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Abstract

The space of the fully absolutely (r; r1, . . . , rn)-summing n-linear mappings
between Banach spaces is introduced along with a natural (quasi-)norm on it. If
r, rk ∈ [1,+∞], k = 1, . . . , n, this space is characterized as the topological
dual of a space of virtually nuclear mappings. Other examples and properties are
considered and a relationship with a topological tensor product is stablished. For
Hilbert spaces and r = r1 = . . . = rn ∈ [2,+∞[ this space is isomorphic to
the space of the Hilbert-Schmidt multilinear mappings.

1. Introduction

In [13], after considering the space of the absolutely (r; r1, . . . , rn)-summing n-linear
functionals on Banach spaces, Pietsch asks if, for n ≥ 3, it coincides with the
space of the Hilbert-Schmidt n-linear functionals on Hilbert spaces for some values
of r, r1, . . . , rn. In Matos [11], we prove that this question of Pietsch has negative
answer. We also prove there that the answer to the same question, for n ≥ 2, when
infinite dimensional valued mappings are considered, is also negative. These results
lead us to a natural question: can we consider a proper subspace of the space of the
absolutely (r; r1, . . . , rn)-summing n-linear mappings that coincides with the Hilbert-
Schmidt multilinear mappings on Hilbert spaces for some r, r1, . . . , rn? A natural
condition required for these subspaces is that, in the linear case, they should coin-
cide with the usual absolutely (r; s)-summing linear operators. This question gave us
the motivation for the introduction of the space of the fully absolutely (r; r1, . . . , rn)-
summing n-linear mappings between Banach spaces. This space is endowed with a
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natural norm, if r ≥ 1, or an r-norm, if r ∈]0, 1[. We show that it is isomorphic to the
space of the n-linear Hilbert-Schmidt mappings, when r = r1 = . . . = rn ∈ [2,+∞[ (see
Section 5). These mappings are considered in Section 2 along with several examples
and properties.

In Section 3 we consider Banach spaces E1, . . . , En, F and endow E1⊗. . .⊗En⊗F
with a (quasi-)norm in such a way that its topological dual is isometric to the space
of the fully absolutely (r; r1, . . . , rn)-summing n-linear mappings from E1 × . . . × En

into F ′, when r ∈ [1,+∞].

In Section 4 we study the virtually (r; r1, . . . , rn)-nuclear n-linear mappings from
E1 × . . . × En into F . If E′

1, . . . , E
′
n have the bounded approximation property and

r, r1, . . . , rn ∈ [1,+∞], we show that the vector space of these mappings, endowed
with a natural linear topology, has its topological dual isometric to the space of all
absolutely (r′; r′1, . . . , r

′
n)-summing mappings from E′

1 ⊗ . . . ⊗ E′
n into F ′. Here, as

usual, if r ∈ [1,+∞], r′ is the element of [1,+∞] such that 1/r + 1/r′ = 1. This
result is analogous to the connection between absolutely summing n-linear mappings
and multilinear mappings of nuclear type proved in [10].

In Section 5 we study the space of the n-linear Hilbert-Schmidt mappings between
Hilbert spaces, its properties and, as we already mentioned, its relationship with spaces
of fully absolutely summing mappings. The multilinear Hilbert-Schmidt mappings were
introduced by Dwyer in his doctoral dissertation [4].

For results on linear operators between Banach spaces there are some very good
texts. We mention Pietsch [14], Defant-Floret [2] and Diestel-Jarchow-Tonge [3].

Now, we fix the notations used in this paper. For Banach spaces E1, . . . , En and
F over K (either R or C), we denote by L(E1, . . . , En;F ) the Banach space of all
continuous n-linear mappings from E1 × . . .× En into F , under the norm

‖T‖ = sup
xk∈BEk
k=1,...,n

‖T (x1, . . . , xn)‖,

where BEk
denotes the closed unit ball of Ek centered at 0. If φk is in the topological

dual E′
k of Ek, k = 1, . . . , n, and b ∈ F , we define φ1 × . . . × φnb ∈ L(E1, . . . , En;F )

by

φ1 × . . .× φnb(x1, . . . , xn) = φ1(x1) . . . φn(xn)b, ∀xk ∈ Ek, k = 1 . . . , n.

The set of all these mappings generates the vector space Lf (E1, . . . , En;F ) of the
n-linear mappings of finite type.

If r ∈]0,+∞[, we denote by �r(Nn;F ) (or �r(Nn), if F = K) the vector space of
all families (yj)j∈Nn of elements of F such that

‖(yj)j∈Nn‖r =

( ∑
j∈Nn

‖yj‖r
)1/r

< +∞.
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We observe that ‖.‖r is a norm (r-norm, if r < 1) on �r(Nn;F ) and defines a complete
metrizable linear topology on it. We denote by �∞(Nn;F ) (or �∞(Nn), if F = K) the
Banach space of all bounded families (yj)j∈Nn of elements of F , under the norm

‖(yj)j∈Nn‖∞ = sup
j∈Nn

‖yj‖.

The Banach subspace of �∞(Nn;F ) of the families (yj)j∈Nn such that

lim
jk→∞

k=1,...,n

‖yj‖ = 0

is denoted by c0(Nn;F ) (or c0(Nn), if F = K). As usual, an element j of N
n will be

represented by (j1, . . . , jn), We also consider finite families (yj)j∈Nn
m

of elements of a
Banach space. Here Nm = {1, . . . ,m} and we apply the symbol ‖.‖r to these families
as we have done in the non-finite case. If n = 1, it is usual to omit N

n in all the
preceding notations.

The vector space of all sequences (yj)∞j=1 of elements of F such that (φ(yj))∞j=1 ∈
�r, for every φ ∈ F ′, is denote by �wr (F ). This space is complete for the linear topology
defined by the norm (r-norm, if r < 1)

∥∥(yj)∞j=1

∥∥
w,r

= sup
φ∈BF ′

∥∥(φ(yj))∞j=1

∥∥
r
.

2. Fully absolutely summing multilinear mappings

We recall the following concept introduced by Pietsch in [13] for scalar valued multi-
linear mappings

Definition 2.1. For r, r1, . . . , rn ∈]0. + ∞], with 1
r ≤ 1

r1
+ . . . + 1

rn
, a mapping

T ∈ L(E1, . . . , En;F ) is absolutely (r; r1, . . . , rn)-summing if there is C ≥ 0 such that

∥∥(T (x1i , . . . , x
n
i ))mi=1

∥∥
r
≤ C

n∏
k=1

∥∥(xki )
m
i=1

∥∥
w,rk

(1)

for every m ∈ N, xki ∈ Ek, k = 1, . . . , n and i = 1, . . . ,m.

We denote the vector space of all such mappings by L(r;r1,...,rn)
as (E1, . . . , En;F )

and the smallest of all C satisfying (1) by ‖T‖as,(r;r1,...,rn). This defines a norm (r-
norm, if r < 1) on L(r;r1,...,rn)

as (E1, . . . , En;F ). It is easy to show that the topological
vector space (L(r;r1,...,rn)

as (E1, . . . , En;F ), ‖.‖as,(r;r1,...,rn)) is complete.

We introduce a more restrictive concept.
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Definition 2.2. For r, r1, . . . , rn ∈]0. + ∞], with r ≥ rk, k = 1, . . . , n, a mapping
T ∈ L(E1, . . . , En;F ) is fully absolutely (r; r1, . . . , rn)-summing if there is C ≥ 0 such
that ∥∥(T (x1j1 , . . . , x

n
jn))j∈Nn

m

∥∥
r
≤ C

n∏
k=1

∥∥(xki )
m
i=1

∥∥
w,rk

(2)

for every m ∈ N, xki ∈ Ek, k = 1, . . . , n and i = 1, . . . ,m.

We denote the vector space of all such mappings by L(r;r1,...,rn)
fas (E1, . . . , En;F )

and the smallest of all C satisfying (2) by ‖T‖fas,(r;r1,...,rn). This defines a norm
(r-norm, if r < 1) on L(r;r1,...,rn)

fas (E1, . . . , En;F ) that makes it a complete metrizable
topological vector space. It is clear that

L(r;r1,...,rn)
fas (E1, . . . , En;F ) ⊂ L(r;r1,...,rn)

as (E1, . . . , En;F )

and
‖T‖ ≤ ‖T‖as,(r;r1,...,rn) ≤ ‖T‖fas,(r;r1,...,rn),

for every T ∈ L(r;r1,...,rn)
fas (E1, . . . , En;F ).

In order to simplify our writing, when r1 = . . . rn = s we replace (r; r1, . . . , rn) by
(r; s) in the previous notations. If r = s we replace (r; r) by r and , in the case r = 1,
we just omit (1, 1).

A result of Defant and Voigt (see [1] for a proof) states that Las(E1, . . . , En; K) =
L(E1, . . . , En; K) isometrically.

Examples 2.3: (1) There is T ∈ L(c0, c0; K) = Las(c0, c0; K) such that

∞∑
j,k=1

|T (ej , ek)| = +∞,

for the canonical Schauder basis (ej)∞j=1 of c0 (see [9]). Hence T cannot be fully
absolutely summing.

(2) If E is an infinite dimensional Banach space, we fix an element φ ∈ E′, φ �= 0, and
define Tφ ∈ L(E,E;E) by Tφ(x, y) = φ(x)y, for every x, y ∈ E.

(a) Tφ ∈ L(r;r1,r2)
as (E,E;E), if r1 ≤ r and 1

r ≤ 1
r1

+ 1
r2

.
In fact:

‖(Tφ(xj , yj))mj=1‖r ≤ ‖φ‖‖(xj)mj=1‖w,r1‖(yj)mj=1‖∞
≤ ‖φ‖‖(xj)mj=1‖w,r1‖(yj)mj=1‖w,r2 ,

for all m ∈ N, xj , yj ∈ E, j = 1, . . . ,m. Hence ‖Tφ‖as,(r;r1,r2) ≤ ‖φ‖.

(b) Tφ /∈ L(r;r1,r)
fas (E,E;E), for all r1 ≤ r.
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In fact: if we choose (yj)∞j=1 ∈ �wr (E) \ �r(E) and (xk)∞k=1 ∈ �wr1(E), we have( ∞∑
j,k=1

‖Tφ(xk, yj)‖r
)1/r

=

( ∞∑
k=1

|φ(xk)|r
)1/r( ∞∑

j=1

‖yj‖r
)1/r

= +∞.

(3) Every n-linear mapping of finite type is fully absolutely (r; r1, . . . , rn)-summing.
This follows from the fact that φ1 × . . .× φnb, with φk ∈ E′

k, k = 1, . . . , n and b ∈ F ,
is fully absolutely (r; r1, . . . , rn)-summing. We have(

m∑
jk=1

k=1,...,n

‖φ1 × . . .× φnb(x1j1 , . . . , x
n
jn)‖r

)1/r

= ‖b‖
n∏

k=1

‖(φk(xki ))mi=1‖r.

Hence
‖φ1 × . . .× φnb‖fas,(r;r1,...,rn) ≤ ‖φ1‖ . . . ‖φn‖‖b‖.

Proposition 2.4
For T ∈ L(E1, . . . , En;F ) the following conditions are equivalent:

(1) T is fully absolutely (r; r1, . . . , rn)-summing.

(2) If (xki )
∞
i=1 ∈ lwrk(Ek), for k = 1, . . . , n, then (T (x1j1 , . . . , x

n
jn

))j∈Nn ∈ �r(Nn;F ).
(3) The mapping Tw defined from �wr1(E1) × . . .× �wrn(En) into �r(Nn;F ) by

Tw
(
(x1i )

∞
i=1, . . . , (x

n
i )∞i=1

)
=

(
T (x1j1 , . . . , x

n
jn)

)
j∈Nn

is well defined, n-linear and continuous.

In this case ‖T‖fas,(r;r1,...,rn) = ‖Tw‖.

Proof. It is clear that (3) implies (2) and that (3) implies (1) with ‖T‖fas,(r;r1,...,rn) ≤
‖Tw‖. If T is fully absolutely (r; r1, . . . , rn)-summing and (xki )

∞
i=1 ∈ �wrk(Ek), for k =

1, . . . , n, then we have

∥∥(T (x1j1 , . . . , x
n
jn))j∈Nn

m

∥∥
r
≤ ‖T‖fas,(r;r1,...,rn)

m∏
k=1

‖(xki )mi=1‖w,rk

≤ ‖T‖fas,(r;r1,...,rn)

m∏
k=1

‖(xki )∞i=1‖w,rk ,

for every m ∈ N. Hence, by passage to the limit, for m tending to +∞, we see that
(1) implies (2) and (1) implies (3) with ‖Tw‖ ≤ ‖T‖fas,(r;r1,...,rn). If we use the Closed
Graph Theorem we can show that (2) implies (3). In fact, the Closed Graph Theorem
is used to show that Tw is separately continuous, hence continuous. �

The following result has interesting consequences.

Proposition 2.5
If r ≥ r1 ≥ rk > 0, k = 2, . . . , n, and T ∈ L(E1, . . . , En;F ) are such that T1

belongs to L(r;r1)
as (E1;L(r1;r2,...,rn)

fas (E2, . . . , En;F )), with T1 defined by

T1(x1)(x2, . . . , xn) = T (x1, x2, . . . , xn) ∀xk ∈ Ek, k = 1, . . . , n,

then T is fully absolutely (r; r1, . . . , rn)-summing and ‖T‖fas,(r;r1,...,rn) ≤ ‖T‖as,(r;r1).
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Proof. For r finite, m natural and xki ∈ Ek, k = 1, . . . , n and i = 1, . . . ,m we have

∥∥(T (x1j1 , . . . , x
n
jn))j∈Nn

m

∥∥
r
≤

(
m∑

j1=1

( m∑
jk=1

k=2,...,n

‖T1(x1j1)(x
2
j2 , . . . , x

n
jn)‖r1

)r/r1

)1/r

≤
(

m∑
j1=1

(
‖T1(x1j1)‖fas,(r1;r2,...,rn)

n∏
k=2

‖(xki )mi=1‖w,rk

)r
)1/r

≤ ‖T1‖as,(r;r1)
n∏

k=1

‖(xki )mi=1‖w,rk .

The case r = +∞ is trivial. �

Consequences 2.6

(1) Lfas(�1, �2; K) = L(�1, �2; K).

This follows from 2.5 and the Grothendieck’s Theorem stating that L(�1; �2) =
Las(�1; �2) (see [5]).

(2) L2
fas(c0, �p; K) = L(c0, �p; K), for every p ∈ [2,+∞[.

(3) L2
fas(c0, c0; K) = L(c0, c0; K).

The equalities (2) and (3) follow from 2.5 and a result of Lindenstrauss and Pel-
czyński proving that L2

as(c0; �r) = L(c0; �r), for r ∈ [1, 2] (see [8]).

(4) Lr
fas(c0, �p; K) = L(c0, �p; K), for 1 < r′ < p < 2.

This follows from 2.5 and the following result of Schwartz and Kwapien:L(c0; �p′)=
Lr
as(c0; �p′), for 2 < p′ < r < +∞ (see [7] and [15]).

(5) Lr
fas(�∞, F ; K) = L(�∞, F ; K), if F ′ has cotype p′ and 1 < r′ < p < 2.

This is a consequence of 2.5 and a result of Maurey [12] that states: Lr
as(�∞;F ′) =

L(�∞;F ′), if 2 < p′ < r < +∞ and F ′ has cotype p′.

The following two propositions are easily proved and give ways of constructing
new examples of fully absolutely summing mappings.

Proposition 2.7

If T ∈ L(r;r1....,rn)
fas (E1, . . . , En;F ), S ∈ L(F ;G) and Rk ∈ L(Dk;Ek), k = 1, . . . , n,

then S ◦ T ◦ (R1, . . . , Rn) is fully absolutely (r; r1, . . . , rn)-summing and

‖S ◦ T ◦ (R1, . . . , Rn)‖fas,(r;r1,...,rn) ≤ ‖S‖‖T‖fas,(r;r1,...,rn)

n∏
k=1

‖Rk‖.

By 2.7, we can see that, in 2.6, (4) is a consequence of (5).
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Proposition 2.8

If T ∈ L(E1, . . . , En;F ), Rk ∈ L(sk;rk)
as (Dk;Ek), k = 1, . . . , n, then T ◦(R1, . . . , Rn)

is fully absolutely (s; r1, . . . , rn)-summing, when s ≥ max {s1, . . . , sn}, and

‖T ◦ (R1, . . . , Rn)‖fas,(s;r1,...,rn) ≤ ‖T‖
n∏

k=1

‖Rk‖as,(s;rk).

We recall that a Banach space E has the Orlicz Property if idE ∈ L(2;1)
as (E;E). In

this case the Orlicz constant of E is defined as O(E) = ‖idE‖as,(2:1). If p ∈ [1, 2], then
�p has the Orlicz Property. Hence, as a consequence of 2.8 we have:

Corollary 2.9

If E1, . . . , En have the Orlicz Property, then

L(E1, . . . , En;F ) = L(2,1)
fas (E1, . . . , En;F ),

for every F . Moreover:

‖T‖fas,(2;1) ≤ ‖T‖
n∏

k=1

O(Ek),

for every T ∈ L(E1, . . . , En;F ).

As consequence of 2.8 and the results of Grothendieck, Lindenstrauss-Pelczyński,
Schwartz, Kwapien and Maurey mentioned in the proof of 2.6 we can give the following
examples:

Example 2.10: If T ∈ L(�2, . . . , �2;F ) and Sk ∈ L(�1; �2), k = 1, . . . , n, then T ◦
(S1, . . . , Sn) is fully absolutely (s; 1)-summing for each s ≥ 1.

Example 2.11: If p ∈ [1, 2], T ∈ L(�p, . . . , �p;F ) and Sk ∈ L(c0; �p), k = 1, . . . , n,
then T ◦ (S1, . . . , Sn) is fully absolutely (s; 2)-summing for each s ≥ 2.

Example 2.12: If 2 < p < r < +∞, T ∈ L(�p, . . . , �p;F ) and Sk ∈ L(c0; �p),
k = 1, . . . , n, then T ◦ (S1, . . . , Sn) is fully absolutely (s; r)-summing for each s ≥ r.

Example 2.13: if 1 < r′ < p < 2, E′
k has cotype p′, T ∈ L(E1, . . . , En;F ) and

Sk ∈ L(�∞;Ek), k = 1, . . . , n, then T ◦ (S1, . . . , Sn) is fully absolutely (s; r)-summing
for each s ≥ r.

The n-linear version of the Grothendieck-Pietsch Domination Theorem is the fol-
lowing result. The proof of this theorem is an adaptation of the proof for the linear
case that uses Ky Fan’s Lemma. We denote by W (BF ′) the set of all regular proba-
bilities measures on the σ-algebra of the Borel subsets of BF ′ , for the weak ∗ topology
on F ′ restricted to BF ′ .
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Theorem 2.14
If T ∈ L(E1, . . . , En;F ) and 1/r = 1/r1 + . . .+ 1/rn, with r, r1, . . . , rn ∈]0,+∞[,

then T is absolutely (r; r1, . . . , rn)-summing, if, and only if, there are C ≥ 0 and
µk ∈W (BE′

k
), k = 1, . . . , n, such that

‖T (x1, . . . , xn)‖ ≤ C
(∫

BE′
1

|φ(x1)|r1dµ1(φ)

)1/r1

. . .

(∫
BE′

n

|φ(xn)|rndµn(φ)

)1/rn

,

for every xk ∈ Ek, k = 1, . . . , n. The infimum of all these possible C is equal to
‖T‖as,(r;r1,...,rn).

This result is applied in the proof of the following inclusion.

Proposition 2.15
If r, r1, . . . , rn ∈]0,+∞[ are such that 1/r = 1/r1+. . .+1/rn, then each absolutely

(r; r1, . . . , rn)-summing n-linear mapping T from E1×. . .×En into F is fully absolutely
(s; r1, . . . rn)-summing, with s = max

k=1,...,n
rk and

‖T‖fas,(s;r1,...,rn) ≤ ‖T‖as,(r;r1,...,rn).

Proof. By 2.14, we can find C ≥ 0 and µk ∈W (BE′
k
), k = 1, . . . , n, such that

‖T (x1, . . . , xn)‖ ≤ C
(∫

BE′
1

|φ(x1)|r1dµ1(φ)

)1/r1

. . .

(∫
BE′

n

|φ(xn)|rndµn(φ)

)1/rn

,

for every xk ∈ Ek, k = 1, . . . , n. Hence we can write

m∑
j1,...,jn=1

‖T (x1j1 , . . . , x
n
jn)‖s ≤ Cs

m∑
j1,...,jn=1

n∏
k=1

(∫
BE′

k

|φ(xkjk)|rkdµk(φ)
)s/rk

= Cs
n∏

k=1

m∑
j=1

(∫
BE′

k

|φ(xkj )|rkdµk(φ)
)s/rk

≤ Cs
n∏

k=1

(
m∑
j=1

∫
BE′

k

|φ(xkj )|rkdµk(φ)
)s/rk

=
n∏

k=1

(∫
BE′

k

m∑
j=1

|φ(xkj )|rkdµk(φ)
)s/rk

≤ Cs
n∏

k=1

(
‖(xkj )mj=1‖w,rk

)s
.

This completes our proof. �

Theorem 2.16 (Multiplication)
For 1 ≤ p, q, r < +∞, with 1/r = 1/p + 1/q, if S ∈ Lp

fas(E1, . . . , En;F ) and
Tk ∈ Lq

as(Dk;Ek), k = 1, . . . , n, then S ◦ (T1, . . . , Tn) is in Lr
fas(D1, . . . , Dn;F ).
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Proof. We know that, for each k = 1, . . . , n, there is µk ∈W (BD′
k
), such that

‖Tk(x)‖ ≤ ‖Tk‖as,q
(∫

BD′
k

|φ(x)|qdµk(φ)
)1/q

,

for every x ∈ Dk. We take

ρki =

(∫
BD′

k

|φ(xi)|rdµk(φ)
)1/q

,

for k = 1, . . . , n and i = 1, . . . ,m. Without loss of generality we may consider Tk(xki ) �=

0, for all k = 1, . . . , n and i = 1, . . . ,m. Hence ρki > 0 and we can define zki =
xki
ρki

.

Now, for α1, . . . , αm ∈ K, with
m∑
i=1

|αi|p
′ ≤ 1, since

1
r′

+
1
p

+
1
q

= 1, we can use Holder’s

inequality in order to write

∣∣∣∣∣
m∑
i=1

φ(αizki )

∣∣∣∣∣ ≤
m∑
i=1

|αi|p
′/r′ |αi|p

′/q 1
ρki

|φ(xki )|r/q|φ(xki )|r/p

≤
(

m∑
i=1

|αi|p
′

)1/r′( m∑
i=1

|αi|p
′ 1
(ρki )q

|φ(xki )|r
)1/q( m∑

i=1

|φ(xki )|r
)1/p

≤
(

m∑
i=1

|αi|p
′ 1
(ρki )q

|φ(xki )|r
)1/q( m∑

i=1

|φ(xki )|r
)1/p

.

Thus

∥∥∥∥∥
m∑
i=1

αiTk(zki )

∥∥∥∥∥ =

∥∥∥∥∥Tk
( m∑

i=1

αiz
k
i

)∥∥∥∥∥
≤ ‖Tk‖as,q

(∫
BD′

k

∣∣∣ m∑
i=1

φ(αizki )
∣∣∣qdµk(φ)

)1/q

≤ ‖Tk‖as,q
(

m∑
i=1

|αi|p
′ 1
(ρki )q

∫
BD′

k

|φ(xki )|rdµk(φ)
)1/q (

‖(xki )mi=1‖w,r

)r/p
≤ ‖Tk‖as,q

(
‖(xki )mi=1‖w,r

)r/p
.

Hence ∥∥(Tk(zki ))mi=1

∥∥
w,p

≤ ‖Tk‖as,q
(
‖(xki )mi=1‖w,r

)r/p
.
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Now we have:(
m∑

i1,...,in=1

∥∥S(T1(x1i1), . . . , Tn(xnin))
∥∥r

)1/r

=

(
m∑

i1,...,in=1

(ρ1i1 . . . ρ
n
in)r‖S(T1(z1i1), . . . , Tn(znin))‖r

)1/r

≤
(

m∑
i1,...,in=1

(ρ1i1 . . . ρ
n
in)q

)1/q( m∑
i1,...,in=1

‖S(T1(z1i1), . . . , Tn(znin))‖p
)1/p

≤
n∏

k=1

‖(ρki )mi=1‖q‖S‖fas,p
n∏

k=1

‖(Tk(zki ))mi=1‖w,p

≤
n∏

k=1

‖(ρki )mi=1‖q‖S‖fas,p
n∏

k=1

‖Tk‖as,q
(
‖(xki )mi=1‖w,r

)r/p

≤ ‖S‖fas,p
n∏

k=1

‖Tk‖as,q
(
‖(xki )mi=1‖w,r

)r/p+r/q

≤ ‖S‖fas,p
n∏

k=1

‖Tk‖as,q‖(xki )mi=1‖w,r.

Therefore S ◦ (T1, . . . , Tn) is fully absolutely r-summing and

‖S ◦ (T1, . . . , Tn)‖fas,r ≤ ‖S‖fas,p
n∏

k=1

‖Tk‖as,q,

as we wanted to prove. �
We recall that, for p ∈ [1,+∞] and λ > 1, a Banach space E is called an Lp,λ-space

if every finite dimensional subspaceD of E is contained in a finite dimensional subspace
F of E for which there is an isomorphism v from F onto �dim(F )

p with ‖v‖‖v−1‖ < λ.
It is said that E is an Lp-space if it is an Lp,λ-space for every λ > 1. If (Ω,Σ, µ) is
any measure space, then Lp(µ) is an Lp,λ-space for every λ > 1. If K is a compact
Hausdorff space, then C(K) is an L∞,λ-space for every λ > 1.

See Theorem 3.7, page 64, in [3] for a proof of the following linear result.

Theorem 2.17

If p ∈ [1, 2], E is an L∞,λ-space, F is an Lp,λ′ -space, then every continuous linear

operator u from E into F is absolutely 2-summing, with ‖u‖as,2 ≤ λλ′KG‖u‖ (KG is

the Grothendieck constant of the Grothendieck’s inequality).

Theorem 2.18

If p ∈ [1, 2], F is a Banach space and Ek is a subspace of an Lp,λk
-space, for

k = 1, . . . , n, then

Lq
fas(E1, . . . , En;F ) ⊂ L1

fas(E1, . . . , En;F ),
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for all q ∈ [1, 2]. In this case

‖S‖fas,1 ≤ ‖S‖fas,qKG

n∏
k=1

λk,

for all S ∈ Lq
fas(E1, . . . , En;F ).

Proof. If q = 1 the result is trivial. If q ∈]1, 2], we have q′ ∈ [2,+∞[. If xk1 , . . . , x
k
m ∈

Ek, we can define a continuous linear operator vk from �m∞ into Ek, by vk(ej) = xkj , for
all j = 1, . . . ,m. By 2.17 vk is absolutely 2-summing and ‖vk‖as,2 ≤ KGλk‖vk‖. Since
‖vk‖ ≤ ‖(xkj )mj=1‖w,1 and q′ ≥ 2, we have vk absolutely q′-summing and ‖vk‖as,q′ ≤
KGλk‖(xkj )mj=1‖w,1. By 2.16 we have

‖S ◦ (v1, . . . , vn)‖fas,1 ≤ ‖S‖fas,q
n∏

k=1

‖vk‖as,q′ ≤ ‖S‖fas,qKG

n∏
k=1

λk‖(xkj )mj=1‖w,1.

This implies

m∑
j1,...,jn=1

‖S(x1j1 , . . . , x
n
jn)‖ ≤ ‖S‖fas,qKG

n∏
k=1

λk‖(xkj )mj=1‖w,1,

as we wanted to show. �

3. Connection with tensor products

For r ∈ [1,+∞], 0 < rk ≤ r, k = 1, . . . , n and u ∈ E1⊗, . . . ,⊗En ⊗ F , we consider

ρ(r;r1,...,rn)(u) = inf ‖(λj)j∈Nn
m
‖r′‖(bj)j∈Nn

m
‖∞

n∏
k=1

‖(xki )mi=1‖w,rk ,

where the infimum is taken over all representations of u of the form

u =
∑
j∈Nn

m

λjx
1
j1 ⊗ . . .⊗ x

n
jnbj ,

with λj ∈ K, xki ∈ Ek, bj ∈ F, i = 1, . . . ,m, j ∈ N
n
m and m ∈ N. We denote by sn the

element of [0, 1] given by
1
sn

=
1
r′

+
1
r1

+ . . .+
1
rn
.

Proposition 3.1

ρ(r;r1,...,rn) is an sn-norm and ε ≤ ρ(r;r1,...,rn), where ε denotes the injective tensor

norm on E1⊗, . . . ,⊗En ⊗ F .
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Proof. If
u =

∑
j∈Nn

m

λjx
1
j1 ⊗ . . .⊗ x

n
jnbj ,

we have

ε(u) = sup

{∣∣∣ ∑
j∈Nn

m

λjφ1(x1j1) . . . φn(xnjn)ψ(b)
∣∣∣;φk ∈ BE′

k
, ψ ∈ BF ′

}

≤
∥∥(λj)j∈Nn

m

∥∥
r′

sup
φk∈BE′

k

∥∥(φ1(x1j1) . . . φn(xnjn))j∈Nn
m

∥∥
r

∥∥(bj)j∈Nn
m

∥∥
∞

≤ ‖(λj)j∈Nn
m
‖r′‖(bj)j∈Nn

m
‖∞

n∏
k=1

‖(xki )mi=1‖w,rk .

Hence ε(u) ≤ ρ(r;r1,...,rn)(u).
For u, v ∈ E1⊗, . . . ,⊗En ⊗ F and δ > 0, we can find representations of u and v

of the form

u =
∑
j∈Nn

m

λjx
1
j1 ⊗ . . .⊗ x

n
jnbj , v =

∑
j∈Nn

p

ηjy
1
j1 ⊗ . . .⊗ x

n
jncj ,

such that

‖(λj)j∈Nn
m
‖r′ ≤

(
(1 + δ)ρ(r;r1,...,rn)(u)

)sn/r′
,

‖(ηj)j∈Nn
p
‖r′ ≤

(
(1 + δ)ρ(r;r1,...,rn)(v)

)sn/r′
,

‖(xki )mi=1‖w,rk ≤
(
(1 + δ)ρ(r;r1,...,rn)(u)

)sn/rk ,
‖(yki )pi=1‖w,rk ≤

(
(1 + δ)ρ(r;r1,...,rn)(v)

)sn/rk ,
‖(bj)j∈Nn

m
‖∞ = 1 = ‖(cj)j∈Nn

p
‖∞.

Thus we can write(
ρ(r;r1,...,rn)(u+ v)

)sn
≤

( ∑
j∈Nn

m

|λj |r
′
+

∑
j∈Nn

p

|ηj |r
′

)sn/r
′
n∏

k=1

(
sup

φ∈BE′
k

( m∑
i=1

|φ(xki )|rk +
p∑

i=1

|φ(yki )|rk
))sn/rk

≤ (1 + δ)sn
(
(ρ(r;r1,...,rn)(u))sn + (ρ(r;r1,...,rn)(v))sn

)
.

For r′ = +∞, the same inequality can be deduced in a similar way. Hence the trian-
gular inequality is proved for ρ(r;r1,...,rn). The other conditions are easily verified. �

Proposition 3.2
The topological dual (E1 ⊗ . . . ⊗ En ⊗ F, ρ(r;r1,...,rn))′ of (E1 ⊗ . . . ⊗ En ⊗

F, ρ(r;r1,...,rn)) is isometric to L(r;r1,...,rn)
fas (E1, . . . , En;F ′) through the mapping B de-

fined by
B(ψ)(x1, . . . , xn)(b) = ψ(x1 ⊗ . . .⊗ xn ⊗ b),

for every ρ(r;r1,...,rn)-continuous functional ψ on E1⊗. . .⊗En⊗F , xk ∈ Ek, k = 1, . . . , n
and b ∈ F .
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Proof. (1) We considerB(ψ) defined as above. It is clear that B(ψ)∈L(E1, . . . , En;F ′).
For δ > 0, xki ∈ Ek, k = 1, . . . , n and i = 1, . . . ,m, we can find bj = b(j1,...,jn) ∈ F ,
‖bj‖ = 1, such that

∑
j∈Nn

m

∥∥B(ψ)(x1j1 , . . . , x
n
jn)

∥∥r ≤ δ +
∑
j∈Nn

m

∣∣B(ψ)(x1j1 , . . . , x
n
jn)(bj)

∣∣r = (∗).

For a convenient choice of λj ∈ K, |λj | = 1, we can write

(∗) = δ + ψ

( ∑
j∈Nn

m

λj |ψ(x1j1 ⊗ . . .⊗ x
n
jn ⊗ bj)|r−1x1j1 ⊗ . . .⊗ x

n
jn ⊗ bj

)

≤ δ + ‖ψ‖
( ∑

j∈Nn
m

|ψ(x1j1 ⊗ . . .⊗ x
n
jn ⊗ bj)|(r−1)r′

)1/r′ n∏
k=1

‖(xki )mi=1‖w,rk

= δ + ‖ψ‖
( ∑

j∈Nn
m

‖B(ψ)(x1j1 , . . . , x
n
jn)‖r

)1/r′ n∏
k=1

‖(xki )mi=1‖w,rk .

Since δ > 0 is arbitrary these inequalities imply

∥∥(B(ψ)(x1j1 , . . . , x
n
jn))j∈Nn

m

∥∥
r
≤ ‖ψ‖

n∏
k=1

‖(xki )mi=1‖w,rk .

The same inequality is true for r = +∞. Thus B(ψ) is fully absolutely (r; r1, . . . , rn)-
summing and

‖B(ψ)‖fas,(r;r1,...,rn) ≤ ‖ψ‖.

(2) If T is fully absolutely (r; r1, . . . , rn)-summing from E1 × . . . En into F ′, we define
a linear functional on E1 ⊗ . . .⊗ En ⊗ F by

ψT (u) =
∑
j∈Nn

m

λjT (x1j1 , . . . , x
n
jn)(bj),

when
u =

∑
j∈Nn

m

λjx
1
j1 ⊗ . . .⊗ x

n
jn ⊗ bj .

We have

|ψT (u)| ≤ ‖(λj)j∈Nn
m
‖r′‖(T (x1j1 , . . . , x

n
jn))j∈Nn

m
‖r‖(bj)j∈Nn

m
‖∞

≤ ‖T‖fas,(r,r1,...,rn)‖(λj)j∈Nn
m
‖r′

n∏
k=1

‖(xki )mi=1‖w,rk‖(bj)j∈Nn
m
‖∞.

This shows that ψT is ρ(r;r1....,rn)-continuous and ‖ψT ‖ ≤ ‖T‖fas,(r,r1,...,rn). �

Remark 3.3. The sn-norm ρ(r;r1....,rn) is a norm if 1
r = 1

r1
+ . . . + 1

rn
. In this case we

have ρ(r;r1....,rn) ≤ π, where π denotes the projective tensor norm on E1⊗ . . .⊗En⊗F .
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4. Virtually nuclear multilinear mappings

In this section, unless it is stated explicitly otherwise, we consider r ∈]0,+∞] and
rk ∈ [1,+∞], with r ≤ rk, k = 1, . . . , n. We also write

1
tn

=
1
r

+
1
r′1

+ . . .+
1
r′n
.

Hence tn ∈]0, 1].

Definition 4.1. A mapping T ∈ L(E1, . . . , En;F ) is virtually (r; r1, . . . , rn)-nuclear
if it has a representation of the form

T =
∑
j∈Nn

λjφ
1
j1 × . . .× φ

n
jnbj ,

with (λj)j∈Nn ∈ �r(Nn), if r < +∞, or (λj)j∈Nn ∈ c0(Nn), if r = +∞, (φki )
∞
i=1 ∈

�wrk(E′
k), for k = 1, . . . , n and (bj)j∈Nn ∈ �∞(Nn;F ).

The vector space of all such mappings is denoted by L(r;r1,...,rn)
V N (E1, . . . , En;F )

and we consider on it the tn-norm

‖T‖V N,(r;r1,...,rn) = inf ‖(λj)j∈Nn‖r‖(bj)j∈Nn‖∞
n∏

k=1

‖(φki )∞i=1‖w,r′
k
,

where the infimum is taken over all possible representations of T as described in 4.1.
As usual, we replace (r; r1, . . . , rn) by (r; s), if s = r1 = . . . = rn, and (r; s) by r, when
r = s, in all the preceding notations. If r = s = 1, we omit 1 in the notations. In all
cases we have complete metrizable topological vector spaces.

In order to justify the use of the term “virtually nuclear” we recall the following
concept considered in [10].

Definition 4.2. A mapping T ∈ L(E1, . . . , En;F ) is of nuclear type (r; r1, . . . , rn) if
it has a representation of the form

T =
∞∑
j=1

λjφ
1
j × . . .× φnj bj ,

with (λj)∞j=1 ∈ �r, if r < +∞, or (λj)∞j=1 ∈ c0, if r = +∞, (φkj )
∞
j=1 ∈ �wrk(E′

k), for
k = 1, . . . , n and (bj)∞j=1 ∈ �∞(F ).

The vector space of all such mappings is denoted by L(r;r1,...,rn)
N (E1, . . . , En;F )

and we consider on it the tn-norm

‖T‖N,(r;r1,...,rn) = inf ‖(λj)∞j=1‖r‖(bj)∞j=1‖∞
n∏

k=1

‖(φkj )∞j=1‖w,r′
k
,
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where the infimum is taken over all possible representations of T as described in 4.2.
The simplification of the notations is made as in the virtually nuclear case.

Remarks 4.3:

(1) L(r;r1,...,rn)
N (E1, . . . , En;F ) ⊂ L(r;r1,...,rn)

V N (E1, . . . , En;F ) and

‖T‖ ≤ ‖T‖V N,(r;r1,...,rn) ≤ ‖T‖N,(r;r1,...,rn),

for every T of nuclear type (r; r1, . . . , rn).

(2) Lf (E1, . . . , En;F ) is dense in L(r;r1,...,rn)
V N (E1, . . . , En;F ) and

‖φ1 × . . .× φnb‖V N,(r;r1,...,rn) = ‖φ1‖ . . . ‖φn‖‖b‖,

for every φk ∈ E′
k, k = 1, . . . , n and b ∈ F .

(3) LN (E1, . . . , En;F ) = LV N (E1, . . . , En;F ) isometrically.

(4) For T ∈ L(r;r1,...,rn)
V N (E1, . . . , En;F ), Sk ∈ L(Dk;Ek), k = 1, . . . , n and R ∈

L(F ;G), it follows that R ◦ T ◦ (S1, . . . , Sn) is virtually (r; r1, . . . , rn)-nuclear and

‖R ◦ T ◦ (S1, . . . , Sn)‖V N,(r;r1,...,rn) ≤ ‖R‖‖T‖V N,(r;r1,...,rn)

n∏
k=1

‖Sk‖.

(5) If (λj)j∈Nn is in �r(Nn), if r < +∞, or in c0(Nn), if r = +∞, then the n-linear
mapping D(λj)j∈Nn , defined on �r′1 × . . .× �r′n , with values in �1(N), by

D(λj)j∈Nn ((ξ1j )
∞
j=1, . . . (ξ

n
j )∞j=1) = (λjξ1j1 . . . ξ

n
jn)j∈Nn ,

is virtually (r; r1, . . . , rn)-nuclear and
∥∥D(λj)j∈Nn

∥∥
V N,(r;r1,...,rn)

≤ ‖(λj)j∈Nn‖r.

Now we have another characterization of virtually nuclear mappings.

Proposition 4.4

For T ∈ L(E1, . . . , En;F ), the following conditions are equivalent

(1) T is virtually (r; r1, . . . , rn)-nuclear.

(2) There are Ak ∈ L(Ek; lr′
k
), k = 1, . . . , n, Y ∈ L(�1(Nn);F ) and (λj)j∈Nn ∈ �r(Nn)

such that

T = Y ◦D(λj)j∈Nn ◦ (A1, . . . , An).

In this case

‖T‖V N,(r;r1,...,rn) ≤ inf ‖Y ‖‖(λj)j∈Nn‖r
n∏

k=1

‖Ak‖,

where the infimum is taken over all such possible factorizations.
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Proof. It is clear that (2) implies (1) by 4.3.(4) and 4.3.(5).

In order to show that (1) implies (2), we consider a representation of T as in 4.1
and define

Ak(x) = (φki (x))
∞
i=1 ∀x ∈ Ek, k = 1, . . . , n,

Y ((ξj)j∈Nn) =
∑
j∈Nn

ξjbj ∀(ξj)j∈Nn ∈ �1(Nn).

Now, the result follows. �
Remark 4.5. By definition every T in Lf (E1, . . . , En;F ) has a finite representation

T =
∑
j∈Nn

m

λjφ
1
j1 . . . φ

n
jnbj .

It is clear that we have a tn-norm on Lf (E1, . . . , En;F ) defined by

‖T‖V Nf ,(r;r1,...,rn) = inf ‖(λj)j∈Nn
m
‖r‖(bj)j∈Nn

m

n∏
k=1

‖(φki )mi=1‖w,rk ,

where the infimum is taken over all finite representations of T . It is obvious that

‖T‖V N,(r;r1,...,rn) ≤ ‖T‖V Nf ,(r;r1,...,rn),

for every T ∈ Lf (E1, . . . , En;F ). We would like to know cases where there is equality
for these tn-norms.

Proposition 4.6

If E1, . . . , En are finite dimensional, then

‖T‖V N,(r;r1,...,rn) ≥ ‖T‖V Nf ,(r;r1,...,rn),

for every T ∈ Lf (E1, . . . , En;F ).

Proof. In this case L(E1, . . . , En;F ) = Lf (E1, . . . , En;F ) is complete for both tn-
norms. Hence, by the open mapping theorem, these two tn-norms are equivalent and
there is C ≥ 0, such that

‖T‖V Nf ,(r;r1,...,rn) ≤ C‖T‖V N,(r;r1,...,rn),

for every T ∈ Lf (E1, . . . , En;F ). For each ε > 0, we choose a representation

T =
∑
j∈Nn

σjφ
1
j1 × . . .× φ

n
jnyj ,

such that

‖(σj)j∈Nn‖r‖(bj)j∈Nn‖∞
n∏

k=1

‖(φki )∞i=1‖w,rk ≤ (1 + ε)‖T‖V N,(r;r1,...,rn).
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We can write

(
‖T‖V Nf ,(r;r1,...,rn)

)tn
≤

(∥∥∥ ∑
j∈Nn

m

σjφ
1
j1 × . . .× φ

n
jnyj

∥∥∥
V Nf ,(r;r1,...,rn)

)tn

+

(∥∥∥ ∑
j∈Nn\Nn

m

σjφ
1
j1 × . . .× φ

n
jnyj

∥∥∥
V Nf ,(r;r1,...,rn)

)tn

≤ (1 + ε)tn
(
‖T‖V N,(r;r1,...,rn)

)tn
+ Ctn

(∥∥∥ ∑
j∈Nn\Nn

m

σjφ
1
j1 × . . .× φ

n
jnyj

∥∥∥
V N,(r;r1,...,rn)

)tn

≤
[
(1 + ε)tn + εtn

] (
‖T‖V N,(r;r1,...,rn)

)tn
,

if m is large enough. �

Proposition 4.7

If T ∈ L(r;r1,...,rn)
V N (E1, . . . , En;F ) and Sk ∈ Lf (Dk;Ek), for k = 1, . . . , n, then

‖T ◦ (S1, . . . , Sn)‖V Nf ,(r;r1,...,rn) ≤ ‖T‖V N,(r;r1,...,rn)

n∏
K=1

‖Sk‖.

Proof. If Jk denotes the natural injection of Sk(Dk) into Ek, we can write Sk = Jk◦S̃k,
with ‖S̃k‖ = ‖Sk‖. Hence, T ◦ (J1, . . . , Jn) ∈ Lf (S1(D1), . . . , Sn(Dn);F ). Now we
apply 4.6 and 4.3.(4) in order to have the result proved. �

Proposition 4.8

If E′
1, . . . , E

′
n have the bounded approximation property, then

‖T‖V N,(r;r1,...,rn) ≥ ‖T‖V Nf ,(r;r1,...,rn),

for every T ∈ Lf (E1, . . . , En;F ).

Proof. We note that the mapping Tk ∈ L(Ek;L(E1, . . . , Ek−1, Ek+1, . . . , En;F )), de-
fined by

Tk(xk)(x1, . . . , xk−1, xk+1, . . . xn) = T (x1, . . . , xk+1, xk, xk+1, . . . xn),

is of finite type. Since E′
k has the λk-approximation property for some λk > 0, for

each ε > 0, we can find Sk ∈ Lf (Ek;Ek), such that Tk = Tk ◦Sk and ‖Sk‖ ≤ (1+ ε)λk.
Therefore, fo all xj ∈ Ej , with j = 1, . . . , n, we have

T (x1, . . . , xk−1, Sk(xk), xk+1, . . . xn) = T (x1, . . . , xk−1, xk, xk+1, . . . xn).
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Now, we can write

T (x1, . . . , xn) = T (S1(x1), . . . , Sn(xn)), ∀xj ∈ Ej , j = 1, . . . , n.

Thus, by 4.7, we have

‖T‖V Nf ,(r;r1,...,rn) ≤ ‖T‖V N,(r;r1,...,rn)

n∏
k=1

‖Sk‖

≤ ‖T‖V N,(r;r1,...,rn)(1 + ε)n
n∏

k=1

λk.

Hence

‖T‖V Nf ,(r;r1,...,rn) ≤
(

n∏
k=1

λk

)
‖T‖V N,(r;r1,...,rn).

With the same argument used in the proof of 4.6, we finally have:

‖T‖V Nf ,(r;r1,...,rn) ≤ ‖T‖V N,(r;r1,...,rn). �

Corollary 4.9

If E′
1, . . . , E

′
n have the bounded approximation property, then

L(r;r1,...,rn)
V N (E1, . . . , En;F )

and the completion of (E′
1 ⊗ . . . ⊗ E′

n ⊗ F, ρ(r′;r′1,...,r′n)) are isometric, when r, rk ∈
[1,+∞], k = 1, . . . , n.

Proposition 4.10

If E′
1, . . . , E

′
n have the bounded approximation property, then the topological dual

of L(r;r1,...,rn)
V N (E1, . . . , En;F ) is isometric to L(r′;r′1,...,r

′
n)

fas (E′
1, . . . , E

′
n;F ′), for r, rk ∈

[1,+∞], k = 1, . . . , n through the mapping B defined by

B(Ψ)(φ1, . . . , φn)(b) = Ψ(φ1 × . . .× φnb),

when Ψ is in the topological dual of L(r;r1,...,rn)
V N (E1, . . . , En;F ), φk ∈ E′

k, k = 1, . . . , n
and b ∈ F .

Proof. It is a consequence of 4.9 and 3.2. �

Remark 4.11. We recall that in [10] we proved that, when E′
1, . . . , E

′
n have the bounded

approximation property, the topological dual of L(r;r1,...,rn)
N (E1, . . . , En;F ) is isometric

to L(r′;r′1,...,r
′
n)

as (E′
1, . . . , E

′
n;F ′), for r, rk ∈ [1,+∞], k = 1, . . . n through the mapping

B defined by
B(Ψ)(φ1, . . . , φn)(b) = Ψ(φ1 × . . .× φnb),
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when Ψ is in the topological dual of L(r;r1,...,rn)
N (E1, . . . , En;F ), φk ∈ E′

k, k = 1, . . . , n
and b ∈ F . This fact, 4.10 and 2.2.(2) show that the spaces L(r;r1,...,rn)

N (E1, . . . , En;F )
and L(r;r1,...,rn)

V N (E1, . . . , En;F ) are different in general.

5. Hilbert-Schmidt multilinear mappings

In this section E1, . . . , En, F are Hilbert spaces. We are going to show that there is
a close relationship between the Hilbert-Schmidt and the fully absolutely summing
multilinear mappings.

Proposition 5.1

If T ∈ L(E1, . . . , En;F ), then the (finite or infinite) value∑
jk∈Jk

k=1,...,n

‖T (u1j1 , . . . , u
n
jn)‖2

is independent of the orthonormal basis (ukj )j∈Jk
chosen in Ek, k = 1, . . . , n

Proof. For n = 1, Parseval’s equality gives∑
j∈J1

‖T (u1j )‖2 =
∑
j∈J

‖T ∗(vj)‖2,

where (vj)j∈J is an orthonormal basis in F . The case n > 1 is proved by fixing n− 1
variables and applying the linear result to the remaining variable. �

Definition 5.2. A mapping T ∈ L(E1, . . . , En;F ) is said to be Hilbert-Schmidt if
there is an orthonormal basis (ukj )j∈Jk

for Ek, for each k = 1, . . . , n, such that

‖T‖HS =

( ∑
jk∈Jk

k=1,...,n

‖T (u1j1 , . . . , u
n
jn)‖2

)1/2

< +∞.

We denote by LHS(E1, . . . , En;F ) the vector space of all such mappings. It is
easy to show that it is a Hilbert space under the norm ‖.‖HS defined by the inner
product

(T |S) =
∑

jk∈Jk
k=1,...,n

(
T (u1j1 , . . . , u

n
jn)|S(u1j1 , . . . , u

n
jn)

)
.

Proposition 5.3

The mapping

T ∈ LHS(E1, . . . , En;F ) −→ T1 ∈ LHS(E1;LHS(E2, . . . , En;F )),

where T1(x1)(x2, . . . , xn) = T (x1, x2, . . . , xn), for xk ∈ Ek, k = 1, . . . , n, is an isometric

isomorphism.
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Proof. If T ∈ LHS(E1, . . . , En;F ), (ukj )j∈Jk
is an orthonormal basis of Ek, for each

k = 1, . . . , n and (vj)j∈J is an orthonormal basis of F , we can write

∑
jk∈Jk

k=2,...,n

‖T1(x)(u2j2 , . . . , u
n
jn)‖2 =

∑
jk∈Jk,j∈J

k=2,...,n

∣∣∣∣∣
∑
j1∈J1

(x|u1j1)(T (u1j1 , u
2
j2 , . . . , u

n
jn)|vj)

∣∣∣∣∣
2

≤ (‖T‖HS)2‖x‖2,

for every x ∈ E1. This shows that T1(x) is Hilbert-Schmidt and ‖T1(x)‖HS ≤
‖T‖HS‖x‖. Now it is also clear that

∑
j1∈J1

(
‖T1(u1j1)‖HS

)2 = (‖T‖HS)2.

This proves that T1 is Hilbert-Schmidt and ‖T1‖HS = ‖T‖HS . It is easy to see that
the mapping T −→ T1 is onto LHS(E1;LHS(E2, . . . , En;F )). �

Corollary 5.4

(a) The mapping

T ∈ LHS(E1, . . . , En;F ) −→ Tk ∈ LHS(E1 . . . Ek;LHS(Ek+1, . . . , En;F )),

where Tk(x1, . . . , xk)(xk+1, . . . , xn) = T (x1, x2, . . . , xn), for xj ∈ Ej , j = 1, . . . , n,
is an isometric isomorphism.

(b) The mapping

T ∈ LHS(E1, . . . , En, F ; K) −→ Tn ∈ LHS(E1, . . . , En;F ′)

is an isometric isomorphism.

Proposition 5.5

L2
fas(E1, . . . , En;F ) and LHS(E1, . . . , En;F ) are identically isometric.

Proof. (a) If T ∈ L2
fas(E1, . . . , En;F ) and (ukj )j∈Jk

is an orthonormal basis of Ek, for
each k = 1, . . . , n, we know that

( ∑
j∈I1×...×In

‖T (u1j1 , . . . , u
n
jn)‖2

)1/2

≤ ‖T‖fas,2
n∏

k=1

‖(uki )i∈Ik‖w,2 ≤ ‖T‖fas,2,

for every finite subset Ik of Jk, with m elements, k = 1, . . . , n and m natural. Hence
T is Hilbert-Schmidt and ‖T‖HS ≤ ‖T‖fas,2.
(b) We consider T ∈ LHS(E1, . . . , En;F ).



Fully absolutely summing multilinear mappings 131

(i) If n = 1, we consider, m natural, xi ∈ E1, i = 1, . . . ,m and an orthonormal basis
(vj)j∈J of F . Then

(
m∑
i=1

‖T (xi)‖2

)1/2

=

(
m∑
i=1

∑
j∈J

|(xi|T ∗(vj))|2
)1/2

≤
(∑

j∈J

‖T ∗(vj)‖2

)1/2

sup
φ∈BE′

1

(
m∑
j=1

|(xi|φ)|2
)1/2

= ‖T‖HS‖(xi)mi=1‖w,2.

Hence T ∈ L2
fas(E1;F ) and ‖T‖fas,2 ≤ ‖T‖HS .

(ii) If n > 1, we assume that the result is true for k ≤ n − 1. Since, by 5.3, T1 ∈
LHS(E1;LHS(E2, . . . , En;F )), we have

T1 ∈ L2
fas(E1;LHS(E2, . . . , En;F )) ⊂ L2

fas(E1;L2
fas(E2, . . . , En;F )),

with ‖T1‖fas,2 ≤ ‖T1‖HS = ‖T‖HS , via the induction hypothesis. By 2.5, we obtain
T ∈ L2

fas(E1, . . . , En;F ) and ‖T‖fas,2 ≤ ‖T1‖fas,2 ≤ ‖T‖HS . �

Proposition 5.6

If p ∈]0,+∞[, then

LHS(E1, . . . , En;F ) ⊂ Lp
fas(E1, . . . , En;F ),

and there is a constant dp > 0, such that

(dp)n‖T‖fas,p ≤ ‖T‖HS , ∀T ∈ LHS(E1, . . . , En;F )

Proof. We use induction on n.

(i) For n = 1, we know that T has a Schmidt representation

T (u) =
∑
i∈I

λi(u|xi)yi,

for every u ∈ E, with (xi)i∈I orthonormal in E1, (yi)i∈I orthonormal in F and (λi)i∈I ∈
�2(I). In this case ‖T‖HS = ‖(λi)i∈I‖2 < +∞. Since this implies that λi �= 0 only
for i in a denumerable subset of I, we may consider I = N. We consider the sequence
(ri)i∈N of the Rademacher functions and define v(t) by

‖T‖HSv(t) =
∞∑
i=1

ri(t)λixi ∈ E1,
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for each t ∈ [0, 1]. By Khintchine’s inequality (see [4] and [10]), for every finite sequence
(uj)mj=1 of elements of E1, we have

(‖T‖HS‖(uj)mj=1‖w,p)p ≥ (‖T‖HS)p sup
t∈[0,1]

m∑
j=1

|(uj |v(t))|p

≥
m∑
j=1

∫ 1

0

∣∣∣∣∣
∞∑
i=1

ri(t)λi(uj |xi)
∣∣∣∣∣
p

dt

≥ (dp)p
m∑
j=1

( ∞∑
i=1

|λi(uj |xi)|2
)p/2

= (dp)p
m∑
j=1

‖T (uj)‖p.

Hence T ∈ Lp
fas(E1;F ) and dp‖T‖fas,p ≤ ‖T‖HS .

(ii) If n > 1, we assume that the result is true for k ≤ n − 1. We want to prove
the result for n. By 5.3 we know that T1 ∈ LHS(E1;LHS(E2, . . . , En;F )). By the
induction hypothesis, we have T1 ∈ Lp

fas(E1;LHS(E2, . . . , En;F ), with dp‖T1‖fas.p ≤
‖T1‖HS . If J is the inclusion from LHS(E2, . . . , En;F ) into Lp

fas(E2, . . . , En;F ),
the induction hypothesis show that (dp)n−1‖J‖ ≤ 1. Thus we have J ◦ T1 ∈
Lp
fas(E1;Lp

fas(E2, . . . , En;F )). We can write

(dp)n‖J ◦ T1‖fas,p ≤ dp((dp)n−1‖J‖)‖T1‖fas,p ≤ dp‖T1‖fas,p ≤ ‖T1‖HS = ‖T‖HS .

By 2.5,we have T ∈ Lp
fas(E1, . . . , En;F ) and

(dp)n‖T‖fas,p ≤ (dp)n‖J ◦ T1‖fas,p ≤ ‖T‖HS . �

In order to prove next result, we consider m ∈ N and Dm = {1,−1}m. A measure
µ is considered on the set of the parts of Dm. It is defined by µ(e) = 2−m, for every
e = (e1, . . . , em) ∈ Dm. We denote by πk the k-th projection from Dm onto {1,−1}.
It follows that ∫

Dm

πj(e)πk(e)dµ(e) = δj,k.

We recall that δj,k = 1, if j = k, and δj,k = 0, if j �= k.

Proposition 5.7

For p ∈ [2,+∞[,

Lp
fas(E1, . . . , En;F ) = LHS(E1, . . . , En;F ),

and there is a constant bp > 0 such that

(dp)n‖T‖fas,p ≤ ‖T‖HS ≤ (bp)n‖T‖fas,p,

for every fully absolutely p-summing n-linear mapping T .
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Proof. One part of this result is Proposition 5.6. In order to prove the other part we
consider T in Lp

fas(E1, . . . , En;F ) and an orthonormal basis (ukj )j∈Ik of Ek, for each
k = 1, . . . , n. For every finite subset Jk of Ik with m elements, we consider (ukj )j∈Jk

ordered linearly and write uk1 , . . . , u
k
m, k = 1, . . . , n. We denote

wk(e) =
m∑
j=1

πj(e)ukj for e ∈ Dm, k = 1, . . . , n.

We can write:(
m∑

jk=1
k=1,...,n

‖T (u1j1 , . . . , u
n
jn)‖2

)1/2

=

(∫
Dn

m

‖T (w1(e1), . . . , wn(en))‖2dµ(e1) . . . dµ(en)

)1/2

≤
(∫

Dn
m

‖T (w1(e1), . . . , wn(en))‖pdµ(e1) . . . dµ(en)

)1/p

= (∗).

Since the integral we have used is a finite sum, we can use the fact that T is fully
absolutely p-summing and the Khintchine’s inequality in order to write

(∗) ≤ ‖T‖fas,p
n∏

k=1

sup
φ∈BE′

k

(∫
Dm

|φ(wk(e))|pdµ(e)
)1/p

≤ ‖T‖fas,p
n∏

k=1

bp sup
φ∈BE′

k

(
m∑
j=1

|φ(ukj )|2
)1/2

= ‖T‖fas,p(bp)n.

Hence T is Hilbert-Schmidt and ‖T‖HS ≤ (bp)n‖T‖fas,p. �

Definition 5.8. It is considered on E1 ⊗ . . .⊗ En the inner product

(u|v)H =
p∑

j=1

q∑
k=1

(x1j |y1k) . . . (xnj |ynk ),

where

u =
p∑

j=1

x1j ⊗ . . .⊗ xnj and v =
q∑

k=1

y1k ⊗ . . .⊗ ynk .

The space E1 ⊗ . . .⊗ En with this inner product is denoted by E1 ⊗H . . .⊗H En and
its completion by E1⊗̂H . . . ⊗̂HEn. The corresponding norm is denoted by ‖.‖H .

Remark 5.9. If (ekj )j∈Jk
is an orthonormal basis for Ek, k = 1, . . . , n, then(

e1j1 ⊗ . . .⊗ e
n
jn

)
jk∈Jk

k=1,...,n

is an orthonormal basis for E1⊗̂H . . . ⊗̂HEn.
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As a consequence of this remark we can prove

Proposition 5.10
If T ∈ L(E1, . . . , En;F ) and T⊗ denotes the corresponding linear mapping from

E1 ⊗ . . .⊗ En into F , then the following conditions are equivalent:

(1) T is Hilbert-Schmidt.
(2) T⊗̂ ∈ L(E1⊗̂H . . . ⊗̂HEn;F ), where T⊗̂ denotes the extension of T⊗ to
E1⊗̂H . . . ⊗̂HEn.

In this case ‖T‖HS = ‖T⊗̂‖HS .

Proposition 5.11
The Hilbert space LHS(E′

1, . . . , E
′
n;F ′) is isometric to

(
LHS(E1, . . . , En;F )

)′
through the mapping B given by

B(ψ)(x′1, . . . , x
′
n) =

∑
j∈J

ψ(x′1, . . . , x
′
n)f ′j ,

where ψ ∈ (LHS(E1, . . . , En;F ))′, x′k ∈ E′
k, k = 1, . . . , n, and (fj)j∈J is an orthonor-

mal basis of F , with (f ′j)j∈J being the corresponding dual orthonormal basis of F ′.

Proof. If we prove the result for F = K, we can use it and 5.4.(b) in order to obtain
the isometries:(

LHS(E1, . . . , En;F )
)′ ∼= (

LHS(E1, . . . , En, F
′; K)

)′
∼= LHS(E′

1, . . . , E
′
n, F ; K) ∼= LHS(E′

1, . . . , E
′
n;F ′).

This shows that we have to prove only the case F = K. It is clear that(
e′1,j1 × . . .× e

′
n,jn

)
(j1,...,jn)∈J1×...×Jn

is an orthonormal basis for LHS(E1, . . . , En; K), when (e′k,j)j∈Jk
denotes the dual basis

of the orthonormal basis (ek,j)j∈Jk
of Ek, k = 1, . . . , n. We have

T =
∑

(j1,...,jn)∈J1×...×Jn

T (e1,j1 , . . . , en,jn)e′1,j1 × . . .× e
′
n,jn ,

for every T ∈ LHS(E1, . . . , En; K). Hence, for ψ ∈ (LHS(E1, . . . , En; K))′, we have∑
(j1,...,jn)∈J1×...×Jn

∣∣B(ψ)(e′1,j1 , . . . , e
′
n,jn)

∣∣2 = ‖ψ‖2

This shows that B(ψ) is Hilbert-Schmidt and ‖B(ψ)‖HS = ‖ψ‖.
On the other hand, if S ∈ LHS(E′

1, . . . , E
′
n; K), we define

ψS ∈
(
LHS(E1, . . . , En; K)

)′
by

ψS(T ) =
∑

(j1,...,jn)∈J1×...×Jn

T (e1,j1 , . . . , en,jn)S(e′1,j1 , . . . , e
′
n,jn).

Thus, we have B(ψS) = S and |ψS(T )| ≤ ‖T‖HS‖S‖HS . Therefore, ‖ψS‖ ≤ ‖S‖HS .
In fact we have equality, since ‖ψS‖ = ‖B(ψS)‖HS = ‖S‖HS . �

Corollary 5.12
The Hilbert spaces (E1⊗̂H . . . ⊗̂HEn)′ and E′

1⊗̂H . . . ⊗̂HE
′
n are isometric.



Fully absolutely summing multilinear mappings 135

Proof. By 5.10 and 5.11 we have the isometries:

E1⊗̂H . . . ⊗̂HEn
∼= (E1⊗̂H . . . ⊗̂HEn)′′ ∼= (LHS(E1, . . . , En; K))′

∼= LHS(E′
1, . . . , E

′
n; K) ∼= (E′

1⊗̂H . . . ⊗̂HE
′
n)′.

The result follows by duality. �

Proposition 5.13

The following spaces are isometric:

LHS(E1, . . . , En;F ), LHS(E1, . . . , En; K)⊗̂HF and (E′
1⊗̂H . . . ⊗̂HE

′
n)⊗̂HF.

Proof. By 5.4.(b), 5.10 and 5.12 we have the isometries:

LHS(E1, . . . , En;F ) ∼= LHS(E1, . . . , En, F
′; K) ∼= (E1⊗̂H . . . ⊗̂HEn⊗̂HF )′

∼= (E1⊗̂H . . . ⊗̂HEn)′⊗̂HF

and this space is isometric to the space LHS(E1, . . . , En; K)⊗̂HF , as well as to
(E′

1⊗̂H . . . ⊗̂HE
′
n)⊗̂HF. �

Remark 5.14. The results obtained in this section and in Section 4 give a linear
homeomorphism between (LHS(E1, . . . , En;F ))′ and (Lp

V N (E1, . . . , En;F ))′, for p ∈
]1, 2]. But we observe that (Lp

V N (E1, . . . , En;F ))′ is not normed for n ≥ 2.
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