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Abstract

Certain weighted norm inequalities for integral operators with non-negative, mono-
tone kernels are shown to remain valid when the weight is replaced by a monotone
majorant or minorant of the original weight. A similar result holds for operators
with quasi-concave kernels. To prove these results a careful investigation of the
functional properties of the monotone envelopes of a non-negative function is car-
ried out. Applications are made to function space embeddings of the cones of
monotone functions and quasi-concave functions.

Under weaker partial orders on non-negative functions, monotone envelopes
are re-examined and the level function is recognized as a monotone envelope in two
ways. Using the level function, monotonicity can be transferred from the kernel to
the weight in inequalities restricted to a cone of monotone functions.

1. Introduction

This paper is a contribution to the theory of weighted norm inequalities for positive
integral operators but will also be of interest to those studying function spaces. We
show that the monotonicity of the kernel of an integral operator can be transferred
to the weight in a norm inequality. The result is applied to embeddings of the cone
of non-increasing functions between general rearrangement-invariant spaces and to
embeddings of the cone of quasi-concave functions between weighted Lebesgue spaces.

The usual partial order on non-negative functions is pointwise, that is, u ≤ v

provided u(x) ≤ v(x) for (almost) all x. For non-negative, λ-measurable functions on
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R we can look at the weaker order relation u ≤↓ v given by∫
(−∞,x]

u dλ ≤
∫

(−∞,x]
v dλ, x ∈ R.

This relation is important in the study of monotone functions because u ≤↓ v if and
only if ∫

R

fu dλ ≤
∫

R

fv dλ

for all non-negative, non-increasing functions f . (See Corollary 1.3 below.) Naturally,
there is a corresponding relation u ≤↑ v defined by∫

[x,∞)

u dλ ≤
∫

[x,∞)

v dλ, x ∈ R

and satisfying u ≤↑ v if and only if∫
R

fu dλ ≤
∫

R

fv dλ

for all non-negative, non-decreasing functions f . Although the relations ≤↓ and ≤↑
are reflexive and transitive on the set of all non-negative functions they are not partial
orders on this large domain because antisymmetry may fail when the integrals used to
define them are infinite.

It is essential to understand the interplay between these order relations when work-
ing with monotone functions. To further this understanding we examine, in Section 2,
the four monotone envelopes of a non-negative function u: The least non-increasing ma-
jorant, the greatest non-increasing minorant, the least non-decreasing majorant, and
the greatest non-decreasing minorant. There are not just four monotone envelopes,
however, as we can change order relations and thereby change our notions of least,
greatest, majorant and minorant. Looking at monotone envelopes with respect to the
order relations ≤↓ and ≤↑ leads to some surprising and useful results. For instance,
the level function of u makes its appearance as both a least non-increasing majorant of
u with respect to ≤↓ and a greatest non-increasing minorant of u with respect to ≤↑.

Studying the various monotone envelopes in Section 2 leads to our main results, in
Section 3, for transferring monotonicity from the kernel to the weight in certain norm
inequalities. Theorems 4.1 and 4.2 are concerned with transferring quasi-concavity.
Applications extending embedding theorems for monotone functions are given in
Theorem 3.7 and Corollary 3.8 and for quasi-concave functions in Theorem 4.3 and
Corollary 4.4. Section 5 is devoted to proving Theorem 2.1 by a series of lemmas that
set out the principle of “pushing mass.” In Section 6, we expose the simple structure
of the level function, a result that was previously known only for bounded functions.

In the remainder of this section we introduce notation, prove some basic results
in their natural generality, and recall those properties of the level function that we
will require in the sequel. For notation and background in Banach Function Spaces we
refer to [1].
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Let λ be a σ-finite measure on the real line. In order for monotone functions to be
λ-measurable we assume that all Borel sets are λ-measurable. Let L+

λ be the collection
of all non-negative, λ-measurable functions on R and let L+

λ (S) denote those functions
in L+

λ which vanish off S ⊂ R. We denote the collections of monotone functions on R

by

L↓
λ = {f ∈ L+

λ : f is non-increasing} and L↑
λ = {f ∈ L+

λ : f is non-decreasing}.

The two operators of integration we will need are I and I∗ defined by

If(x) =
∫

(−∞,x]
f dλ and I∗f(x) =

∫
[x,∞)

f dλ.

Note that for all u, v ∈ L+
λ we have∫

R

(Iu)v dλ =
∫

R

u(I∗v) dλ.

Now that we have defined the operators I and I∗ we prefer to write Iu ≤ Iv rather
than the equivalent u ≤↓ v and to write I∗u ≤ I∗v rather than the equivalent u ≤↑ v.

It is clear that the operator I takes non-negative functions to non-decreasing
functions so I(L+

λ ) ⊂ L↑
λ. In Lemma 1.2 we show that the subset is quite a large one.

To begin we show that I(L+
λ ) has a useful lattice property.

Lemma 1.1

If u, v ∈ L+
λ then there exists w ∈ L+

λ such that Iw = max(Iv, Iv).

Proof. Set W = max(Iu, Iv) and let M = sup {x ∈ R : W (x) < ∞}. If M = −∞ the
result is trivial, otherwise W is non-decreasing and right continuous on (−∞,M) and
W (−∞) = 0. By [8, Theorem 12, p. 301] there exists a Borel measure µ such that

W (x) =
∫

(−∞,x]
dµ

for all x < M . We show that µ is absolutely continuous with respect to λ on (−∞,M).
Note that both uλ and vλ are finite on compact subsets of (−∞,M) and hence are
Baire measures on (−∞,M). By [8, Corollary 12, p. 340] both uλ and vλ are regular
measures on (−∞,M). Thus, if E ⊂ (−∞,M) with λ(E) = 0 and ε > 0 then
uλ(E) = vλ(E) = 0 as well so we can find an open set O with E ⊂ O ⊂ (−∞,M)
such that ∫

O

u dλ < ε/2 and
∫
O

v dλ < ε/2.

Now write O = ∪i(ai, bi), a union of its connected components, to get

µ(E) =
∫
E

dµ ≤
∫
O

dµ =
∑
i

W (bi−) −W (ai)

≤
∑
i

Iu(bi−) − Iu(ai) + Iv(bi−) − Iv(ai) =
∫
O

u dλ+
∫
O

v dλ < ε.
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(Here we have used the observation that if A ≥ C and B ≥ D then max(A,B) −
max(C,D) ≤ A − C + B − D.) Since ε was arbitrary, µ(E) = 0 so µ is absolutely
continuous with respect to λ. By the Radon-Nikodym Theorem there is a w ∈ L+

λ

such that µ = wλ and we have

W (x) =
∫

(−∞,x]
w dλ

for x < M . If M = ∞ we are done. If M is an atom for λ then it is a simple matter
to choose a value for w(M) so that

W (M) =
∫

(−∞,M ]

w dλ.

For x > M , W (x) = ∞ so we may set w = max(u, v) on (M,∞) to complete the
proof. �

Lemma 1.2

If f ∈ L↑
λ then there exist un ∈ L+

λ such that the sequence Iun is non-decreasing

and converges to f pointwise, λ-almost everywhere.

Proof. We begin by replacing f(x) by

ess supλ
t≤x

f(t).

Since f is non-decreasing, the two functions agree λ-almost everywhere and therefore
this new f satisfies

f(x) = ess supλ
t≤x

f(t) = sup
{
y : λ{t ≤ x : f(t) > y} > 0

}
.

Let fj = min(f − 1/j, j) and note that fj increases to f pointwise as j → ∞. Since
for all a,

fj(a) < f(a) = sup
{
y : λ{t ≤ a : f(t) > y} > 0

}
the set

{t ≤ a : f(t) > fj(a)}

has positive λ-measure and since λ is σ-finite we can choose a subset Ea,j of finite,
positive λ-measure. Let

va,j = fj(a)λ(Ea,j)−1χEa,j .

It is easy to check that Iva,j ≤ f(x) for x ∈ R and that Iva,j(a) = fj(a).
Since λ is σ-finite, it has at most countably many atoms. Hence we can choose a

countable dense subset {ai} of R which contains all the atoms of λ. Induction applied
to Lemma 1.1 shows that for each positive integer n there exists a un ∈ L+

λ such that

Iun = max
i=1,...,n;j=1,...,n

{Ivai,j}.
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It is evident that Iun is a non-decreasing sequence and that Iun ≤ f for each n. It
remains to show that

(1.1) lim
n→∞

Iun(x) = f(x)

for λ-almost every x. For each ai and each n ≥ i we have

f(ai) ≥ Iun(ai) ≥ Ivai,n(ai) = fn(ai)

so (1.1) holds for x = ai. If x is not one of the ai then for each ai < x we have

f(ai) = lim
n→∞

Iun(ai) ≤ lim
n→∞

Iun(x) ≤ f(x).

Since the ai are dense this implies that

f(x−) ≤ lim
n→∞

Iun(x) ≤ f(x).

In particular, if x is a point of continuity of f then (1.1) holds. Since f is non-decreasing
it has at most countably many points of discontinuity so the set

{x ∈ R \ {ai} : f(x−) = f(x)}
is countable and contains no atoms of λ. Therefore it has zero λ-measure. This
completes the proof. �

Corollary 1.3
Suppose v, w ∈ L+

λ . If f ∈ L↑
λ and I∗v ≤ I∗w or if f ∈ L↓

λ and Iv ≤ Iw then∫
R

fv dλ ≤
∫

R

fw dλ.

Proof. Suppose f ∈ L↑
λ and I∗v ≤ I∗w. By Lemma 1.2 we have∫

R

fv dλ = sup
Iu≤f

∫
R

(Iu)v dλ = sup
Iu≤f

∫
R

u(I∗v) dλ

≤ sup
Iu≤f

∫
R

u(I∗w) dλ = sup
Iu≤f

∫
R

(Iu)w dλ ≤
∫

R

fw dλ.

The second part follows from the first by the change of variable x→ −x. �
To work with the level function we introduce a class of averaging operators. Sup-

pose {J} is a countable (or finite) collection of disjoint intervals each of finite, positive
λ-measure and define the operator A by

Af(x) =




1
λ(J)

∫
J

f dλ, x ∈ J ∈ {J}

f(x), x /∈ ∪{J}
We denote the collection of all such operators A by A.

Proposition 1.4
Suppose that A ∈ A. Then

i) A is formally self-adjoint, that is, for all f, g ∈ L+
λ ,∫

R

(Af)g dλ =
∫

R

f(Ag) dλ.

ii) If f ∈ L↓
λ then Af ∈ L↓

λ and IAf ≤ If .

iii) If f ∈ L↑
λ then Af ∈ L↑

λ and If ≤ IAf .
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Proof. Suppose f, g ∈ L+
λ . Then

∫
R

(Af)g dλ =
∫

R\∪J
fg dλ+

∑
J

∫
J

(
1

λ(J)

∫
J

f dλ

)
g dλ

=
∫

R\∪J
fg dλ+

∑
J

∫
J

f

(
1

λ(J)

∫
J

g dλ

)
dλ =

∫
R

f(Ag) dλ.

This is (i).
Replacing a function by its average on an interval preserves monotonicity so the

first statements of both (ii) and (iii) are clear.
For the second statements of (ii) and (iii), fix y ∈ R and set χ = χ(−∞,y]. Replacing

χ by its average on an interval has no effect when χ is constant on the interval so
applying A to χ is easy: If y ∈ J for some J then

Aχ(t) =




1, t ≤ y, t /∈ J

λ((−∞, y] ∩ J)
λ(J)

, t ∈ J

0, otherwise.

If y /∈ ∪J then Aχ = χ. In the latter case we certainly have IAχ ≤ Iχ and I∗χ ≤ I∗Aχ.
These hold in the former case as well: Since

IAχ(x) =



λ((−∞, x]), x ≤ y, x /∈ J

λ((−∞, x] ∩ Jc) + λ((−∞, x] ∩ J)
λ((−∞, y] ∩ J)

λ(J)
, x ∈ J

λ((−∞, y]), otherwise

we easily see that IAχ(x) is no greater than λ((−∞,min(x, y)]) = Iχ(x). Since

I∗Aχ(x) =




0, x ≥ y, x /∈ J

λ([x,∞) ∩ J)
λ((−∞, y] ∩ J)

λ(J)
, x ∈ J

λ([x, y]), otherwise

we easily see that I∗Aχ(x) is no less than λ([x, y])χ(−∞,y](x) = I∗χ(x). Now that
we have IAχ ≤ Iχ and I∗χ ≤ I∗Aχ we can apply Corollary 1.3 to see that for any
f ∈ L↓

λ,

IAf(y) =
∫

R

(Af)χdλ =
∫

R

f(Aχ) dλ ≤
∫

R

fχ dλ = If(y)

and for any f ∈ L↑
λ,

IAf(y) =
∫

R

(Af)χdλ =
∫

R

f(Aχ) dλ ≥
∫

R

fχ dλ = If(y)

Since y was arbitrary these complete the proof. �
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The level function of u depends on the underlying measure λ. To avoid technical
difficulties we require that λ satisfy

(1.2) λ(−∞, x] <∞, x ∈ R,

when working with the level function.

Proposition 1.5

Suppose that λ satisfies (1.2). To each u ∈ L+
λ there corresponds a function

uo ∈ L↓
λ, called the level function of u with respect to λ such that

i) Iu ≤ Iuo.

ii) If un ↑ u then uon ↑ uo. That is, if an increasing sequence of functions converges

pointwise λ-almost everywhere to u then the sequence of their level functions is

increasing and converges pointwise λ-almost everywhere to the level function of u.

iii) If u ∈ L+
λ is bounded and vanishes on [M,∞) for some M then there exists an

Au ∈ A such that uo = Auu.

iv) I∗uo ≤ I∗u.

Proof. The structure of the level function of u is given in [10, Theorem 4.4, Defini-
tion 4.6, Corollary 4.8 and Theorem 4.9]. There it is shown that uo is non-negative
and non-increasing and that (i) holds. Regarding part (iii), we take the intervals of Au
to be the intervals Ii of [10, Definition 4.6 and Corollary 4.8]. It is not assumed in [10]
that u is supported on (−∞,M ] so the possibility of an interval of infinite λ-measure
is considered there. An easy argument shows that if u is supported on (−∞,M ] then
all the intervals are contained in (−∞,M ] and hence are of finite λ-measure. Clearly
we may discard those of zero λ-measure.

As a consequence of [10, Theorem 5.2] the property in part (ii) can be used to
extend the level function construction by monotonicity. In [11, Theorem 5.2] it is
shown that the extended construction retains the property.

In view of (ii) above and the Monotone Convergence Theorem we observe that it
is enough to work with bounded u vanishing on [M,∞) for some M when proving part
(iv). Since in this case we have uo = Auu it follows that∫

R

uo dλ =
∫

R

u dλ <∞.

Now part (iv) follows from part (i): For each x ∈ R,

I∗uo(x) =
∫

R

uo dλ− Iuo(x−) ≤
∫

R

u dλ− Iu(x−) = I∗u(x). �

At one point in the sequel we require an extension of the Proposition 1.5(iii) in
which the restriction to bounded functions vanishing on [M,∞) is removed. Because
of the technical nature of this result and the delicate argument it requires we defer its
statement and proof to Section 6.
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2. Monotone envelopes

For u ∈ L+
λ we define the monotone envelopes of u as follows: The least non-increasing

majorant of u is
u↓(x) = ess supλ

t≥x
u(t)

and the greatest non-increasing minorant of u is

u↓(x) = ess infλ
t≤x

u(t).

The two non-decreasing envelopes of u are defined analogously,

u↑(x) = ess supλ
t≤x

u(t) and u↑(x) = ess infλ
t≥x

u(t).

A routine measure theory exercise shows that for λ-almost every x ∈ R

u↓(x) ≤ u(x) ≤ u↓(x) and u↑(x) ≤ u(x) ≤ u↑(x).

For f and g in L+
λ the condition Ig ≤ If is a weaker order relation than g ≤ f .

Consequently, the supremum in the obvious identity

sup
g≤f

∫
R

gu dλ =
∫

R

fu dλ

may become larger when the condition g ≤ f is weakened to Ig ≤ If . Our first
theorem makes this observation precise.

Theorem 2.1

Suppose f, u ∈ L+
λ . Then

(2.1) sup
Ig≤If

∫
R

gu dλ =
∫

R

fu↓ dλ

and

(2.2) inf
Ig≥If

∫
R

gu dλ =
∫

R

fu↓ dλ.

Also

(2.3) sup
I∗g≤I∗f

∫
R

gu dλ =
∫

R

fu↑ dλ

and

(2.4) inf
I∗g≥I∗f

∫
R

gu dλ =
∫

R

fu↑ dλ.
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A careful proof is given in Section 5. Here we sketch the essential idea of the proof
of (2.1): The function u↓ majorizes u and is non-increasing so by Corollary 1.3 we have∫

R

gu dλ ≤
∫

R

gu↓ dλ ≤
∫
fu↓ dλ

for each g with Ig ≤ If . Thus

sup
Ig≤If

∫
R

gu dλ ≤
∫

R

fu↓ dλ.

For the other inequality in (2.1) we fix f and construct gf as follows: A well-behaved
function u agrees with u↓ except on a collection of intervals where u↓ is constant. On
each such interval we push the mass of f over until it sits on the right endpoint. The
result is a “function” gf that is zero inside the intervals where u = u↓. Thus∫

R

gfu dλ =
∫

R

gfu
↓ dλ.

Also, the mass of f has been pushed to the right to form gf so for each x

Igf (x) ≤ If(x).

Now we have

sup
Ig≤If

∫
R

gu dλ ≥
∫

R

gfu dλ =
∫

R

gfu
↓ dλ =

∫
R

fu↓ dλ.

The last equality holds because the mass of f has been shifted only on intervals where
u↓ is constant.

Despite the vagueness of “pushing mass” and the strong simplifying assumption
on u the basic idea in this sketch survives in the proofs of Section 5.

For the next result we look at another kind of monotone envelope—the level
function. We show that the level function uo of u with respect to λ is a least non-
increasing majorant of u when the order u ≤ v is replaced by Iu ≤ Iv. Surprisingly,
when the order u ≤ v is replaced by I∗u ≤ I∗v the same level function becomes
a greatest non-increasing minorant of u. As suggested by the use of the indefinite
article above, it may happen that a function u has more than one least non-increasing
majorant when the order is ≤↓. This is because the order relation lacks antisymmetry
for very large functions. If Iuo(x) < ∞ for x ∈ R then the level function uo is the
unique least non-increasing majorant of u with order relation ≤↓. A similar comment
applies to the greatest non-increasing minorant of u with order relation ≤↑.

As we see in Examples 2.4 and 2.6 there need be no greatest non-increasing mi-
norant with respect to the order ≤↓ nor least non-increasing majorant with respect to
the order ≤↑.

Lemma 2.2

The level function of u is a least non-increasing majorant of u with respect to the
order relation ≤↓. That is, Iu ≤ Iuo and if v ∈ L↓

λ with Iu ≤ Iv then Iuo ≤ Iv. Also,
the level function of u is a greatest non-increasing minorant of u with respect to the
order relation ≤↑. That is, I∗uo ≤ I∗u and if v ∈ L↓

λ with I∗v ≤ I∗u then I∗v ≤ I∗uo.
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Proof. In view of Proposition 1.5(ii) and the Monotone Convergence Theorem it is
enough to prove the first part of the lemma for u bounded and vanishing on [M,∞)
for some M . Suppose we have such a u and a v with v ∈ L↓

λ and Iu ≤ Iv. By
Proposition 1.5(i), Iu ≤ Iuo and by Proposition 1.5(iii) we can choose Au ∈ A so that
uo = Auu. Fix x ∈ R and let χ = χ(−∞,x]. Then

Iuo(x) =
∫

R

χuo dλ =
∫

R

χ(Auu) dλ =
∫

R

(Auχ)u dλ.

Since χ is non-increasing, so is Auχ. Therefore the hypothesis Iu ≤ Iv and Corol-
lary 1.3 show that

∫
R

(Auχ)u dλ ≤
∫

R

(Auχ)v dλ =
∫

R

χ(Auv) dλ.

Proposition 1.4(ii) shows that IAuv ≤ Iv and since χ ∈ L↓
λ, Corollary 1.3 implies that

∫
R

χ(Auv) dλ ≤
∫

R

χv dλ = Iv(x).

These together yield Iuo ≤ Iv as required.
For the second half of the lemma we apply Proposition 1.5(iv) to see that I∗uo ≤

I∗u. Now suppose that v ∈ L↓
λ with I∗v ≤ I∗u. Our object is to show that I∗v ≤ I∗uo.

We do this in two cases depending on whether or not u is integrable.
If

∫
R
u dλ < ∞ then for each positive integer n set un = min(u, n)χ(−∞,n] and

choose An ∈ A such that Anun = uon. Fix x ∈ R and let χ = χ[x,∞). Since χ ∈ L↑
λ,

Proposition 1.4 yields Iχ ≤ IAnχ for all n > 0 so Corollary 1.3 shows

I∗v(x) =
∫

R

χv dλ ≤
∫

R

(Anχ)v dλ

because v is non-increasing. Now Anχ is non-decreasing and I∗v ≤ I∗u so Corollary 1.3
shows that∫

R

(Anχ)v dλ ≤
∫

R

(Anχ)u dλ =
∫

R

(Anχ)(u− un) dλ+
∫

R

(Anχ)un dλ.

Notice that for any n, Anχ ≤ 1. Since
∫

R
u dλ <∞ and u−un tends to zero pointwise,

the Dominated Convergence Theorem shows that

∫
R

(Anχ)(u− un) dλ→ 0 as n→ ∞.

Proposition 1.5(ii) and the Monotone Convergence Theorem show that as n→ ∞,

∫
R

(Anχ)un dλ =
∫

R

χ(Anun) dλ =
∫

R

χuon dλ→
∫

R

χuo dλ = I∗uo(x).
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Putting these together yields I∗v(x) ≤ I∗uo(x) and since x was arbitrary this completes
the proof of the case

∫
R
u dλ <∞.

To handle the case
∫

R
u dλ = ∞ we first observe that by the Monotone Conver-

gence Theorem it is enough to prove the result for v satisfying
∫

R
v dλ < ∞. Next

we need the following fact which depends on the σ-finiteness of λ: If
∫

R
v dλ < ∞

and
∫

R
u dλ = ∞ with I∗v ≤ I∗u then there exists a w ∈ L+

λ with w ≤ u such that∫
R
w dλ <∞ and I∗v ≤ I∗w. The construction of such a w, an easy exercise in measure

theory, is left to the reader. Having w we use the previous case to get

I∗v ≤ I∗wo ≤ I∗uo.

Note that since w ≤ u it is a consequence of Proposition 1.5(ii) that wo ≤ uo. �
Now we present an analogue of (2.1) with f and g restricted to be non-increasing.

The level function appears here in its role of least non-increasing majorant of u with
respect to the order ≤↓.

Theorem 2.3

Suppose λ satisfies (1.2) and u ∈ L+
λ . If f ∈ L↓

λ then

(2.5) sup
g∈L

↓
λ

Ig≤If

∫
R

gu dλ =
∫

R

fuo dλ.

Proof. By Proposition 1.5(ii) and the Monotone Convergence Theorem it is enough to
prove the theorem assuming that u is bounded and vanishes on [M,∞) for some M .
If g ∈ L↓

λ and Ig ≤ If then by Proposition 1.5(i) and Corollary 1.3 applied twice we
have ∫

R

gu dλ ≤
∫

R

guo dλ ≤
∫

R

fuo dλ

since uo is non-increasing. This proves the inequality “≤” of (2.5).
For the reverse inequality apply Proposition 1.5(iii) to choose Au ∈ A such that

Auu = uo. Then Proposition 1.4(ii) shows that Auf ∈ L↓
λ and IAuf ≤ If . Thus

sup
g∈L

↓
λ

Ig≤If

∫
R

gu dλ ≥
∫

R

(Auf)u dλ =
∫

R

f(Auu) dλ =
∫

R

fuo dλ.

This completes the proof. �
Now that we have the analogue (2.5) of (2.1) it is natural to ask if there is an

analogue of (2.2) with f and g restricted to be non-increasing. Surprisingly, the answer
is no. The following example shows that no direct analogue is possible.

Example 2.4: Let λ be Lebesgue measure on (0, 3), that is, dλ(x) = χ(0,3)(x) dx, and
set u = 3χ(0,1) + χ(2,3). Then there is no function uo which satisfies

(2.6) inf
g∈L

↓
λ

Ig≥If

∫
R

gu dλ =
∫

R

fuo dλ

for all f ∈ L↓
λ.
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Proof. For each s ∈ (0, 4) set

fs = 4χ(0,1] + sχ(1,3).

Observe that

inf
g∈L

↓
λ

Ig≥Ifs

∫
R

gu dλ = inf
g∈L

↓
λ

Ig≥Ifs

3
∫ 1

0

g +
∫ 3

2

g ≥ inf
g∈L

↓
λ

Ig≥Ifs

3
∫ 1

0

g ≥ 3
∫ 1

0

fs = 12.

Also, since
∫ 1

0
g −

∫ 2

1
g ≥ 0 for g ∈ L↓

λ, we have

inf
g∈L

↓
λ

Ig≥Ifs

∫
R

gu dλ = inf
g∈L

↓
λ

Ig≥Ifs

∫ 1

0

g +
(∫ 1

0

g −
∫ 2

1

g

)
+

∫ 3

0

g ≥
∫ 1

0

fs +
∫ 3

0

fs = 8 + 2s.

These two observations yield

(2.7) inf
g∈L

↓
λ

Ig≥Ifs

∫
R

gu dλ ≥ max(12, 8 + 2s).

In fact this inequality is equality, as we show in two cases. If 0 < s ≤ 2 then we set
gs = 4χ(0,1] + 2sχ(1,2), note that gs ∈ L↓

λ and Igs ≥ Ifs, and conclude that

inf
g∈L

↓
λ

Ig≥Ifs

∫
R

gu dλ ≤
∫

R

gsu dλ = 12.

If 2 ≤ s ≤ 4 then we set gs = 4χ(0,2] + (2s − 4)χ(2,3), again note that gs ∈ L↓
λ and

Igs ≥ Ifs, and conclude that

inf
g∈L

↓
λ

Ig≥Ifs

∫
R

gu dλ ≤
∫

R

gsu dλ = 8 + 2s.

Equality in (2.7) turns (2.6), with f replaced by fs, into

max(12, 8 + 2s) =
∫

R

fsuo dλ = 4
∫ 1

0

uo + s

∫ 3

1

uo.

It is clear that this cannot hold for all s ∈ (0, 4) no matter what the function uo
may be as the right hand side has constant slope while the left hand side does not. �

A similar situation occurs when we consider restricting (2.1) and (2.2) to non-
decreasing functions f and g. The level function provides an analogue of (2.2) but
there is no analogue of (2.1).
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Theorem 2.5

Suppose λ satisfies (1.2) and u ∈ L+
λ . If f ∈ L↑

λ then

(2.8) inf
g∈L

↑
λ

Ig≥If

∫
R

gu dλ =
∫

R

fuo dλ.

Proof. If g ∈ L↑
λ and Ig ≥ If then by Proposition 1.5(iv) and Corollary 1.3 applied

twice we have ∫
R

gu dλ ≥
∫

R

guo dλ ≥
∫

R

fuo dλ

because uo is non-increasing. This proves the inequality “≥” of (2.8).
For the reverse inequality we apply Theorem 6.1 to u to obtain intervals Jleft and

Jright and an operator A ∈ A such that uo = Au off Jleft ∪ Jright. Note that all the
intervals of A are contained in R \ (Jleft ∪ Jright). Define g by g = Af on R \ Jright and

g = lim
x→∞

1
λ((−∞, x] ∩ Jright)

∫
(−∞,x]∩Jright

f dλ

on Jright. Because f is non-decreasing the limit is non-decreasing and therefore exists.
It is easy to check that g is non-decreasing as well. By Proposition 1.4(iii) we see that
Ig ≥ If on R \ Jright and for x ∈ Jright

Ig(x) =
∫

(−∞,x]\Jright

g dλ+
∫

(−∞,x]∩Jright

g dλ

≥
∫

(−∞,x]\Jright

f dλ+
∫

(−∞,x]∩Jright

f dλ = If(x)

as well. To complete the proof we show that∫
R

gu dλ =
∫

R

fuo dλ.

Proposition 1.4(i) implies ∫
R\Jright

gu dλ =
∫

R\Jright

fuo dλ

so we need only show that ∫
Jright

gu dλ =
∫
Jright

fuo dλ.

That is, by Theorem 6.1(iii), that(
lim
x→∞

1
λ((−∞, x] ∩ Jright)

∫
(−∞,x]∩Jright

f dλ

)∫
Jright

u dλ

=
∫
Jright

f dλ

(
lim sup
x→∞

1
λ((−∞, x] ∩ Jright)

∫
(−∞,x]∩Jright

u dλ

)
.
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It is not difficult to recognise both sides as

lim sup
x→∞

1
λ((−∞, x] ∩ Jright)

∫
(−∞,x]∩Jright

u dλ

∫
(−∞,x]∩Jright

f dλ

to complete the proof. �

Example 2.6: Let λ be Lebesgue measure on (0, 3), that is, dλ(x) = χ(0,3)(x) dx, and
set u = 3χ(1,2) + χ(2,3). Then there is no function uo which satisfies

(2.9) sup
g∈L

↑
λ

Ig≤If

∫
R

gu dλ =
∫

R

fuo dλ

for all f ∈ L↑
λ.

Proof. For each s ∈ (0, 4) set

fs = sχ(0,2] + 4χ(2,3).

Then

sup
g∈L

↑
λ

Ig≤Ifs

∫
R

gu dλ = sup
g∈L

↑
λ

Ig≤Ifs

3
∫ 2

1

g +
∫ 3

2

g

≤ sup
g∈L

↑
λ

Ig≤Ifs

2
∫ 2

0

g +
∫ 3

0

g ≤ 2
∫ 2

0

fs +
∫ 3

0

fs = 6s+ 4.

Also, since
∫ 2

1
g ≤

∫ 3

2
g for g ∈ L↑

λ, we have

sup
g∈L

↑
λ

Ig≤Ifs

∫
R

gu dλ ≤ sup
g∈L

↑
λ

Ig≤Ifs

2
∫ 2

1

g + 2
∫ 3

2

g ≤ 2
∫ 3

0

g ≤ 2
∫ 3

0

fs = 4s+ 8

These two observations yield

(2.10) sup
g∈L

↑
λ

Ig≤Ifs

∫
R

gu dλ ≤ min(6s+ 4, 4s+ 8).

We demonstrate that this inequality is equality. If 0 < s ≤ 2 then gs = 2sχ(1,2]+4χ(2,3)

is in L↑
λ and it is easy to check that Igs ≤ Ifs. Therefore,

sup
g∈L

↑
λ

Ig≤Ifs

∫
R

gu dλ ≥
∫

R

gsu dλ = 6s+ 4.
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If 2 ≤ s ≤ 4 then we set gs = (s+ 2)χ(1,3]. Again gs ∈ L↑
λ and Igs ≤ Ifs. We have

sup
g∈L

↑
λ

Ig≤Ifs

∫
R

gu dλ ≥
∫

R

gsu dλ = 4s+ 8.

Equality in (2.10) turns (2.9), with f replaced by fs, into

min(6s+ 4, 4s+ 8) =
∫

R

fsuo dλ = s

∫ 2

0

uo + 4
∫ 3

2

uo.

It is clear that this cannot hold for all s ∈ (0, 4) no matter what the function uo
may be as the right hand side has constant slope while the left hand side does not. �

The non-decreasing analogue of the level function is obtained by simply flipping
the real line end for end. Thus if λ[x,∞) < ∞ for x ∈ R and u ∈ L+

λ then we set
λ1(x) = λ(−x), u1(x) = u(−x), and let uo1 be the level function of u1 with respect
to λ1. The non-decreasing level function of u with respect to λ is then uo1(−x). This
construction simultaneously yields the least non-decreasing majorant of u with respect
to the order ≤↑ and the greatest non-decreasing minorant of u with respect to the
order ≤↓. Lemma 2.2 and Theorems 2.3 and 2.5 have obvious counterparts for the
non-decreasing level function that we leave to the reader.

3. Transferring monotonicity

In [13] the notion of transferring monotonicity from the kernel of an operator to the
weight was introduced to study a special case of the weighted Hardy inequality. The
results of the previous section allow us to better express the ideas behind that notion
and place them in a more general setting. A result related to Theorem 3.5 may be
found in [3, Proposition 2.12].

As before, the measure λ is a σ-finite measure on (−∞,∞) for which non-
increasing functions are λ-measurable. Let µ be any measure on any set and let X be
a Banach Function Space of µ-measurable functions. Define the linear operator K by

Kf(x) =
∫

R

k(x, t)f(t) dλ(t)

where the kernel k(x, t) is a non-negative (µ× λ)-measurable function.

Theorem 3.1

Suppose k(x, t) is non-increasing in t for each x. Then the least constant C, finite

or infinite, for which

‖Kf‖X ≤ C

∫
R

fu dλ, f ∈ L+
λ ,
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holds is unchanged when u is replaced by u↓. That is,

(3.1) sup
f≥0

‖Kf‖X∫
R
fu dλ

= sup
f≥0

‖Kf‖X∫
R
fu↓ dλ

.

Proof. Since u↓ ≤ u λ-almost everywhere the inequality “≤” in (3.1) is immediate. To
establish the reverse inequality we apply (2.2) of Theorem 2.1 to get

sup
f≥0

‖Kf‖X∫
R
fu↓ dλ

= sup
f≥0

‖Kf‖X
infIg≥If

∫
R
gu dλ

= sup
f≥0

sup
Ig≥If

‖Kf‖X∫
R
gu dλ

.

Now if If ≤ Ig then the monotonicity of k and Corollary 1.3 shows that Kf ≤ Kg

and since X is a Banach Function Space we have ‖Kf‖X ≤ ‖Kg‖X . Thus

sup
f≥0

‖Kf‖X∫
R
fu↓ dλ

≤ sup
f≥0

sup
Ig≥If

‖Kg‖X∫
R
gu dλ

≤ sup
g≥0

‖Kg‖X∫
R
gu dλ

.

This completes the proof. �
The substitution x → −x gives the corresponding result for non-decreasing ker-

nels.

Corollary 3.2

Suppose k(x, t) is non-decreasing in t for each x. Then the least constant C, finite

or infinite, for which

‖Kf‖X ≤ C

∫
R

fu dλ, f ∈ L+
λ ,

holds is unchanged when u is replaced by u↑. That is,

sup
f≥0

‖Kf‖X∫
R
fu dλ

= sup
f≥0

‖Kf‖X∫
R
fu↑ dλ

.

Next we look at the reversed inequality.

Theorem 3.3

Suppose k(x, t) is non-increasing in t for each x. Then the least constant C, finite

or infinite, for which ∫
R

fu dλ ≤ C‖Kf‖X , f ∈ L+
λ ,

holds is unchanged when u is replaced by u↓. That is,

(3.2) sup
f≥0

∫
R
fu dλ

‖Kf‖X
= sup
f≥0

∫
R
fu↓ dλ

‖Kf‖X
.

Proof. Since u ≤ u↓ λ-almost everywhere the inequality “≤” in (3.2) is clear. For the
reverse inequality we apply (2.1) of Theorem 2.1 to get

sup
f≥0

∫
R
fu↓ dλ

‖Kf‖X
= sup
f≥0

supIg≤If
∫

R
gu dλ

‖Kf‖X
= sup
f≥0

sup
Ig≤If

∫
R
gu dλ

‖Kf‖X
.
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Now if Ig ≤ If then the monotonicity of k and Corollary 1.3 shows that Kg ≤ Kf

and since X is a Banach Function Space we have ‖Kg‖X ≤ ‖Kf‖X . Thus

sup
f≥0

∫
R
fu↓ dλ

‖Kf‖X
≤ sup
f≥0

sup
Ig≤If

∫
R
gu dλ

‖Kg‖X
≤ sup
g≥0

∫
R
gu dλ

‖Kg‖X
.

This completes the proof. �

Corollary 3.4

Suppose k(x, t) is non-decreasing in t for each x. Then the least constant C, finite

or infinite, for which ∫
R

fu dλ ≤ C‖Kf‖X , f ∈ L+
λ ,

holds is unchanged when u is replaced by u↑. That is,

sup
f≥0

∫
R
fu dλ

‖Kf‖X
= sup
f≥0

∫
R
fu↑ dλ

‖Kf‖X
.

We can also transfer monotonicity in weighted norm inequalities restricted to
monotone functions.

Theorem 3.5

Suppose k(x, t) is non-increasing in t for each x. Then the least constant C, finite

or infinite, for which ∫
R

fu dλ ≤ C‖Kf‖X , f ∈ L↓
λ,

holds is unchanged when u is replaced by uo. That is,

(3.3) sup
f∈L↓

λ

∫
R
fu dλ

‖Kf‖X
= sup
f∈L↓

λ

∫
R
fuo dλ

‖Kf‖X
.

Proof. Since Iu ≤ Iuo, Corollary 1.3 yields the inequality “≤” in (3.3). To establish
the reverse inequality we apply (2.5) of Theorem 2.3 to get

sup
f∈L↓

λ

∫
R
fuo dλ

‖Kf‖X
= sup
f∈L↓

λ

sup
g∈L

↓
λ

Ig≤If

∫
R
gu dλ

‖Kf‖X
= sup
f∈L↓

λ

sup
g∈L

↓
λ

Ig≤If

∫
R
gu dλ

‖Kf‖X
.

Now if Ig ≤ If then the monotonicity of k and Corollary 1.3 shows that Kg ≤ Kf

and since X is a Banach Function Space we have ‖Kg‖X ≤ ‖Kf‖X . Thus

sup
f∈L↓

λ

∫
R
fuo dλ

‖Kf‖X
≤ sup
f∈L↓

λ

sup
g∈L

↓
λ

Ig≤If

∫
R
gu dλ

‖Kg‖X
≤ sup
g∈L↓

λ

∫
R
gu dλ

‖Kg‖X
.

This completes the proof. �
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Theorem 3.6

Suppose k(x, t) is non-increasing in t for each x. Then the least constant C, finite

or infinite, for which

‖Kf‖X ≤ C

∫
R

fu dλ, f ∈ L↑
λ,

holds is unchanged when u is replaced by uo. That is,

(3.4) sup
f∈L↑

λ

‖Kf‖X∫
R
fu dλ

= sup
f∈L↑

λ

‖Kf‖X∫
R
fuo dλ

.

Proof. Since I∗u ≥ I∗uo, Corollary 1.3 yields the inequality “≤” in (3.4). To establish
the reverse inequality we apply (2.7) of Theorem 2.5 to get

sup
f∈L↑

λ

‖Kf‖X∫
R
fuo dλ

= sup
f∈L↑

λ

‖Kf‖X
inf

g∈L
↑
λ

Ig≥If

∫
R
gu dλ

= sup
f∈L↑

λ

sup
g∈L

↑
λ

Ig≥If

‖Kf‖X∫
R
gu dλ

.

Now if If ≤ Ig then the monotonicity of k and Corollary 1.3 shows that Kf ≤ Kg

and since X is a Banach Function Space we have ‖Kf‖X ≤ ‖Kg‖X . Thus

sup
f∈L↑

λ

‖Kf‖X∫
R
fuo dλ

≤ sup
f∈L↑

λ

sup
g∈L

↑
λ

Ig≥If

‖Kg‖X∫
R
gu dλ

≤ sup
g∈L↑

λ

‖Kg‖X∫
R
gu dλ

.

This completes the proof. �
The results for non-decreasing kernels corresponding to Theorems 3.5 and 3.6

involve the non-decreasing level function. (See the remark at the end of Section 2.)
We leave their formulation to the reader.

As an application of these results we present a companion result to [11, Theo-
rem 4.4] and then a special case related to [9, Theorem 1]. Let Λ = I1 so that
Λ(x) = λ((−∞, x]). Define the operator P by

Pf = (If)/Λ + If(∞)/Λ(∞).

Note that the second term in the definition of P is absent if λ is an infinite measure.
When working in rearrangement invariant spaces it is natural to assume that the un-
derlying measure is either non-atomic or purely atomic with all atoms having equal
measure. This ensures, among other things, that the associate space of a rearrange-
ment invariant space is again rearrangement invariant. Under this assumption [11,
Theorem 4.4] shows that

sup
g∈L↓

λ

∫
R
fg dλ

‖g‖X′
≈ ‖Pf‖X

provided P : X → X is bounded. Lemma 1.2 shows that we can take the supremum
over g = I∗G ∈ I∗L+

λ rather than g ∈ L↓
λ so we can evaluate

sup
G∈L+

λ

∫
R
uGdλ

‖I∗G‖X′
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where u = If . Here u is non-decreasing but by transferring monotonicity we can
evaluate the above supremum for arbitrary u ∈ L+

λ .
The boundedness of P : X → X is equivalent to the upper Boyd index of X being

less than 1. For more information about Boyd indices see [2, 7].

Theorem 3.7

Let λ be a σ-finite measure on R that is either non-atomic or purely atomic with

all atoms having equal measure. Suppose that X is a rearrangement invariant Banach

function space of λ-measurable functions. If P : X → X is bounded then

sup
G∈L+

λ

∫
R
uGdλ

‖I∗G‖X′
≈ ‖u↑/Λ‖X + u↑(∞)‖1‖X/Λ(∞).

Here 1 represents the constant function with value 1.

Note that if λ(R) = ∞ the second term on the right hand side is absent.

Proof. The kernel of I∗ is χ[x,∞)(t) which is non-decreasing in t for each x. We may
apply Corollary 3.4 to get

sup
G∈L+

λ

∫
R
uGdλ

‖I∗G‖X′
= sup
G∈L+

λ

∫
R
u↑Gdλ

‖I∗G‖X′
.

Since u↑ is non-decreasing it can be approximated from below by integrals. Thus

sup
G∈L+

λ

∫
R
u↑Gdλ

‖I∗G‖X′
= sup
G∈L+

λ

sup
f∈L

+
λ

If≤u↑

∫
R
(If)Gdλ

‖I∗G‖X′
= sup
G∈L+

λ

sup
f∈L

+
λ

If≤u↑

∫
R
f(I∗G) dλ
‖I∗G‖X′

.

Using the fact that a non-increasing function can be approximated from below by
integrals we have

sup
G∈L+

λ

sup
f∈L

+
λ

If≤u↑

∫
R
f(I∗G) dλ
‖I∗G‖X′

= sup
g∈L↓

λ

sup
G∈L

+
λ

I∗G≤g

sup
f∈L

+
λ

If≤u↑

∫
R
f(I∗G) dλ
‖I∗G‖X′

= sup
f∈L

+
λ

If≤u↑

sup
g∈L↓

λ

∫
R
fg dλ

‖g‖X′
.

The inner supremum above is equivalent to ‖Pf‖X by [11, Theorem 4.4] so we have

sup
G∈L+

λ

∫
R
u↑Gdλ

‖I∗G‖X′
≈ sup

f∈L
+
λ

If≤u↑

‖Pf‖X ≈ sup
f∈L

+
λ

If≤u↑

‖If/Λ‖X + If(∞)‖1‖X/Λ(∞)

= ‖u↑/Λ‖X + u↑(∞)‖1‖X/Λ(∞).

This completes the proof. �



200 Sinnamon

Corollary 3.8

Suppose that 1 < p < ∞, 1/p + 1/p′ = 1, and v is a non-negative, Lebesgue

measurable function defined on (0,∞) which is finite almost everywhere. Then

sup
g∈L+

λ

∫ ∞
0
ug(∫ ∞

0

(∫ ∞
x
g
)p′

v(x) dx
)1/p′

(3.5)

≈
(∫ ∞

0

u↑(x)p
(∫ x

0

v

)−p
v(x) dx

)1/p

+ u↑(∞)
(∫ ∞

0

v

)−1/p′

.

Proof. Since v is finite almost everywhere, the measure λ defined by

dλ(x) = v(x)χ(0,∞)(x) dx

is σ-finite and non-atomic. With respect to this underlying measure the weighted
Lebesgue space Lpv having norm

‖f‖Lp
v

=
(∫ ∞

0

|f |pv
)1/p

is rearrangement invariant and its associate space is Lp
′
v . Moreover, since 1 < p < ∞,

the upper Boyd index of Lpv is 1/p which is less than 1. Therefore the conclusion of
Theorem 3.5 holds. We have

sup
G∈L+

λ

∫ ∞
0
uGv(∫ ∞

0

(∫ ∞
x
Gv

)p′
v(x) dx

)1/p′

≈
(∫ ∞

0

u↑(x)p
(∫ x

0

v

)−p
v(x) dx

)1/p

+ u↑(∞)
(∫ ∞

0

v

)1/p(∫ ∞

0

v

)−1

.

With g = Gv this reduces to (3.5) to complete the proof. �

4. Quasi-concave functions

We call a function h : (0,∞) → [0,∞) quasi-concave and write h ∈ Ω0,1, provided
h(t) is non-decreasing and t−1h(t) is non-increasing. The two quasi-concave envelopes
of a Lebesgue measurable function u : (0,∞) → [0,∞) are the least quasi-concave
majorant of u, given by

ū(x) = x ess supp
t≥x

t−1 ess supp
0≤s≤t

u(s),

and the greatest quasi-concave minorant of u, given by

u(x) = xess inf
0≤t≤x

t−1 ess inf
s≥t

u(s).
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It is easy to check that u ≤ u ≤ ū, that ū and u are both quasi-concave, and that they
are envelopes in the following sense: If u ≤ h and h is quasi-concave then ū ≤ h. Also,
if h ≤ u and h is quasi-concave then h ≤ u.

In this section we take the measure λ to be Lebesgue measure on (0,∞) and recall
the definitions of u↓, u↓, u↑, and u↑ given in Section 2.

Theorem 4.1

Suppose that for each x, k(x, t) is a quasi-concave function of t. Then the least

constant C, finite or infinite, for which

∫ ∞

0

fu ≤ C‖Kf‖X , f ≥ 0,

is unchanged when u is replaced by ū. That is,

sup
f≥0

∫ ∞
0
fu

‖Kf‖X
= sup
f≥0

∫ ∞
0
fū

‖Kf‖X
.

Proof. Since k(x, t) is non-decreasing in t we may apply Corollary 3.4 to get

sup
f≥0

∫ ∞
0
fu

‖Kf‖X
= sup
f≥0

∫ ∞
0
fu↑

‖Kf‖X
.

Let l(x, t) = t−1k(x, t) and define the operator L by

Lg(x) =
∫ ∞

0

l(x, t)g(t) dt.

Note that if we set g(t) = tf(t) then Kf = Lg. Now l(x, t) is non-increasing in t so by
Theorem 3.3 we have

sup
f≥0

∫ ∞
0
fu↑

‖Kf‖X
= sup
g≥0

∫ ∞
0
gw

‖Lg‖X
= sup
g≥0

∫ ∞
0
gw↓

‖Lg‖X

where w(t) = t−1u↑(t). The definition of ū shows that xw↓(x) = ū(x). Therefore

sup
g≥0

∫ ∞
0
gw↓

‖Lg‖X
= sup
f≥0

∫ ∞
0
fū

‖Kf‖X

which completes the proof. �

In just the same way the next theorem follows from Corollary 3.2 and Theorem 3.1.
We omit the details.
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Theorem 4.2

Suppose that for each x, k(x, t) is a quasi-concave function of t. Then the least

constant C, finite or infinite, for which

‖Kf‖X ≤ C

∫ ∞

0

fu, f ≥ 0,

is unchanged when u is replaced by u. That is,

sup
f≥0

‖Kf‖X∫ ∞
0
fu

= sup
f≥0

‖Kf‖X∫ ∞
0
fu

.

With our choice of λ the operators I and I∗ become

If(x) =
∫ x

0

f and I∗f(x) =
∫ ∞

x

f.

The composition II∗ maps the cone of non-negative functions to the cone of quasi-
concave functions. It is well known, see for example [12, Lemma 2.3], that every
quasi-concave function is equivalent to an increasing limit of functions in the image
II∗(L+

λ ). Work of [5, 6, 12] has characterized weighted Lebesgue space imbeddings of
the cone of quasi-concave functions. In the next theorem we apply a special case of [5,
Theorem 5.1(ii)].

Theorem 4.3

Suppose 1 < p <∞, 1/p+ 1/p′ = 1, and f ∈ L+
λ . Then

sup
f≥0

∫ ∞
0
fg(∫ ∞

0
(II∗f)pv

)1/p
≈ ‖ḡ‖

Lp′
σ

where

σ(x) =
1
x

(∫ x

0

tpv(t) dt
) (

xp
∫ ∞

x

v(t) dt
) (∫ x

0

tpv(t) dt+ xp
∫ ∞

x

v(t) dt
)−p′−1

.

Proof. Interchanging the order of integration in the composition II∗ yields

II∗f(x) =
∫ x

0

∫ ∞

s

f(t) dt ds =
∫ ∞

0

min(x, t)f(t) dt.

The kernel, min(x, t), is a quasi-concave function of t for each x so by Theorem 4.1 we
have

sup
f≥0

∫ ∞
0
fg(∫ ∞

0
(II∗f)pv

)1/p
= sup
f≥0

∫ ∞
0
fḡ(∫ ∞

0
(II∗f)pv

)1/p
.
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The quasi-concave function ḡ is equivalent to an increasing limit of functions in
II∗(L+

λ ) so

sup
f≥0

∫ ∞
0
fḡ(∫ ∞

0
(II∗f)pv

)1/p
≈ sup
f≥0

sup
h≥0

II∗h≤ḡ

∫ ∞
0
f(II∗h)(∫ ∞

0
(II∗f)pv

)1/p

= sup
h≥0

II∗h≤ḡ

sup
f≥0

∫ ∞
0

(II∗f)h(∫ ∞
0

(II∗f)pv
)1/p

.

Is is easy to check that

II∗(L+
λ ) ⊂ {tf∗∗(t) : f ∈ L+

λ } ⊂ Ω0,1

where f∗ is the non-increasing rearrangement of f and f∗∗(t) = t−1
∫ t
0
f∗. So for any

h ∈ L+
λ we have

sup
f≥0

∫ ∞
0

(II∗f)h(∫ ∞
0

(II∗f)pv
)1/p

= sup
f≥0

∫ ∞
0

(tf∗∗(t))h(t) dt(∫ ∞
0

(tf∗∗(t))p v(t) dt
)1/p

.

By [5, Theorem 5.1(ii)], with q = 1, u ≡ 1, w(s) = sh(s) and v(s) replaced by spv(s),
the last expression is equivalent to

(∫ ∞

0

(∫ ∞

0

min(1, x/t)th(t) dt
)p′

σ(x) dx

)1/p′

.

This reduces to ‖II∗h‖
Lp′

σ
so we have

sup
f≥0

∫ ∞
0
fg(∫ ∞

0
(II∗f)pv

)1/p
≈ sup

h≥0
II∗h≤ḡ

‖II∗h‖
Lp′

σ
= ‖ḡ‖

Lp′
σ

as required. �

As a consequence we are able to give necessary and sufficient conditions for an
inequality studied in [14].

Corollary 4.4

Suppose that 1 < p <∞, 1/p+ 1/p′ = 1, and v, h ∈ L+
λ . Then

sup
g∈L↓

λ

∫ ∞
0
gh(∫ ∞

0
( 1
x

∫ x
0
g)pv(x) dx

)1/p
≈ ‖H‖

Lp′
τ

where H(x) is the least non-increasing majorant of x−1
∫ x
0
h and

τ(x) =
1
x

(
1
xp

∫ x

0

v(t) dt
) (∫ ∞

x

v(t)
dt

tp

) (
1
xp

∫ x

0

v(t) dt+
∫ ∞

x

v(t)
dt

tp

)−p′−1

.
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Proof. The supremum over L↓
λ can be replaced by a supremum over I∗L+

λ so we have

sup
g∈L↓

λ

∫ ∞
0
gh(∫ ∞

0
( 1
x

∫ x
0
g)pv(x) dx

)1/p
= sup
f∈L+

λ

∫ ∞
0

(I∗f)h(∫ ∞
0

(II∗f)px−pv(x) dx
)1/p

= sup
f∈L+

λ

∫ ∞
0
f(Ih)(∫ ∞

0
(II∗f)px−pv(x) dx

)1/p
≈ ‖Ih‖

Lp′
σ1
.

The equivalence follows from Theorem 4.3 with g replaced by Ih and v(x) replaced by
x−pv(x). Here σ1 is given by

σ1(x) =
1
x

(∫ x

0

v(t) dt
) (

xp
∫ ∞

x

v(t)
dt

tp

) (∫ x

0

v(t) dt+ xp
∫ ∞

x

v(t)
dt

tp

)−p′−1

.

Now Ih is non-decreasing so

Ih(x) = x ess supp
t≥x

t−1ess supp
0≤s≤t

Ih(s) = x ess supp
t≥x

t−1Ih(t) = xH(x).

Taking the factor of x into the weight we have

‖Ih‖
Lp′

σ1
= ‖H‖

Lp′
τ

to complete the proof. �

5. Proof of Theorem 2.1

Some preparation is required before we give our proof of Theorem 2.1 but the interme-
diate results are themselves worthy of note. In particular, Lemma 5.2 and Corollary 5.3
are useful tools since they make precise the notion of pushing mass mentioned in the
sketch proof of (2.1). We begin by showing that even when the function u is not well
behaved, each of the envelopes of u is constant except where it is close to u.

Lemma 5.1

Suppose u ∈ L+
λ , a < b and y ∈ R. If

(5.1) {x ≥ y : a < u↓(x) ≤ b} = ∅

then

(5.2) λ{x ≥ y : a < u(x) ≤ u↓(x) ≤ b} > 0.

Similarly, if

(5.3) {x ≤ y : a ≤ u↓(x) < b} = ∅
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then

(5.4) λ{x ≤ y : a ≤ u↓(x) ≤ u(x) < b} > 0.

Proof. To prove the first implication we suppose that (5.1) holds and (5.2) fails and
derive a contradiction. Fix x ≥ y such that a < u↓(x) ≤ b. If t ≥ x then u↓(t) ≤
u↓(x) ≤ b so either u↓(t) ≤ a or a < u↓(t) ≤ b. For λ-almost every t ≥ x satisfying
u↓(t) ≤ a we have u(t) ≤ u↓(t) ≤ a. Since (5.2) fails and x ≥ y we also have u(t) ≤ a

for λ-almost every t ≥ x satisfying a < u↓(t) ≤ b. It follows that u(t) ≤ a for λ-almost
every t ≥ x. Therefore

u↓(x) = ess supλ
t≥x

u(t) ≤ a

which contradicts the choice of x.
To prove the second implication we suppose that (5.3) holds and (5.4) fails and

derive a contradiction. Fix x ≤ y such that a ≤ u↓(x) < b. If t ≤ x then u↓(t) ≥
u↓(x) ≥ a so either u↓(t) ≥ b or a ≤ u↓(t) < b. For λ-almost every t ≤ x satisfying
u↓(t) ≥ b we have u(t) ≥ u↓(t) ≥ b. Since (5.4) fails and x ≤ y we also have u(t) ≥ b

for λ-almost every t ≤ x satisfying a ≤ u↓(t) < b. If follows that u(t) ≥ b for λ-almost
every t ≤ x. Therefore

u↓(x) = ess infλ
t≤x

u(t) ≥ b

which contradicts the choice of x. �

In the next lemma we show how the mass of a function f can be “pushed” to
the right and onto a small subset. Recall that L+

λ (S) is the collection of non-negative
λ-measurable functions which vanish off S.

Lemma 5.2

Suppose x ∈ R and E is a λ-measurable subset of (−∞, x] satisfying λ(E ∩
(y,∞)) > 0 for all y < x. If f ∈ L+

λ ((−∞, x]) then there exists a function g ∈ L+
λ (E)

such that Ig ≤ If and I∗g ≥ I∗f .

Proof. We look at the simple case first. If x ∈ E and x is an atom for λ then the
σ-finiteness of λ ensures that 0 < λ{x} <∞. In this case we can push all the mass of
f onto a single point in E. Set

g =
(∫

R

f dλ

)
χ{x}
λ{x} .

Since f is zero on [x,∞) we have

Ig(y) =

{
0 y < x∫

R
f dλ y ≥ x

}
≤ If(y)

and

I∗g(y) =

{∫
R
f dλ y ≤ x

0 y > x

}
≥ I∗f(y).
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In the remaining case, either x /∈ E or x is not an atom for λ. Then we have
λ(E ∩ (y, x)) > 0 for all y < x. Hence we can choose an increasing sequence y1 < y2 <

. . . converging to x such that

λ(E ∩ (yn, yn+1]) > 0.

The σ-finiteness of λ allows us to choose subsets En ⊂ E ∩ (yn, yn+1] of finite, positive
λ-measure. Now let y0 = −∞ and set

g =
∞∑
n=1

(∫
(yn−1,yn]

f dλ

)
χEn

λ(En)
.

Here the mass of f has been cascaded to the right with each interval’s mass being
pushed onto a small subset of the adjacent interval.

To see that If ≤ Ig and I∗g ≤ I∗f we argue as follows: If y ≥ x then, since f
and g are zero on [x,∞),

Ig(y) =
∫

R

g dλ =
∞∑
n=1

∫
(yn−1,yn]

f dλ =
∫

R

f dλ = If(y).

Also I∗g(y) = 0 = I∗f(y) whenever y ≥ x. If y < x then we choose N so that
y ∈ (yN−1, yN ]. None of the sets EN , EN+1, . . . intersect (−∞, y] so

Ig(y) ≤
N−1∑
n=1

∫
(yn−1,yn]

f dλ = If(yN−1) ≤ If(y)

and

I∗g(y) ≥
∞∑
n=N

∫
(yn−1,yn]

f dλ =
∫

(yN−1,x)

f dλ =
∫

(yN−1,∞)

f dλ ≥ I∗f(y).

This completes the proof. �

Of course, mass can also be pushed to the left.

Corollary 5.3

Suppose x ∈ R and E is a λ-measurable subset of [x,∞) satisfying λ(E ∩
(−∞, y)) > 0 for all y > x. If f ∈ L+

λ ([x,∞)) then there exists a function g ∈ L+
λ (E)

such that Ig ≥ If and I∗g ≤ I∗f .

Lemma 5.4

Suppose that f, u ∈ L+
λ and ε > 0. Then there exists a function g ∈ L+

λ such that

Ig ≤ If and ∫
R

gu dλ ≥
∫

R

fu↓ dλ− ε.
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Proof. If
∫

R
fu↓ dλ = 0 then g = f satisfies the conclusion of the lemma. Otherwise,

choose α > 1 so close to 1 that

α−1

∫
R

fu↓ dλ ≥
∫

R

fu↓ dλ− ε/2.

Define

J∞ = {x ∈ R : u↓(x) = ∞},
Jn = {x ∈ R : αn−1 < u↓(x) ≤ αn}, n ∈ Z,

J−∞ = {x ∈ R : u↓(x) = 0}.

Since u↓ is non-negative and non-increasing we see that each Jn, n ∈ Z ∪ {±∞}, is
an interval (possibly a singleton or an empty set) and that R is the disjoint union of
the Jn’s. We construct the desired function g by defining fn = fχJn and constructing
functions gn to satisfy

Ign ≤ Ifn, n ∈ Z ∪ {±∞},∫
R

gnu dλ ≥ α−1

∫
R

fnu
↓ dλ, n ∈ Z ∪ {−∞}, and(5.5) ∫

R

g∞u dλ ≥ α−1

∫
R

f∞u
↓ − ε/2.

Since f =
∑
n∈Z∪{±∞} fn, it is easy to see that the function g =

∑
n∈Z∪{±∞} gn will

satisfy the conclusion of the lemma.
If Jn = ∅ for some n then gn = 0 satisfies (5.5). If n = −∞ then g∞ = 0 satisfies

(5.5).
If n ∈ Z and Jn = ∅ we let xn = supJn be the right endpoint of Jn and set

En = {x ∈ R : αn−1 < u(x) ≤ u↓(x) ≤ αn} ⊂ (−∞, xn].

If y > xn then Jn ∩ [y,∞) = ∅ so Lemma 5.1 yields

λ(En ∩ [y,∞)) > 0.

Now fn ∈ L+
λ ((−∞, xn]) so by Lemma 5.2 there exists a gn ∈ L+

λ (En) such that
Ign ≤ Ifn and I∗gn ≥ I∗fn. Since gn is zero off En and fn is zero off Jn, we have∫

R

gnu dλ ≥ αn−1

∫
R

gn dλ = αn−1I∗gn(−∞)

≥ αn−1I∗fn(−∞) = αn−1

∫
R

fn dλ ≥ α−1

∫
R

fnu
↓ dλ.

The remaining case is n = ∞ and J∞ = ∅. If
∫

R
f∞u↓ dλ = 0 then we can take g∞ = 0.

Otherwise, f∞ does not vanish so
∫

R
f∞ dλ > 0. Set x∞ = supJ∞. If x∞ ∈ J∞ then

u↓(x∞) = ∞ so for k = 1, 2, . . . using the definition of u↓ we can choose subsets

Uk ⊂ {x ≥ x∞ : u(x) > 2k}
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of finite positive λ-measure and set

g∞ =

(∫
(−∞,x∞]

f∞ dλ

) ∞∑
k=1

2−k
χUk

λ(Uk)
.

Otherwise, u↓(x∞ − 1/k) = ∞ for each positive integer k, so we can choose subsets

Uk ⊂ {x ≥ x−∞ − 1/k : u(x) > 2k}

of finite positive λ-measure and set

g∞ =
∞∑
k=1

(∫
(−∞,x∞−1/k]

f∞ dλ

)
2−k

χUk

λ(Uk)
.

Either way the integral of g∞u is infinite because

2−k
∫

χUk

λ(Uk)
u dλ ≥ 1.

If y ≥ x∞ then

Ig∞(y) ≤
∫

(−∞,x∞]

f∞ dλ ≤ If∞(y).

If y < x∞ then either none of the Uk’s intersects (−∞, y] or only those Uk with k

satisfying x∞ − 1/k ≤ y intersect (−∞, y]. Therefore either Ig∞(y) = 0 or

Ig∞(y) ≤
∑

1/k≥x∞−y

(∫
(−∞,x∞−1/k]

f∞ dλ

)
2−k ≤ If∞(y).

This completes the proof. �

The corresponding result for the lower envelope is just different enough that a
separate proof is required.

Lemma 5.5

Suppose that f, u ∈ L+
λ and ε > 0. Then there exists a function g ∈ L+

λ such that

Ig ≥ If and ∫
R

gu dλ ≤
∫

R

fu↓ dλ+ ε.

Proof. If
∫

R
fu↓ dλ = ∞ then g = f satisfies the conclusion of the lemma. Otherwise,

choose α > 1 so close to 1 that

α

∫
R

fu↓ dλ <

∫
R

fu↓ dλ+ ε/2.



Transferring monotonicity in weighted norm inequalities 209

Define

J∞ = {x ∈ R : u↓(x) = ∞},
Jn = {x ∈ R : αn ≤ u↓(x) < αn+1}, n ∈ Z,

J−∞ = {x ∈ R : u↓(x) = 0}.

Since u↓ is non-negative and non-increasing we see that each Jn, n ∈ Z ∪ {±∞}, is
an interval (possibly a singleton or an empty set) and that R is the disjoint union of
the Jn’s. We construct the desired function g by defining fn = fχJn and constructing
functions gn to satisfy

Ign ≥ Ifn, n ∈ Z ∪ {±∞},∫
R

gnu dλ ≤ α

∫
R

fnu↓ dλ, n ∈ Z ∪ {∞}, and(5.6) ∫
R

g−∞u dλ ≤ ε/2.

Since f =
∑
n∈Z∪{±∞} fn, it is easy to see that the function g =

∑
n∈Z∪{±∞} gn will

satisfy the conclusion of the lemma.
If Jn = ∅ for some n then gn = 0 satisfies (5.6). If n = ∞ then

∫
R

f∞u↓ dλ ≤
∫

R

fu↓ dλ <∞

so f∞ necessarily vanishes λ-almost everywhere. Thus g∞ = 0 satisfies (5.6).
If n ∈ Z and Jn = ∅ we set xn = inf Jn and

En = {x ∈ R : αn ≤ u↓(x) ≤ u(x) < αn+1} ⊂ [xn,∞).

If y < xn then Jn ∩ (−∞, y] = ∅ so Lemma 5.1 yields

λ(En ∩ (−∞, y]) > 0.

Now fn ∈ L+
λ ([xn,∞)) so by Corollary 5.3 there exists a g ∈ L+

λ (En) such that
Ign ≥ Ifn and I∗gn ≤ I∗fn. Since gn is zero off En and fn is zero off Jn, we have

∫
R

gnu dλ ≤ αn+1

∫
R

gn dλ = αn+1I∗gn(−∞)

≤ αn+1I∗fn(−∞) = αn+1

∫
R

fn dλ ≤ α

∫
R

fnu↓ dλ.

The remaining case is n = −∞ and J−∞ = ∅. Set x−∞ = inf J−∞. If x−∞ ∈ J−∞
then u↓(x−∞) = 0 so for k = 1, 2, . . . we can choose subsets

Uk ⊂ {x ≤ x−∞ : u(x) < 2−k}
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of finite positive λ-measure. If x−∞ /∈ J−∞ then u↓(x−∞ + 1/k) = 0 for each positive
integer k, so we can choose subsets

Uk ⊂ {x ≤ x−∞ + 1/k : u(x) < 2−k}

of finite positive λ-measure. Set

g−∞ =
ε

2

∞∑
k=1

χUk

λ(Uk)
.

The choice of Uk ensures that the integral of g−∞u is small. We have

∫
R

g−∞u dλ =
ε

2

∞∑
k=1

∫
Uk
u dλ

λ(Uk)
≤ ε

2

∞∑
k=1

2−k =
ε

2
.

If x−∞ ∈ J−∞ then If is zero on (−∞, x−∞) and, since all the Uk’s are contained in
(−∞, x−∞], Ig is infinite on [x−∞,∞). Hence Ig ≥ If . If x−∞ /∈ J−∞ then If is zero
on (−∞, x−∞] and, since infinitely many of the Uk’s are contained in (−∞, x) for any
x > x−∞, Ig is infinite on (x−∞,∞). Again Ig ≥ If . This completes the proof. �

Proof of Theorem 2.1 We prove only (2.1) and (2.2) since (2.3) and (2.4) follow from
them by making the substitution x→ −x throughout.

If Ig ≤ If then, since u(x) ≤ u↓(x) λ-almost everywhere, we may use Corollary 1.3
to get ∫

R

gu dλ ≤
∫

R

gu↓ dλ ≤
∫

R

fu↓ dλ.

If Ig ≥ If then, since u(x) ≥ u↓(x) λ-almost everywhere, we may use Corollary 1.3 to
get ∫

R

gu dλ ≥
∫

R

gu↓ dλ ≥
∫

R

fu↓ dλ.

Thus
sup
Ig≤If

∫
R

gu dλ ≤
∫

R

fu↓ dλ and inf
Ig≥If

∫
R

gu dλ ≥
∫

R

fu↓ dλ.

For the reverse inequalities we use Lemmas 5.4 and 5.5. For each ε > 0 we apply
Lemma 5.4 to get a function gε satisfying Igε ≤ If and∫

R

fu↓ dλ ≤
∫

R

gεu dλ+ ε.

Now
sup
Ig≤If

∫
R

gu dλ ≥ sup
ε>0

∫
R

gεu dλ ≥
∫

R

fu↓ dλ.

We apply Lemma 5.5 to functions f and u to get a function gε satisfying Igε ≥ If

and ∫
R

fu↓ dλ ≥
∫

R

gεu dλ− ε.
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Now
inf
Ig≥If

∫
R

gu dλ ≤ inf
ε>0

∫
R

gεu dλ ≤
∫

R

fu↓ dλ.

This completes the proof. �

6. The structure of general level functions

In Proposition 1.5(iii) the structure of the level function of a bounded function, sup-
ported on (−∞,M ] for some M is given in terms of an averaging operator A ∈ A.
Although one would expect that taking increasing limits of such level functions would
destroy this simple structure we show here that it does not. The structure of the level
function of an arbitrary function remains attractively simple.

Theorem 6.1

Suppose u is non-negative and λ-measurable. Then there exists an A ∈ A and

(possible empty) intervals Jleft and Jright such that

i) if Jleft = ∅ then inf Jleft = −∞ and uo ≡ ∞ on Jleft;

ii) uo = Au λ-almost everywhere off Jleft ∪ Jright;

iii) if Jright = ∅ then supJright = ∞, λ(Jright) = ∞, and on Jright

(6.1) uo = lim sup
x→∞

1
λ((−∞, x] ∩ Jright)

∫
(−∞,x]∩Jright

u dλ.

Proof. Set un = min(u, n)χ(−∞,n] so that un ↑ u and, by Proposition 1.5(ii), uon ↑ uo
pointwise on R. Each un is bounded and supported on (−∞, n] so there is an operator
An ∈ A such that uon = Anun. We call the intervals of An the level intervals of un and
note that uon is constant on each of its level intervals. Also note that level intervals
have positive λ-measure by definition. If an interval J has the property that every
level interval of un that intersects J is contained in J we say that the interval respects
un. If J respects un then AnχJ = χJ so∫

J

un dλ =
∫

R

AnχJun dλ =
∫

R

χJAnun dλ =
∫
J

uon dλ

and for any x ∈ J the interval (−∞, x] \ J also respects uon so, by Proposition 1.5(i),∫
(−∞,x]∩J

un dλ =
∫

(−∞,x]
un dλ−

∫
(−∞,x]\J

un dλ

≤
∫

(−∞,x]
uon dλ−

∫
(−∞,x]\J

uon dλ =
∫

(−∞,x]∩J
uon dλ

These two together show that if J respects un and x ∈ R then∫
J

un dλ =
∫
J

uon dλ and
∫

(−∞,x]∩J
un dλ ≤

∫
(−∞,x]∩J

uon dλ.
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Notice that for any interval J the interval (uon)
−1(uon(J)) respects un. In particular, if

s < t then with J = (uon)
−1(uon[s,∞]) we have

∫
[s,t]

un dλ ≤
∫

(−∞,t]∩J
un dλ ≤

∫
(−∞,t]∩J

uon dλ ≤ uo(s)λ(−∞, t].

Letting n→ ∞ we conclude that

(6.2)
∫

[s,t]

u dλ ≤ uo(s)λ(−∞, t] and thus
∫

(s,t]

u dλ ≤ uo(s+)λ(−∞, t]

Set Jleft = (uo)−1(∞). Since uo is non-increasing, Jleft = ∅ or else inf Jleft = −∞
and we have proved part (i). For 0 ≤ y <∞ set

Jy = (uo)−1(y).

The Jy are (possibly empty or singleton) intervals that partition R \ Jleft. Since
λ(−∞, x] < ∞ for all x ∈ R at most one of the intervals Jy has infinite λ-measure.
If no Jy has infinite λ-measure then let Jright = ∅. Otherwise, let Jright be the unique
interval Jy having infinite λ-measure and note that supJright = ∞. To define the aver-
aging operator A we specify its intervals. See the definition of A preceding Proposition
1.4. We take the intervals of A to be all the intervals Jy having interior and satisfying
0 < λ(Jy) <∞.

To show that uo = Au off Jleft ∪Jright we first show that uo(x) = u(x) for λ-almost
every x in some Jy with no interior or with zero λ-measure. The inequalities (6.2)
show that u is locally λ-integrable on R \ Jleft so the set of points in the λ-Lebesgue
sets [4, p. 156] of all the functions u, u1, u2, . . . has full λ-measure. We consider only
these points. Also, since the Jy are disjoint, at most countably many have interior.
The union of those Jy with interior and zero λ-measure also has zero λ-measure so we
may disregard points in such intervals.

The remaining points x each lie in some interval Jy with no interior, Thus Jy =
{x}. If un(x) = uon(x) for infinitely many n then we have u(x) = uo(x) as required.
If not, then for some N , x is in a level interval Ln of un for all n ≥ N . We have
0 < λ(Ln) <∞ and uon is constant on Ln, taking the value

1
λ(Ln)

∫
Ln

u dλ.

Since Jy = {x}, for any a, d with a < x < d we have uo(a) > uo(x) > uo(d) and hence
uon(a) > uon(x) > uon(d) for sufficiently large n. It follows that x ∈ Ln ⊂ (a, d) for
sufficiently large n. We have shown that the diameter of Ln converges to zero with n.
Since x is in the λ-Lebesgue set of u and um for all m we have

lim
n→∞

1
λ(Ln)

∫
Ln

u dλ = u(x) and lim
n→∞

1
λ(Ln)

∫
Ln

(u− um) dλ = u(x) − um(x)
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for all m. Now

|u(x) − uo(x)| = lim
n→∞

∣∣∣∣
(

1
λ(Ln)

∫
Ln

u dλ

)
− uon(x)

∣∣∣∣
= lim
n→∞

1
λ(Ln)

∫
Ln

(u− un) dλ

≤ lim
m→∞

lim
n→∞

1
λ(Ln)

∫
Ln

(u− um) dλ

= lim
m→∞

u(x) − um(x) = 0.

Therefore u(x) = uo(x) for λ-almost every x ∈ R \ (Jleft ∪ Jright) off the intervals of A.
To complete the proof of part (ii) we must show that

y =
1

λ(Jy)

∫
Jy

u dλ

for all y such that Jy has interior and 0 < λ(Jy) <∞. Since

lim
n→∞

∫
Jy

uon dλ =
∫
Jy

uo dλ = yλ(Jy) <∞ and lim
n→∞

∫
Jy

un dλ =
∫
Jy

u dλ

it is enough to show that

(6.3) lim
n→∞

∣∣∣∣∣
∫
Jy

(uon − un) dλ

∣∣∣∣∣ = 0.

To do this we let s = inf Jy and proceed in the case that s /∈ Jy. The case s ∈ Jy
is similar. Since s /∈ Jy we have uo(s+) = y and (6.2) implies that for any t > s,∫

(s,t]

u dλ ≤ yλ(−∞, t] <∞.

Therefore, for any ε > 0 we may choose a, b, c, and d satisfying

−∞ ≤ a < b ≤ c < d ≤ ∞,

[b, c] ⊂ Jy ⊂ (a, d),

yλ((a, b) ∪ (c, d)) < ε/4, and∫
(s,b)∪(c,d)

u dλ < ε/2.

(Note that if supJy = ∞ then λ(Jy) < ∞ implies λ(R) < ∞ so this is possible even
if d is forced to be ∞.) Since a /∈ Jy and b ∈ Jy we have either a = −∞ or else
uo(a) > uo(b) and hence uon(a) > uon(b) for sufficiently large n. Also, c ∈ Jy and d /∈ Jy
so either d = ∞ or else uo(c) > uo(d) and hence uon(c) > uon(d) for sufficiently large n.
Therefore, if we set

Jy(n) = (uon)
−1(uon[b, c]),
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we have [b, c] ⊂ Jy(n) ⊂ (a, d) and we can estimate the symmetric difference of Jy and
Jy(n) by

Jy � Jy(n) ≡ (Jy \ Jy(n)) ∪ (Jy(n) \ Jy) ⊂ (a, b) ∪ (c, d)

for sufficiently large n. The choice of Jy(n) ensures that Jy(n) respects un so we have

∫
Jy(n)

(uon − un) dλ = 0 and
∫

(−∞,s]∩Jy(n)

(uon − un) dλ ≥ 0

and therefore

lim
n→∞

∣∣∣∣∣
∫
Jy

(uon − un) dλ

∣∣∣∣∣
≤ lim
n→∞

∫
Jy�Jy(n)

(uon + un) dλ

≤ lim
n→∞

∫
Jy�Jy(n)

uon dλ+
∫

(−∞,s]∩Jy(n)

un dλ+
∫

(s,b)∪(c,d)

un dλ

≤ lim
n→∞

∫
Jy�Jy(n)

uon dλ+
∫

(−∞,s]∩Jy(n)

uon dλ+
∫

(s,b)∪(c,d)

u dλ

≤ lim
n→∞

2yλ((a, b) ∪ (c, d)) +
∫

(s,b)∪(c,d)

u dλ < ε.

Here we have used the fact that uon ≤ uo = y on Jy and uon ≤ uon(b) ≤ uo(b) = y on
Jy(n). Since ε was arbitrary, this proves (6.3) and completes part (ii).

If Jright = ∅ there is nothing more to prove. Otherwise Jright = Jy for the unique
y satisfying λ(Jy) = ∞. We have already argued that supJright = ∞. To prove (6.1)
we set s = supJy as before. The two cases s ∈ Jy and s /∈ Jy are similar again so this
time we look at the case s ∈ Jy. We have uo(s) = y and (6.2) implies that for any
t > s, ∫

[s,t]

u dλ ≤ yλ(−∞, t] <∞.

Therefore, for any ε > 0 and any x > s we may choose a, b, and c satisfying

−∞ ≤ a < b < x ≤ c <∞,

[b, c] ⊂ Jy ⊂ (a,∞),

yλ((a, b)) < ε/4, and∫
[s,b)

u dλ < ε/2.

Since a /∈ Jy and b ∈ Jy we have either a = −∞ or else uo(a) > uo(b) and hence
we may choose N so that uon(a) > uon(b) for n > N . Therefore, if we set

Jy(n) = (uon)
−1(uon[b, c]),
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we have [b, c] ⊂ Jy(n) ⊂ (a,∞) for n > N and, provided t ∈ Jy(n), we can estimate
the symmetric difference of (−∞, t] ∩ Jy and (−∞, t] ∩ Jy(n) by

[(−∞, t] ∩ Jy] � [(−∞, t] ∩ Jy(n)] ⊂ (a, b)

for n > N . Again Jy(n) respects un so for all t ∈ R we have

∫
(−∞,t]∩Jy(n)

(un − uon) dλ ≤ 0 and thus
∫

(−∞,s)∩Jy(n)

(un − uon) dλ ≤ 0.

For n > N and any t ∈ Jy(n),

∣∣∣∣∣
∫

(−∞,t]∩Jy
(un − uon) dλ−

∫
(−∞,t]∩Jy(n)

(un − uon) dλ

∣∣∣∣∣
≤

∫
[(−∞,t]∩Jy]�[(−∞,t]∩Jy(n)]

(un + uon) dλ

≤
∫

[(−∞,t]∩Jy]�[(−∞,t]∩Jy(n)]

uon dλ+
∫

(−∞,s)∩Jy(n)

un dλ+
∫

[s,b)

un dλ

≤
∫

[(−∞,t]∩Jy]�[(−∞,t]∩Jy(n)]

uon dλ+
∫

(−∞,s)∩Jy(n)

uon dλ+
∫

[s,b)

u dλ

≤ 2yλ(a, b) +
∫

[s,b)

u dλ < ε.

Here we have used the fact that uon ≤ uo = y on Jy and uon ≤ uon(b) ≤ uo(b) = y on
Jy(n).

Since x ∈ [b, c] ⊂ Jy(n) for n > N , ε > 0 was arbitrary, and

lim
n→∞

∫
(−∞,x]∩Jy(n)

(un − uon) dλ ≤ 0

it follows that∫
(−∞,x]∩Jy

(u− uo) dλ = lim
n→∞

∫
(−∞,x]∩Jy

(un − uon) dλ ≤ 0.

This proves the inequality “≥” in (6.1). For the other inequality we fix ε > 0 and
increase N so that for n > N , uon(c) > uo(c) − ε. Set tn = supJy(n). If tn ∈ Jy(n)
then ∣∣∣∣∣

∫
(−∞,tn]∩Jy

(un − uon) dλ−
∫

(−∞,tn]∩Jy(n)

(un − uon) dλ

∣∣∣∣∣ < ε

but ∫
(−∞,tn]∩Jy(n)

(un − uon) dλ =
∫
Jy(n)

(un − uon) dλ = 0
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so ∫
(−∞,tn]∩Jy

u dλ ≥
∫

(−∞,tn]∩Jy
un dλ

≥
∫

(−∞,tn]∩Jy
uon dλ− ε

≥ uon(c)λ((−∞, tn] ∩ Jy) − ε

≥ (uo(c) − ε)λ((−∞, tn] ∩ Jy) − ε.

Therefore
1

(−∞, tn] ∩ Jy

∫
(−∞,tn]∩Jy

u dλ ≥ uo(c) − ε− ε/λ((−∞, tn] ∩ Jy).

If tn /∈ Jy(n) then a similar argument shows that

1
(−∞, tn) ∩ Jy

∫
(−∞,tn)∩Jy

u dλ ≥ uo(c) − ε− ε/λ((−∞, tn) ∩ Jy).

For n > N , x ≤ tn so

sup
t≥x

1
λ((−∞, t] ∩ Jy)

∫
(−∞,t]∩Jy

u dλ ≥ uo(c) − ε− ε/ lim sup
x→∞

λ((−∞, t] ∩ Jy).

Since ε was arbitrary this proves the inequality “≤” in (6.1) to complete the proof of
part (iii) and the theorem. �
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