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Abstract

A scale of function spaces is considered which proved to be of considerable im-
portance in analysis. Interpolation properties of these spaces are studied by means
of the real interpolation method. The main result consists in demonstrating that
this scale is interpolated in a way different from that for Lp spaces, namely, the
interpolation space is not from this scale.

1. Introduction

We consider the spaces Ap,r endowed with the norms

‖f‖Ap,r =
( ∫ ∞

0

( 1
u

∫
u≤|ξ|≤2u

|f(ξ)|pdξ
)r/p

du

)1/r

(1 ≤ p, r < ∞),

‖f‖A∞,r
=

( ∫ ∞

0

(
sup

u≤|ξ|≤2u

|f(ξ)|
)r

du

)1/r

(1 ≤ r < ∞),

‖f‖Ap,∞ = sup
u>0

(
1
u

∫
u≤|ξ|≤2u

|f(ξ)|pdξ
)1/p

(1 ≤ p < ∞).

The case p = r = ∞ is naturally reduced to A∞,∞ = L∞; moreover for any 1 ≤ p < ∞
we have Ap,p = Lp. In the case r = 1 we denote Ap,1 = Ap.

Mainly the spaces Ap were applied to different problems in analysis. Multiplier
properties of Ap were considered in [7], though the spaces Ap have first appeared in
a paper by D. Borwein [5] devoted to summability problems. The A∞ – with the
Fourier transform f̂ instead of f – has an even longer history. It was introduced in a
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paper by A. Beurling [4] dealing with spectral synthesis problems. A detailed survey of
applications of A∞ is given in [1]. In [8] the Ap spaces gave a good example of applying a
general theorem on representation of continuous linear functionals. These spaces in the
sequence version were mainly used in problems of integrability of trigonometric series.
In [9] the asymptotic behaviour of the Fourier transform was studied for functions with
derivative in Ap or more general space. The latter results were modified and used in
approximation problems in [6]. The role of the second parameter r in Ap,r is not quite
clear in these or different problems.

In [10] the results from [7] were generalized to more general spaces, but in addition
interpolation properties of Ap as well as Ap,r were studied by means of Lp interpolation
properties of vector-valued functions (see, e.g., [3, Theorem 5.1.2.]). Here we study the
same object by means of K-functionals, that is, the real interpolation method.

In [10] a misleading statement is given; what is really obtained is Theorem 2.2 of
the present paper. However the main result here is Theorem 2.1 in which not only the
interpolation space for any pair Ap0,r and Ap1,r is described but examples are given to
show that their interpolation properties differ from those for Lp spaces. For the sake
of completeness we also prove, in the same manner, Theorem 2.2.

The paper is organized as follows. In the second Section we give necessary notation
and formulate the results. In the next Section the proofs are given.

2. Results

Recall that the interpolation space (X1, X2)θ,p of the couple X1 and X2 consists of all
f ∈ X1 + X2 such that

‖f‖θ,p =
( ∫ ∞

0

[
t−θK(f, t;X1, X2)

]p dt
t

)1/p

< ∞ (0 < θ < 1, 1 ≤ p < ∞),

where
K(f, t;X1, X2) = inf

f=g+h
(‖g‖X1 + t‖h‖X2)

is the K-functional of the two spaces.
It is well-known that for 0 < θ < 1, 1 ≤ p0 < p1 ≤ ∞, and 1/p = (1− θ)/p0 + θ/p1

we have
(Lp0 , Lp1)θ,p = Lp.

One may expect that the most important spaces Ap = Ap,1 are interpolated in the
same, so to say natural way. It turns out that this is not the case for them, moreover
for most of Ap,r which are of the vector-valued type. The “Lp type” interpolation
occurs when the first parameter is fixed (see Theorem 2.2); unfortunately this case
seems to be of less importance to date. In the case when the second parameter is
fixed while the first one varies, the interpolation space is of very special structure and
contains an ”irregular” part as regarded to Ap,r, p �= r.
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Recall that the non-increasing rearrangement of a measurable function f is defined
by

f∗(t) = sup
|E|=t

inf
x∈E

|f(x)| (0 < t < ∞).

Given p0 < p1, denote p = p0p1/(p1−p0). By a 	 b we denote a two-sided estimate
c1b ≤ a ≤ c2b with c1, c2 being two constant independent of essential parameters.
Denote by Ij the (doubled) dyadic interval Ij = {ξ : 2j ≤ |ξ| ≤ 2j+1}. Let fj = f ·χIj ,
where χE is the indicator function of a set E.

Theorem 2.1

Let 0 < θ < 1, 1 ≤ p0 < p1 ≤ ∞, and 1/p = (1 − θ)/p0 + θ/p1. Then

(i) The following equivalence holds for all r ≥ 1:

(1) K(f, t;Ap0,r, Ap1,r) 	
( ∑

j∈Z

2j(1−r/p0)
(∫ 2jtp

0

[f∗
j (τ)]p0dτ

)r/p0
)1/r

+ t

( ∑
j∈Z

2j(1−r/p1)
(∫ ∞

2jtp
[f∗

j (τ)]p1dτ
)r/p1

)1/r

(0 < t < ∞).

(ii) If 1 ≤ r < p, then

Ap,r ⊂ (Ap0,r, Ap1,r)θ,p,

and the converse embedding is invalid: there exists a function

f ∈ (Ap0,r, Ap1,r)θ,p \Ap,r.

(iii) If r = p, then

(Ap0,p, Ap1,p)θ,p = Ap,p = Lp.

(iv) If p < r < ∞, then

(Ap0,r, Ap1,r)θ,p ⊂ Ap,r,

and the converse embedding is invalid: there exists a function

f ∈ Ap,r \ (Ap0,r, Ap1,r)θ,p.

Theorem 2.2

Let 1 ≤ r0 < r1 ≤ ∞, 0 < θ < 1, and 1/r = (1 − θ)/r0 + θ/r1. Then for all

1 ≤ p ≤ ∞

(2) (Ap,r0 , Ap,r1)θ,r = Ap,r.
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3. Proofs

Proof of Theorem 2.1 First, note that the norm in Ap,r can be represented in a usual
way via doubled dyadic intervals Ij = {ξ : 2j ≤ |ξ| ≤ 2j+1}:

(3) ‖f‖Ap,r 	
( ∑

j∈Z

2j(1−r/p)
(∫

Ij

|f(ξ)|pdξ
)r/p

)1/r

(1 ≤ p ≤ ∞, 1 ≤ r < ∞).

Now (i) is a simple consequence of (3) and the known formula for the K-functional for
(Lp0 , Lp1) couple (see, e.g., [3, p. 124]):

K(g, t;Lp0 , Lp1) 	
(∫ tp

0

[g∗(τ)]p0dτ
)1/p0

+ t
(∫ ∞

tp
[g∗(τ)]p1dτ

)1/p1

;

unfortunately, a misprint occurs in [3], namely, t is omitted before the last term on the
right; in [2, p. 308] the result needed is given in a more general form.

Observe that for t > 21/p the right side of (1) is equivalent to ‖f‖Ap0,r .
Now we prove (ii). Using (1) and Minkowski’s inequality, we obtain

‖f‖(Ap0,r,Ap1,r)θ,p(4)

≤ c

(∑
j∈Z

2j(1−r/p0)
(∫ ∞

0

t−θp
(∫ 2jtp

0

[f∗
j (τ)]p0dτ

)p/p0 dt

t

)r/p
)1/r

+ c

(∑
j∈Z

2j(1−r/p1)
(∫ ∞

0

t(1−θ)p
(∫ ∞

2jtp
[f∗

j (τ)]p1dτ
)p/p1 dt

t

)r/p
)1/r

.

Now the substitution tp → t and Hardy’s inequality (see, e.g., [2, p. 124]) show that
the first sum in (4) is at most

c

(∑
j∈Z

2j(1−r/p0)
(∫ ∞

0

(1
t

∫ 2jt

0

[f∗
j (τ)]p0dτ

)p/p0

dt
)r/p

)1/r

≤ c

(∑
j∈Z

2j(1−r/p)
(∫

Ij

|f(ξ)|pdξ
)r/p

)1/r

≤ c‖f‖Ap,r
.

Since the rearrangement is non-increasing, the same substitution yields that the second
sum in (4) is bounded by

c

(∑
j∈Z

2j(1−r/p1)
(∫ ∞

0

(1
t

∫ ∞

2jt

[f∗
j (τ)]p1dτ

)p/p1

dt
)r/p

)1/r

≤ c

(∑
j∈Z

2j(1−r/p)
(∫ ∞

0

( ∞∑
k=0

2k[f∗
j (2kt)]p1

)p/p1

dt
)r/p

)1/r

≤ c

(∑
j∈Z

2j(1−r/p)
( ∞∑
k=0

2kp/p1

∫ ∞

0

[f∗
j (2kt)]pdt

)r/p
)1/r

= c

(∑
j∈Z

2j(1−r/p)
( ∞∑
k=0

1
2k(1−p/p1)

∫
Ij

|f(ξ)|pdξ
)r/p

)1/r

≤ c‖f‖Ap,r .
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Therefore, we get
(5) ‖f‖(Ap0,r,Ap1,r)θ,p ≤ c‖f‖Ap,r

,

which proves the embedding Ap,r ⊂ (Ap0,r, Ap1,r)θ,p.
To complete the second item, let us show that there exists a function f ∈

(Ap0,r, Ap1,r)θ,p such that f �∈ Ap,r. Let f be of the form

f =
∞∑
j=1

cjχ(2j ,2j(1+aj)),

where sequences {cj}, {aj} will be specified later on. We now only point out that
aj < 1, {aj} is decreasing and tends to zero. It is easy to see that

(6) ‖f‖As,r 	
( ∞∑

j=1

2jcrja
r/s
j

)1/r

.

Next, a simple calculation shows that( ∫ 2jtp

0

[f∗
j (τ)]p0dτ

)r/p0

=

 (2j)r/p0crj t
pr/p0 , 0 < t ≤ a

1/p
j ,

crj(2
jaj)r/p0 , t > a

1/p
j ,

and ( ∫ ∞

2jtp
[f∗

j (τ)]p1dτ
)r/p1

≤ crj(2
jaj)r/p1χ

(0,a
1/p
j

)
(t).

Therefore,
K(f, t;Ap0,r, Ap1,r)

	
( ∞∑

j=1

(
(2jcrj t

pr/p0 + 2jcrja
r/p1
j tr)χ

(0,a
1/p
j

)
(t) + 2jcrja

r/p0
j χ

(a
1/p
j

,∞)
(t)

))1/r

	
( ∞∑

k=1

(
tpr/p0

k∑
j=1

2jcrj + tr
k∑

j=1

2jcrja
r/p1
j +

∞∑
j=k+1

2jcrja
r/p0
j

)
χ

(a
1/p
k+1,a

1/p
k

)
(t)

+ ‖f‖Ap0,r
χ

(a
1/p
1 ,∞)

(t)

)1/r

.

From this we get
‖f‖p(Ap0,r,Ap1,r)θ,p

(7)

≤ c

∞∑
k=1

{( k∑
j=1

2jcrj
)p/r

∫ a
1/p
k

a
1/p
k+1

tp−1dt +
( k∑
j=1

2jcrja
r/p1
j

)p/r
∫ a

1/p
k

a
1/p
k+1

t
p(p1−p)

p1
−1dt

+
( ∞∑
j=k+1

2jcrja
r/p0
j

)p/r
∫ a

1/p
k

a
1/p
k+1

dt

t
p(p−p0)

p0
+1

}
+ c‖f‖p/rAp0,r

≤ c

∞∑
k=1

{( k∑
j=1

2jcrj
)p/r

(ak − ak+1) +
( k∑
j=1

2jcrja
r/p1
j

)p/r(
a

p1−p

p1
k − a

p1−p

p1
k+1

)

+
( ∞∑
j=k+1

2jcrja
r/p0
j

)p/r( 1
ak+1

) p−p0
p0

+ 1
p
(
a
1/p
k − a

1/p
k+1

)}
+ c‖f‖p/rAp0,r

.
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We are now in a position to specify the sequences {cj}, {aj} so that the right side of
(7) is finite, while the series in (6) diverges for s = p. Set

cj = 2−j/r, aj = (j log(j + 1))−p/r.

Then, in view of (6),

‖f‖rAp0,r
	

∞∑
j=1

1
(j log(j + 1))p/p0

< ∞,

while

‖f‖rAp,r
	

∞∑
j=1

1
j log(j + 1)

= ∞.

It remains to show that the series on the right side of (7) converges. Simple estimates
yield

ak − ak+1 ≤ c

kp/r+1(log(k + 1))p/r
,

a
p1−p

p1
k − a

p1−p

p1
k+1 ≤ c

k
p(p1−p)

rp1
+1(log(k + 1))

p(p1−p)
rp1

,

( 1
ak+1

) p−p0
p0

+ 1
p
(
a
1/p
k − a

1/p
k+1

)
≤ ck

p(p−p0)
rp0

−1(log(k + 1))
p(p−p0)

rp0 ,

and

( k∑
j=1

2jcrj

)p/r

= kp/r,

( k∑
j=1

2jcrja
r/p1
j

)p/r

≤ c
k

p(p1−p)
rp1

(log(k + 1))p2/rp1
,

( ∞∑
j=k+1

2jcrja
r/p0
j

)p/r

≤ c

k
p(p−p0)

rp0 (log(k + 1))p2/rp0

.

Hence, the series on the right side of (7) is at most

c

∞∑
k=1

1
k(log(k + 1))p/r

< ∞,

as required.
To prove (iii), it suffices to demonstrate that the estimate converse to (5) holds.

Indeed, in this case (1) and change of variables 2jtp → t yield
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‖f‖(Ap0,p,Ap1,p)θ,p(8)

	 c

( ∑
j∈Z

2j(1−p/p0)

∫ ∞

0

t−θp
(∫ 2jtp

0

[f∗
j (τ)]p0dτ

)p/p0 dt

t

)1/p

+ c

( ∑
j∈Z

2j(1−p/p1)

∫ ∞

0

t(1−θ)p
(∫ ∞

2jtp
[f∗

j (τ)]p1dτ
)p/p1 dt

t

)1/p

	 c

( ∑
j∈Z

∫ ∞

0

(1
t

∫ t

0

[f∗
j (τ)]p0dτ

)p/p0

dt

)1/p

+ c

( ∑
j∈Z

∫ ∞

0

(1
t

∫ ∞

t

[f∗
j (τ)]p1dτ

)p/p1

dt

)1/p

≥ c

( ∑
j∈Z

∫ ∞

0

[f∗
j (t)]pdt

)1/p

+ c

( ∑
j∈Z

∫ ∞

0

[f∗
j (2t)]pdt

)1/p

≥ c‖f‖Lp ,

and we are done.
We now consider the last case p < r < ∞. Applying (1) and Hölder’s inequality

yields

‖f‖Ap,r
≤ c

( ∑
j∈Z

2j
(∫ 2

0

[f∗
j (2jt)]pdt

)r/p
)1/r

(9)

≤ c

( ∑
j∈Z

2jp/r
∫ 2

0

[f∗
j (2jt)]pdt

)1/p

≤ c

( ∫ 2

0

(∑
j∈Z

2j [f∗
j (2jt)]r

)p/r

dt

)1/p

≤ c

(∫ 2

0

( ∑
j∈Z

2j(1−r/p0)
(1
t

∫ 2jt

0

[f∗
j (τ)]p0dτ

)r/p0
)p/r

dt

)1/p

≤ c

(∫ ∞

0

t−θp

( ∑
j∈Z

2j(1−r/p0)
(∫ 2jtp

0

[f∗
j (τ)]p0dτ

)r/p0
)p/r

dt

t

)1/p

≤ c‖f‖(Ap0,r,Ap1,r)θ,p ,

which gives the imbedding (Ap0,r, Ap1,r)θ,p ⊂ Ap,r. To complete the proof, we show
that there exists a function f ∈ Ap,r \ (Ap0,r, Ap1,r)θ,p. As above, let f be of the form

f =
∞∑
j=1

cjχ(2j ,2j(1+aj)).
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It is clear that (fj)∗(2jt) = cjχ(0,aj)(t), and hence,

‖f‖(Ap0,r,Ap1,r)θ,p ≥ c

( ∫ 2

0

(∑
j∈Z

2j [f∗
j (2jt)]r

)p/r

dt

)1/p

≥ c
∞∑
k=1

∫ ak

ak+1

( k∑
j=1

2j [f∗
j (2jt)]r

)p/r

=
∞∑
k=1

( k∑
j=1

2jcjr
)p/r

(ak − ak+1).

Set now
cj = 2−j/r, aj = (jp/r log(j + 1))−1.

Then, in view of (6),

‖f‖rAp,r
	

∞∑
j=1

1
j(log(j + 1))r/p

< ∞,

while
∞∑
k=1

( k∑
j=1

2jcjr
)p/r

(ak − ak+1) 	
∞∑
j=1

1
j log(j + 1)

= ∞.

The theorem is proved. �

Remark 3.1. In the proof of (ii) and (iv) estimates from above and from below, re-
spectively, were used for the norm in the interpolation space (see (4) and what follows,
and (9)). The counterexamples given above show that the corresponding bounds are
in principle impossible to be two-sided, except the only case r = p (see (8)).

Proof of Theorem 2.2 Keeping in mind reiteration, we first consider the case r0 = 1
and r1 = ∞. Denoting

Tpf(u) =
(

1
u

∫
u≤|ξ|≤2u

|f(ξ)|pdξ
)1/p

,

let us show that

(10)
∫ t

0

(Tpf)∗(τ)dτ ≤ K(f, t;Ap,1, Ap,∞) ≤ 25
∫ t

0

(Tpf)∗(τ)dτ.

The left side of (10) is trivial. To prove the right side of (10), set

g(x) = f · χ(−t,t)(x), h(x) = f(x) − g(x).

Then

‖g‖Ap,1 =
∫ t

0

Tpf(u)du ≤
∫ t

0

(Tpf)∗(τ)dτ.
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We now observe that

Tpf(u) ≤ inf
s∈(u/2,u)

(
1
u

∫
s≤|ξ|≤4s

|f(ξ)|pdξ
)1/p

≤ inf
s∈(u/2,u)

(
Tpf(s) + 2Tpf(2s)

)
≤

(
Tpf(s) + 2Tpf(2s)

)∗(u/2) ≤ (Tpf)∗(u/4) + 2(Tpf)∗(u/2) ≤ 3(Tpf)∗(u/4).

Since h(x) = 0 for x ∈ (−t, t), we obtain

‖h‖Ap,∞ = sup
u>0

(
1
u

∫
u≤|ξ|≤2u

|h(ξ)|pdξ
)1/p

= sup
u>t/2

Tpf(u) ≤ 3(Tpf)∗(t/8),

and thus

K(f, t;Ap,1, Ap,∞) ≤ ‖g‖Ap,1 + t‖h‖Ap,∞ ≤
∫ t

0

(Tpf)∗(τ)dτ + 3t(Tpf)∗(t/8)

≤
∫ t

0

(Tpf)∗(τ)dτ + 24
∫ t/8

0

(Tpf)∗(τ)dτ ≤ 25
∫ t

0

(Tpf)∗(τ)dτ,

as required.
It is clear that (10) proves the theorem when r0 = 1 and r1 = ∞. One can

then apply the Holmstedt reiteration theorem (see, e.g., [2, p. 307]) to describe the
K-functional for any of the couples (Ap,r0 , Ap,r1) and get (2) for all 1 < r0 < r1 < ∞. �
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