by

ρA (x) =
∞∑

k=−∞
|detA|kχOk

(x) (2.1)

where Ok = Ak(B(0, 1)) \ ⋃k−1
i=−∞ Ai(B(0, 1)), and B = B(0, 1) = {ξ : |ξ| ≤ 1} is the

unit ball.
Here are some basic properties of ρA, the proof for these properties can be found

in [1], [11]:

ρA(x) > 0, for x �= 0,
ρA(Ax) = |detA|ρA(x) for x ∈ R

n, (2.2)
ρA(x + y) ≤ H(ρA(x) + ρA(y)) for x, y ∈ R

n,

where H ≥ 1 is a constant.
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It is clear that ρA given by (2.1) satisfies (2.2) with the constant H = |detA|j0 ,
where j0 is the smallest integer such that

⋃
j≤0 Aj(B(0, 2)) ⊂ Aj0(B(0, 1)).

Proposition 2.1

For any expansive matrix A, we have

1. there is a constant C > 0 such that C−1|detA|k ≤ |Ok| ≤ C|detA|k for any

k ∈ Z,

2.
∫
B(0,1)

ρA(x)ε−1dx < ∞ and
∫

Rn\B(0,1)
ρA(x)−1−εdx < ∞ for any ε > 0.

Lemma 2.2

Suppose A is expansive matrix, and λ− and λ+ are any positive real numbers

such that λ− < minλ∈σ(A) |λ| and λ+ > maxλ∈σ(A) |λ|. Let τ = lnλ+
ln | detA| , ζ = lnλ−

ln | detA| .
Then for any quasi-norm ρA there exists a constant C such that,

C−1ρA(x)ζ ≤ |x| ≤ CρA(x)τ if ρA(x) ≥ 1 (2.3)

and

C−1ρA(x)τ ≤ |x| ≤ CρA(x)ζ if ρA(x) ≤ 1. (2.4)

Furthermore, if A is diagonalizable over C, we may take λ− = minλ∈σ(A) |λ| and

λ+ = maxλ∈σ(A) |λ|.

2.1 Definition of Ḟα,qp (Rn, A, dx)

For any j ∈ Z and k ∈ Z
n, let Qj,k = A−j([0, 1]n + k) be the dilated cube, and

xQj,k
= A−j(k) be its “lower-left corner”. Let

Q = {Qj,k|j ∈ Z, k ∈ Z
n}

be the collection of all dilated cubes. Define

ϕj(x) = |detA|jϕ(Ajx) for j ∈ Z,

ϕj,k(x) = ϕQ(x) = |detA|j/2ϕ(Ajx− k) = |Q|1/2ϕj(x− xQ) for Q = Qj,k ∈ Q.

The definition for the anisotropic Triebel-Lizorkin spaces is based on the
“Littlewood-Paley function” as used in the definition of classical Triebel-Lizorkin
spaces, see [6].

Definition 2.2. For α ∈ R, 0 < p < ∞, and 0 < q ≤ ∞, the anisotropic Triebel-
Lizorkin space Ḟα,qp (Rn, A, dx) is the collection of all f ∈ S ′

/P (P is the class of
polynomials) such that,

‖f‖Ḟα,q
p (Rn,A,dx) =

∥∥∥∥∥
( ∑
j∈Z

(
|detA|jα|f ∗ ϕj |

)q)1/q
∥∥∥∥∥
Lp(dx)

< ∞,
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where ϕ ∈ S(Rn) satisfies (2.5) and (2.6),

supp ϕ̂ ⊂ [−π, π]n \ {0}, (2.5)

sup
j∈Z

|ϕ̂((A∗)jξ)| > 0 for all ξ ∈ R
n \ {0}. (2.6)

In [1], we show that this definition is independent of ϕ.
The sequence space, ḟα,qp (A, dx) is the collection of all complex-valued sequences

s = {sQ}Q∈Q such that

‖s‖ḟα,q
p (A,dx) =

∥∥∥∥∥
( ∑
Q∈Q

(|Q|−α|sQ|χ̃Q)q
)1/q

∥∥∥∥∥
Lp(dx)

< ∞,

where χ̃Q = |Q|−1/2χQ is the L2-normalized characteristic function of the cube Q.

2.2 φ− ψ transform

The φ− ψ transform is a basic tool in [6]. They use it to develop the atomic and
molecular decompositions of the classical Triebel-Lizorkin spaces. In [1], we follow that
idea and obtain the corresponding results for the anisotropic Triebel-Lizorkin spaces.
Their basic definition and result is given below.

Suppose that ϕ,ψ are test functions in the Schwartz class S(Rn) such that

supp ϕ̂, supp ψ̂ ⊂ [−π, π]n \ {0} (2.7)∑
j∈Z

ϕ̂ ((A∗)jξ)ψ̂
(
(A∗)jξ

)
= 1 for all ξ ∈ R

n \ {0}, (2.8)

where A∗ is the adjoint (transpose) of A, and the Fourier transform of f is

f̂(ξ) =
∫

Rn

f(x)e−i〈x,ξ〉dx.

Definition 2.3. The ϕ-transform Sϕ is the map taking each f ∈ S ′
(Rn)/P to the

sequence Sϕf = {(Sϕf)Q}Q∈Q defined by (Sϕf)Q = 〈f, ϕQ〉. (This is well-defined,
since

∫
xγϕQ(x)dx = 0 for any multi-index γ.) The inverse ϕ-transform, Tψ, is the

map taking the sequence s = {sQ}Q∈Q to Tψs =
∑
Q∈Q sQψQ.

Theorem 2.3

Suppose α ∈ R, 0 < p < ∞, 0 < q ≤ ∞, and ϕ,ψ ∈ S(Rn) are such that supp ϕ̂,

supp ψ̂ are compact and bounded away from the origin. Then the operators Sϕ :
Ḟα,qp (Rn, A, dx) → ḟα,qp (A, dx) and Tψ : ḟα,qp (A, dx) → Ḟα,qp (Rn, A, dx) are bounded.

In addition, if ϕ,ψ satisfy (2.7), (2.8) then Tψ ◦ Sϕ is the identity on Ḟα,qp (Rn, A, dx)
and

f =
∑
Q∈Q

〈f, ϕQ〉ψQ, for any f ∈ S ′
/P, (2.9)

where the convergence of the above series, as well as the equality, is in S ′/P.



Frames associated with expansive matrix dilations 221

3. Strong molecules

3.1 Some basis facts about the quasi-norm ρA

Let A be an expansive matrix, {λi}ni=1 (allowing multiplicities) be the set of
eigenvalues of A which order as |λj | ≤ |λi|, if j ≤ i and ei = (e1i, e2i, . . . , eni) be the
generalized eigenvectors associated with λi. That is, the matrix representation of A in
term of the basis {ei}ni=1 is its Jordan canonical form; in this case, for some r ∈ N,

A =




J1 0 · · · 0

0 J2 · · · 0

0 · · · . . . 0

0 · · · 0 Jr




where, if the eigenvalue λi is real, Ji is a ki × ki matrix and each Ji, 1 ≤ i ≤ r, is
either a ki × ki diagonal matrix,

Ji =




λi 0 · · · 0

0 λi · · · 0

0 · · · . . . 0

0 0 · · · λi




or a ki × ki Jordan block,

Ji =




λi 1 0 · · · 0 0

0 λi 1 · · · 0 0

0 0 λi · · · 0 0

. . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 · · · λi 1

0 0 0 · · · 0 λi




.

If λi is complex with Re(λi) = ci and Im(λi) = di �= 0, then Ji, 1 ≤ i ≤ r, is
either

Ji =




Di 0 · · · 0

0 Di · · · 0

0 · · · . . . 0

0 0 · · · Di


 where Di =

(
ci di

−di ci

)
(3.1)

or

Ji =




Di I2×2 0 · · · 0 0

0 Di I2×2 · · · 0 0

0 0 Di · · · 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 · · · Di I2×2

0 0 0 · · · 0 Di




.
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For a reference of this decomposition, see [10, p. 129]. (In [10], the matrix is represented
in lower triangular form, it is easy to obtain the upper triangular representation by
taking the transpose.)

For m ∈ Z
n, we may define Am as,

Am =




Jm1 0 · · · 0

0 Jm2 · · · 0

0 · · · . . . 0

0 · · · 0 Jmr




where Jmi is

Jim =




λmi 0 · · · 0

0 λmi · · · 0

. . . . . . . . . . . . . . . . . .

0 0 · · · λmi


 or Jim =




Dm
i 0 · · · 0

0 Dm
i · · · 0

. . . . . . . . . . . . . . . . . . . .

0 0 · · · Dm
i




if Ji is a diagonal matrix or matrices of the form (3.1). If Ji is a ki × ki Jordan block
corresponding to a real eigenvalue λi, we have

Jim =




λm
i

0!

mλm−1
i

1!

m(m−1)λm−2
i

2! · · · m(m−1)...(m−ki+2)λ
m−ki+1
i

(ki−1)!

0 λm
i

0!

mλm−1
i

1! · · · m(m−1)...(m−ki+3)λ
m−ki+2
i

(ki−2)!

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 · · · mλm−1
i

0!

0 0 0 · · · λm
i

0!




(3.2)

or, in the complex case,

Jim =




Dm
i

0!

mDm−1
i

1!

m(m−1)Dm−2
i

2! · · · m(m−1)...(m−ki+2)D
m−ki+1
i

(ki−1)!

0 Dm
i

0!

mDm−1
i

1! · · · m(m−1)...(m−ki+3)D
m−ki+2
i

(ki−2)!

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 · · · mDm−1
i

0!

0 0 0 · · · Dm
i

0!




. (3.3)

Let ai = ln |λi|
ln | detA| , a = (a1, . . . , an), notice that

∑n
i=1 ai = 1. Let the differential

operators ∂i, 1 ≤ i ≤ n, be defined by

∂jf(x) =
n∑
i=1

eij
∂f

∂xi
(x)
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and ∂γ =
∏n
i=1 ∂γii where γ = (γ1, . . . , γn) ∈ N

n. For any f ∈ C1 and m ∈ Z, let
fAm(x) = f(Amx). We have

∂j(fAm(x)) =
n∑
i=1

eij
∂fAm(x)

∂xi
=

n∑
i=1

eij

n∑
k=1

amki
∂f

∂xk
(Amx)

=
n∑
k=1

(
n∑
i=1

amkieij

)
∂f

∂xk
(Amx)

where {amki}1≤k,i≤n is the matrix representation of Am with respect to the basis {ei}ni=1.
Therefore, for any � > 0, there exists a C > 0 such that

|∂j(fAm)(x)| ≤ C(|λmj | + |mλm−1
j | + · · · + |m(m− 1) · · · (m− s)λs+1|)‖∇f‖L∞ (3.4)

≤ C|λj |(m+|m|)

for some s > 0. If λj is real, the estimates (3.4) is an easy consequence of the repre-
sentation (3.2). If λj is a complex number, the estimates follows from representation
(3.3) and

1
2
|z| ≤ max(Re(z), Im(z)) ≤ |z| for any complex number z ∈ C.

Furthermore, for any γ ∈ N
n and any � > 0, there exists a C,γ such that

|∂γ(fAm(x))| ≤ C,γ

n∏
i=1

|detA|aiγi(m+|m|) = C,γ |detA|〈a,γ〉(m+|m|). (3.5)

From now on, we represent any x ∈ R
n by the basis {ei}1<i<n. That is, if

x = x1e1 + x2e2 + · · ·+ xnen we write x = (x1, x2, . . . , xn) and xβ =
∏n
i=1 xβii for any

β = (β1, β2, . . . , βn) ∈ Z
n.

We have ρA(x) = |detA|k for some k ∈ Z, that is, there exist xo with Akxo = x
and |xo| ≤ 1. (k is determined by the condition x ∈ Ok). Let E ⊂ R

n be the reduced
subspace corresponding to the Jordan block with eigenvalue λ. For any x ∈ R, let
xE ∈ E be the orthogonal projection of x onto E. We are going to show that, for any
� > 0, there exists a C, such that

|xE | ≤ C|λ|k+|k| for any x ∈ R
n.

By Lemma 2.2, we have the following inequality for any matrices,

|(Akxo)E | = |AkE(xo)E | ≤ C|λ|k+|k||(xo)E | ≤ C|λ|k+|k||xo|
where AE is the restriction of A to E. We have,

|(Akxo)E | ≤ C|λ|k+|k|

because E is a reduced subspace of A and |xo| is bounded by one. Therefore,

|xE | ≤ C|λ|k+|k|.

Furthermore, we obtain

|xi| ≤ C|λi|k+|k| = C|detA|kai+|k|ai =

{
CρA(x)ai+ai ρA(x) ≥ 1

CρA(x)ai−ai ρA(x) < 1
(3.6)

for any 1 < i < n.
The extra � in (3.6) and (3.5) shows the difficulty in the analysis involving non-

diagonalizable expansive matrix dilations on R
n.
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3.2 Definition of strong molecules and strongly almost diagonal matrix

The basic notion of “molecules” we shall use is given in the following definition.
That definition is motivated by the type I and type II molecules used in [6] for the
isotropic case and [1] in the anisotropic case. Notice that if K and M are large enough,
the “strong molecules” defined below is an anisotropic type I and type II molecules.
Therefore, all results about type I and type II molecules in [1] are still valid for strong
molecules.

Definition 3.1. Let A be an expansive matrix. Let K,M > 0 with M > 1 + K. For
each Q = Qj,k ∈ B, we say that {hQ}Q=Qj,k

is a strong molecule of order K,M , if it
satisfies ∫

xγhQ(x)dx = 0 if 〈a, γ〉 ≤ K, (3.7)

and, for 〈a, γ〉 ≤ K,

∣∣∂γ(hQ(A−jx))
∣∣ ≤ C|detA|j/2 1

(1 + ρA(x−AjxQ))M
(3.8)

where C is a positive constant.
The class of these molecules is denoted by MK,M . Let ‖ · ‖MK,M

be the infimum
of the C’s in (3.8). It is easy to see that MK,M with the norm ‖ · ‖MK,M

is a Banach
space.

The “almost diagonal” operators associated with strong molecules satisfy a
stronger inequality which is crucial for further estimations.

Definition 3.2. Let K,M > 0, we say that the matrix {aQP}QP is a strongly almost
diagonal matrix, or strongly almost diagonal operator, of order K,M , if

sup
QP

|aQP | /sκQP (K,M) < C (3.9)

for some constant C, where

sκQP (K,M) = min

(( |Q|
|P |

)K+1/2

,
( |P |
|Q|

)K+1/2
)(

1 +
ρA(xQ − xP )
max(|P |, |Q|)

)−M
.

The class of these operators is denoted by sκ(K,M). Let the norm ‖ · ‖sκ(K,M) be the
infimum of the constants C in (3.9).

Remark 3.1. Notice that P , Q in Definition 3.2 are symmetric. The definition of
the strongly almost diagonal operators is motivated by the “symmetrization” of the
almost diagonal operators in [1], [6]. The matrix {aPQ} can be thought of as an
operator acting a sequence space ḟα,qp (A, dx), see [6] for the isotropic case and [1] for
the anisotropic case. It is easy to see that if

K ≥ max

(
α + ε,

1
min(1, p, q)

− 1 − α + ε

)
and M >

1
min(1, p, q)

+ ε

for some ε > 0, then a strongly almost diagonal operator is an almost diagonal operator.
Therefore, it is bounded on ḟα,qp (A, dx).
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Theorem 3.1

Let K,M > 0. If {ΦQ} and {ΨQ} are type III strong molecules of order K ′,M ′

with K ′ > K+an and M ′ > max(M,K ′+an+1), then the matrix {aQP}QP = 〈ΦQ,ΨP 〉
is strongly almost diagonal of order K,M with

‖〈ΦQ,ΨP 〉QP‖sκ(K,M) ≤ C‖{ΦQ}Q‖MK′,M′ ‖{ΨQ}Q‖MK′,M′

where C is an constant depending only on the matrix A.

Proof. Without loss of generality, we may assume

‖{ΦQ}Q‖MK′,M′ = ‖{ΨQ}Q‖MK′,M′ = 1.

Let δ > 0 satisfy δ < min(K ′ − K − an,M
′ − 1 − K ′ − an) and � < δ. If |Q| =

|detA|−β ≤ |detA|−λ = |P |, by Lemma 8.2 in Appendix with R = M ′, i = β, j = λ,
x0 = xQ,

g(x) = ΦP (xP − x) and h(x) = ΨQ(x),

we have,
R = M ′ > K ′ + δ + 1 + an, K ′ > K + an + δ.

Hence,

|〈ΦP ,ΨQ〉| = |Ψ ∗ Φ(AλxP )|
≤ C|detA|−(β−λ)(K+δ−+1/2)

(
1 + |detA|λρA(xP − xQ)

)−M ′

≤ C|detA|−(β−λ)(K+1/2)
(
1 + |detA|λρA(xP − xQ)

)−M
.

We interchange the role of hP and kQ, if |Q| = |detA|−β ≥ |detA|−λ = |P |, and
we have

|〈ΦP ,ΨQ〉| ≤ C|detA|−(λ−β)(K+1/2)
(
1 + |detA|βρA(xP − xQ)

)−M
.

Combining these two inequalities, we have

|〈ΦP ,ΨQ〉| ≤ CsκQP (K,M). �

3.3 Molecular decomposition of Ḟα,qp (Rn, A, dx)

Let J = 1
min(1,p,q) and N = max(J − 1 − α,−1).

Theorem 3.2 (Smooth molecular decomposition).

Suppose A is an expansive matrix and δ > 0. There exists a constant C > 0,

such that, if f =
∑
Q∈Q sQΦQ, where {ΦQ}Q is a family of strong molecules of order

K ′,M ′ with K ′ > max(α + an + δ,N + δ) and M ′ > max(J + δ, α + an + δ + 1), then

‖f‖Ḟα,q
p (Rn,A,dx) ≤ C ‖{sQ}Q‖ḟα,q

p (A,dx) for all {sQ}Q ∈ ḟα,qp (A, dx).
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Proof. In [6] (that is, the isotropic case), the proof is made into two steps. The
first part is an estimate on the inner product of molecules, [6] Corollary B.3, and the
second step is a simple application of step 1, [6] Theorem 3.5. We already obtained
the estimate on the inner product of strong molecules on Theorem 3.1.

By Theorem 2.3, we may write

ΦP =
∑
Q

〈ΦP , ϕQ〉ψQ.

If A is the operator on ḟα,qp (A, dx) with matrix {aQP }Q,P = {〈ΦP , ϕQ〉}Q,P , then
{aQP }Q,P is a strongly almost diagonal matrix of order K̃, M̃ with K̃ = max(α +
δ,N + δ) and M̃ = J + δ.

Returning to the estimate, we have

TψAs =
∑
Q

∑
P

aQP sPψQ =
∑
P

sP
∑
Q

〈ΦP , ϕQ〉ψQ =
∑
P

sPΦP = f

and

‖f‖Ḟα,q
p (Rn,A,dx) = ‖TψAs‖Ḟα,q

p (Rn,A,dx) ≤ C‖As‖ḟα,q
p (A,dx) ≤ C‖s‖ḟα,q

p (A,dx).

Since Tψ is bounded and A is a strongly almost diagonal and, hence, bounded by
Remark 3.1. �

4. Main theorems

In what follows, we are going to study frames associated with expansive matrices and
obtain some results that generalize the work of Frazier and Jawerth [6] and Glibert,
Han, Hogan, Lakey, Weiland and Weiss [8] of wavelet-type frames associated with
diagonal matrices having identical eigenvalues. In [8], they constructed the wavelet-
type frame by showing that I−F (F is the frame operator that will be defined right the
way) is a Calderón-Zygmund operator having operator norm less than 1. Moreover,
they showed that a class of “molecules” is invariant under the mapping by I − F .
Hence, it makes sense to study the inverse of I − F by using the Neumann series.
Instead of using Calderón-Zygmund operator, we obtain the Anisotropic wavelet-type
frame by a discrete method. Let us first introduce the basic operator of this section,
the frame operator:

Definition 4.1. We say that {φγ}γ∈Γ ∈ Ḟα,qp (Rn, A, dx)
⋂

(Ḟα,qp (Rn, A, dx))∗ is a
frame for the Anisotropic Triebel-Lizorkin Spaces, Ḟα,qp (Rn, A, dx), if the frame ope-
rator

F : f →
∑
γ∈Γ

〈f, φγ〉φγ

is bounded and invertible on Ḟα,qp (Rn, A, dx).
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For a given ϕ satisfying the modified Calderón reproducing formula, there are
several ways for constructing a frame associated with it. In [8] one can find a method
for such construction which relies heavily on the Calderón-Zygmund operators. This is
not easily applied in the anisotropic case (see the estimates in Section 2 of [11]). There
is another idea, however, arising from the ϕ,ψ transform theory that can be found
on p. 63–69 of Frazier and Jawerth’s paper [6] which does not rely on the Calderón-
Zygmund operators.

Theorem 4.1

Let A be an expansive matrix, α ∈ R, 0 < p, q < ∞ and B ∈ Mn×n(R) with

|detB| �= 0. There exist K,M > 0 such that for any function ϕ satisfies the modified

Calderón reproducing formula,

∞∑
j=−∞

ϕ̂
(
(A∗)jξ

) ˆ̃ϕ
(
(A∗)jξ

)
= 1 for ξ �= 0;

∫
xγϕ(x)dx = 0 (4.1)

if 〈a, γ〉 ≤ K, and

|∂γϕ(x)| ≤ 1
(1 + ρA(x))M

(4.2)

if 〈a, γ〉 ≤ K, there exists an η0 such that, for any fixed η < η0,

{
ϕj,k(x) = |detA|j/2|detA|ηϕ

(
AηAjx−AηBk

)}
j∈Z,k∈Z

n

is a frame on Ḟα,qp (Rn, A, dx).

Remark 4.1. In fact, we may take M > max(J, J − α + an) and K > max(α + an, J −
1−α+an). That estimates of K and M can be obtained by a detailed investigation of
Theorem 3.2. We state the theorem in this way in order to avoid checking the indices.

Theorem 4.1 shows the invertibility of the frame operator, F . In order to begin
the study of the analysis of convergence of the frame expansion, we are going to study
the regularity of the frame operator. By this we mean that the strong molecules are
invariant under the mapping of the frame operators and their inverses. The regularity
of the frame operator in the isotropic case can be found in [8].

The following theorem addresses the problem of regularity of the inverse of the
frame operators.

Theorem 4.2

Suppose A is an expansive matrix and B ∈ Mn×n with |detB| �= 0. Let K,M, δ >

0 satisfy M > K + 2an + 1 (This condition comes from Theorem 3.1.). Let K ′ =
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K+δ+an and M ′ = M+δ. Suppose that ϕ satisfies the modified Calderón reproducing

formula,
∞∑

j=−∞
ϕ̂

(
(A∗)jξ

) ˆ̃ϕ
(
(A∗)jξ

)
= 1 for ξ �= 0;

∫
xγϕ(x)dx = 0 (4.3)

if 〈a, γ〉 ≤ K ′; and

|∂γϕ(x)| ≤ 1
(1 + ρA(x))M ′ , (4.4)

if 〈a, γ〉 ≤ K ′ + an.

Then, for any L, M̃ satisfying 1 + K > M̃ , K > L, M > M̃ (These conditions

arise from Theorem 6.4) and 2K + an + 1 > M (This condition comes from Corollary

6.3), I − |detB|Fη maps a strong molecule of order K ′,M ′ into a strong molecule

of order L, M̃ . Furthermore, there is an η0 ∈ R such that the dual frame of {ϕQ},
{F−1
η ϕQ}, consist of a family of strong molecules of order L, M̃ .

The last result is the almost everywhere convergence of the wavelet-type frame.
Notice that it also includes an important case, the convergence of multiwavelet ex-
pansions. The main idea comes from the paper [13] by Kelly, Kon and Raphael. Let
ϕ be a function satisfying the condition stated in Theorem 4.2. We have the frame
expansion

f =
∑
j∈Z

∑
k∈Zn

〈f, ϕj,k〉φj,k (4.5)

where φj,k = F−1(ϕj,k), and F is the frame operator. Notice that the φj,k’s are not
necessarily translations and dilations of a single function. On the other hand, we have

φj,k(x) = |detA|j/2φ0,k(Ajx).

This follows from the fact that the frame operator

Ff(x) =
∑
j∈Z

∑
k∈Zn

〈f, ϕj,k〉ϕj,k(x),

commutes with dilations,
DAf(x) = |detA|f(Ax)

because,

DAFf(x) =
∑
j∈Z

∑
k∈Zn

〈f, ϕj,k〉|detA|j/2+1ϕ(Aj(Ax) −Bk)

=
∑
j∈Z

∑
k∈Zn

〈f, ϕj,k〉|detA|(j+2)/2ϕ(Aj+1x−Bk)

=
∑
l∈Z

∑
k∈Zn

〈f, ϕl−1,k〉|detA|(l+1)/2ϕ(Alx−Bk)

by the change of index l = j + 1.
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Since

〈f, ϕl−1,k〉 =
∫

Rn

f(y)|detA|(l−1)/2ϕ(Al−1y − k)dy

=
∫

Rn

f(Ay)|detA|(l+1)/2ϕ(Aly − k)dy

by the change of variable y → Ay, we have,

DAFf(x) =
∑
j∈Z

∑
k∈Zn

〈DAf, ϕj,k〉ϕj,k(x) = FDAf(x).

Therefore,

φj,k(x) = F−1(ϕj,k)(x) = F−1(|detA|−j/2DAjϕ0,k)(x)

= |detA|−j/2F−1(DAjϕ0,k)(x)

= |detA|−j/2DAj (F−1ϕ0,k)(x) = |detA|−j/2DAj (φ0,k)(x)

= |detA|−j/2|detA|j(φ0,k)(Ajx) = |detA|j/2(φ0,k)(Ajx).

Consider the operator:
TNf =

∑
j≤N

∑
k∈Zn

〈f, ϕj,k〉φj,k.

We then have what we consider to be the main result of this paper:

Theorem 4.3
Suppose that {ϕj,k} is a frame and {φj,k} is its dual-frame. Then, for any f ∈ Lp,

1 < p < ∞, TNf(x) converges to f(x) for every x in the Lebesgue set of f , in the sense
of the space R

n endowed with ρA and Lebesgue measure.

5. Frames on Ḟα,qp (Rn, A, dx)

First of all, we claim that there exists a function ψ ∈ S(Rn) that satisfies the Calderón
reproducing formula associated with the expansive matrix A.

Theorem 5.1
For any expansive matrix, A, there is a function ψ ∈ S(Rn) such that

∞∑
k=−∞

∣∣∣ψ̂ (
(A∗)kξ

)∣∣∣2 = 1 for ξ �= 0.

Proof. See [1] or [11]. �

Corollary 5.2
For any expansive matrix, A, there is a function ϕ ∈ S(Rn) such that

∞∑
k=−∞

ϕ̂
(
(A∗)kξ

) ˆ̃ϕ
(
(A∗)kξ

)
= 1 for ξ �= 0 (5.1)

where ϕ̃(x) = ϕ(−x).
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Proof. See [1] or [11]. �

Proof of Theorem 4.1 Let Bj,k = A−j(B([0, 1]n) + Bk) , B = {Bj,k}j,k and

ϕj,k(x) = ϕBj,k
(x) = |detA|j/2ϕ(Ajx−Bk) ϕη(x) = |detA|ηϕ(Aηx).

Let the operator Fη on Ḟα,qp (Rn, A, dx) be the frame operator,

Fηf(x) =
∑
Bj,k

〈f, (ϕη)j,k〉(ϕη)j,k

=
∑
j∈Z

∑
k∈Zn

|detA|−j
[ ∫

Rn

f(x)|detA|j+ηϕ(Aj+ηx−AηBk)dx

]

× |detA|j+ηϕ(Aj+ηx−AηBk).

Boundedness of the frame operator:

First of all, we are going to prove the boundedness of Fη. Let

Sϕη,B
: Ḟα,qp (Rn, A, dx) → ḟα,qp (A, dx) and Tϕη,B

: ḟα,qp (A, dx) → Ḟα,qp (Rn, A, dx)

be defined by

(Sϕη,B
f)Bj,k

= 〈f, (ϕη)j,k〉 and Tϕη,B
s =

∑
j,k

sBj,k
(ϕη)j,k.

By an easy modification of Theorem 2.3, these operators Sϕ,B , Tϕ,B are bounded.
Since

Fηf(x) = Tϕη,B
◦ Sϕη,B

f(x),

we have the boundedness of the frame operator Fη.

A representation of I − |detB|Fη:
Here is the first step toward the invertibility of the frame operator. We are going

to represent the operator I − |detB|Fη by a series of strong molecules. Let

Z
n
k (j, η) = {l ∈ Z

n : Bj−η,l ∩Bj,k �= ∅}.

By the modified Calderón reproducing formula (5.1),

f(x) =
∑
j∈Z

ϕj ∗ ϕ̃j ∗ f(x)
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and a change of variable j → j + η, we have, for an η to be determined later,

f(x) =
∑
j∈Z

ϕj ∗ ϕ̃j ∗ f(x) =
∑
j∈Z

ϕj+η ∗ ϕ̃j+η ∗ f(x)

=
∑
j∈Z

∑
k∈Zn

∫
Bj+η,k

(ϕ̃j+η ∗ f(y))ϕj+η(x− y)dy

=
∑
j∈Z

∑
k∈Zn

∑
l∈Z

n
k
(j+η,η)

∫
Bj,l∩Bj+η,k

(ϕ̃j+η ∗ f(y))[ϕj+η(x− y)−ϕj+η(x−A−jBl)]dy

+
∑
j∈Z

∑
k∈Zn

∑
l∈Z

n
k
(j+η,η)

∫
Bj,l∩Bj+η,k

(ϕ̃j+η ∗ f(y))ϕj+η(x−A−jBl)dy

and, hence,

f(x) =
∑
j∈Z

∑
k∈Zn

∑
l∈Z

n
k
(j+η,η)

∫
Bj,l∩Bj+η,k

(ϕ̃j+η ∗ f(y))[ϕj+η(x− y)−ϕj+η(x−A−jBl)]dy

+
∑
j∈Z

∑
k∈Zn

∑
l∈Z

n
k
(j+η,η)

∫
Bj,l∩Bj+η,k

[ϕ̃j+η ∗ f(y)−ϕ̃j+η ∗ f(A−jBl)]ϕj+η(x−A−jBl)dy

+
∑
j∈Z

∑
k∈Zn

∑
l∈Z

n
k
(j+η,η)

∫
Bj,l∩Bj+η,k

(ϕ̃j+η ∗ f(A−jBl))ϕj+η(x−A−jBl)dy

=
∑
j∈Z

∑
k∈Zn

∑
l∈Z

n
k
(j+η,η)

∫
Bj,l∩Bj+η,k

(ϕ̃j+η ∗ f(y))[ϕj+η(x− y) − ϕj+η(x−A−jBl)]dy

+
∑
j∈Z

∑
k∈Zn

∑
l∈Z

n
k
(j+η,η)

∫
Bj,l∩Bj+η,k

[ϕ̃j+η ∗ f(y)−ϕ̃j+η ∗ f(A−jBl)]ϕj+η(x−A−jBl)dy

+ |detB|Fηf(x).

Replacing the index j + η by β and rearranging the last term, we have

(I − |detB|Fη)f(x)

=
∑
β∈Z

∑
k∈Zn

∑
l∈Z

n
k
(β,η)

∫
Bβ−η,l∩Bβ,k

(ϕ̃β ∗ f(y))[ϕβ(x− y) − ϕβ(x−A−β+ηBl)]dy

+
∑
β∈Z

∑
k∈Zn

∑
l∈Z

n
k
(β,η)

∫
Bβ−η,l∩Bβ,k

[ϕ̃β ∗ f(y)−ϕ̃β ∗ f(A−β+ηBl)]ϕβ(x−A−β+ηBl)dy

= I + II.

Estimate on I:

We consider the first term. Let ε < ln |λ−|
ln | detA| ,

sBβ,k
= |detA|β/2|detB|

∫
Bβ,k

|ϕ̃β ∗ f(y)|dy
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and

mBβ,k
(x) = |detA|−ηεs−1

Bβ,k
|detB|−ε

×
∑

l∈Z
n
k
(β,η)

∫
Bβ−η,l∩Bβ,k

ϕ̃β ∗ f(y)[ϕβ(x−y)−ϕβ(x−A−β+ηBl)]dy.

Therefore,
I =

∑
β∈Z

∑
k∈Zn

|detB|ε|detA|ηεsBβ,k
mBβ,k

(x).

We are going to show that each mBβ,k
(x) is a strong molecule.

The vanishing moment conditions of mBβ,k
(x) is inherited from ϕ(x). We only

need to check the size conditions. Notice that if y ∈ Bβ−η,l and 〈a, γ〉 ≤ K ′ = K − an,
the size conditions of ϕ and inequalities (2.3) and (2.4) yield,∣∣∂γx(ϕβ(A−βx− y) − ϕβ(A−βx−A−β+ηBl)

)∣∣
≤ C

n∑
i=1

|detA|β
∣∣((Aβy)i − (AηBk)i

)∣∣ sup
z∈Bβ−η,l

∣∣(∂i∂γxϕ)
(
Aβ(A−βx− z)

)∣∣
≤ C

n∑
i=1

|detA|β(ε+1)ρA
(
yi − (A−β+ηBk)i

)ε sup
z∈Bβ,k

(
1 + ρA(x−Aβz)

)−M

≤ C

n∑
i=1

|detA|β(ε+1)
(
|detA|−β+η|detB|

)ε(1 + ρA(x−Bk)
)−M

≤ C|detA|β
(
|detA|η|detB|

)ε(1 + ρA(x−Aβ(A−βBk))
)−M

,

for an universal constant C > 0. Hence, for 〈a, γ〉 < K ′, we have∣∣∂γmBβ,k
(A−βx)

∣∣
≤ C

1
sBβ,k

|detA|β
(
1 + ρA(x−AβxBβ,k

)
)−M ∑

l∈Z
n
k
(β,η)

∫
Bβ−η,l∩Bβ,k

|ϕ̃β ∗ f(y)|dy

≤ C|detA|β/2
(
1 + ρA(x−AβxBβ,k

)
)−M

. (5.2)

Thus, {mBβ,k
} is a family of strong molecules of order K ′,M .

Estimate on II:

For the second term, let

tBβ,k
= |detA|β/2

∑
l∈Z

n
k
(β,η)

∫
Bβ−η,l∩Bβ,k

|ϕ̃β ∗ f(y) − ϕ̃β ∗ f(A−β+ηBl)|dy

and, if tBβ,k
�= 0,

nBβ,k
(x) = t−1

Bβ,k

∑
l∈Z

n
k
(β,η)

∫
Bβ−η,l∩Bβ,k

[ϕ̃β ∗ f(y)−ϕ̃β ∗ f(A−β+ηBl)]ϕβ(x−A−β+ηBl)dy.
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Therefore,
II =

∑
β∈Z

∑
k∈Zn

tBβ,k
nBβ,k

(x).

For any l ∈ Z
n
k (β, η), y ∈ Bβ−η,l and 〈a, γ〉 ≤ K ′, we have∣∣∂γx(ϕ̃β(A−βx− y) − ϕ̃β(A−βx−A−β+ηBl)

)∣∣ (5.3)

≤ C|detA|βρA
(
Aβ(y −A−β+ηBl)

)ε(1 + ρA(x−AβxBβ,k
)
)−M

≤ C|detA|β |detA|ηε
(
1 + ρA(x−AβxBβ,k

)
)−M

,

where the constant C is independent of y ∈ Bβ−η,l.
Therefore, if we write

hBβ,k
(x) = |detA|−β/2

(
ϕ̃β(y − x) − ϕ̃β(A−β+ηBl − x)

)
,

then hBβ,k
(x) is a strong molecule with the same order as ϕBβ,k

. Furthermore, by the
ϕ-ψ transform reproducing property, we write f =

∑
P rPψP where r = {rP}P satisfies

‖r‖ḟα,q
p (A,dx) ≤ C‖f‖Ḟα,q

p (Rn,A,dx). If we set

bPQ = |detA|β/2
∑

l∈Z
n
k
(β,η)

∫
Bβ−η,l∩Q

|ϕ̃β ∗ ψP (y) − ϕ̃β ∗ ψP (A−β+ηBl)|dy,

where Q = Bβ,k, then |tQ| ≤
∑
P |bPQ||rP |. By the estimation in Theorem 3.1, we

have,
|〈ψP , hQ〉| ≤ C|detA|ηεκPQ(K ′,M).

Hence, for Q = Bβ,k,

|bPQ| ≤ |detA|β/2
∑

l∈Z
n
k
(β,η)

∫
Bβ−η,l∩Bβ,k

|ϕ̃β ∗ ψP (y) − ϕ̃β ∗ ψP (A−β+ηBl)|dy

≤ C|detA|β
∫
Bβ,k

|〈ψP , hQ〉|dy

≤ C|detA|β
∫
Bβ,k

|detA|ηεκPQ(K ′,M)dy ≤ C|detB||detA|ηεκPQ(K ′,M),

because ∫
Bβ,k

dy = |detA|−β |detB|.

Therefore, the operator B = {bPQ} is bounded on ḟα,qp (A, dx) if K ′,M are large enough.
We now consider nBβ,k

. The vanishing moment conditions of nBβ,k
is inherited by ϕ.

Furthermore, for any 〈a, γ〉 ≤ K ′, we see that∣∣∂γ(nBβ,k
(A−βx))

∣∣ (5.4)

≤ t−1
Bβ,k

∑
l∈Z

n
k
(β,η)

∫
Bβ−η,l∩Bβ,k
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×
∣∣ϕ̃β ∗ f(y) − ϕ̃β ∗ f(A−β+ηBl)

∣∣∣∣∂γ(ϕβ(A−βx−A−β+ηBl)
)∣∣dy

≤ |detA|β/2
(
1 + ρA(x−Aβ(A−β+ηBl))

)−M
× t−1

Bβ,k

∑
l∈Z

n
k
(β,η)

∫
Bβ−η,l∩Bβ,k

|ϕ̃β ∗ f(y) − ϕ̃β ∗ f(A−β+ηBl)|dy

≤ C|detA|β/2
(
1 + ρA(x−AβxBβ,k

)
)−M

,

because A−β+ηBl ∈ Bβ−η,l and

sup
z∈Bβ,k

(
1 + ρA(x−Aβz)

)−M ∼ inf
z∈Bβ,k

(
1 + ρA(x−Aβz)

)−M
.

Therefore {nBβ,k
}β,k is a family of strong molecules of order K ′,M .

Estimate of (I − |detB|Fη):
We may write

∣∣(I − |detB|Fη)f(x)
∣∣ ≤ C|detA|ηε

∣∣∣∣∣
∑
β,k

sBβ,k
mBβ,k

∣∣∣∣∣ + C

∣∣∣∣∣
∑
β,k

tBβ,k
nBβ,k

∣∣∣∣∣.
Taking the Ḟα,qp (Rn, A, dx) norm on both sides, we have

‖(I − |detB|Fη)f(x)‖Ḟα,q
p (Rn,A,dx)

≤ C|detA|ηε
∥∥∥∥∥

∑
β,k

sBβ,k
mBβ,k

∥∥∥∥∥
Ḟα,q

p (Rn,A,dx)

+ C

∥∥∥∥∥
∑
β,k

tBβ,k
nBβ,k

∥∥∥∥∥
Ḟα,q

p (Rn,A,dx)

.

For the first term, if K ′,M are large enough, by Theorem 3.2 and

sBβ,k
= |detA|β/2|detB|

∫
Bβ,k

|ϕ̃β ∗ f(y)|dy ≤ C|detA|−β/2 sup
z∈Bβ,k

|ϕ̃β ∗ f(y)|,

we have∥∥∥∥∥
∑
β,k

sBβ,k
mBβ,k

∥∥∥∥∥
Ḟα,q

p (Rn,A,dx)

≤ C‖{sBβ,k
}‖ḟα,q

p (A,dx) ≤ C‖f‖Ḟα,q
p (Rn,A,dx),

because {mBβ,k
}β,k is a family of strong molecules. For the second term, if K ′,M are

large enough, we have∥∥∥∥∥
∑
β,k

tBβ,k
nBβ,k

∥∥∥∥∥
Ḟα,q

p (Rn,A,dx)

≤ C‖{tBβ,k
}‖ḟα,q

p (A,dx) ≤ C|detA|ηε‖{rBβ,k
}‖ḟα,q

p (A,dx)

≤ C|detA|ηε‖f‖Ḟα,q
p (Rn,A,dx)

because tQ =
∑
P bPQrP , ‖r‖ḟα,q

p (A,dx) ≤ C‖f‖Ḟα,q
p (Rn,A,dx) and

|bPQ| ≤ C|detA|ηεκPQ(K ′,M).
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Therefore,

‖(I − |detB|Fη)f(x)‖Ḟα,q
p (Rn,A,dx) ≤ C|detA|ηε‖f‖Ḟα,q

p (Rn,A,dx).

Choose an η0 < 0 so that C|detA|ηε < 1, for any η < η0; we then have

‖I − |detB|Fη‖Ḟα,q
p (Rn,A,dx)→Ḟα,q

p (Rn,A,dx) < 1

and by the Neumann series (I − T )−1 = I + T + T 2 + · · · =
∑
i≥0 T i,

|detB|Fη = I − (I − |detB|Fη)
is invertible, and, hence, Fη is invertible because |detB| �= 0. �

6. Regularity of the frame operator

We begin with some lemmas. The following is an anisotropic version of Lemma B.2
of [6].

Lemma 6.1
Let |R| = |detA|−k ≥ |detA|−i = |P |, i, j, k ∈ Z, M > 1, x ∈ R

n, we have

∑
|Q|=| detA|−j

(
1 +

ρA(xQ − xR)
max(|Q|, |R|)

)−M (
1 +

ρA(x− xQ)
max(|P |, |Q|)

)−M

≤ C

(
1 +

ρA(x− xR)
max(|Q|, |R|)

)−M
max

(
1,
|P |
|Q|

)
for a constant C > 0 depending only on M .

Proof. Without loss of generality, we may assume k = 0. First, we deal with the case
|R| = 1 ≥ |P | ≥ |Q|. For any y ∈ Q, we have

C−1
(
1 + ρA(xR − y)

)−M ≤
(
1 + ρA(xQ − xR)

)−M ≤ C
(
1 + ρA(xR − y)

)−M
because |R| = 1 ≥ |detA|−j = |Q| ; moreover,

C−1

(
1 +

ρA(x− y)
|P |

)−M
≤

(
1 +

ρA(x− xQ)
|P |

)−M
≤ C

(
1 +

ρA(x− y)
|P |

)−M

because |P | ≥ |Q|. Notice that C depends continuously on M . Hence,∑
|Q|=| detA|−j

1
(1 + ρA(xQ − xR))M

1

(1 + ρA(x−xQ)
|P | )M

≤ C
∑

|Q|=| detA|−j

|detA|j
∫
Q

1
(1 + ρA(xR − y))M

1

(1 + ρA(x−y)
|P | )M

dy

≤ C
|detA|j
|detA|i |detA|i

∫
Rn

1
(1 + ρA(xR − y))M

1

(1 + ρA(x−y)
|P | )M

dy

≤ C
|P |
|Q|

1
(1 + ρA(x− xR))M

by Lemma 8.1 in Appendix.
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For the case |R| = 1 ≥ |Q| > |P |, we have

∑
|Q|=| detA|−j

(
1 +

ρA(xQ − xR)
max(|Q|, |R|)

)−M (
1 +

ρA(x− xQ)
max(|P |, |Q|)

)−M

=
∑

|Q|=| detA|−j

(
1 + ρA(xQ − xR)

)−M (
1 +

ρA(x− xQ)
|Q|

)−M

≤ C
∑

|Q|=| detA|−j

|detA|j
∫
Q

1
(1 + ρA(xR − y))M

1

(1 + ρA(x−y)
|Q| )M

dy

≤ C|detA|j
∫

Rn

1
(1 + ρA(xR − y))M

1

(1 + ρA(x−y)
|Q| )M

dy ≤ C
1

(1 + ρA(x− xR))M
.

Similarly, for the last case |Q| > |R| ≥ |P |, we have

∑
|Q|=| detA|−j

(
1 +

ρA(xQ − xR)
max(|Q|, |R|)

)−M (
1 +

ρA(x− xR)
max(|P |, |Q|)

)−M

≤ C
∑

|Q|=| detA|−j

|detA|j
∫
Q

1

(1 + ρA(xR−y)
|Q| )M

1

(1 + ρA(x−y)
|Q| )M

dy

≤ C|detA|j
∫

Rn

1

(1 + ρA(xR−y)
|Q| )M

1

(1 + ρA(x−y)
|Q| )M

dy ≤ C
1

(1 + ρA(x−xR)
|Q| )M

. �

With these lemmas, we can show the following theorem which guarantees that
the composition of two strongly almost diagonal matrices is a strongly almost diagonal
matrix.

Theorem 6.2

Let K,L,M, M̃ > 0 satisfy K �= L and K + L + 1 > min(M, M̃). Suppose

A = {aPQ}PQ ∈ sκ(K,M) and B = {bQR}QR ∈ sκ(L, M̃) be strongly almost diagonal

matrices. Then the matrix A ◦ B = C = {cPR}PR where

cPR =
∑
Q

aPQbQP

is a strongly almost diagonal matrix and C = {cPR}PR ∈ sκ(min(K,L),min(M, M̃)).
Moreover, we have a constant C > 0, depending continuously on M, M̃ only, such that

‖{cPR}PR‖sκ(min(K,L),min(M,M̃)) ≤ C‖{aPQ}PQ‖sκ(K,M)‖{bQR}QR‖sκ(L,M̃).

Proof. Let |P | = 2−i, |Q| = 2−j and |R| = 2−k. Without loss of generality, we may
assume |P | ≤ |R|, K > L, M ≥ M̃ , ‖{aPQ}PQ‖sκ(K,M) = 1 and ‖{bQR}QR‖sκ(L,M̃) =
1. We split cPR into three terms

|cPR| ≤
∑

|P |≤|R|≤|Q|
|aPQ||bQR| +

∑
|P |≤|Q|≤|R|

|aPQ||bQR| +
∑

|Q|≤|P |≤|R|
|aPQ||bQR|

= I + II + III.
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For I, we have

I ≤
∑

|P |≤|R|≤|Q|

( |P |
|Q|

)K+1/2 (
1 +

ρA(xQ − xP )
|Q|

)−M ( |R|
|Q|

)L+1/2

×
(

1 +
ρA(xQ − xR)

|Q|

)−M̃
.

Because M > M̃ ,

I ≤ |P |K+1/2|R|L+1/2
∑

|P |≤|R|≤|Q|
|Q|−K−L−1

(
1 +

ρA(xQ − xP )
|Q|

)−M̃(
1 +

ρA(xQ − xR)
|Q|

)−M̃

≤|P |K+1/2|R|L+1/2
k∑

j=−∞
2j(K+L+1)

∑
|Q|=2−j

(
1 +

ρA(xQ − xP )
|Q|

)−M̃(
1 +

ρA(xQ − xR)
|Q|

)−M̃
.

Therefore, by Lemma 6.1,

I ≤ C|P |K+1/2|R|L+1/2
k∑

j=−∞
2j(K+L+1)

(
1 +

ρA(xP − xR)
|Q|

)−M̃
.

Because |Q| ≥ |R|, we have

1 +
ρA(xP − xR)

|R| ≤ 1 +
ρA(xP − xR)

|Q|
|Q|
|R| ≤

|Q|
|R|

(
1 +

ρA(xP − xR)
|Q|

)
.

Hence, we have

I ≤ C|P |K+1/2|R|L+1/2
k∑

j=−∞
2j(K+L+1) |Q|

|R|
M̃ (

1 +
ρA(xP − xR)

|R|

)−M̃

≤ C|P |K+1/2|R|L−M̃+1/2
k∑

j=−∞
2j(K+L+1−M̃)

(
1 +

ρA(xP − xR)
|R|

)−M̃

≤ C|P |K+1/2|R|L−M̃+1/2|R|−K−L−1+M̃

(
1 +

ρA(xP − xR)
|R|

)−M̃

≤ C
|P |K+1/2

|R|K+1/2

(
1 +

ρA(xP − xR)
|R|

)−M̃
≤ C

|P |L+1/2

|R|L+1/2

(
1 +

ρA(xP − xR)
|R|

)−M̃
.

Since K + L + 1 > M̃ , K > L and |P | ≤ |R|.
For II, we have

II ≤
∑

|P |≤|Q|≤|R|

( |P |
|Q|

)K+1/2(
1 +

ρA(xQ − xP )
|Q|

)−M( |Q|
|R|

)L+1/2(
1 +

ρA(xQ − xR)
|R|

)−M̃

≤ |P |K+1/2

|R|L+1/2

∑
|P |≤|Q|≤|R|

|Q|−K+L

(
1 +

ρA(xQ − xP )
|Q|

)−M̃(
1 +

ρA(xQ − xR)
|R|

)−M̃

≤ |P |K+1/2

|R|L+1/2

i∑
j=k

2j(K−L)
∑

|Q|=2−j

(
1 +

ρA(xQ − xP )
|Q|

)−M̃(
1 +

ρA(xQ − xR)
|R|

)−M̃
.
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Because K > L,

II ≤ C
|P |K+1/2

|R|L+1/2
|P |−K+L

(
1 +

ρA(xP − xR)
|R|

)−M̃

≤ C
|P |L+1/2

|R|L+1/2

(
1 +

ρA(xP − xR)
|R|

)−M̃
.

For the last term, we have

III ≤
∑

|Q|≤|P |≤|R|

( |Q|
|P |

)K+1/2 (
1 +

ρA(xQ − xP )
|P |

)−M ( |Q|
|R|

)L+1/2

×
(

1 +
ρA(xQ − xR)

|R|

)−M̃

≤ 1
|P |K+1/2|R|L+1/2

∑
|Q|≤|P |≤|R|

|Q|K+L+1

(
1 +

ρA(xQ − xP )
|P |

)−M̃

×
(

1 +
ρA(xQ − xR)

|R|

)−M̃
.

By Lemma 6.1,

III ≤ C|P |−K−1/2|R|−L−1/2
∞∑
j=i

(
2−j(K+L+1)

(
1 +

ρA(xP − xR)
|R|

)−M̃ |P |
|Q|

)

≤ C|P |−K+1/2|R|−L−1/2
∞∑
j=i

(
2−j(K+L)

(
1 +

ρA(xP − xR)
|R|

)−M̃)

≤ C|P |−K+1/2|R|−L−1/2|P |K+L

(
1 +

ρA(xP − xR)
|R|

)−M̃

≤ C
|P |K+1/2

|R|L+1/2

(
1 +

ρA(xP − xR)
|R|

)−M̃
.

Combining these inequalities, we show that {cPR}PR satisfies condition (3.9) and

‖{cPR}PR‖sκ(L,M̃) ≤ C‖{aPQ}PQ‖sκ(K,M)‖{bQR}QR‖sκ(L,M̃). �

By iterating the estimates, we obtain the following corollary.

Corollary 6.3

Let K ′,M ′ > 0. Suppose Ai, 1 ≤ i ≤ m, are strongly almost diagonal matrices

with order K ′,M ′, then for any K,M > 0 satisfying K ′ > K, M ′ > M , and K +K ′ +
1 > M , the composition of Ai, A1 ◦ A2 · · · ◦ Am is a strongly almost diagonal matrix

with order K,M and

‖A1 ◦A2 · · · ◦Am‖sκ(K,M) ≤ Cm−1‖A1‖sκ(K′,M ′)‖A2‖sκ(K′,M ′) · · · ‖Am‖sκ(K′,M ′)

for a constant C > 0 depending only on M,M ′.
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We are now going to prove the main result of this section that asserts that the
class of strong molecule is invariant under the mapping by a strongly almost diagonal
operator. Moreover, it also generalizes a result of Frazier and Jawerth [6], Lemma 9.14.

Theorem 6.4

Let K > L > 0, M ≥ M̃ and 1 + K > M̃ . Let {kQ}Qj,k
be a family of strong

molecules with order L, M̃ , and {aPQ} be a strongly almost diagonal matrix with order

K,M . Let

hQ(x) =
∑
P

aPQkP (x).

We have ∫
xγhQ(x)dx = 0 if 〈a, γ〉 ≤ L; (6.1)

and, for a constant C depending only on the matrix A and M̃ ,

∣∣∂γ(hQ(A−jx))
∣∣ ≤ C|detA|j/2 1

(1 + ρA(x−AjxQ))M̃
(6.2)

if 〈a, γ〉 ≤ L.

Moreover, we have

‖{hQ}Q‖ML,M̃
≤ C‖{aPQ}PQ‖sκ(K,M)‖{kQ}Q‖ML,M̃

for a constant C > 0.

Proof. Without loss of generality, we assume ‖{aPQ}PQ‖sκ(K,M) = ‖{kQ}Q‖ML,M̃
= 1.

To estimate |∂γhQ(x)| for |〈a, γ〉| ≤ L, with |Q| = |detA|−i, we split the sum into two
terms. ∣∣∂γ(hQ(A−ix))

∣∣ ≤ ∑
|P |≤|Q|

∣∣aPQ

∣∣∣∣∂γ(kP (A−ix))
∣∣

+
∑

|P |>|Q|

∣∣aPQ

∣∣∣∣∂γ(kP (A−ix))
∣∣ = I + II.

By the definition of strong molecules and strongly almost diagonal matrices, we
have,

I ≤
∞∑
j=i

∑
|P |=| detA|−j

(
1 +

ρA(xQ − xP )
|Q|

)−M( |P |
|Q|

)K+1/2

× |detA|j/2+〈a,γ〉(j−i)+|j−i|
(

1 +
ρA(A−ix− xP )

|P |

)−M̃

≤ |detA|i/2
∞∑
j=i

∑
|P |=| detA|−j

(
1 +

ρA(xQ − xP )
|Q|

)−M̃
|detA|(−j+i)K

× |detA|(−j+i)/2+(j−i)/2+〈a,γ〉(j−i)+|j−i|
(
1 +

ρA(A−ix− xP )
|P |

)−M̃
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because M ≥ M̃ . Therefore,

I ≤
(
|detA|i/2

∞∑
j=i

|detA|−(j−i)(K−〈a,γ〉)+(j−i)
)

×
∑

|P |=| detA|−j

(
1 +

ρA(xQ − xP )
|Q|

)−M̃ (
1 +

ρA(A−ix− xP )
|P |

)−M̃

because j ≥ i and 〈a, γ〉 ≤ L < K − � if we take � < K − L. Furthermore, by
Lemma 6.1, we have,

I ≤ C|detA|i/2
(

1 +
ρA(A−ix− xQ)

|Q|

)−M̃
≤ C|detA|i/2

(
1 + ρA(x−AixQ)

)−M̃
.

For II, we have

II ≤
i−1∑
j=−∞

∑
|P |=| detA|−j

(
1 +

ρA(xQ − xP )
|P |

)−M ( |Q|
|P |

)K+1/2

× |detA|j/2+〈a,γ〉(j−i)+|j−i|
(

1 +
ρA(A−ix− xP )

|P |

)−M̃

≤ |detA|i/2
i−1∑
j=−∞

∑
|P |=| detA|−j

(
1 +

ρA(xQ − xP )
|P |

)−M̃
|detA|(−i+j)(1/2+K)

× |detA|(j−i)/2+〈a,γ〉(j−i)+|j−i|
(

1 +
ρA(A−ix− xP )

|P |

)−M̃

≤ C

i−1∑
j=−∞

|detA|i/2+(j−i)(1+〈a,γ〉+K)+|j−i|
( |detA|−j
|detA|−j + ρA(A−ix− xQ)

)M̃

and; hence,

II ≤ C

i−1∑
j=−∞

|detA|i/2+(j−i)(1+〈a,γ〉+K−M̃)−(j−i)
( |detA|−i
|detA|−i + ρA(A−ix− xQ)

)M̃

≤ C|detA|i/2
( |detA|−i
|detA|−i + ρA(A−ix− xQ)

)M̃
≤ C|detA|i/2 1

(1 + ρA(x−AixQ))M̃
.

We use |P | > |Q| and choose � > 0 small enough, so that 1 + K > M̃ + � in the
summation over j. Hence,

∣∣∂γ(hQ(A−ix))
∣∣ ≤ C|detA|i/2 1

(1 + ρA(x−AixQ))M̃

if 〈a, γ〉 ≤ L.
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The vanishing moment conditions,∫
xγhQ(x)dx = 0 if 〈a, γ〉 ≤ L (6.3)

are well defined because M̃ > 1 + L and∫
|xγ ||hQ(x)|dx =

∫
|xγ |

∑
P

|aPQ||kP (x)|dx < ∞ if 〈a, γ〉 ≤ L.

The vanishing moment is inherited by hQ form the corresponding conditions on kQ . �

Proof of Theorem 4.2: Fix a ε < ln |λ−|
ln | detA| . Let {φP }P be strong molecules of order

K ′,M ′. From Theorem 4.1, we have, for P = Bγ,h, γ ∈ Z and h ∈ Z
n (recall that

Z
n
k (β, η) = {l ∈ Z

n : Bβ−η,l ∩Bβ,k �= ∅}),

(I − |detB|Fη)φP (x)

=
∑
β∈Z

∑
k∈Zn

∑
l∈Z

n
k
(β,η)

∫
Bβ−η,l∩Bβ,k

(
ϕ̃β ∗ φP (y)

)[
ϕβ(x− y) − ϕβ(x−A−β+ηBl)

]
dy

+
∑
β∈Z

∑
k∈Zn

∑
l∈Z

n
k
(β,η)

∫
Bβ−η,l∩Bβ,k

[
ϕ̃β ∗ φP (y)−ϕ̃β ∗ φP (A−β+ηBk)

]
ϕβ

(
x−A−β+ηBl

)
dy.

For Q = Bβ,k, we have

(I − |detB|Fη)φP (x) =
∑

Q=Bβ,k

|detA|ηεsQPmQ(x) +
∑

Q=Bβ,k

tQPnQ(x)

where

sQP = |detA|β/2|detB|
∫
Bβ,k

|ϕ̃β ∗ φP (y)|dy,

mQ(x) =
|detA|−ηε
sQP |detB|ε

∑
l∈Z

n
k
(β,η)

∫
Bβ−η,l∩Bβ,k

ϕ̃β ∗ φP (y)[ϕβ(x−y) − ϕβ(x−A−β+ηBl)]dy;

and

tQP = |detA|β/2
∑

l∈Z
n
k
(β,η)

∫
Bβ−η,l∩Bβ,k

|ϕ̃β ∗ φP (y) − ϕ̃β ∗ φP (A−β+ηBl)|dy,

nQ(x) =
1

tQP

∑
l∈Z

n
k
(β,η)

∫
Bβ−η,l∩Bβ,k

[ϕ̃β ∗ φP (y) − ϕ̃β ∗ φP (A−β+ηBk)]

× ϕβ(x−A−β+ηBl)dy.

First of all, since ϕ̃Q(y − x) is a strong molecule for any y ∈ Q = Bβ,k, we have

‖{ϕ̃Q(y − ·)}‖MK′,M′ ∼ ‖{ϕ̃Q(·)}‖MK′,M′ .
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Therefore, by Theorem 3.1,

sQP = |detA|β/2|detB|
∫
Bβ,k

|ϕ̃β ∗ φP (y)|dy ≤ |detA|−β/2 sup
y∈Bβ,k

|ϕ̃β ∗ φP (y)|

≤ sup
y∈Bβ,k

∣∣∣∣
∫

ϕ̃Q(y − x)φP (x)dx
∣∣∣∣ ≤ C‖{ϕQ}‖MK′,M′ ‖{φP }‖MK′,M′ sκQP (K,M).

Similarly, we have, for any y ∈ Bβ,l,

‖tQP‖sκ(K,M) ≤ C‖{ϕ̃Q(y − ·) − ϕ̃Q(A−βBl − ·)}Q‖MK′,M′ ‖{φP}P‖MK′,M′

≤ C|detA|ηε‖{ϕQ}Q‖MK′+an,M′ ‖{φP}P‖MK′,M′ .

Similar to the estimates for I and II in the proof of Theorem 4.1, {mQ} and {nQ} are
families of strong molecules of order K ′,M ′ with

‖{mQ(x)}‖MK′,M′ ≤ C‖{φP}P‖MK′,M′ and ‖{nQ(x)}‖MK′,M′ ≤ C‖{φP}P‖MK′,M′ .

Hence, by Theorem 6.4, we have

‖{(I − |detB|Fη)φP}P‖ML,M̃

≤ C|detA|ηε‖{ϕQ}Q‖2
MK′+an,M′ ‖{φP}P‖MK′,M′ + C‖tQ‖sκ(K,M)‖{ϕQ}Q‖MK′+an,M′

≤ C|detA|ηε‖{ϕQ}Q‖2
MK′+an,M′ ‖{φP}P‖MK′,M′ .

Therefore, we have shown that {(I − |detB|Fη)φP}P is a family of strong molecules
of order L, M̃ .

For the last result, we are going to estimate (I − |detB|Fη)iφP (x), i > 0. For
i = 2, we have

(I − |detB|Fη)2φP (x) =
∑

Q=Bβ,k

|detA|ηεsQP (I − |detB|Fη)mQ(x)

+
∑

Q=Bβ,k

tQP (I − |detB|Fη)nQ(x).

Since mQ and nQ are strong molecules, by Theorem 4.1, there exist strongly almost
diagonal matrices {s[2]

QP}QP and {t[2]QP}QP satisfying

‖{s[2]
QP}QP ‖sκ(K,M) ≤ C‖{ϕQ}‖2

MK′+an,M′

‖{t[2]QP}QP ‖sκ(K,M) ≤ C|detA|ηε‖{ϕQ}‖2
MK′+an,M′

and strong molecules m
[2]
Q and n

[2]
Q satisfying

‖m[2]
Q ‖MK′,M′ ≤ C|detA|ηε‖ϕQ‖MK′+an,M′ and ‖n[2]

Q ‖MK′,M′ ≤ C‖ϕQ‖MK′+an,M′
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such that

(I − |detB|Fη)mQ(x) =
∑
Q′

s
[2]
QQ′m

[2]
Q′ (x) and

(I − |detB|Fη)nQ(x) =
∑
Q′

t
[2]
QQ′n

[2]
Q′ (x).

Hence,

(I − |detB|Fη)2φP (x) =
∑
Q

|detA|ηεsQP

∑
Q′

s
[2]
QQ′m

[2]
Q′ (x) +

∑
Q

tQP

∑
Q′

t
[2]
QQ′n

[2]
Q′ (x)

=
∑
Q′

|detA|ηε
(∑

Q

sQPs
[2]
QQ′

)
m

[2]
Q′ (x)

+
∑
Q′

(∑
Q

tQP t
[2]
QQ′

)
n

[2]
Q′ (x).

Therefore, by Corollary 6.3 with K + K ′ + 1 > M , the matrices{∑
Q

sQPs
[2]
QQ′

}
PQ′

and

{∑
Q

tQP t
[2]
QQ′

}
PQ′

are strongly almost diagonal matrices with order K,M . Hence, we have

‖{(I − |detB|Fη)2ϕP}P‖ML,M̃

≤ C|detA|ηε‖{sQP}QP ‖sκ(K′,M ′)‖{s[2]
QP}QP ‖sκ(K′,M ′)‖m[2]

Q ‖MK′,M′

+ C‖{tQP}QP ‖sκ(K′,M ′)‖{t[2]QP}QP ‖sκ(K′,M ′)‖n[2]
Q ‖MK′,M′

≤ C|detA|2ηε‖{ϕ}Q‖2
MK′+an,M′ ‖{φ}P ‖MK′,M′ ‖ϕQ‖2

MK′,M′ .

Similarly, for any i > 0, we have

‖{(I − |detB|Fη)iϕP}P‖ML,M̃
≤ Ci|detA|ηεi‖{ϕQ}Q‖2i

MK′+an,M′ ‖{φ}P ‖MK′,M′ .

We know that, if the operator norm of I − |detB|Fη is strictly less than one, we
have

F−1
η = |detB|

∞∑
i=0

(I − |detB|Fη)i

by the Neumann series.
Hence, we can estimate the operator norm of F−1

η ,

‖{F−1
η ϕP}P‖ML,M̃

≤ |detB|
∞∑
i=0

‖{(I − |detB|Fη)iϕP}P‖ML,M̃

≤ |detB|
∞∑
i=0

Ci|detA|ηεi‖{ϕP}P‖2i
MK′+an,M′ ‖{φ}P ‖MK′,M′ .
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Hence, if we choose an η0 such that

|detA|η0ε < C−1‖{ϕP}P‖−2
MK′+an,M′ ‖{φ}P ‖

−2
MK′,M′ ,

then Fη is invertible because ML,M̃ is a Banach space. �

7. Convergence of the frame operator

We postpone the proof until we establish the following results. We study the kernel
T (x, y) defined by,

T (x, y) =
∑
j∈Z

∑
k∈Zn

φj,k(x)ϕj,k(y).

Define
Φ(x, y) =

∑
k∈Zn

φ0,k(x)ϕ0,k(y) =
∑
k∈Zn

φ0,k(x)ϕ(y −Bk).

Since DAF = FDA (see discussion preceding Theorem 4.3), we can write

|detA|jΦ(Ajx,Ajy) = |detA|j
∑
k∈Zn

φ0,k(Ajx)ϕ0,k(Ajy) =
∑
k∈Zn

φj,k(x)ϕj,k(y).

Therefore, we have T (x, y) =
∑
j∈Z

|detA|jΦ(Ajx,Ajy). By Theorem 4.2, we may
assume that {φj,k}j∈Z,k∈Zn is a family of strong molecules of order N, J for any N, J

satisfying 1 + K > N > 1 + J and φj,k has the same center as ϕj,k.

Lemma 7.1

Let ϕ,φ be as above, we then have, for any N satisfying 1 + K > N ,

|Φ(x, y)| ≤ C‖{ϕP}P‖MM,K
‖{φP}P‖MN,J

(1 + ρA(x− y))N

for a constant C > 0 depending only on A.

Proof. This is a simple consequence of Lemma 6.1 with the size conditions

|ϕ0,k(y)| ≤ ‖{ϕP}P‖MM,K
(1 + ρA(y − k))−N and

|φ0,k(x)| ≤ ‖{φP}P‖MN,J
(1 + ρA(x− k))−N . �

Define the operator,

Pf(x) =
∑
j<0

∑
k∈Zn

〈f, ϕj,k〉φj,k(x) =
∫

Rn

(∑
j<0

∑
k∈Zn

φj,k(x)ϕj,k(y)

)
f(y)dy

Qf(x) =
∑
j≥0

∑
k∈Zn

〈f, ϕj,k〉φj,k(x) =
∫

Rn

(∑
j≥0

∑
k∈Zn

φj,k(x)ϕj,k(y)

)
f(y)dy.
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Denote the kernels of the operators P and Q by P (x, y) and Q(x, y) respectively, so
that we have

P (x, y) =
∑
j<0

|detA|jΦ(Ajx,Ajy) and

Q(x, y) =
∑
j≥0

|detA|jΦ(Ajx,Ajy).

Next, we are going to show P (x, y) is well-defined on R
n×R

n and Q(x, y) is well-defined
in R

n × R
n\{(x, x) : x ∈ R

n}.

Theorem 7.2

The sum defining Q(x, y) converges uniformly to a continuous function bounded by

CρA(x−y)−N with constant C > 0, and the sum defining P (x, y) converges uniformly

to a bounded continuous function on sets at a positive distance from the diagonal.

Furthermore,

P (x, y) + Q(x, y) = 0 in R
n × R

n\{(x, x) : x ∈ R
n}.

Proof. For any m ∈ Z, let

Pm(x, y) =
∑

−m≤j<0

|detA|jΦ(Ajx,Ajy) and

Qm(x, y) =
∑

0≤j≤m
|detA|jΦ(Ajx,Ajy).

Hence,

|Pm(x, y)| ≤
∑

−m≤j<0

|detA|j |Φ(Ajx,Ajy)| ≤ C
∑

−m≤j<0

|detA|j
(1 + ρA(Aj(x− y)))N

≤ C
∑

−m≤j<0

|detA|j ≤ C

uniformly on R
n × R

n, for a constant C > 0. Since m is arbitrary, we show that
Pm(x, y) converges uniformly to P (x, y) on R

n × R
n and |P (x, y)| ≤ C. For Qm(x, y),

we have

|Qm(x, y)| ≤
∑

0≤j≤m
|detA|j |Φ(Ajx,Ajy)| ≤ C

∑
0≤j≤m

|detA|j
(1 + ρA(Aj(x− y)))N

≤ C
∑

0≤j≤m

|detA|−jN
(|detA|−j + ρA(x− y))N

≤ C
∑

0≤j≤m
|detA|−jNρA(x− y)N

≤ CρA(x− y)−N .
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Therefore Qm(x, y) converges uniformly to Q(x, y) on any compact subset of R
n ×

R
n\{(x, x) : x ∈ R

n} and

|Q(x, y)| ≤ CρA(x− y)−N .

Finally, we only need to show that

P (x, y) + Q(x, y) = 0 x �= y.

Let B1, B2 ⊆ R
n be closed balls with B1

⋂
B2 = ∅. Let f1(x), f2(x) be bounded

non-negative functions supported in B1 and B2 respectively. Let

Tm(x, y) = P (x, y) + Qm(x, y).

By the assumption that {ϕj,k} and {φj,k} are a frame and its dual frame for L2(Rn),
we have ∫

Rn

Tm(x, y)f2(y)dy −→ f2(y)

on L2(Rn) as m → ∞. Therefore,∫∫
f1(x)T (x, y)f2(y)dydx = lim

m→∞

∫∫
f1(x)Tm(x, y)f2(y)dydx

= lim
m→∞

∫∫
f1(x)f2(y)dydx = 0

because
∫
Tm(x, y)f2(y)dy → f2(y) in L2(Rn).

Since f1(x) and f2(x) are arbitrary functions on B1 and B2 and we may pick
B1, B2 ⊂ R

n to be disjoint closed balls, we have

T (x, y) = 0 x �= y.

That is,
P (x, y) + Q(x, y) = 0 x �= y. �

Corollary 7.3

Let P (x, y) be the above function, then,

|P (x, y)| ≤ C

(1 + ρA(x− y))N
.

Proof. We already know |P (x, y)| ≤ C on R
n × R

n and

|Q(x, y)| ≤ C

ρA(x− y)N
for x �= y.

Since
P (x, y) = −Q(x, y) on x �= y,
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we have
|P (x, y)| = |Q(x, y)| ≤ C

ρA(x− y)N
on x �= y.

Combining this with |P (x, y)| ≤ C, we have

|P (x, y)| ≤ C

(1 + ρA(x− y))N
on R

n × R
n. �

Recall that the operator Tm, for any m ∈ Z, satisfies

Tmf(x) =
∑
j≤m

∑
k∈Zn

〈f, ϕj,k〉φj,k(x).

Then the kernel of Tm is

Tm(x, y) =
∑
j≤m

|detA|jΦ(Ajx,Ajy) = |detA|mP (Amx,Amy) ∀m ∈ N.

In order to prove Theorem 4.3, we need the following lemma:

Lemma 7.4

There is a constant c ∈ R such that, for every x ∈ R
n, we have∫

Rn

P (x, y)dy = c.

Proof. Let a(x) =
∫

Rn P (x, y)dy. We want to show a(x) ≡ c for a constant c. We have
already shown that P (x, y) is the uniform limit of continuous functions, it follows that
a(x) is continuous. We are going to show that a(Ax) = a(x). Since

P (x, y) + Φ(x, y) =
∑
j≤0

|detA|jΦ(Ajx,Ajy) = |detA|P (Ax,Ay)

and both P (x, y) and Φ(x, y) are majorized by L1 functions. So we may take the
integral with respect to y on both sides and we see that∫

Rn

(P (x, y) + Φ(x, y)) dy =
∫

Rn

|detA|P (Ax,Ay)dy =
∫

Rn

P (Ax, y)dy

by the change of variable Ay → y. Since∫
Rn

Φ(x, y)dy =
∑
k∈Zn

φj,k(x)
∫

Rn

ϕ(y − k)dy

and ϕ(x) satisfies the vanishing moment conditions (4.3); in particular ϕ(x) has the
first vanishing moment condition. Therefore,∫

Rn

Φ(x, y)dy = 0.
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Hence,

a(x) =
∫

Rn

P (x, y)dy =
∫

Rn

P (Ax, y)dy = a(Ax).

Furthermore, we have
a(x) = a(Ajx) ∀j ∈ Z.

Fix a x ∈ R
n and let j → −∞ in the above identity, we see that a(x) = a(0), that is,

a(x) is a constant function. �
Having make these preparations, we are now ready to prove Theorem 4.3.

Proof of Theorem 4.3: By the definition of Tj , we have

|Tjf(x)| =

∣∣∣∣∣
∫

Rn

|detA|jP (Ajx,Ajy)f(y)dy

∣∣∣∣∣
≤ C

∫
Rn

|detA|j
(1 + ρA(Aj(x− y)))N

|f(y)|dy

Therefore,

|Tjf(x)| ≤ C

(∫
ρA(Aj(x−y))≤1

|detA|j |f(y)|dy

+
∞∑
k=2

∫
| detA|k−1≤ρA(Aj(x−y))≤| detA|k

|detA|j
ρA(Aj(x− y))N

|f(y)|dy
)

≤ C|detA|−j
∫
ρA((x−y))≤| detA|−j

|f(y)|dy

+ C

∞∑
k=2

|detA|−k(N−1)

∫
ρA((x−y))≤| detA|k−j

1
|detA|k−j |f(y)|dy

and hence,

|Tjf(x)| ≤ C(MρA(f)(x) +
∞∑
k=2

|detA|−k(N−1)MρA(f)(x)).

Summing over k, by the L1-majorization of P (x, y), we have

|Tjf(x)| ≤ CMρA(f)(x)

for a constant C > 0 depending only on A. It is easy to see that Tjf(x) → cf(x) (c
is the constant in Lemma 7.4) if f(x) is a continuous function. Since the continuous
functions are dense in Lp and Tjf(x) is majorized by the maximal function MρA(f)(x),
it follows that Tjf(x) converges to cf(x) for any f ∈ Lp. On the other hand, since
{ϕj,k} is a frame and {φj,k} is its dual-frame, we have

f =
∑
j,k

〈f, ϕj,k〉φj,k,

therefore c = 1 and, hence, obtain our desired result. �
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Remark 7.1. Notice that c = 1 is a consequence of the assumption that {ϕj,k} is a
frame and {φj,k} is its dual-frame. If we define the operator P and Q by {cϕj,k}
and {φj,k} with constant c �= 1, then our argument is still valid but, in this case, the
convergence Tjf(x) → cf(x) with c �= 1.

8. Appendix

Lemma 8.1

Suppose A is an expansive matrix, R > 1, i, j ∈ Z, i ≥ j and x0 ∈ R
n. Suppose

g, h ∈ L1(Rn) satisfy

|g(x)| ≤ |detA|j/2
(
1 + ρA(Ajx)

)−R
(8.1)

and

|h(x)| ≤ |detA|i/2
(
1 + ρA(Ai(x− x0))

)−R
, (8.2)

then

|g ∗ h(x)| ≤ C|detA|−(i−j)/2 (
1 + ρA(Aj(x− x0))

)−R
(8.3)

for a constant C > 0.

Proof. It is a simple modification of the one for the isotropic case [6]. �

Lemma 8.2

Suppose A is an expansive matrix, L ∈ Z+, δ > 0, R > L + δ + 1 + an, i, j ∈ Z,

i ≥ j, and x0 ∈ R
n. Suppose g, h ∈ L1(Rn) and they satisfy

∣∣∂γ(g(A−jx))
∣∣ ≤ |detA|j/2 (1 + ρA(x))−R (8.4)

if 〈a, γ〉 ≤ L + δ + an,

∣∣h(A−ix)
∣∣ ≤ |detA|i/2

(
1 + ρA(x−Aix0)

)−R
; (8.5)

∫
xγh(x)dx = 0 if 〈a, γ〉 ≤ L + δ. (8.6)

Then for any 0 < � < min(δ, an), there exists a constant C > 0, depending only on

�, such that,

|g ∗ h(x)| ≤ C|detA|−(i−j)(L+ε0+1/2)
(
1 + ρA(Aj(x− x0))

)−R
(8.7)

where ε0 = δ −�.



250 Ho

Proof. In order to have a better understanding of the following proof, the reader is
recommended to read the corresponding estimates for the isotropic case, [6] p.150–152.
The proof for the anisotropic case is much more tedious than the isotropic case. We
provide a detailed proof for the completeness for the anisotropic case and indicate the
difference between the anisotropic and the isotropic cases. The first difference is found
on the Taylor expansion:

Theorem 8.3 (Anisotropic Taylor’s series).

Let ai > 0, 1 ≤ i ≤ n satisfying ai ≤ aj if i ≤ j and a = (a1, a2, · · · , an). For any

γ = (γ1, γ2, · · · , γn) ∈ Z
n, recall that 〈a, γ〉 denotes the “inner product” of a and γ,

that is, 〈a, γ〉 =
∑n
i=1 aiγi. Then, for any L > 0, y ∈ R

n and f(x) such that ∂γf exist

for 〈a, γ〉 ≤ L + δ + an, there exists a collection {ξγ}L<〈a,γ〉≤L+an , ξγ ∈ R
n, satisfying

|x − ξγ | ≤ |x − y| and a collection of constants {Cγ}〈a,γ〉≤L+an independent on f(x)
and y ∈ R

n such that

f(x) =
∑

〈a,γ〉≤L
Cγ(x− y)γ(∂γf)(y) + RL

where

RL =
∑

L<〈a,γ〉≤L+an

Cγ(x− y)γ(∂γf)(ξγ).

Sketch of the proof. First, for any fixed x2, · · ·xn, we consider f(x1, x2, · · ·xn)
as a function of x1 and represent it by the one-variable Taylor series to the order [L/a1].
That is, for any y1 ∈ R, there exist a ξ1 ∈ R with |x1 − ξ1| ≤ |x1 − y1| such that

f(x1, x2, · · · , xn) =
∑

|γ1|≤[L/a1]

1
γ1!

(x1 − y1)γ1(∂γ1x1
f)(y1, x2, . . . , xn) + R (8.8)

where
R =

1
([L/a1] + 1)!

(x1 − y1)[L/a1]+1(∂[L/a1]+1
x1

f)(ξ1, x2, . . . , xn).

Therefore, for γ = ([L/a1] + 1, 0, · · · , 0), ξγ = (ξ1, x2, . . . , xn) is the variable for the
expansion for RL.

Next, for each term (∂γ1x1
f)(y1, x2, . . . , xn) on the right hand side of (8.8), we

consider it as a function of x2 and expand it by the one-variable Taylor series with
order [(L− a1γ1)/a2]. Hence, for any y2 ∈ R, we have

(∂γ1x1
f)(x1, x2, · · · , xn)

=
∑

|γ2|≤[(L−a1γ1)/a2]

1
γ2!

(x2 − y2)γ2(∂γ1x1
∂γ2x2

f)(y1, y2, x3, . . . , xn) + R (8.9)

where

R =
1

([(L− a1γ1)/a2] + 1)!
(x2 − y2)[(L−a1γ1)/a2]+1

× (∂γ1x1
∂[(L−a1γ1)/a2]+1
x2

f)(y1, ξ2, x3, . . . , xn)
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for some ξ2 ∈ R with |ξ2 − x2| ≤ |x2 − y2|. Hence, for any γ1 ≤ [L/a1], if γ =
(γ1, [(L− a1γ1)/a2] + 1, 0, · · · , 0), then ξγ = (y1, ξ2, . . . , xn).

We expand each term (∂γ1x1
∂γ2x2

f)(y1, y2, x3, . . . , xn) on the right hand side of (8.9)
by Taylor’s series with respect to the variable x3 and repeat the above procedure until
we reach the variable xn. This, then, give us our desired result. �

The proof of Lemma 8.2 is based on the decomposition of R
n into three domains,

D1, D2 and D3. On D1 the estimate of the remainder term in the Taylor expansion
provides the desired result. On D2 and D3, the estimates rely on the decay satisfied
by molecules.

Using translation and dilation, we may assume j = 0 and x0 = 0. Let D1 = {y ∈
R
n : ρA(y − x) < 1}, D2 = {y ∈ R

n : ρA(y − x) ≥ 1 and ρA(y) ≤ ρA(x)/2H} and
D3 = {y ∈ R

n : ρA(y − x) ≥ 1 and ρA(y) > ρA(x)/2H} where H is the constant of
the quasi-subadditivity inequality. Then, for any collection of constants Cγ , using the
vanishing moment conditions satisfied by h(x), we have

|g ∗ h(x)| ≤
∫

Rn

|g(y) −
∑

〈a,γ〉≤L+δ

Cγ(y − x)γ(∂γg)(x)||h(x− y)|dy

=
∫
D1

+
∫
D2

+
∫
D3

.

Case 1: Estimate on D1

For y ∈ D1, using the Anisotropic Taylor expansion, Theorem 8.3, to the order
L + δ, we have a collection of constants Cγ such that

g(y) −
∑

〈a,γ〉≤L+δ

Cγ(y − x)γ(∂γg)(x) =
∑

L+δ<〈a,γ〉≤L+δ+an

Cγ(y − x)γ(∂γg)(wγ) (8.10)

for some wγ ∈ R
n that satisfies ρA(wγ − x) ≤ C for a constant C > 0. We have

|wγ − x| ≤ |x− y| by the Anisotropic Taylor’s Theorem, therefore, by Lemma 2.2, we
have

ρA(wγ − x) ≤ C max(|x− wγ |ζ , |x− wγ |τ ) ≤ C max(|x− y|ζ , |x− y|τ )
≤ C max(ρA(x− y)ζτ , ρA(x− y)τ

2
) ≤ C

because ρA(x− y) < 1.
By (2.4) or (3.6), for any � > 0, there is a constant C > 0 such that

|xγ | ≤ CρA(x)〈a,γ〉− for any ρA(x) < 1 and 〈a, γ〉 ≤ L + δ + an.

Therefore, we may replace |(y − x)γ | by CρA(x − y)〈a,γ〉−. Furthermore, we can
replace ρA(wγ) by ρA(x) because

ρA(x) ≤ H[ρA(x− wγ) + ρA(wγ)] ≤ H[C + ρA(wγ)] ≤ C[1 + ρA(wγ)].
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Therefore, for any � > 0, there exists C > 0 such that,

|g(y)−
∑

〈a,γ〉≤L+δ

Cγ(y−x)γ(∂γg)(x)| ≤ C

( ∑
L+δ<〈a,γ〉

〈a,γ〉≤L+δ+an

ρA(x−y)〈a,γ〉−(1+ρA(x))−R
)

by conditions (8.4). Hence, we have

∫
D1

≤ C|detA|i/2(1+ρA(x))−R
[ ∑

L+δ<〈a,γ〉
〈a,γ〉≤L+δ+an

∫
D1

ρA(x−y)〈a,γ〉−(1+ρA(Ai(x−y)))−Rdy
]
.

Furthermore, replacing the domain of integration by R
n and using a change of

variable in the integral, we have
∫
D1

≤ C|detA|−i/2(1+ρA(x))−R
[ ∑
L+δ<〈a,γ〉

〈a,γ〉≤L+δ+an

∫
Rn

ρA(A−i(x−y))〈a,γ〉−(1+ρA(x−y))−Rdy
]
.

Therefore,
∫
D1

≤ C(1 + ρA(x))−R
[ ∑

L+δ<〈a,γ〉
〈a,γ〉≤L+δ+an

|detA|−i/2−i〈a,γ〉+i

×
∫

Rn

ρA(x− y)〈a,γ〉−(1 + ρA(x− y))−Rdy
]

≤ C|detA|−i(L+δ−+1/2)(1 + ρA(x))−R

because R > L + δ + an + 1, i ≥ 0.

Case 2: Estimate on D2

For y ∈ D2, we have

ρA(x− y) ≥ ρA(x)/H − ρA(y) ≥ ρA(x)/H − ρA(x)/2H = ρA(x)/2H.

On the other hand,

ρA(x− y) ≤ H
(
ρA(x) + ρA(y)

)
≤ HρA(x) + ρA(x)/2 = (H + 1/2)ρA(x);

therefore,
∫
D2

≤ C|detA|i/2
∫
D2

[
(1 + ρA(y)|)−R

(
|detA|iρA(x− y)

)−R
+

∑
〈a,γ〉≤L+δ

|(x− y)γ |
(1 + ρA(x))R

(
|detA|iρA(x− y)

)−R]
dy

and, hence, replacing |(y−x)γ | by CρA(x− y)〈a,γ〉+ (since ρA(x− y) ≥ 1), we have
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∫
D2

≤ C|detA|i/2
[ ∫
D2

(1 + ρA(y))−R
(
|detA|iρA(x− y)

)−R
+

∑
〈a,γ〉≤L+δ

ρA(x− y)〈a,γ〉+

(1 + ρA(x))R
(
|detA|iρA(x)

)−R]
dy,

where we use ρA(x − y) ∼ ρA(x) for the last term. Because ρA(x) ∼ ρA(x − y) ≥ 1,
we have

∫
D2

≤ C|detA|−i(R−1/2)(1 + ρA(x))−R

×
[ ∫

1
(1 + ρA(y))R

dy +
∑

〈a,γ〉≤L+δ

ρA(x)〈a,γ〉+

(1 + ρA(x))R

∫
ρA(y)≤ρA(x)/2H

dy

]

≤ C|detA|−i(R−1/2)(1 + ρA(x))−R ≤ C|detA|−i(L+δ+1/2)(1 + ρA(x))−R

as needed. Since R > L + δ + an + 1, and an > �, hence, ρA(x)〈a,γ〉+�+1

(1+ρA(x))R
≤ 1 for those

γ satisfies 〈a, γ〉 ≤ L + δ.

Case 3: Estimate on D3

For y ∈ D3, we have ρA(y) ≥ ρA(x)/2H and, hence,

∫
D3

≤ C

∫
D3

[
1

(1 + ρA(y))R
+

∑
〈a,γ〉≤L+δ

|(x− y)γ

(1 + ρA(x))R

]

× |detA|i/2
(
1 + |detA|iρA(x− y)

)−R
dy

≤ C

∫
D3

[
1

(1 + ρA(y))R
+

∑
〈a,γ〉≤L+δ

ρA(x− y)〈a,γ〉+

(1 + ρA(x))R

]

× |detA|i/2
(
|detA|iρA(x− y)

)−R
dy

≤ C|detA|−i(R−1/2)(1 + ρA(x))−R

×
∫

1≤ρA(x−y)

( ∑
〈a,γ〉≤L+δ

ρA(x− y)〈a,γ〉−R+
)
dy.

Since � < min(δ, an), γ ∈ Z
n, above, satisfies 〈a, γ〉 ≤ L + δ, R > L + δ + an + 1 and

i ≥ 0 we have,

∫
D3

≤ C|detA|−i(R−1/2)(1 + ρA(x))−R ≤ C|detA|−i(L+δ+1/2)(1 + ρA(x))−R. �
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