Collectanea Mathematica (electronic version): http://www.imub.ub.es/collect

Collect. Math. 54,2 (2003), 111-136
(c) 2003 Universitat de Barcelona

Fully absolutely summing and Hilbert-Schmidt multilinear mappings

MARIO C. MATOS

IMECC, UNICAMP, CP 6.065, CEP 13083-859, Campinas, S. P, Brasil

E-mail: matos@ime.unicamp.br

Received May 21, 2002. Revised December 20, 2002

ABSTRACT

The space of the fully absolutely (75771, . .. 77“n)-summing n-linear mappings
between Banach spaces is introduced along with a natural (quasi-)norm on it. If
rTE € [1, +oo], k = 1,...,n, this space is characterized as the topological
dual of a space of virtually nuclear mappings. Other examples and properties are
considered and a relationship with a topological tensor product is stablished. For
Hilbert spaces and 7 = 71 = ... = 1, € [2, 00| this space is isomorphic to
the space of the Hilbert-Schmidt multilinear mappings.

1. Introduction

In [13], after considering the space of the absolutely (r;71,...,r,)-summing n-linear
functionals on Banach spaces, Pietsch asks if, for n > 3, it coincides with the
space of the Hilbert-Schmidt n-linear functionals on Hilbert spaces for some values
of r,r1,...,mn. In Matos [11], we prove that this question of Pietsch has negative
answer. We also prove there that the answer to the same question, for n > 2, when
infinite dimensional valued mappings are considered, is also negative. These results
lead us to a natural question: can we consider a proper subspace of the space of the
absolutely (r;7r1,...,7,)-summing n-linear mappings that coincides with the Hilbert-
Schmidt multilinear mappings on Hilbert spaces for some 7,71,...,7,7 A natural
condition required for these subspaces is that, in the linear case, they should coin-
cide with the usual absolutely (r; s)-summing linear operators. This question gave us
the motivation for the introduction of the space of the fully absolutely (r;r1,...,7r,)-
summing n-linear mappings between Banach spaces. This space is endowed with a
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natural norm, if r > 1, or an r-norm, if r €]0, 1[. We show that it is isomorphic to the
space of the n-linear Hilbert-Schmidt mappings, whenr =r; = ... =1, € [2,+00] (see
Section 5). These mappings are considered in Section 2 along with several examples
and properties.

In Section 3 we consider Banach spaces E1, ..., E,, F and endow F1®...QFE,QF
with a (quasi-)norm in such a way that its topological dual is isometric to the space
of the fully absolutely (r;71,...,7,)-summing n-linear mappings from F; x ... x E,
into ', when r € [1, +00].

In Section 4 we study the virtually (r;rq,...,r,)-nuclear n-linear mappings from
Ey x...x E, into F. If E},..., E! have the bounded approximation property and
TyT1,y...,"n € [1,+00], we show that the vector space of these mappings, endowed

with a natural linear topology, has its topological dual isometric to the space of all
absolutely (r/;r,...,r] )-summing mappings from E] ® ... ® E/ into F’. Here, as
usual, if r € [1,4o00], r’ is the element of [1,+o00] such that 1/r +1/r" = 1. This
result is analogous to the connection between absolutely summing n-linear mappings
and multilinear mappings of nuclear type proved in [10].

In Section 5 we study the space of the n-linear Hilbert-Schmidt mappings between
Hilbert spaces, its properties and, as we already mentioned, its relationship with spaces
of fully absolutely summing mappings. The multilinear Hilbert-Schmidt mappings were
introduced by Dwyer in his doctoral dissertation [4].

For results on linear operators between Banach spaces there are some very good
texts. We mention Pietsch [14], Defant-Floret [2] and Diestel-Jarchow-Tonge [3].

Now, we fix the notations used in this paper. For Banach spaces F1,..., E, and
F over K (either R or C), we denote by L(E1,...,E,;F) the Banach space of all
continuous n-linear mappings from Fy X ... x E, into F, under the norm

\T|| = sup [|T(z1,...,2z0)],
T € Ey,
k=1,...,n

where Bg, denotes the closed unit ball of Ej centered at 0. If ¢ is in the topological
dual B} of By, k =1,...,n, and b € F, we define ¢1 x ... x ¢p,b € L(E1,...,E,; F)
by

¢1 X ... X (bnb(.’l,‘l,...,ﬂj‘n) :¢1(£B1)¢n($n)b, Vl’k eEk,k‘: 1,7’L

The set of all these mappings generates the vector space Lf(E1,...,E,;F) of the
n-linear mappings of finite type.

If r €]0, +o0[, we denote by ¢, (N"; F') (or £,(N"), if F = K) the vector space of
all families (y;);jenn of elements of F' such that

1/r
1(yi)jenl, = ( > !yjHT> < +00.

jEN™
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We observe that ||.||, is a norm (r-norm, if » < 1) on £, (N™; F') and defines a complete
metrizable linear topology on it. We denote by £o (N"; F') (or loo(N"™), if F' = K) the
Banach space of all bounded families (y;);en» of elements of F', under the norm

1(Ys)jenmlloe = sup [ly;ll-
]EN’VL
The Banach subspace of (o (N"; F') of the families (y;);en» such that

lim  [|y;|| =0
Jk—00
k=1,...,n

is denoted by ¢o(N™; F') (or ¢o(N™), if FF = K). As usual, an element j of N" will be
represented by (ji,...,Jn), We also consider finite families (y;)jens of elements of a
Banach space. Here N,,, = {1,...,m} and we apply the symbol ||.||, to these families
as we have done in the non-finite case. If n = 1, it is usual to omit N” in all the
preceding notations.

The vector space of all sequences (y;)52; of elements of I such that (¢(y;))32, €
¢, for every ¢ € F’, is denote by £ (F'). This space is complete for the linear topology
defined by the norm (r-norm, if r < 1)

il = s 6l

2. Fully absolutely summing multilinear mappings

We recall the following concept introduced by Pietsch in [13] for scalar valued multi-
linear mappings

DEFINITION 2.1. For 7,71,...,r, €]0. + oo|, with % < L 4. .+ L amapping

1 T’

T € L(Ey,...,E,; F) is absolutely (r;ry,...,r,)-summing if there is C' > 0 such that

H(T(.’If,},7$z 1= 1H HH 74 'L 1Hw7‘k (1)

forevery m e N, 2¥ € By, k=1,...,nandi=1,...,m.

We denote the vector space of all such mappings by Lg@“’“'“)(El, oy By F)
and the smallest of all C' satisfying (1) by || T||as,(rir,,...,r,)- This defines a norm (r-
norm, if 7 < 1) on C(T'”"“’T")(El, ..., By F). It is easy to show that the topological
vector space ([,(T e r")(El, ooy Eny F) | as, (rire .. omn) ) 18 complete.

We introduce a more restrictive concept.
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DEFINITION 2.2. For r,7q,...,7r, €]0. + o], with r > ri, k = 1,...,n, a mapping
T € L(FEy,...,Ey; F) is fully absolutely (r;ry,...,r,)-summing if there is C' > 0 such
that

(T}, af Djeny ||, < C TTIIGEHEA,, (2)
k=1
forevery m e N, 2¥ € By, k=1,...,nandi=1,...,m.
We denote the vector space of all such mappings by L’ﬁ:l’”””)(El, ooy En F)

and the smallest of all C satisfying (2) by [|T| fas,(rsr,...,rn)- This defines a norm
(r-norm, if » < 1) on E%Zl """ 7"”)(El, ..., Ey; F) that makes it a complete metrizable
topological vector space. It is clear that

ﬁg}:;:m.-,rn)(Eh .. B F) C Egg;m ..... rn)(Eh B F)

and
HTH < HTHas,(r;rl ..... ) < HTHfas,(r;rl ..... Tn)?

for every T € Eﬁgl"“m")(El, LBy F).

In order to simplify our writing, when ry = ...r, = s we replace (r;7r1,...,7r,) by
(r;s) in the previous notations. If r = s we replace (r;7) by r and , in the case r = 1,
we just omit (1,1).

A result of Defant and Voigt (see [1] for a proof) states that Los(E1, ..., En; K) =
L(Ey,...,E,;K) isometrically.

EXAMPLES 2.3: (1) There is T' € L(co, co; K) = Las(co, co; K) such that

> |T(ej en)l = +oo,

Jrk=1
for the canonical Schauder basis (e;)52; of co (see [9]). Hence T' cannot be fully
absolutely summing.
(2) If E is an infinite dimensional Banach space, we fix an element ¢ € E’, ¢ # 0, and

define Ty € L(E, E; E) by Ty(z,y) = ¢(x)y, for every z,y € E.

(a) Ty € LEZ;““)(E, E;E), if ry <r and % <L %

T1
In fact:

(T (@5, 93)) 71 e < (DI ()7 e, [ (1) 521 oo
< Nl ) 7% Fewo,r [1(5) 71 e
forallm €N, z;,y; € E, j =1,...,m. Hence || Ty | as,(riry,r) < D]

(b) Ty & L7 (B, E; E), for all 7y < 1.
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In fact: if we choose (y;)32; € £;(E) \ £-(E) and (z1)72, € £, (E), we have

o 1/r 0o 1/r 0o 1/r
( > \|T¢($k7yj)||r> = (ZW(%)\T) (ZH%\T) = +oo.
k=1 j=1

Jk=1
(3) Every n-linear mapping of finite type is fully absolutely (r;r1,...,r,)-summing.
This follows from the fact that ¢q x ... x ¢,b, with ¢, € E}, k=1,...,nand b€ F,

is fully absolutely (r;ry,...,7,)-summing. We have
m 1/7. n
( D> g1 x . x dnb( Jl,-.-,x}ﬂ)llr> = 1ol TT Il(x ()il
Jr=1 k=1
k=1,..., n
Hence

H¢1 X... X (Z)nb”faS,(r;m,..-,Tn) < ||¢1H ce ||¢nHHbH

Proposition 2.4

For T € L(F,...,E,;F) the following conditions are equivalent:
(1) T is fully absolutely (r;r1,...,ry)-summing.
(2) If (2§)32, € 1% (By), for k=1,...,n, then (T(z ,...,x} ))jenn € £,(N"; F).
(3) The mapping T,, defined from (;" (Ey) x ... x £}’ (Ey) into £,(N"; F') by

Tw((l'zl)(i)ilﬂ et (l’?)zoil) = (T(:I"Jlla ceey x?n))jEN”

is well defined, n-linear and continuous.

In this case ||THfas,(7’;'r1,...,rn) = ||Tw]|-

Proof. It is clear that (3) implies (2) and that (3) implies (1) with | 7| ras,(rsr,
|Tw||. If T is fully absolutely (r;ri,...,r,)-summing and (z¥)2, € €% (Ey), for k
1,...,n, then we have

H(T(le-l,..., ]n JGN" H ||THfas (r371,5e003Tn) H || z z 1Hw Tk

< ”THfaS,(rTl, \Tn) H H Ty z 1Hw Tk
k=1

for every m € N. Hence, by passage to the limit, for m tending to +o0o, we see that
(1) implies (2) and (1) implies (3) with || Tl < [T fas,(rir1,...,r)- 1f We use the Closed
Graph Theorem we can show that (2) implies (3). In fact, the Closed Graph Theorem
is used to show that T, is separately continuous, hence continuous. [

The following result has interesting consequences.

Proposition 2.5

Ifr>r >r >0 k= 25 ,n, and T € L(Ey,...,FEy,; F) are such that T}
belongs to LY (B, £§Z;js”2 ---- "N(E,,...,En; F)), with Ty defined by

Ty(xb) (22, ... 2") = T(2t, 22, ..., 2") V¥ € By k=1,...,n
then T is fully absolutely (r;r1,...,ry)-summing and [|T| a5, (v, rn) < 1T | as,(rire) -
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Proof. For r finite, m natural and xf €EFE,k=1,...,nandi=1,...,m we have

m m 1/r
n n . T/rl
| e, < (Z (X Imd) e )
Ji=1 Je=1
k=2,..., n

m n 1/r

r
< ( Z (HTl(x;l)HfaS,(m;rz,...,Tn) H “(wf)?;1|’w77’k) )
J1=1 k=2

n
SN Tullas,riry T 1Al
k=1

The case r = +oo is trivial. [J

Consequences 2.6
(1) Efas(él,EQ; K) = ﬁ(gl, 62; K)

This follows from 2.5 and the Grothendieck’s Theorem stating that L£(¢1;¢3) =
Las(l1;02) (see [5]).
(2) £3,,(co, £y K) = L(co, £ K), for every p € [2,+00],
(3) L344(co, co; K) = L(co, co; K).

The equalities (2) and (3) follow from 2.5 and a result of Lindenstrauss and Pel-
czyniski proving that £2 (co; £.) = L(co;4,), for r € [1,2] (see [8]).

(4) L ,s(co, €p; K) = L(co, £p; K), for 1 <7/ <p < 2.

This follows from 2.5 and the following result of Schwartz and Kwapien: £(co; £,) =
Lh (co;ly), for 2 < p’ < r < +oo (see [7] and [15]).
(5) L5 (loo, F5K) = L(loo, F1;K), if F' has cotype p’ and 1 <7/ <p < 2.

This is a consequence of 2.5 and a result of Maurey [12] that states: L] ({s; F') =
L(lo; F'), if 2 < p’ <r < 400 and F’ has cotype p’.

The following two propositions are easily proved and give ways of constructing
new examples of fully absolutely summing mappings.

Proposition 2.7

T ey "\(By,... By F), S € L(F;G) and Ry € L(Dy; Ex), k=1,...,n,
then SoT o (Ry,...,R,) is fully absolutely (r;ri,...,r,)-summing and

k=1

By 2.7, we can see that, in 2.6, (4) is a consequence of (5).
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Proposition 2.8

KT € L(Ey, ..., By F), Ry € L5 (Dy; Ex), k= 1,...,n, then To(Ry, ..., Ry)
is fully absolutely (s;ri,...,r,)-summing, when s > max {s1,...,s,}, and

HT o (Rl, Ce ,Rn)Hfas,(s;m,...,Tn) < ”TH H HRkHas,(s;rk)‘
k=1

We recall that a Banach space E has the Orlicz Property if idg € Et(fs;l) (E;E). In
this case the Orlicz constant of E is defined as O(E) = [/idg||4s,(2:1)- If p € [1,2], then
¢, has the Orlicz Property. Hence, as a consequence of 2.8 we have:

Corollary 2.9
If By, ..., E, have the Orlicz Property, then

L(By,... By F)=LE (B, ... By F),

for every F'. Moreover:

n
HTHfas7(2;l) < HTH H O(Ek)7
k=1

for every T € L(E,...,E,; F).

As consequence of 2.8 and the results of Grothendieck, Lindenstrauss-Pelczynski,
Schwartz, Kwapien and Maurey mentioned in the proof of 2.6 we can give the following
examples:

EXAMPLE 2.10: If T' € L(ls,...,lo; F) and Sk € L({1503), k = 1,...,n, then T o
(S1,...,Sy) is fully absolutely (s;1)-summing for each s > 1.

ExaMpLE 2.11: If p € [1,2], T € L(lp,... . £p; F) and Sy € L(co;4p), k =1,...,n,
then T o (S1,...,S,) is fully absolutely (s;2)-summing for each s > 2.

EXAMPLE 2.12: If 2 < p < r < 400, T € L({p,...,L,; F) and S € L(co;Lp),
k=1,...,n, then T o (S1,...,S,) is fully absolutely (s;r)-summing for each s > r.

ExAMPLE 2.13: if 1 < v/ < p < 2, E}, has cotype p/, T € L(E,...,E,; F) and
Sk € LIWoo; Ex), k=1,...,n, then T o (S1,...,S,) is fully absolutely (s;r)-summing
for each s > r.

The n-linear version of the Grothendieck-Pietsch Domination Theorem is the fol-
lowing result. The proof of this theorem is an adaptation of the proof for the linear
case that uses Ky Fan’s Lemma. We denote by W (Bpg) the set of all regular proba-
bilities measures on the o-algebra of the Borel subsets of Bg-, for the weak * topology
on F’ restricted to Bp.
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Theorem 2.14

IfT € L(Er,...,Eq;F)and 1/r =1/ry + ...+ 1/r,, with r,ry,...,7, €]0, +00],
then T is absolutely (r;ri,...,r,)-summing, if, and only if, there are C > 0 and
L € W(BE,;); k=1,...,n, such that

1/r
1T, 2™ < c(/B w(xl)r“dm(@) (/B

B
k

1/rn
|o(z")[™ dun(¢)> :

’
By

for every z* € Ey, k = 1,...,n. The infimum of all these possible C is equal to

HTHO/S7(T;T1 7777 rn)'

This result is applied in the proof of the following inclusion.

Proposition 2.15
Ifr,ry,...,r, €]0,400] are such that 1/r = 1/r1+...+1/ry,, then each absolutely

(ryry, ..., ry)-summing n-linear mapping T from Eq X ...x E,, into F is fully absolutely
(s;ry,...r,)-summing, with s = max and
=1,...,n

HTHfa&(S;Tl,---,?"n) < HTHas,(r;n,...,rn)-
Proof. By 2.14, we can find C' > 0 and ux € W(BE,;), k=1,...,n, such that

1/r 1/rn
1T, .., 2m) < c( / |¢<x1>rﬁdu1<¢>> ( / \¢<x">|’“ndun<¢>) ,
By By
for every ¥ € Ey, k=1,...,n. Hence we can write
m m n s/Tk
Yoo T@g,Lap)r<es Y ] ( / |¢<x;1>|”duk<¢>>
G1yeenin=L1 G1yeyin=1 k=1 Bpr
n o m S/Tk
=C° ()| dp (¢))
n m S/Tk
<] (Z / |¢(:c§?)|’“kduk<¢>)
k=1 \ j=1"Bg/
n m S/Tk
= ()| ™ dps (¢)>
< T UEH T llwr)
k=1

This completes our proof. [

Theorem 2.16 (Multiplication)
For 1 < p,q,r < +oo, with 1/r = 1/p+1/q, if S € LY, (E1,...,En; F) and

Ty € LI (Dy; Ey), k=1,...,n, then So (1y,...,T),) is in ﬁ}as(Dl, coes Dy F).
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Proof. We know that, for each k = 1,...,n, there is u € W(BD,;), such that

1/q
[T ()] < ITkllas,q</ |¢(fv)|qduk(¢)> ,
Bpr
for every x € Dj. We take
1/q
ok = ( / |¢<xi>Vduk<¢>> ,
By
fork=1,...,nandi=1,...,m. Without loss of generality we may consider T},(z¥) #
k
0, forall k =1,...,nand i = 1,...,m. Hence p¥ > 0 and we can define 2F = a:_z
Pi

1 1 1
Now, for aq,...,a,, € K, with Z \a,\p < 1, since —+ +— =1, we can use Holder’s

=1
inequality in order to write

> plaizf) sZ\am’/r’rairp’/qpikr¢<m§>v/qw¢<xfw/z’
=1 =1 (3
m e o . /9 / m 1/p
s(Zrcmp) (Zraiwp(k)qas(xf)r) <Z\¢<xfw>
1=1 =1 =1
m /9 / m 1/p
< Y el lo(ab)|" STl )
=1 (P) =1
Thus
.Tk(zf)‘: Tk(Zaizf)|
=1
1/q
S ||TkHas,q</ (¢)>
m ) 1/q
< ||Tk|ras,q<;| /B ; |¢<m§>|rczuk<¢>> (1) fr) ™
<N Tk las.q (1) 1||wr)”"/’“.
Hence

TN, < W illasg (1T llr) "
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Now we have:

m 1/r
(' > HS(Tl(g;gl),...,Tn(x;?n))@

m 1/r
=( > (pi---PZ)THS(Tl(zill)a---7Tn(2§2))HT>

yerstn=1

IA

m 1/q m 1/p
({ > (p;...pzf;w) ( > ||S<T1<z31>,...,Tn<za>>|p)

ctn=1 ctn=1

pz = 1|| ||SHfCLSPH|| Tk z));r;1||w7p

10 I
I

| A

r/p
(P g IISIIfas,pHIITkIas,q(II( )

k=1

| A

r/ptr/q
HfaspHHTkHasq ()i llw,r)

<151 fas.p H 1 Tellas,g 1 (25)72 -

k=1

Therefore S o (T1,...,T,) is fully absolutely r-summing and

n
1S o (T1, ..., To)ll ras,r < 1S as,p H 1Tkl as,q»
k=1

as we wanted to prove. [

We recall that, for p € [1,4o00] and X > 1, a Banach space E is called an £, »-space
if every finite dimensional subspace D of E is contained in a finite dimensional subspace
F of E for which there is an isomorphism v from F' onto Edlm(F) with [Jo][[Jlo~] < A
It is said that E is an £,-space if it is an £, y-space for every A > 1. If (2,3, ) is
any measure space, then Lp(#) is an £, x-space for every A > 1. If K is a compact
Hausdorff space, then C'(K) is an L y-space for every A > 1.

See Theorem 3.7, page 64, in [3] for a proof of the following linear result.

Theorem 2.17

Ifp € [1,2], E is an L r-space, F' is an L,, y/-space, then every continuous linear
operator u from E into F' is absolutely 2-summing, with ||ul|as2 < AN Kqgllu|| (Kq is
the Grothendieck constant of the Grothendieck’s inequality).

Theorem 2.18
If p € [1,2], F is a Banach space and Ej, is a subspace of an L, x,-space, for
k=1,...,n, then

‘C(]Z”as(Eh""En;F) - E}as(Elw . 'aEn;F)u
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for all ¢ € [1,2]. In this case

n
HSHfas,l < HSHfGS,qKG H Ak
k=1

for all S € L%, (E1,...,Ey; F).

Proof. If ¢ = 1 the result is trivial. If ¢ €]1,2], we have ¢’ € [2, +oo[. If 2¥,... 2F €
E}., we can define a continuous linear operator vy from (7} into Ej, by vk(ej) = x?, for
all j = 1,...,m. By 2.17 v* is absolutely 2-summing and ||v*||,s 2 < KgAg|[v¥]|. Since
[o¥]| < [[(@¥)7 ) lw,1 and ¢ > 2, we have v* absolutely ¢’-summing and [[v* |45 <
KG)\kH(q:f)gnlew,l. By 2.16 we have

n n
IS0 (@ s v ast < ISl gasg [T 10" lasar < 1Sl as.aKa [T Al @)t -

k=1 k=1
This implies
m n
oo IS@ ) < ISl sasa e [T el @)l
Jis--dn=1 k=1

as we wanted to show. [J

3. Connection with tensor products

Forre[l,4o0],0<rp, <rk=1,...,nand u € F1®,...,®F, ® F, we consider

p(r;rl,...,rn)(“) = inf || (A;)jenn r'||(bj)j6N:;L

m

n
k
oo [T 1@H e
k=1
where the infimum is taken over all representations of u of the form

_ .t ny.
u= g Ajxj, ® ... @7 by,
jeNy,

with A; € K,xf € Ep,bj € Fii=1,...,m, j € N, and m € N. We denote by s,, the

element of [0, 1] given by

1 1 1 1
— =44+ —.
r ™

T'n

Proposition 3.1

P(riry,....rn) 18 an Sp-norm and € < p(p.p, .. 1), Where € denotes the injective tensor
norm on F1®,...,QF, ® F.
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Proof. If

u= Z )\jx}l ®...Q® ] by,

jENgL

we have

ok € Bp;, ¢ EBF'}

p{) S Ndilah). . gulal )

JENT,

< | jena [, sup |[(¢1(2],) .. ¢ Djeng, ||, [(05)sen ||
Pk BE;;
< [g)jenn el (B5) jenn (oo H @)1 [, -

Hence €(u) < piriry,...or) (1)
For u,v € F1®,...,QF, ® F and § > 0, we can find representations of v and v
of the form

u= Z )\jx;@...@x?nbj,v: Z njy}1®...®x?ncj,

JENG: jGN;’JL
such that
1O jene b < (14 8)pgrar oy ()"
() senz [l < ((1+ 6)p(rir, @)
(@) lw,rme < ((1 + 6) (i, 77‘”)(,”))5"/7%’
1)l < (L4 6) iy ()
106 e = 1= lles)erg o

Thus we can write

(p('r;ﬁ,‘..,rn)(u + U))Sn

sa/T m p
< ( TGS mjr"’) I ( o (Sl + Y |¢<y5>rk))
k=1 \?€Br i i=1

jENn, jENT

Sn/Tk

< (L +8)™ (P01 W)™+ (Pl o) (0))™) -

For " = +00, the same inequality can be deduced in a similar way. Hence the trian-
gular inequality is proved for p(,.., .. r.)- The other conditions are easily verified. []

Proposition 3.2
The topological dual (Ey ® ... ® Ey ® F,pgy,,..ry) of (B1®...® E, ®
F, p(riry,...,r)) 18 Isometric to E%Z“"’T")(El, ..., Ey; F') through the mapping B de-
fined by
B@)(z',...,2")(b) =¢(z' ®...® 2" @b),
for every p(p.r, ... .r,)-continuous functional ¢ on E1®...QE,QF, 2 eEBLk=1,...,n
and b e F.
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Proof. (1) We consider B(v) defined as above. It is clear that B(¢)) € L(E1, ..., E,; F").
For 6 >0, 2% € Ex, k =1,...,nand i = 1,...,m, we can find bj = b,....jn) € F
lbj|| = 1, such that

S B@) ), x| <8+ DY B (], ah ) ()] = (%),

JENT, jENT,
For a convenient choice of \; € K, |\;| =1, we can write

(*):5+¢< Y N, @ @] @b ;1®...®x;?n®bj>

jenn,

1/7' n
§5+||1!JH( > (= 2} @by m) H 23 )iz [lw,r

JENT,

",
=5+II¢H( > B Jl,-.~,x;7;)ll’"> T 1)l

JjeN?, k=1

Since 6 > 0 is arbitrary these inequalities imply

H(B(Q/))(:C;l, s 7xzb))j€NﬁL

< H?/)HHH 7 )i w, -

The same inequality is true for r = +o00. Thus B(¢) is fully absolutely (r;ri,...,7,)-
summing and

HBW))”fGS,(T;Tl,...,rn) < "¢"

(2) If T is fully absolutely (r;71,...,r,)-summing from E; X ... E, into F’, we define
a linear functional on F1 ® ... ® E, ® F by

= Y NT(x,, .2} ) (b)),

jeEN?,
when
U= Z AJ J1 x?n@)bj‘
JjeN
We have
o (u)| < (A jenn [l (T (25,52}, »JeNn!!H i)ienn [loo
S NN as, e 1) jemin, Hr'HII 23 )i [, 1 (B5) jenm, [loo-

This shows that 97 is p(yp,....,r,)-continuous and lor| < HTHfaS,(T,T17.,,7Tn). O

Remark 3.3. The s,-norm p,.p, ... r.) is @ norm if % = % +...4 % In this case we

have p(y.r,.....r,) < ™, where m denotes the projective tensor norm on £ ®...Q@ B, ® F.
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4. Virtually nuclear multilinear mappings

In this section, unless it is stated explicitly otherwise, we consider r €]0,4o00] and
ri € [1,400], with r <rg, k=1,...,n. We also write
1

S
tn Tl

Hence t,, €]0,1].

DEFINITION 4.1. A mapping T' € L(E, ..., Ey; F) is virtually (r;ry, ..., r,)-nuclear
if it has a representation of the form

T =) Xoj, x...x ¢} b,

j eNn

with (\j)jenn € €.(N"), if r < +o00, or (\;)jenn € co(N"), if r = +o0, (¢pF)2, €
0 (EBy), for k=1,...,n and (b;)jenn € Loo(N"; F).

The vector space of all such mappings is denoted by /Jg%l"“’r")(El, o By F)
and we consider on it the ¢,-norm

n
ITUv N sy = 10 TG genen 111 (05) s oo [T 11008V
k=1

where the infimum is taken over all possible representations of T' as described in 4.1.
As usual, we replace (r;7r1,...,r,) by (r;8),if s=r =...=r,, and (r;s) by r, when
r = s, in all the preceding notations. If r = s = 1, we omit 1 in the notations. In all
cases we have complete metrizable topological vector spaces.

In order to justify the use of the term “virtually nuclear” we recall the following
concept considered in [10].

DEFINITION 4.2. A mapping T' € L(E1, ..., E,; F) is of nuclear type (r;r1,...,r,) if
it has a representation of the form

T = Xj x...x¢rb;,
j=1

with (X;)52, € £y, if 7 < +00, or (Aj)32, € o, if r = +o0, (¢5)52, € L2 (E}), for

k=1,...,nand (b;)52; € loo(F).

The vector space of all such mappings is denoted by [,(NT;TI"“’T")(E;[, ooy Eny F)
and we consider on it the ¢,-norm

NN i,y = IE OG5l oo TT 1S5l ry
k=1
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where the infimum is taken over all possible representations of T as described in 4.2.
The simplification of the notations is made as in the virtually nuclear case.

REMARKS 4.3:
(1) £y TN By, B F) € £500 T (By, L Egs F) and

||T” S ||THVN¢(T;T1"“7T7L) S ||THN7(T;T17“'7T7L)’

for every T of nuclear type (r;71,...,7y).

for every ¢ € B}, k=1,...,nand b€ F.
(3) Ln(Eq,...,Ey; F) = Lyn(EL, ..., E,; F) isometrically.

L(F;G), it follows that RoT o (S1,...,S,) is virtually (r;71,...,r,)-nuclear and

n

IRoT o (St SV, (rirsseirn) S IBINT Ny N i,y TT 11
k=1

(5) If (A\j)jenn is in £,.(N"), if » < 400, or in ¢o(N"), if r = 400, then the n-linear
mapping D), » defined on £, x ... x £, , with values in ¢;(N), by

D(/\j)jeN" ((531);.;17 s <f?)§i1) = ()\jfyl‘l . -fjnn)jeNn,
is virtually (r;rq,...,7,)-nuclear and HD(/\j)jeNn HVM(T;T““M) <1 (Aj)jenn |-

Now we have another characterization of virtually nuclear mappings.

Proposition 4.4
For T € L(FE,...,E,; F), the following conditions are equivalent

(1) T is virtually (r;ry,...,r,)-nuclear.
(2) There are Ay € L(Ek;ly ), k=1,...,n, Y € L((L1(N"); F) and (Aj) jenn € £-(N")
such that

T=Yo D()‘j)jENn o) (Al, .. ,An)

In this case

where the infimum is taken over all such possible factorizations.
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Proof. Tt is clear that (2) implies (1) by 4.3.(4) and 4.3.(5).

In order to show that (1) implies (2), we consider a representation of 7" as in 4.1
and define

Ag(x) = (¢f(2))2, Vo€ Brk=1,...,n,
Y((&)jenn) = D> &by V(&)jenm € L(N).

]EN”
Now, the result follows. [J

Remark 4.5. By definition every T in L¢(E1,..., Ey; F) has a finite representation

T= > Xoj,...o0b

JENT,

It is clear that we have a t,-norm on Lf(E,..., E,; F) defined by

jGN” H H

where the infimum is taken over all finite representations of 7T'. It is obvious that

1Ty Ny (e ooy = WE[I (A7) jeng,

||T||VN,(T;T1 ,,,,, Tn)gnTHVNf:(T;Tl ,,,,, Tn)?

for every T' € L;(E1, ..., E,; F). We would like to know cases where there is equality
for these ¢,,-norms.

Proposition 4.6

If Eq,..., E, are finite dimensional, then

HT”VN7(’!‘;T1,...,’I‘7,,) > HTHVNf,(T;Tl,m,Tn)?

for every T € Lf(E1, ..., En; F).

Proof. In this case L(E1,...,Ey; F) = Ly(En,...,E,; F) is complete for both t,-
norms. Hence, by the open mapping theorem, these two t,-norms are equivalent and
there is C' > 0, such that

1Tl Ny 1) < CNT VN (i)

for every T' € Lf(FE, ..., E,; F). For each € > 0, we choose a representation

T— Z oidi, X . X BTy,
jENn
such that

I(5)jennl-1(b5)jenm [l oo H 15 lwre < A+ ONT NN (i1,
k=1
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We can write

tn
< “ oL X ... x 7 -H
- ( Z i3 @5 Yi VNS (rir1seyn)

JENT,

tn
( E ]¢]1 Jnyj VNg,(rr1,e.,Tn)

jENR\NZ,

tn
(] X el x|
=+ ( U] J1 ¢]ny'] VN,(T‘;Tl,u-»Tn)

JENm\N,

tn
<[A+a™ + e LTy esrs,m) ™
if m is large enough. [

Proposition 4.7
IfT e E%Gl"”’r”)(El, ... By F) and Sy, € Ly(Dy; Ey), for k=1,...,n, then

HT o (Sla ceey Sn)HVNf,(T;rl,..A,rn) < HTHVN,(T;Tl,...,rn) H ”Sk”
K=1

Proof. If Jj denotes the natural injection of S (D) into Ej, we can write Sy = Jj ogk,
with [|Sg|| = ||Skl|. Hence, T' o (J1,...,Jpn) € L§(S1(D1),...,S.(Dy); F). Now we
apply 4.6 and 4.3.(4) in order to have the result proved. (J

Proposition 4.8
If EY,..., E! have the bounded approximation property, then

HT”VN7(’!‘;T1,...,’I‘7,,) > HTHVNf,(T;Tl,m,Tn)?
for every T € Lf(E,...,Ey; F).

Proof. We note that the mapping T, € L(Ex; L(E1,...,Ex—1,Ext1,...,Ey; F)), de-
fined by

is of finite type. Since E; has the Aj-approximation property for some A, > 0, for
each € > 0, we can find Sy, € L¢(Ey; Ey), such that T}, = T}, 0S5, and || S]] < (1+€)Ay.
Therefore, fo all 27 € E;, with j =1,...,n, we have

T(xt, .. . 2Pt Sp(a®), 2P 2™ =T (2t ... 2t 2k 2 ).
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Now, we can write
T(x,...,2") = T(Si(zh),...,Sn(z™)), Vol € Ej,j=1,...,n.

Thus, by 4.7, we have

k=1

<N,y (14 O™ T M
k=1

Hence
n
||T||VNf,(r;r1,...,rn) < ( H )\k) ||T||VN,(T;7‘1,...,T‘")'
k=1

With the same argument used in the proof of 4.6, we finally have:

HT”VNf,(r;m,...,rn) < HTHVN,(r;rl,...,rn)- O

Corollary 4.9
If E},..., E! have the bounded approximation property, then

£$}q}\7;1,,..,rn)(El7 B F)

and the completion of (B} ® ... ® E!, & F, p(r’;ri,mﬂ’;)) are isometric, when r,r, €
1,400, k=1,...,n.

Proposition 4.10

IfEY, ..., E! have the bounded approximation property, then the topological dual

of LYW (Ey,... By F) is isometric to £3,:"™) (Bf,... EL; F'), for r,ry €

[1,+00], k =1,...,n through the mapping B defined by

B(U) (¢, ..., ¢")(b) = U(p' x ... x ¢™D),

when W is in the topological dual ofﬁg}\r,l""’T”)(El, By F), o e Bl k=1,....n
and b e F.

Proof. 1t is a consequence of 4.9 and 3.2. [J
Remark 4.11. We recall that in [10] we proved that, when E, ..., E! have the bounded

(r37150,7n)

approximation property, the topological dual of £y (E1,...,Ey; F) is isometric
to 5,(1’;/”1"“”’;)(151, .., El; "), for r,r € [1,400], k = 1,...n through the mapping
B defined by

B() (¢, ..., ¢™)(b) = (! x ... x ¢"b),
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when W is in the topological dual of E(Nrm"”’r")(El, By F), o e Bl k=1,....n

and E&;}Gl"'”r”)(El, ..., E,; F) are different in general.

5. Hilbert-Schmidt multilinear mappings

In this section FEy,..., E,, F are Hilbert spaces. We are going to show that there is
a close relationship between the Hilbert-Schmidt and the fully absolutely summing
multilinear mappings.

Proposition 5.1
IfT € L(En,...,E,; F), then the (finite or infinite) value

ST, )

ILEJL
=1,...,n

is independent of the orthonormal basis (uf)jejk chosen in E, k=1,...,n

Proof. For n = 1, Parseval’s equality gives
D AT@HI? =D 1T (wy)II?,
jeJ1 jeJ

where (v;);jes is an orthonormal basis in . The case n > 1 is proved by fixing n — 1
variables and applying the linear result to the remaining variable. [

DEFINITION 5.2. A mapping T € L(E4,...,E,; F) is said to be Hilbert-Schmidt if
there is an orthonormal basis (u;?)jejk for E},, for each k = 1,...,n, such that

1/2
HTHHs=< > \\T(U}17...,u?n)|!2> < +o0.

ILEJIL
k=1,...,n

We denote by Lys(FEh,...,E,; F) the vector space of all such mappings. It is
easy to show that it is a Hilbert space under the norm ||.||gs defined by the inner
product

@ls) = 3 (T IS0, ).

Proposition 5.3
The mapping

TeLus(Er,....,EBEp;F)— T € Luys(E1;Lus(Es, ..., By F)),

where Ty (z')(22,... 2") = T(z!,22,...,2"), fora* € By, k = 1,...,n, is an isometric
isomorphism.
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Proof. If T € Lys(En,...,Ey F), (U?)jejk is an orthonormal basis of Ej, for each

k=1,...,n and (v;);ecs is an orthonormal basis of F', we can write
2
MooAn@) i P = > | D @l (T, ul,, o))
€Ty Ik€JKIET | j1ESL
k=2,...,n k=2,..., n
< (1T lrs)? ||,

for every x € E;. This shows that 73(x) is Hilbert-Schmidt and ||71(z)||gs <
IT|| gsllz|l. Now it is also clear that

ST (Ti@)las)” = (IT)as)*.

J1€J1

This proves that T3 is Hilbert-Schmidt and ||T1||gs = || T||gs- It is easy to see that
the mapping ' — T3 is onto Ly s(E1; Lys(Eo, ..., E,; F)). O

Corollary 5.4
(a) The mapping

TéeLys(Ey,...,Bp;F) — Ty € Lys(Ey...Ey; Lus(Eryt, ..., En; F)),

where Ty (x1, ... 2®)(a*T1, .. a") = T(at,2?%,...,2"), forad € E;, j=1,...,n,
is an isometric isomorphism.
(b) The mapping

TeLys(Er,...,E,,F;K) — T, € Lys(E1,...,E.; F')
is an isometric isomorphism.

Proposition 5.5

E?as(El, ooy Eny F) and Lys(FEq,. .., Ey; F) are identically isometric.

Proof. (a) If T € L2, (E1,...,En; F) and (u?)jejk is an orthonormal basis of E}, for
each k =1,...,n, we know that

1/2 n
( > \T(th--v“}‘n)\F) <N Tl gas.2 [T I1w)ien w2 < 1T fas.2;
k=1

JjelL X... X1,

for every finite subset I of Ji, with m elements, £k = 1,...,n and m natural. Hence
T is Hilbert-Schmidt and ||T'||gs < || T fas,2-

(b) We consider T' € Lyg(FE1,...,Ey; F).
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(i) If n = 1, we consider, m natural, z; € Eq, i = 1,...,m and an orthonormal basis
(vj)jes of F. Then

m 1/2 m 1/2
(an»n?) =(ZZ|<xirT*<vj>>|2>

i=1j€J
1/2 m 1/2
< (ZHT*(%)!2> sup (Zl(fm\@l?)
jes P€Be; \ j=1

= Tl ms ()1 llw,2-

Hence T € LQQS(El;F) and ||T| fas,2 < | T||ms-

(ii)) If n > 1, we assume that the result is true for £ < n — 1. Since, by 5.3, T1 €
Lys(Ev;Lus(Ea,...,Ey; F)), we have

Ty € L34.(Br; Lus(Ba, ..., Eni F)) C L7(Ey; L3,4(Ea, ..., Eg; F)),

with |77 fas,2 < |T1]|as = ||T||ms, via the induction hypothesis. By 2.5, we obtain
T € L3 (Br,- . Bni F) and ||T| as.2 < 1Tl fas2 < [ T]lms. O

Proposition 5.6
If p €]0, +o0], then

Lus(Er,...,En;F)C LY, (E1,...,En F),
and there is a constant d, > 0, such that
(dp)" T || fasp < I Tlrs, VI € Lus(Er, ..., En; F)

Proof. We use induction on n.

(i) For n = 1, we know that T has a Schmidt representation

T(u) =Y Ni(ulz)yi,

i€l

for every u € E, with (x;);e; orthonormal in Ey, (y;);er orthonormal in F and (A\;);er €
O5(I). In this case |T||gs = ||(Ai)ierll2 < +o00. Since this implies that A\; # 0 only
for ¢ in a denumerable subset of I, we may consider I = N. We consider the sequence
(r;)ien of the Rademacher functions and define v(t) by

1T sv(t) = Zri(t)/\iﬂ?i € by,

00
=1
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for each t € [0, 1]. By Khintchine’s inequality (see [4] and [10]), for every finite sequence
(u;)jL, of elements of Ey, we have

Tl ersll(w) 7 llwp)” = (1T s)” sup ZI (uj o ()P

telo, 11; 1
> Z/ Zrl uj\xz
m %) p/2 m
> (d >pZ<Z|Ai<ujmi>|2> OB SEATHID

p

dt

Hence T' € L% (E1; F) and dp||T || fas,p < | T as-

(ii) If n > 1, we assume that the result is true for £ < n — 1. We want to prove
the result for n. By 5.3 we know that T} € Lys(F1;Lus(Ea,...,E,; F)). By the
induction hypothesis, we have Ty € L8 (E1; Lus(Ea, ..., En; F), with dp||T1 ]| fas.p <
|T1||rs. If J is the inclusion from Lps(Eo,...,En; F) into L5, (Ea,..., Ep F),
the induction hypothesis show that (d,)" '||J|| < 1. Thus we have J o T} €
E?aS(El, E’}as (Es,...,E,; F)). We can write

(dp)" 7 © Thll fasp < dp((dp)" " I TDIT 1l pas.p < dpl Tl sasp < 1T1lmrs = T |25

By 2.5,we have T' € L% (F1,...,E,; F) and

fas

(dp)" 1Tl fas.p < (dp)" | © Tl fas,p < [T rrs- O

In order to prove next result, we consider m € N and D,,, = {1, —1}". A measure
 is considered on the set of the parts of D,,. It is defined by p(e) = 27, for every
e=(e1,...,em) € Dy,. We denote by 7y, the k-th projection from D,,, onto {1, —1}.
It follows that

[ miemenute) = 0.
Dm
We recall that 6;, =1, if j =k, and 6;, =0, if j # k.

Proposition 5.7
For p € [2,+00],

Ep

bos(Bryo o By F) = Lys(By,..., B F),

and there is a constant b, > 0 such that

()" 1T || fas.p < [ Tllrrs < (bp)" | Tl fas.ps

for every fully absolutely p-summing n-linear mapping T'.
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Proof. One part of this result is Proposition 5.6. In order to prove the other part we
consider T in E’]’cas (Eq,...,En; F) and an orthonormal basis (u?)jgk of E}, for each
k=1,...,n. For every finite subset Ji of I, with m elements, we consider (uf)jeJk
ordered linearly and write uf, ... kE=1,...,n. We denote

:Zﬂj(e)u§ for e€e Dy, k=1,...,n

We can write:

m 1/2
( Z I7°( 31,---,U§2)H2>

1/2
- (/ ”T(wl(el)v""w"(en))‘|2dﬂ(€1)...du(en)>

1/p
< ( /| HT<w1<e1>,...,wn<e”>>||pdu<e1>...dme”)) = (+).

Since the integral we have used is a finite sum, we can use the fact that T is fully
absolutely p-summing and the Khintchine’s inequality in order to write

<0 IT s ([ 160 <e>>|pdu<e>>””

eB
k=1%€Be!

1/2
< ||T||fas,p bp Sup |¢ = ||T‘|fas7p(bp)n~
¢eB

By,
Hence T is Hilbert-Schmidt and ||T'||zs < (bp)"[|T]| fas,p- O

DEFINITION 5.8. It is considered on F; ® ... ® F, the inner product

p q
(w)e =D (@yh) - (@ lyp),

j=1k=1

where
2 q
:ijl.@...@x? and szyi@...@yE.
j=1 k=1

The space F1 ® ... ® E, with this inner product is denoted by F1 ®p ...y E, and
its completion by E1®p ... @y E,. The corresponding norm is denoted by |||z

Remark 5.9. 1f (€] )ieJ, is an orthonormal basis for Ey, k= 1,...,n, then

(€ ®..06) e

,,,,,

is an orthonormal basis for E1Qp ...y E,.
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As a consequence of this remark we can prove

Proposition 5.10

IfT € L(Ey,...,Ey; F) and Ty denotes the corresponding linear mapping from
k1 ®...® FE, into F, then the following conditions are equivalent:

(1) T is Hilbert-Schmidt.

(2) Ty € L(E1®H...®HEH;F), where Ty denotes the extension of Tg to
Ei®pg...Quky,.

In this case | T||gs = || T || us-

Proposition 5.11
The Hilbert space Lys(Ey,...,E};F') is isometric to (»CHS(EL...,EH;F))/
through the mapping B given by
B)(ai,....a5) = D (.. o),
jeJ
where ¢ € (Lys(E1,...,En F)), xf, € B, k=1,...,n, and (f;),jes is an orthonor-

mal basis of I, with (f});je; being the corresponding dual orthonormal basis of F".

Proof. If we prove the result for F' = K, we can use it and 5.4.(b) in order to obtain
the isometries:

(Lis(Ers...,En; F)) = (Lys(Br,. .., By, F5K))
~ Lus(Ey,... B F;K) 2 Lys(EY,...,EL FY.
This shows that we have to prove only the case F' = K. It is clear that

/ /
X o0 X ;
(el,h en,]n)(jl,‘..,jn)ejl X...XJn

is an orthonormal basis for Lys(E, ..., E,;K), when (eﬁc’ j) jeJ, denotes the dual basis
of the orthonormal basis (e ;)jes, of Ex, k=1,...,n. We have
T = Z T(el,ju---aen,jn)ell,jl X ... X e;%,

(J1y-ydn)EJ1 X0 X T,

for every T € Lys(FE1,. .., FEy;K). Hence, for ¢ € (Lys(Eq, ..., E,;K)), we have
2
> 1B (e, eny )| = Il

(F1yeesin)EJ1X . X Ty

This shows that B(v) is Hilbert-Schmidt and ||B(¢)||zs = [|¢]]-
On the other hand, if S € Lyg(F1,...,E);K), we define
¥s € (Lus(Er,. .., EnK))
by
Ys(T) = Z T(ele,...,emjn)S(ell’jl,...,e'mjn).

(J1seemrjn ) ET1 X oo X T

Thus, we have B(is) = S and |¢¥s(T)| < |[T||gs||S||as. Therefore, ||vs|] < ||S||ms-
In fact we have equality, since |[¢g|| = ||B(¥s)||las = ||S|las- O

Corollary 5.12
The Hilbert spaces (E1®p ...@pE,) and E{®g ... @z B! are isometric.



Fully absolutely summing multilinear mappings 135

Proof. By 5.10 and 5.11 we have the isometries:

Ei®p ... 0F, 2 (E1®g...9uE,)" 2 (Lys(Er, ..., B K))

The result follows by duality. [

Proposition 5.13

The following spaces are isometric:
Lus(Br,...,EnF), Lus(By,..., By K)@pF and (Bi®p ... QuE,)@uF.
Proof. By 5.4.(b), 5.10 and 5.12 we have the isometries:

Lus(Ery....Ey;F) 2 Lys(Er,...,En, F';K) 2 (B1®y ... OuE,&pF)
~ (E1®y...0uE,) g F

and this space is isometric to the space Lyg(E1,...,Ey;K)®gF, as well as to
(Bi®p...0pE,)&pF. O

Remark 5.14. The results obtained in this section and in Section 4 give a linear
homeomorphism between (Lpg(Er,...,Ey; F)) and (L3, 5 (E1, ..., En; F)), for p €
]1,2]. But we observe that (L}, (E1, ..., Ey; F))" is not normed for n > 2.
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