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Abstract

From the fact that the two-dimensional moment problem is not always solvable, one
can deduce that there must be extreme ray generators of the cone of positive definite
double sequences which are not moment sequences. Such an argument does not
lead to specific examples. In this paper it is shown how specific examples can be
constructed if one is given an example of an N-extremal indeterminate measure
in the one-dimensional moment problem (such examples exist in the literature).
Konrad Schmüdgen had an example similar to ours about 10 years ago, but did not
publish it.

1. Introduction

Suppose (S,+) is a countable abelian semigroup with zero. This is what we always
have in mind when we use the term ‘semigroup’. A function ϕ:S → R is positive
definite if

n∑
j,k=1

cjckϕ(sj + sk) ≥ 0

for every choice of n ∈ N, s1, . . . , sn ∈ S, and c1, . . . , cn ∈ R. Denote by P(S) the
set of all such functions. A character on S is a function σ:S → R such that σ(0) = 1
and σ(s + t) = σ(s)σ(t) for all s, t ∈ S. Denote by S∗ the set of all characters on S.
We equip S∗ with the trace topology of the topology of pointwise convergence on R

S ,
cf. [9], 4.2.2. A function ϕ:S → R is called a moment function if there is a Radon
measure µ on S∗ such that

ϕ(s) =
∫
S∗
σ(s) dµ(σ), s ∈ S. (1)
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(Recall that a Radon measure is a measure µ defined on the Borel σ-field B(S∗),
finite on compact sets and inner regular. In our present situation, inner regularity is
automatic since S∗ is a Polish space.) Denote by H(S) the set of all moment functions
on S. We have H(S) ⊂ P(S) since if (1) holds and if s1, . . . , sn ∈ S and c1, . . . , cn ∈ R

then
n∑

j,k=1

cjckϕ(sj + sk) =
∫
S∗

( n∑
j=1

cjσ(sj)
)2

dµ(σ) ≥ 0.

The semigroup S is called semiperfect if H(S) = P(S).
Denote by Pe(S) the set of all generators of extreme rays in P(S). Jens Peter

Reus Christensen informed us that for each ϕ ∈ P(S) there is a Radon measure µ on
Pe(S) such that

ϕ(s) =
∫
Pe(S)

ω(s) dµ(ω), s ∈ S. (2)

(This is by a general property of proper closed convex cones in the space R
N, cf. [12].)

If S is non-semiperfect then we can choose ϕ ∈ P(S) \ H(S). Then in the integral
representation (2) the measure µ cannot be concentrated on H(S) (or else ϕ would be
a moment function). Thus the set Pe(S) \ H(S) must be nonempty.

With the possible exception of finite groups, the oldest example of a semiperfect
semigroup is N0 := {0, 1, 2, . . .}, which is semiperfect by Hamburger’s Theorem ([13],
see the monograph by Akhiezer [1]). A sequence (sn)∞n=0 of reals is positive definite if
and only if it is a moment sequence, i.e.,

sn =
∫

R

xn dµ, n ∈ N0

for some measure µ on R. We here denoted, as we shall do later also, by xn the function
t �→ tn on R. The moment sequence (sn) is determinate if there is only one such
µ; otherwise, indeterminate. The measure µ is called determinate or indeterminate
according as (sn) is determinate or indeterminate. The measure µ is N-extremal if the
polynomial algebra R[x] is dense in L2(µ). It is well-known that every determinate
measure is N-extremal. In fact, if µ is determinate then R[x] is even dense in L2

(
(1 +

x2)µ
)
, and this condition is characteristic of determinate measures (cf. [1]). (We said

‘the oldest example’. Herglotz’ Theorem is older than that of Hamburger, but in the
former, positive definiteness of a function on the group of integers is defined using
sj − sk instead of sj + sk, so it is outside our scope.)

The first semigroup to be shown to be non-semiperfect was N
2
0. The non-

semiperfectness of N
2
0 (and more generally, of N

k
0 for all k ≥ 2) was shown by Berg,

Christensen, and Jensen [8] and independently by Schmüdgen [15]. A double sequence
ϕ: N2

0 → R is a moment function if and only if there is a measure µ on R
2 such that

ϕ(m,n) =
∫

R2
xmyn dµ(x, y), (m,n) ∈ N

2
0.

Some time ago, Jens Peter Reus Christensen pointed out to us that although the set
Pe(N2

0) \H(N2
0) is necessarily nonempty, no one knew a specific example of a function
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in this set. The purpose of the present paper is to show that if one can give a specific
example of an N-extremal indeterminate measure then one can also give a specific
example of a function in Pe(N2

0)\H(N2
0). Specific examples of N-extremal indeterminate

measures can be found in [2]. After the present manuscript was completed, Jens Peter
Reus Christensen informed us that Konrad Schmüdgen has an explicit example of a
function in Pe(N2

0)\H(N2
0). We asked Professor Schmüdgen, who informed us that his

example is from 1991 or 1992. His example uses the curve y2 = x2k+1 with k ∈ N, and
for k = 1 this curve can be identified with S∗ for our semigroup S = N0 \ {1}. Also,
Professor Schmüdgen’s example used N-extremal indeterminate measures.

Our first observation is the following. Suppose h is a homomorphism of a semi-
group S onto a semigroup T . Then

ϕ ∈ Pe(T ) ⇒ ϕ ◦ h ∈ Pe(S). (3)

To see this, note that it is trivial to verify that ϕ ◦ h is positive definite. It remains to
be shown that if ϕ◦h = ω1+ω2 for some ω1, ω2 ∈ P(S) then ω1 and ω2 are nonnegative
multiples of ϕ ◦ h. For s, t ∈ S such that h(s) = h(t) we have

0 = ϕ ◦ h(2s) + ϕ ◦ h(2t) − 2ϕ ◦ h(s+ t)

= [ω1(2s) + ω1(2t) − 2ω1(s+ t)] + [ω2(2s) + ω2(2t) − 2ω2(s+ t)].

The numbers in brackets being nonnegative by positive definiteness, they both vanish.
By the Cauchy-Schwarz inequality,

(
ω1(s) − ω1(t)

)2 ≤ ω1(0)[ω1(2s) + ω1(2t) − 2ω1(s+ t)] = 0,

so ω1(s) = ω1(t). (The Cauchy-Schwarz inequality in its most general form asserts
that if ψ ∈ P(S) then

∣∣∣
n∑

j=1

r∑
p=1

cjdpψ(sj + tp)
∣∣∣2 ≤

n∑
j,k=1

cjckψ(sj + sk)
r∑

p,q=1

dpdqψ(tp + tq)

for all

n, r ∈ N := {1, 2, 3, . . .}, cj ∈ R, sj ∈ S(j = 1, . . . , n), dp ∈ R, tp ∈ S(p = 1, . . . , r).

It is an application of the inequality |f(x)|2 ≤ 〈f, f〉 · ϕ(x, x) on p. 81 l. 6 from below
in [9]. We are here applying the special case that n = 1 and r = 2.) Similarly,
ω2(s) = ω2(t). Thus there exist real-valued functions ϕ1 and ϕ2 on T such that
ωi = ϕi ◦ h for i = 1, 2. Using the fact that h(S) = T , one easily sees that ϕ1 and ϕ2

are positive definite. Now ϕ ◦ h = ω1 + ω2 = ϕ1 ◦ h + ϕ2 ◦ h = (ϕ1 + ϕ2) ◦ h. Since
h(S) = T it follows that ϕ = ϕ1 + ϕ2. Since ϕ ∈ Pe(T ) it follows that ϕ1 and ϕ2

are nonnegative multiples of ϕ. It follows that ω1 and ω2 are nonnegative multiples
of ϕ ◦ h, as desired. This proves (3). Now by [11], Proposition 1, we also have the
implication ϕ ◦ h ∈ H(S) ⇒ ϕ ∈ H(T ). Combining this with (3), we get

ϕ ∈ Pe(T ) \ H(T ) ⇒ ϕ ◦ h ∈ Pe(S) \ H(S).
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We see from this that one can find an element ω of Pe(N2
0) \H(N2

0) by choosing a non-
semiperfect semigroup S generated by two elements a and b, choosing ϕ ∈ Pe(S)\H(S),
and defining ω(m,n) = ϕ(ma+ nb) for (m,n) ∈ N

2
0.

So far, we have merely reduced the original problem to the corresponding problem
on a different semigroup. We shall see, however, that if S is a subsemigroup of N0 then
methods from the rich theory of the classical moment problem can be applied in the
study of positive definite functions on S.

It follows from the main result of [10] that if p, q ∈ N are such that p < q then the
subsemigroup of N0 generated (as a semigroup with zero) by p and q is semiperfect
if and only if p divides q. We shall consider only the case that (p, q) = (2, 3). In the
remainder of this paper, S always denotes the subsemigroup of N0 generated (as a
semigroup with zero) by {2, 3}, that is, S = N0 \ {1}. Although the main theorem of
[10] was discovered in 1986, it was not published quickly, so the first published proof
of the non-semiperfectness of S is due to Nakamura and Sakakibara [14]. We are going
to describe certain elements of Pe(S) \ H(S) in terms of N-extremal indeterminate
measures. As above, one gets similar functions on N

2
0 by applying a homomorphism of

N
2
0 onto S, such as (m,n) �→ 2m+ 3n.

Thus a new proof of the non-semiperfectness of S is afforded. This conclusion,
however, can be proved in a much more explicit way. Indeed, if ϕ:S → R is defined
by ϕ(2) = −1, ϕ(n) = 0 for odd n, and ϕ(2n) = 4n

2
for n ∈ S then ϕ can be shown to

be in P(S) \ H(S). We omit the proof, which is rather simple.

2. Results

We first identify S∗. If x ∈ R then clearly the function n �→ xn is a character on S.
Conversely, suppose σ ∈ S∗. Define x = 3

√
σ(3). Then σ(2)3 = σ(6) = σ(3)2 = x6, so

σ(2) = x2. Since the set {2, 3} generates S, from the fact that the equation σ(n) = xn

holds for n ∈ {2, 3} we can infer that it holds for all n ∈ S. This proves that S∗ can
be identified with R by identifying x ∈ R with the character n �→ xn on S. Thus, a
function ϕ:S → R is a moment function if and only if there is a measure µ on R such
that

ϕ(n) =
∫

R

xn dµ, n ∈ S. (4)

We are going to consider a positive definite function ϕ on S. We shall introduce
certain objects λ, M , Λ, and f which are said to be associated with ϕ. Since ϕ can
mostly be considered to be fixed, we feel no need to say in each theorem what λ, etc.,
are.

For n ∈ N0 define sn = ϕ(n+ 4). Then the sequence (sn)∞n=0 is positive definite.
To see this, note that for n ∈ N0 and c0, . . . , cn ∈ R we have

n∑
j,k=0

cjcksj+k =
n∑

j,k=0

cjckϕ(tj + tk) ≥ 0
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where tj = j + 2 ∈ S. Since (sn) is positive definite, by Hamburger’s Theorem it
follows that there is a measure λ on R such that

ϕ(n+ 4) =
∫

R

xn dλ, n ∈ N0. (5)

We say that λ is associated with ϕ, noting that there may be several such λ. At the
end of the paper, however, we shall assume that there is only one.

Let A be the linear subspace of the polynomial algebra R[x] spanned by monomials
of the form xn with n ∈ S. Then A is just the set of those polynomials in which the
coefficient of x vanishes. Since S is a semigroup then A is an algebra. Define a linear
form M on A by M(xn) = ϕ(n) for n ∈ S. Then M is positive in the sense that
M(p2) ≥ 0 for all p ∈ A. This is just a more compact way of stating the positive
definiteness of ϕ. It is well-known that from the positivity of M it follows that the
Cauchy-Schwarz inequality M(pq)2 ≤M(p2)M(q2) holds for all p, q ∈ A. Equation (5)
can be written in the form

M(xn+4) =
∫

R

xn dλ,

which extends by linearity to

M(x4p) =
∫

R

p dλ, p ∈ R[x]. (6)

Define a linear form Λ on R[x] by Λ(p) = M(x2p) for p ∈ R[x].

Theorem 1

The linear form Λ is bounded and of norm less than or equal to
√
ϕ(0) on the

linear subspace R[x] of L2(λ).

Proof. By the Cauchy-Schwarz inequality, for p ∈ R[x] we have M(x2p)2 ≤
M(1)M(x4p2), that is (using (6)), Λ(p)2 ≤ ϕ(0)

∫
p2 dλ. �

Corollary 1

There is a function f ∈ L2(λ) such that

∫
f2 dλ ≤ ϕ(0) (7)

and

Λ(p) =
∫
pf dλ, p ∈ R[x] (8)

or equivalently,

ϕ(n+ 2) =
∫
xnf dλ, n ∈ N0. (9)

Moreover, ∫
p(1 − x2f) dλ = 0, p ∈ R[x]. (10)
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Proof. By Theorem 1, Λ extends to a bounded linear form L, of norm less than or equal
to

√
ϕ(0), on all of L2(λ). Now there is a unique f ∈ L2(λ) such that L(g) =

∫
fg dλ

for all g ∈ L2(λ). Applied to g = p ∈ R[x], this gives (8), which is obviously equivalent
to (9). Since ∫

p dλ = M(x4p) = Λ(x2p) =
∫
x2pf dλ,

we get (10). �

The function f will be said to be associated with ϕ (and with λ). In general, f
need not be uniquely determined. Note, however, that f is uniquely determined if R[x]
is dense in L2(λ) (in particular, if λ is determinate).

Theorem 2

If x2f = 1 λ-a.e. then ϕ ∈ H(S).

Proof. Clearly λ({0}) = 0 and f = x−2 λ-a.e. By (7) it follows that
∫
x−4 dλ ≤ ϕ(0),

so the measure µ =
(
ϕ(0) −

∫
x−4 dλ

)
ε0 + x−4λ is a well-defined positive measure.

(For x ∈ R we denote by εx the Dirac measure at x.) This measure satisfies (4) since
by (9) we have ϕ(n) =

∫
xn−2f dλ =

∫
xn−4 dλ for n ≥ 2. �

Corollary 2

If R[x] is dense in L2
(
(1 + x4)λ

)
then ϕ ∈ H(S).

Proof. The equation (10) can be written in the form

∫
p
1 − x2f

1 + x4
(1 + x4) dλ = 0, p ∈ R[x]. (11)

Since the measure (1+x4)λ is bounded then the function 1/(1+x4) is in L2
(
(1+x4)λ

)
.

Moreover,

∫ (
x2f

1 + x4

)2

(1 + x4) dλ =
∫

x4f2

1 + x4
dλ ≤

∫
f2 dλ ≤ ϕ(0)

by (7), so x2f/(1 + x4) ∈ L2
(
(1 + x4)λ

)
. Thus (1− x2f)/(1 + x4) ∈ L2

(
(1 + x4)λ

)
. It

now follows from (11) that (1− x2f)/(1 + x4) is orthogonal to R[x], which is dense in
L2

(
(1 + x4)λ

)
, so 1 − x2f = 0 λ-a.e. �

Theorem 3

Suppose λ is a determinate measure. In order that a function ϕ:S → R belong to

P(S) \ H(S) and that λ be associated with ϕ, it is necessary and sufficient that there

be a function f ∈ L2(λ) satisfying (7), (9), and (10), but such that it is not the case

that x2f = 1 λ-a.e.
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Proof. First suppose ϕ ∈ P(S)\H(S) and that λ is associated with ϕ. By Corollary 1,
there is a function f satisfying (7), (9), and (10). The last condition follows from
Theorem 2.

Conversely, suppose the conditions are satisfied. We first have to show that ϕ ∈
P(S). The linear form M is of course well-defined even though ϕ is not assumed to
be positive definite. Showing that ϕ is positive definite is now equivalent to showing
that M is positive, i.e., M(p2) ≥ 0 for p ∈ A. By the definition of A we can write
p = a+ x2q with a ∈ R and q ∈ R[x], and we then have to show

0 ≤ ϕ(0)a2 + 2aΛ(q) +
∫
q2 dλ. (12)

Since
∫
q2 dλ ≥ 0, showing that (12) holds for all a ∈ R for a fixed q ∈ R[x] is

equivalent to showing Λ(q)2 ≤ ϕ(0)
∫
q2 dλ. But by (8) (which is equivalent to (9))

and by Hölder’s inequality,

Λ(q)2 =
(∫

qf dλ

)2

≤
∫
f2 dλ ·

∫
q2 dλ ≤ ϕ(0)

∫
q2 dλ

where we used (7). This proves ϕ ∈ P(S). By (9) and (10) we have

ϕ(n+ 4) =
∫
xn+2fdλ =

∫
xn dλ for n ∈ N0,

which shows that λ is associated with ϕ.

It remains to be shown that ϕ /∈ H(S). Suppose ϕ ∈ H(S). Choose a measure µ
such that (4) holds. In particular, ϕ(n+ 4) =

∫
xn+4 dµ, and since λ is determinate it

follows that λ = x4µ. In particular, λ({0}) = 0. Since the measure µ is bounded (the
total mass being ϕ(0)) then x−2 ∈ L2(λ). Now

ϕ(n+ 2) =
∫
xn+2dµ =

∫
xn−2dλ for n ∈ N0,

which shows that the function x−2 could replace f in (9). Since λ is determinate then
R[x] is dense in L2(λ), which shows that the extension of Λ to a bounded linear form
on L2(λ) is uniquely determined. Thus f is uniquely determined, and it follows that
f = x−2 λ-a.e., a contradiction. �

Theorem 4

In order that the conditions of Theorem 3 can be satisfied, it is necessary that the

measure σ = (1 + x2)λ be indeterminate.
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Proof. Suppose σ is determinate. Then R[x] is dense in L2
(
(1+x2)σ

)
= L2

(
(1+x2)2λ

)
,

or equivalently, in L2
(
(1 + x4)λ

)
. Reference to Corollary 2 completes the proof. �

In the following, σ always denotes the measure (1 + x2)λ. We have seen that
it is necessary that σ is indeterminate. Since λ is determinate then R[x] is dense
in L2

(
(1 + x2)λ

)
= L2(σ), that is, σ is N-extremal. An N-extremal indeterminate

measure σ has the form σ =
∑∞

n=1 anεxn
for some an > 0 and xn ∈ R such that the

set {xn | n ∈ N } is discrete in R, cf. [1].
The class of determinate measures λ such that the measure σ = (1 + x2)λ is

indeterminate has been studied intensively and for several purposes by Berg and Duran,
cf. [3–6].

Theorem 5

In order that ϕ ∈ Pe(S) \ H(S), it is necessary that equality hold in (7).

Proof. If equality does not hold in (7), write a = ϕ(0) −
∫
f2 dλ > 0, ϕ1 = a1{0},

and ϕ2 = ϕ − ϕ1. Trivially, ϕ1 ∈ P(S). Since ϕ2 coincides with ϕ on S \ {0}
and ϕ2(0) =

∫
f2 dλ, it follows from the proof of Theorem 3 that ϕ2 ∈ P(S). Since

ϕ = ϕ1+ϕ2 and since ϕ1 and ϕ2 are not nonnegative multiples of ϕ then ϕ /∈ Pe(S). �

The story of the next Lemma is the following. At first we did not even notice
that such a result was needed. Reading through the first version of the manuscript, we
noted that the proof of Theorem 6 was incomplete. We had to formulate the Lemma
as a Conjecture. We asked Christian Berg, and he produced a proof. We later found
a proof of our own. We give both proofs.

Lemma 1

If σ is an N-extremal indeterminate measure with σ({0}) = 0 and if k ∈ L2(σ)
is orthogonal to the space xR[x] = {xp | p ∈ R[x] } and not identically zero then k is

nowhere zero on the support of σ.

First proof. (Christian Berg) The reproducing kernel K: R × R → R of the indeter-
minate moment problem associated with σ satisfies

p(x) =
∫
K(x, y)p(y) dσ(y)

for all p ∈ R[x], cf. [1]. Replacing p(x) by xp(x) and setting x = 0 we obtain

0 =
∫
K(0, y)yp(y) dσ(y)

which shows that the function y �→ K(0, y) is orthogonal to xR[x]. Since xR[x] has
codimension 1 in R[x], which is dense in L2(σ) (σ being N-extremal), then the closure
of xR[x] has codimension 1 in L2(σ), so a function orthogonal to xR[x] is uniquely
determined up to a scalar factor. Therefore our function k is proportional to the
function y �→ K(0, y). It is a fact (see [7]) that if µ is any N-extremal indeterminate
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measure and x is in the support of µ then for y ∈ R we have K(x, y) = 0 if and only if
y is in the support of µ and distinct from x. Choose an N-extremal measure µ which is
equivalent to σ (i.e., has the same moment sequence) and satisfies µ({0}) > 0 (see [1]).
Since σ({0}) = 0 then µ �= σ. It is a fact (see [1]) that distinct equivalent N-extremal
measures have disjoint supports. Since µ({0}) > 0 then K(0, y) = 0 if and only if
y �= 0 is in the support of µ, which is disjoint with the support of σ. Thus the function
y �→ K(0, y) (that is, the function k) is nowhere zero on the support of σ, as desired.

Second proof. Let B be the set of those x in the support of σ such that k(x) �= 0,
and define µ = 1Bσ. Then k is obviously orthogonal to xR[x] in L2(µ). Since k is
not identically zero then xR[x] is not dense in L2(µ). Equivalently, R[x] is not dense
in L2(x2µ). (This equivalence is where we use the hypothesis that σ({0}) = 0.) So
much the less is R[x] dense in L2

(
(1 + x2)µ

)
. This means that the measure µ is

indeterminate. Now if B had been a proper subset of the support of σ then µ would
have been determinate by the result in [7] to the effect that if one removes the mass in
one point of the support of an N-extremal indeterminate measure then the remaining
measure is determinate. Thus B is all of the support of σ. That is, k is nowhere zero
on the support of σ. �

Theorem 6

If λ is determinate, σ is indeterminate, and λ({0}) = 0 then the conditions in

Theorem 3 can be satisfied. If ϕ is so chosen that equality holds in (7) then ϕ ∈
Pe(S) \ H(S).

Proof. The problem is to find f ∈ L2(λ) such that (10) holds but the function 1−x2f

does not vanish λ-a.e. Now (10) can be written in the form

∫
p

(
1

1 + x2
− x2f

1 + x2

)
dσ = 0, p ∈ R[x].

Since σ is an N-extremal indeterminate measure with σ({0}) = 0 then 0 is not in the
support of σ. Hence the function x2/(1 + x2) and its inverse are both bounded on the
support of σ. It follows that if we write

g =
x2f

1 + x2

then the problem is to choose g ∈ L2(λ) such that

∫
p

(
1

1 + x2
− g

)
dσ = 0, p ∈ R[x]

but such that the function 1/(1 + x2) − g does not vanish λ-a.e. Writing

h = g/x,
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we have g ∈ L2(λ) if and only if h ∈ L2(σ). Thus the problem is to find h ∈ L2(σ)
such that ∫

xp

(
1

x(1 + x2)
− h

)
dσ = 0, p ∈ R[x]

but such that the function 1/x(1+x2)−h does not vanish λ-a.e. Since σ is a bounded
measure, the support of which does not contain zero, then 1/x(1+x2) ∈ L2(σ). Thus,
writing

k =
1

x(1 + x2)
− h,

the problem is to find k ∈ L2(σ), orthogonal to the space xR[x] = {xp | p ∈ R[x] } but
not identically zero. The function k given by k(x) = K(0, x) is a solution, cf. the first
proof of Lemma 1.

We note that k is uniquely determined up to a scalar factor. This is because k has
to be orthogonal to xR[x], which has codimension 1 in R[x], which is dense in L2(σ)
(since λ is determinate), so that the closure of xR[x] has codimension 1 in L2(σ).

It remains to be shown that if equality holds in (7) then ϕ ∈ Pe(S). Suppose
ϕ = ϕ1 + ϕ2 with ϕ1, ϕ2 ∈ P(S); we have to show that ϕ1 and ϕ2 are nonnegative
multiples of ϕ. Let λi be the measure which is to ϕi what λ is to ϕ. For n ∈ N0 we
have ∫

xn d(λ1 + λ2) = ϕ1(n+ 4) + ϕ2(n+ 4) = ϕ(n+ 4) =
∫
xn dλ.

By the determinacy of λ it follows that λ1+λ2 = λ. Thus λ1 and λ2 are both absolutely
continuous with respect to λ, so there exist h1, h2 ≥ 0 in L∞(λ) such that λi = hiλ

for i = 1, 2. Since λ1 + λ2 = λ then h1 + h2 = 1 λ-a.e. Choose functions fi that are to
ϕi and λi what f is to ϕ and λ. Then

∫
xnfdλ = ϕ(n+ 2) = ϕ1(n+ 2) + ϕ2(n+ 2)

=
∫
xnf1dλ1 +

∫
xnf2dλ2 =

∫
xn(f1h1 + f2h2) dλ for n ∈ N0,

hence by linearity
∫
pf dλ =

∫
p(f1h1 + f2h2) dλ for p ∈ R[x]. Since R[x] is dense in

L2(λ) (λ being determinate) it follows that f = f1h1 + f2h2 λ-a.e. Now
∫
f2dλ = ϕ(0) = ϕ1(0) + ϕ2(0) ≥

∫
f2
1 dλ1 +

∫
f2
2 dλ2 =

∫
(f2

1h1 + f2
2h2) dλ.

Noting that f2 ≤ f2
1h1 + f2

2h2 λ-a.e. (by convexity of the function x �→ x2), we infer

(f1h1 + f2h2)2 = f2
1h1 + f2

2h2

λ-a.e. By the strict convexity of the function x �→ x2 it follows that on the set of those
points where h1 and h2 are both positive we have f1 = f2 λ-a.e. Now f1 is merely an
equivalence class in the space L2(λ1) = L2(h1λ), so we are at liberty to redefine f1
on the set of those points where h1 vanishes. Similarly for f2. Thus we may as well
assume f1 = f2 λ-a.e. Since f = f1h1 + f2h2 and h1 + h2 = 1 λ-a.e., it follows that
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f1 = f2 = f λ-a.e. By that part of the proof of Theorem 3 which is independent of the
condition ϕ /∈ H(S), we have 0 =

∫
p(1 − x2fi) dλi =

∫
p(1 − x2f)hi dλ for p ∈ R[x]

and i = 1, 2. In order to get the desired conclusion it suffices to infer that the hi are
constants (λ-a.e.) Thus, writing E = (1 − x2f)R[x] ⊂ L1(λ) and denoting by E⊥ the
set of those h ∈ L∞(λ) which are orthogonal to E under the canonical duality, we have
to show that each element of E⊥ is a constant. Since E⊥ contains the constant 1 (by
(10)), it suffices to show that E⊥ is 1-dimensional. With g, h, and k as in the first
paragraph of the present proof, we have

E = (1 − x2f)R[x] =
(
1 − (1 + x2)g

)
R[x] =

(
1 − x(1 + x2)h

)
R[x] = x(1 + x2)kR[x].

Now suppose l ∈ E⊥. Since kl ∈ L2(σ) = L2
(
(1+x2)λ

)
then xkl ∈ L2(λ). Since l ∈ E⊥

then xkl is orthogonal to (1+x2)R[x] in L2(λ). To see that xkl must necessarily belong
to the same 1-dimensional space for all such l (whence the desired conclusion since k
is nowhere zero on the support of σ, by the Lemma), it now suffices to show that the
closure of (1 + x2)R[x] has codimension at most 1 in L2(λ). For this we need to refer
to complex L2-spaces. For a measure κ, denote by L2

C(κ) the complex L2-space. Since
λ is determinate then R[x] is dense in L2(σ), which is equivalent to saying that C[x]
is dense in L2

C(σ) = L2
C

(
(1+x2)λ

)
. Since 1+x2 = |x− i|2, an equivalent statement is

that (x− i)C[x] is dense in L2
C(λ). Since (1+x2)C[x] has codimension 1 in (x− i)C[x],

it follows that the closure of (1+x2)C[x] has codimension 1 in L2
C(λ), or equivalently,

the closure of (1 + x2)R[x] has codimension 1 in L2(λ), as desired. �

Remark 1. We sum up the construction of elements of Pe(N2
0) \ H(N2

0). Choose an
N-extremal indeterminate measure σ with σ({0}) = 0. (Such measures exist, cf. [1];
see [2] for specific examples.) Choose k ∈ L2(σ) orthogonal to xR[x] and nonzero. (We
saw in the preceding proof that k is uniquely determined up to a scalar factor.) Define
f = 1/x2 − (1 + x2)k/x ∈ L2(λ) where λ is the determinate measure (1 + x2)−1σ.
Define ϕ:S → R by ϕ(0) =

∫
f2 dλ and ϕ(n + 2) =

∫
xnf dλ for n ∈ N0. Then

ϕ ∈ Pe(S) \H(S). Define ω: N2
0 → R by ω(m,n) = ϕ(2m+ 3n) for (m,n) ∈ N

2
0. Then

ω ∈ Pe(N2
0) \ H(N2

0).

Remark 2. In order to complete a characterization of those ϕ ∈ Pe(S)\H(S) for which
the associated measure λ is determinate, it remains to determine whether it is possible
that λ({0}) > 0, and if so, to find necessary and sufficient conditions for that case.
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