Collectanea Mathematica (el ectronic version): http://www.imub.ub.es/collect

Collect. Math. 54, 1 (2003), 1-51
(c) 2003 Universitat de Barcelona

Hurwitz spaces of genus 2 covers of an elliptic curve

ERNST KANI

Department of Mathematics and Statistics, Queen’s University
Kingston, Ontario K7L 3N6, Canada

E-mail: kani@mast.queensu.ca

Received July 22, 2002

ABSTRACT

Let E be an elliptic curve over a field K of characteristic 7 2 and let N > 1 be
an integer prime to char(/K). The purpose of this paper is to construct the (two-
dimensional) Hurwitz moduli space H (E /K, N,2) which “classifies” genus 2
covers of I/ of degree IV and to show that it is closely related to the modular curve
X (N) which parametrizes elliptic curves with level- NV -structure.

More precisely, we introduce the notion of a normalized genus 2 cover of
E/K and show that the corresponding moduli space H /5, v is an open subset
of (a twist of) X (IN), and that the connected components of the Hurwitz space
H(E/K,N,?2) are of the form £/ X Hpy g ps for suitable elliptic curves £’ ~
E and divisors M |N.
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2 KANI
1. Introduction

In his fundamental paper of 1891, Hurwitz [14] introduced the notion of a “Hurwitz
space” as a method of classifying all finite covers f : ¥ — X of given degree and
ramification type over a fixed curve X/C, and showed, among many other things, that
these moduli spaces are connected complex manifolds in the case that X = P! (and
the covers have simple ramification type). In 1969 Fulton [10] extended these results to
families of (simple) covers of curves over P§ (where S is an arbitrary base scheme) by
showing that a suitably defined Hurwitz functor is representable by a scheme Hy ., /Z.

The main aim of this paper is to study the Hurwitz space H(E/K, N,2) which
classifies all genus 2 covers of fixed degree N = deg(f) of an elliptic curve X = E
over a field K. However, since this (two-dimensional) Hurwitz space is somewhat
complicated, we first simplify the problem by introducing in Section 2 the notion of a
normalized genus 2 cover, and then classify these instead (cf. Theorem 1.1). Since the
study of arbitrary genus 2 covers can be reduced to that of normalized covers, one can
then deduce easily the structure of the full Hurwitz space H(E/K, N,2) from this; cf.
Corollary 1.3 below.

We now explain the main results of this paper in more detail. First of all, we shall
show in Section 3 how to extend the notion of a normalized genus 2 cover to families
of covers over g = E X S, where S is an arbitrary scheme, so as to obtain a functor

He/kn = HE KN : Schy — Sets

which “classifies” such covers. We then prove in Subsection 5.3:

Theorem 1.1

Suppose that char(K) | 2N. If N > 3 (respectively, if N = 2), then the functor
HEg kN is finely (respectively, coarsely) represented by a smooth, affine and geometri-
cally connected curve Hp i,y /K which is an open subset of a certain twist X gk N, —1
of the modular curve X (N) of level N; in particular, Hg v ® K is isomorphic to an
open subset of X(N)/?, where K denotes the algebraic closure of K.

Remarks. 1) As the proof shows, exactly the same assertion holds for elliptic curves
E/K over an arbitrary ring (or scheme) K; cf. Theorem 5.18.

2) The “twisted modular curve” Xpg g n 1 /K is defined and constructed in Sec-
tion 4 as the moduli space of the functor X,k 1 which assigns to any extension
field L/K the set X,k n,—1(L) of isomorphism classes of pairs (£’,v) where E'/L is
an elliptic curve and ¢ : E[N] = E’[N] is an L-rational anti-isometry of the N-torsion
subgroups of F and E’.

3) The above representability results are obtained by purely algebraic techniques
and hence do not use the Riemann Existence Theorem.

From the above theorem one can easily deduce the structure of the full Hurwitz
space. Before stating the result, it useful to observe that if we restrict to minimal
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covers (i.e. those that do not factor over an isogeny of F; cf. §2 and §7), then we have
(assuming again that char(K) | 2N):

Corollary 1.2

If N > 3 (respectively, if N = 2), then the functor g}’]‘( N Which classifies minimal
genus 2 covers of E/K of degree N is finely (respectively, coarsely) represented by the
smooth, geometrically connected K-surface £ x Hg i N-

If N is prime, then every cover of degree N is automatically minimal, so the
above corollary describes the full Hurwitz space in this case. If N is composite, then
the Hurwitz space breaks up into components which are all of the above type (except
that E and N vary):

Corollary 1.3

If N is odd (respectively, if N is even), then the functor Hg} KN which classifies
all genus 2 covers of degree N is finely (respectively, coarsely) represented by a smooth,
quasi-projective K-surface H(E/K, N,2). Moreover, if the N-torsion points of E are
K-rational, then H(E/K,N,2) consists of }_;_gx 0(IN/d) connected components;
more precisely, we have

H(E/K,N,2) = H(E X HEH/K:N/#H)’
H

where the disjoint union extends over all subgroups H < E[N] of order d|N with
d+ N, and Eyy = E/H.

The fact that the Hurwitz functor Hg kN is representable by an open subset of
the modular curve X,k y,—1 has a number of interesting consequences. For example,
it shows that over any number field K there are only finitely many normalized genus 2
covers f : C'— FE of fixed degree N > 7 because the genus of (the compactification of)
Xg/k,N,—1is > 2 for N > 7 and so #Xg/k n,—1(K) < oo by Faltings’ Theorem. This
means in particular that one cannot write down parametric families of such covers
when N > 7, which is in sharp contrast to the fact that for N < 5 (in which case
XEg/K,N,—1 is a rational curve) such families are known to exist and can be written
down explicitly; cf. Krazer [21], p. 477ff, Kuhn [22], p. 48, and Frey [6], p. 96ff. Another
application of the explicit description of the Hurwitz space H(E /K, N,2) is given in
[18], where it is used to compute the number of genus 2 covers of E/K with a given
discriminant divisor.

In order to complete the description of the Hurwitz space Hg,k n, one should
also describe the complement (the “degeneracy locus”)

Dg/k.n = Xe/kN-1 \ Hg/k )N

One such description was already given in essence in [16], and so we merely need to
cite and/or translate the relevant result; cf. Theorem 6.1 below. Similarly, the number
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of points in Dg/x ny was computed in [16] and [17]; a slightly weaker version of this
result may be stated as follows:

Theorem 1.4

If K is algebraically closed, then the number of points in the degeneracy locus
satisfies the inequality

) D1 < oxs BN — 6)#(SLa(Z/NZ) /{1}).

Furthermore, equality holds in (1) if and only if char(K) | N, i.e. if and only if either
char(K) = 0 or char(K) > N.

Finally, we give a brief sketch of the proof of the main Theorem 1.1, which in fact
constitutes a refinement and extension of the “basic construction” of genus 2 curves
(with elliptic differentials) which was presented in [8], [16]. Indeed, this construction
shows that each genus 2 cover f : C' — FE of degree N determines a unique pair
(E;c7 V) € Xg/k,n,—1(K) and that conversely for each such pair (satisfying a suitable
additional hypothesis) one can reconstruct the cover f : C — E. Thus, the “basic
construction” defines for each extension field L/K an injection

Uy :He/kn(L) = Xg/kn—1(L) = Xg/k,n,—1(L)

and identifies the image. Here we shall see in Theorem 5.18 that this idea can be
refined to obtain an open embedding of functors

V:Hg/xkN— Xe/KN,~1-

However, instead of proving this directly, it is more convenient to divide the above
construction into two steps, which amounts to a factorization of ¥ as

UV=Uor: HE/K,N — AE/K,N = XE/K,N,—la

in which 7 is (essentially) the Torelli map which associates to a curve its (polarized)
Jacobian and Ag,k n is the functor that classifies principally polarized abelian sur-
faces with an embedding “of degree N” of E (cf. Subsection 5.1). The fact that ¥’ is
an isomorphism is proved in Theorem 5.10 and that 7 is a monomorphism is shown
in Proposition 5.12. Finally, the image of 7 is analyzed in Proposition 5.17: it is the
subfunctor Jg/x n of Ag/k,n consisting of the “theta-smooth” elements (cf. Subsec-
tion 5.3).

Acknowledgments. This paper developed out the joint article [8] with G. Frey, whom
I would like to thank very much for the many stimulating and fruitful discussions we
have had over the last decade as well as for his continued interest in this research.
In addition, I would like to thank him for his kind hospitality at the Institut fur
Experimentelle Mathematik, where parts of this paper were written.
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Finally, I would like to gratefully acknowledge receipt of funding from the Na-
tural Sciences and Engineering Research Council of Canada (NSERC) and also from
the Deutsche Forschungsgemeinschaft (DFG — Forschergruppe und Graduiertenkolleg
Essen) which made this research possible.

2. Normalized genus 2 covers

As in the introduction, let £/ K be an elliptic curve over a field K. It will be convenient
(but not absolutely necessary) to assume in the sequel that char(K) # 2 so as to avoid
case distinctions.

A covering f : C — E is called minimal (or optimal ([22]) or mazimal ([34])) if
the induced map f* : Jg — Jo on the Jacobians is a closed immersion. Note that if
C is a curve of genus 2, then this is equivalent to the condition that f does not factor
over an isogeny of E of degree > 2 (use Kuhn [22], Corollary on p. 45). Thus, by
replacing E/K by an isogenous curve if necessary, we may always assume “without
loss of generality” that f is minimal.

Minimal genus 2 covers of elliptic curves are partially analogous to the simple
covers of P! studied by Fulton [10]; for example, they do not have any internal auto-
morphisms, as the following result shows.

Proposition 2.1

Let f : C — FE be a minimal genus 2 cover of E/K of degree N > 3. If a €
Autg (C) is an automorphism such that f o o = f, then a = idc.

Proof. Without loss of generality, we may assume that K is algebraically closed. Let
G = (a) be the (finite) group generated by a. If a # ide, then the quotient map
7 :C — C = G\C has degree deg(m) > 2 and f factors over =, i.e. f = f' om. By
Riemann-Hurwitz we then have 2 > gz > gg = 1, so g5 = 1. Since f is minimal,
this forces f’ to be an isomorphism, i.e. f is a (ramified) Galois cover with group G.
Furthermore, if we replace o by a power o, then the same argument shows that G
cannot have any proper subgroup, and hence N = |G| is prime.

Since f is Galois, the degree of its different divisor satisfies

deg (Diff(f)) = N Y (1~ ! )

PeRy ep(f)

where Ry = {P € E(K) : ep(f) > 1}. (Note that equality holds if char(K) | N.)
Thus, by the Riemann-Hurwitz relation we obtain

2 = deg (Diff(f)) > y %

— >
5 Ry >
and hence N < 4.

Since N is prime, this leaves only the case N = 3. In this case there are three fibres
of f which have isolated Weierstrass points in them (see the proof of Proposition 2.2
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below). Thus, each of these points is fixed by «, and so we obtain deg(Diff(f)) > 3,
which contradicts the Riemann-Hurwitz relation. [J

It is immediate that if f : C — FE is a minimal genus 2 cover of E/K, then so
is T, o f, for any = € E(K), where T, : E — E denotes the translation map. Since
T, o f is essentially the same cover as f, it is useful to “normalize” the genus 2 covers
of F/K in a certain way so as to avoid redundant translates. This will be done by
means of the Weierstrass (or hyperelliptic) divisor of C.

Notation. If C/K is a curve of genus 2, then o¢ denotes its hyperelliptic involution
and W¢ its hyperelliptic divisor. Recall that W is the divisor of fixed points of o¢
and is thus an effective divisor of degree 6. Furthermore, W is reduced if and only if
char(K) # 2; cf. Lonsted-Kleiman [24].

Similarly, if E/K is an elliptic curve with zero Og, then the minus map [—1]g has
the divisor E[2] of 2-torsion points as its fixed point divisor. Note that the divisor [0z]
defined by the point 0 is contained in F[2], and so E[2]# := E[2] —[0z] is an effective
divisor of degree 3 on E.

DEFINITION. A morphism f : C' — FE is called normalized if it is minimal and if the
norm (or direct image) f.We of the hyperelliptic divisor has the form

(2) fiWe = 3e[0g] + (e + 1) E[2]*

where ¢ = 0 if deg(f) is even and ¢ = 1 if deg(f) is odd. Thus, deg(f) = (2), and we
have more explicitly f.We = 3[0g] + E[2]#, if deg(f) is odd, and f.W¢ = 2E[2]#, if
deg(f) is even.

This terminology is justified by the following result:

Proposition 2.2

If f: C — FE is a minimal genus 2 cover, then there is a unique point x € E(K)
such that fporm := Ty o f is normalized. Furthermore, form IS “pseudo-normalized”
in the sense that it satisfies the relation

(3) frnorm 0 0c = [_1]E 0 frnorm-

Proof. Tt is well-known (cf. e.g. [22], p. 42) that there is a (unique) involution op €
Aut(E) such that f ooc = og o f. If K denotes the algebraic closure of K, then the
unique extension oo ® K of o¢ to C ® K has four distinct fixed points Py, P;, Ps, P3 €
E(K), which can be numbered in such a way that

(4) e We =3P+ (e + 1)(PL+ P2 + P3),

where fz: Cz = C ® K — Fz = E ® K denotes the induced cover over K (and
where, as above, deg(f) = €(2)). Indeed, if ¢ = 1 then this follows from [8], Lemma
2.1, or from Kuhn [22], p. 44, and if ¢ = 0, then this follows from the discussion of
[22] on the top of p. 48.
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From the above description is clear that Py is Gal(K/K)-stable and hence is
rational over K. Thus, the first assertion holds with © = Py (and only for this point).
Furthermore, in [8] and/or [22] it was already noted that the second assertion follows
from the first, for we have f,orm © 0c = 0% © frorm, wWhere o =Ty, 00p o T{l, and
o'z = [—1] g because the fixed point set of o’ is E[2]. O

Corollary 2.3

Let f: C — E be a minimal genus 2 cover of E/K. Then f is normalized if and
only if f satisfies (3) and

(5) #(FH0p) N We) = 3e.

Proof. If f is normalized, then clearly (5) holds by definition; cf. equation (2). Fur-
thermore, Proposition 2.2 shows that f satisfies (3).

Conversely, suppose f satisfies (3). Then the proof of Proposition 2.2 shows that
the points Py,...,Ps of (4) are fixed under [—1]p and hence are 2-torsion points.
Furthermore, equation (5) guarantees that Py = O, and so (2) holds. OJ

As we shall see below in Theorem 2.6, normalized covers f : C' — E are intimately
connected to the induced homomorphisms f, : Jo — Jg and/or f*: Jg — Jo on the
Jacobians. For this we first show:

Proposition 2.4

Let f : C — FE be a normalized genus 2 cover of degree N, and let A\g : E — E=
JE be the canonical polarization on E which is defined by Ag(P) = cl(Og([P]—[0g])).

(a) If N is odd, then there is a unique effective divisor W < W¢ of degree 3 such
that f.W} = E[2]*.

(b) If N is even, and the Weierstrass points of C' are K -rational, then there is a divisor
W} < We with f,W} = E[2]#. Furthermore, if W} is another divisor with this
property, then cl(Oc(W}§ — WY)) € Ker(f.)[2].

(c) Let W} < W be a divisor such that f,W} = E[2]#, and put L = Oc(W}) @wz',
where we denotes the canonical sheaf of C/K. Then the map x — cl(Oc(z —
W{) @ we) = c(Oc(x) @ L71) defines an embedding j = jr : C — Jo which
satisfies

(6) 0;¢j(C) and jooc=[-1];0j and Agof=f.oj

Proof. (a) Let Wy = f*(0g) N We and W) = We — Wy. Then Wy and W[ are
both effective divisors and f.Wy = 3(0g) by construction (and by (2)) and hence
deg(Wy) = deg(W}) = 3 and also f.W/, = E[2]#, as claimed.

(b) The existence of W} is clear. If Wy is another divisor, then we have ¢l(2(W} —
WY)) = w&® ® (W& ! ~ Oc¢ (cf. part(c)), so cl(W} — W) € Jo[2]. Moreover,
Fel (O (W5 = W) = c(O(f. W5 — £.W5)) = 0, s0 (W — W) € Ker(f.)[2].

(c) Since deg(Oc(Wg)@wg') = 1, the rule x — cl(Oc(z—W{)@wc) is represented
by a closed immersion j : C' — J¢.
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We now verify that j satisfies (6). For this we may assume that K is algebraically
closed, so W = W; + Wy + W3 with W; € C(K).

To prove the first equation of (6) we shall use the fact that for each P € C'(K), the
divisor P4 o0¢(P) ~ wc is a canonical divisor on C. In particular, for each Weierstrass
point W; € C(K) we have 2W; ~ wc, and so 2W§ ~ w&?. Thus

§(P)+ j(0c(P)) = c(Oc(P + oc(P) — 2W)) @ w?) =0,

which proves the first equality of (6).

To prove the second equality, we first note that the points P, := f(W;), for
i =1,2,3 are (by construction) precisely the non-trivial 2-torsion points of E, and so
cd(Oc(Py — P3)) = cl(Oc(Py — 0g)) = Ag(Py). Moreover, by the Albanese property
of Jo we know that f.o0j =T, 0Ago f, for some z € Jg(K). Thus, since 2W5 ~ w¢,
we see that

[ GOWV) = [ (l(Oc(Wh — Wi + Wo — W3))) = cl(Oc (P2 — Ps3))
= Ap(P1) = As(f(W)),

and so T,(Apf(W7)) = f.(3(W1)) = Ap(f(W7)). This forces x = 0 and so f,0j =
Ago f.

Next we observe that 05 ¢ j(C). Indeed, if 0; € j(C), then there is a point
P € C(K) such that P ~ Oc(W}) ® wg' ~ Wy — Wy + W, which is impossible as
RO (W1 — Wo + W3) = 0 (because h®(W; + W) =1). O

Corollary 2.5

The curve § := j(C) C Jo of Proposition 2.4(c) is a symmetric theta-divisor of
Jo, ie. 0 is an effective divisor on Jg such that [—1];.0 = 0 and such that Ao =
Ao Jo = jc is the canonical principal polarization of Jo. Furthermore:

(a) If N is odd, then 6 is the unique symmetric theta divisor such that
(7) 0 N Ker(£.)[2] = Ker(f£.)[2]# = Ker(£.)[2] - [0].

(b) If N is even, then 0 is a symmetric theta divisor satisfying

(8) 6 NKer(f.)[2] = 0.

Moreover, if §' is any symmetric theta-divisor on J¢ satisfying (8), then ' = T,(0),
for some = € Ker(f.)[2].
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Proof. Since j is of the form P+ cl(O(P)®L~1), where L is a suitable invertible sheaf
of degree 1, it is clear that 6 is an effective theta-divisor. Furthermore, 6 is symmetric
by the first equation of (6).

(a) To prove that 6 satisfies (7) we may assume without loss of generality that K is
algebraically closed. We first observe the first equation of (6) shows that j(P) € J¢[2]
if and only if P is a Weierstrass point.

We now claim that #Ker(f.)[2] = 4. This follows either by observing that
Ker(f.) is an elliptic curve (cf. Proposition 2.7 below) or by noting that (6) shows
that f.(Jc[2]) = Jg[2] and hence it follows that

#Ker(f.)[2] = #(Ker(f.) N Je[2]) = #Jo[2]/#p[2] = 4.

Thus, if Wy, Woe, Wos € C (K) are the three Weierstrass points of C' such that
f(Woyi) = Og, then by (6) we have Ker(f.)[2] = {0s,j(Wo1),...,7(Wos)}, and so (7)
follows.

Now let 6" be another theta-divisor of Jo satisfying (7). Then 0’ = T,.0, for some
x, and so ' is also irreducible. Moreover, by (7) we have §’ N8 D Ker(f,)[2]#, which
has 3 distinct points (over K), and so (0'.0) > 3, if ¢’ # 6. But (0'.0) = (0)* = 2 (by
Riemann-Roch), contradiction. Thus ¢’ = 6.

(b) A slight modification of the proof of part (a) shows that 6 satisfies (8) and
that (f.)(0 N J[2]) = E[2]* (as sets). Now suppose @ is another symmetric theta-
divisor satisfying (8). Then 0" = T,6, for some = € Jo[2] (because 6 and ¢’ are both
symmetric). If = ¢ Ker(f.), then f.(z) € E[2]#, and so there exists y € § N J[2] such
that f.(y) = fi(z). But then z+y € T,.0 NKer(f,)[2] = 0’ NKer(f,)[2], contradiction.
Thus z € Ker(f,), as claimed. O

The above proposition and its corollary lead to the fundamental fact that norma-
lized covers can be characterized by their induced homomorphisms on the Jacobians.
To state this more precisely, it is useful to introduce some equivalence relations on
covers and on homomorphisms.

DEFINITION. Two K-covers f; : C; — FE are called equivalent if there exists an a
K-isomorphism « : C; = Cs such that f; = fo o . If such an « exists, then we write
fi = fa.

Two injective homomorphisms h; : Jg — J; := J¢, are called equivalent if there
exists a K-isomorphism « : J; = J, such that hy = a o hy and & o Ay 0 @ = \q, where
Ai = A, g - jz is the canonical polarization of the Jacobian J;, for : = 1,2. We
write hy =~ ho if such an isomorphism « exists.

Finally, we say that an injective homomorphism h : F — Jo has degree N if
holcoh=M\y, o[N];,; we then write N = deg, . (h).

Theorem 2.6

Let C/K be a curve of genus 2 and let N > 2 be an integer. Then the assignment
f +— f* induces a surjection

p=pcEenN:Covg(C,E,N) — InjHomg (Jg, Jo,N)
from the set Covg (C, E, N) of equivalence classes of normalized K-covers f : C — E
of degree N to the set InjHom ;- (Jg, Jo, N) of equivalence classes of injective K-homo-

morphisms h : Jg — J¢o of degree N. Furthermore, p is a bijection if N > 2 or if the
Weierstrass points of C' are K-rational.
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Proof. First note that if f : C' — E is a normalized cover, then f* defines an equiva-
lence class cl(f*) in the set InjHomy (Jg, Jo, N). Indeed, f* is injective because f is
minimal, and f* has degree N because f, = )‘;; o(f*) oMo, and so (f*)olco f* =
Ajgo(feof*) = Aj, o[N]j,. Furthermore, the rule f — ¢l(f*) is compatible with the
equivalence relation on Covg (C, E, N) because if f; ~ fo, then f1 = f2 o a for some
a € Autg (C), and so fi = (faoa)* = a* o f5. Clearly, a* € Autg(Jo) and we have
(a@*)odcoa* = Moo (aso0a*) = Ao o[deg(a)] = A\c. This means that f; ~ fi and
so the rule f — cl(f*) defines a map p : Covg (C, E,N) — InjHomg (Jg, Jo, N).

We first show that p is surjective. Thus, let h : E <— J¢ be an injective homo-
morphism of degree N. Assume temporarily that C'/K satisfies:

() We € C(K) and Je[2] € Jo(K).

Since the Weierstrass points of C' are now assumed to be rational, there exists an
embedding j = jp : C' — Je such that § := j(C) is a symmetric theta-divisor on J¢;
cf. Proposition 2.4 and Corollary 2.5. Then [—1];0 = 0, and so [—1]; induces a unique
automorphism ¢ on C such that j oo = [—1]; 0 j. It is then immediate that o has
the Weierstrass points as fixed points and hence ¢ = o¢ is the hyperelliptic involution
on C.

Deﬁnef::fh:C—»Ebyf:h*ojwhereh*:ﬁo)\c:JC—n]AE:E. Thus,
since h* is a homomorphism we have [—1]|go f = [-1]|goh*0oj = h*o[—1] 0j = h*ojo
oc = foog, so fis pseudo-normalized, i.e. satisfies condition (3). By Proposition 2.2
we know that there exists a (unique) point x € E(K) such that fhorm = T o f
is normalized. Since f and fy,orm both satisfy (3), it follows that [—1]gpz = =z, i.e.
x € E[2]. Now since h* : J[2] — E[2] is surjective (because h* is surjective and the
fibres of h* are connected), there is a point 2’ € J[2] such that h*(2’) = x, and then
frorm = h* o j’, where j/ = T, o j. Using the autoduality property of the Jacobian,
i.e., the fact that (j/)* = j* = —)\51 . Jo — Jo, we obtain by dualizing the above
relation that f .,
such that f .., = —h ~ h, ie. 7 is surjective (provided that condition (}) holds).

To finish the proof of the surjectivity of p, we now remove the hypothesis (1)

= (j/)* o (h*)* = —h. Thus, frorm : C — E is a normalized cover

and hence consider an arbitrary curve C'/K. Then there exists a finite Galois cover
K'’/K such that Cxr = C ® K’ satisfies () and so, by what was just shown, there
exists a normalized map f = f : Cxs — Eg such that f* = —h. Furthermore,
f= )\El o h* o j, where j = j. is the embedding defined by a suitable £ € Pic(C}).
Consider the Galois twist f9 of f by g € Gal(K'/K). Since j9 = Ty o j with
z(g) = c(L9 ® L) € Pic®(Cl) = J(K'), we obtain f9 = Ag' o h* 0 Ty, 0 j. Now
0 = Ty (J(C)) = j(C)9 is again a symmetric theta-divisor of Ac which satisfies
0" > Ker(h*)[2]# (resp., 8 N Ker(h*)[2] = 0) if N is odd (resp. if N is even) because
Ker(h*)9 = Ker(h*). Thus, 0 = j(C) (resp. ' = T,»j(C) with 2’ € Ker(h*)[2]) and
so z(g) = 0 (resp. z(g) = 2’ € Ker(h*)[2]). Thus, in both cases h* o Ty, = h*, and
so f9 = f, for all g € Gal(K’/K). This means that f is defined over K, and so 7 is
surjective in general.

It remains to show that p is injective (under the stated hypotheses). For this,
suppose that f; : C — E are two normalized covers such that f{ ~ f3; we then
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want to show that also fi; ~ fs. The hypothesis f{ ~ f5 means that there exists an
a € Autk (Jo) with property that fi = ao f3 and that &éo Ao oa = Ao. We then also
have (f1)« o a = (f2)«, for by dualizing the first relation we obtain

(f1)« :)\;E} o(ff)oAre = ,\;b}o(f;)‘o@oAc = /\;El o(fi)odcoat =(fo)eoa™t,

as claimed.

To show that f; ~ fo, suppose first that N is odd. Then by Proposition 2.4
there exists a K-embedding j; : C' — Jo such that Ag o f; = (f;)« o j; and such that
0; = 7:(C) is theta divisor associated to A¢, for ¢ = 1,2. Since f; is normalized, we
have by Corollary 2.5(a) that 6; D Ker((fi)«)[2]”. Now a~1(6;) is again a symmetric
theta-divisor (associated to A¢) and

a1 (01) D o™ (Ker((1).)[2]%) = Ker((f1)« 0 a)[2]* = Ker((f2).)[2]*,

so 03 = a~1(f;) because 6 is uniquely characterized by this property. Thus ¢ =
((j2)toaloj; € Autg(C) satisfies joop = a1 o1, and so by the above identity we
have Ao fi = (fi)«0j1 = (f2)s 0t oj1 = (fa)s0jao@ = Ago faop, or fi = faop
with ¢ € Autg (C), i.e. f1 =~ fo.

Next assume that N is even. Then by Proposition 2.4 (b) there exists a finite
Galois extension K’/ K such that over K’ we have embeddings j; : C' = CQK' — J' =
Jor such that Ag o f; = (f;)« 0j; and such that 8; = j;(C) are theta divisors associated
to A¢ (defined over K’). Then by Corollary 2.5(b) we have 8;NKer((f;).)[2] = 0, and so
also a=1(01)NKer((f2)«)[2] = a1 (01)NKer((f1)«0a)[2] = a1 (01NKer((f1)«)[2]) = 0.
Thus, by the uniqueness property of 05 it follows that 6 = T,,(a~1(6;)) for some z €
Ker((f2)+)[2], and so ¢ := (ja) " toT,oa"toj; € Auty/ (C’) satisfies joop = Toa ™ toj.
Now since z € Ker((f2)s), we have (f2)« o Ty = (f2)«, and so (f2)s o a™toj; =
(f2)s0joow=Ago faoop. Thus Ago fi = (fi)«0j1 = (fa)soa toji=Agofrop,
which means that f; = fs 0 ¢, with ¢ € Autg/ (C").

To conclude that f; >~ f5, we still have to show that ¢ is defined over K. This
is automatic if the Weierstrass points are defined over K, for then we can choose
K’ = K. Thus, assume that this is not the case but that N > 2. Let g € Gal(K'/K),
and consider the Galois twist ¢? € Autg/(C’) of . Since the f;’s are defined over K
we have f; = fo 09, and so, if ¢’ = @9 0!, then we have foo¢' = fiop™t = f.
Now since N > 3, we have by Proposition 2.1 that ¢’ = idcr, and so @9 = ¢, for all
g € Gal(K'/K), which means that ¢ € Autg(C). Thus f; ~ f5, as desired, and so p
is injective. [

Remark. It is easy to see that the sets of Theorem 2.6 are finite; in fact, the cardinality
of Covg (C, E, N) can bounded by the number of (primitive) representations of N2 by a
suitable positive definite quadratic form associated to C' (multiplied by 1/2#Aut(E));
cf. [15], Theorem 4.5.

As was mentioned in [8] or [22], each minimal genus 2 cover f : C' — E induces a
splitting of the Jacobian Jo up to isogeny, i.e. Jo ~ E x E’, and the complementary
elliptic curve E' = E} can be chosen in a canonical way by using the (canonical)
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principal polarization Ao : Jo — Jo of C. This curve E} plays an important role in
the “basic construction” of [8], which will be reviewed (and extended) in Section 5.

Proposition 2.7

If f: C — FE is a minimal genus 2 cover of degree N, then E' := Ker(f,) is an
elliptic curve such that

(9) E'Nf"Jeg = f*Je[N] = E'[N].

Thus, if 7 : Jg x E' — J¢o denotes the unique map such that toiy, = f* and moig =
—h', where iy, : Jg — Jg X E', igp : E' — Jg x E', and b’ : E' = Ker(f,) — Jo
denote the canonical inclusions, then Ker(mw) = f*Jg N E’ and hence 7 is an isogeny
of degree N?; in particular, Jo ~ Jg x E' ~ E x E'".

Proof. Since f, = )\El o(f*)oA¢ is the “dual” of f* and since f* is a closed immersion,
it follows that f, is surjective and has (geometrically) connected fibres of dimension
(dim Jo — dim Jg) = 1 (cf. Section 7 below). Thus, E’ is an elliptic curve.

Moreover, since f* is an injection and since E’ = Ker(f.), we have

E'0f*Jp = f*Ker(fio f) = [*([N]sz) = f*(JB[N]).

Thus, E' N f*Jg is a finite group (scheme) of order N? and of exponent N, and so
E'N f*Jg < E'[N]. But E'[N] also has order N2, and so E’ N f*Jg = E'[N], which
proves the first statement. The second statement follows immediately from the first. [J

Corollary 2.8

The above embedding h' : E' — Jg, has degree N, and hence there exists a
“complementary” minimal K -cover f': C' — E’ of degree N such that (f')* = h'o)\g}.

Proof. By Theorem 2.6 there is a normalized K-cover f' : C — E’ of degree N’ =
deg,, (h') such that (f')* = K o A/, and then (f'). = Ag o (h')*, where (h')* =
Agro (W) odg:Jo — E'.

Recall that the sequence

0—E " Jo 550,50

is exact by the definition of A’. Thus, dualizing this sequence and applying A\c, Mg/
and Ay, (= \3") yields the sequence

(h")"

0-Jg g " B o

which is again exact (cf. [23], p. 216); here we have used the identification f* =
Ao o (f«) 0 Ay This means in particular that Ker(f!) = Ker((h')*) = f*Jg, and
thus, if we now apply Proposition 2.7 to f’, then we obtain

B0 f*Jp = (f')"Je N Ker(f]) = E[deg(f).
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On the other hand, since f*Jg N E’ = E'[N] by (9), we conclude that N = deg(f’) =
degy . (h'), as desired. OJ

3. Families of genus 2 covers and the Hurwitz functor Hg, g

We now want to study families of genus 2 covers of an elliptic curve over an arbitrary
base scheme S, i.e. covers f : C — E where E/S is a (relative) elliptic curve and
C/S is a relative curve of genus 2. For the basic definitions and properties of covers
of relative curves we refer the reader to the appendix (cf. Section 7).

We first observe that every genus 2 curve C/S is hyperelliptic in the sense of
Lgnsted /Kleiman [24], p. 101:

Lemma 3.1

If p: C — S is a relative curve of genus 2, then there exists a unique S-

automorphism oc/g € Autg(C) which induces the hyperelliptic involution on each
fibre Cy of p.

Proof. If w = wc/g denotes the relative canonical sheaf of C'/S, then p.(wc/s) is
locally free of rank g = 2, and the canonical S-morphism ¢, : C — P(wc/g) is
surjective (because this is true fibre-by-fibre), and so condition (i) of Theorem 5.5 of
[24] holds, which means that C'/S is hyperelliptic. O

As in Section 2, let E/K be an elliptic curve over a field K with char(K) # 2
(or, more generally, over any ring (or any scheme) K in which 2 is invertible). For any
K-scheme S let Eg := E xi S be the elliptic curve over S obtained from E/K by
base-change.

DEFINITION. A genus 2 cover f : C' — Eg of Eg/S of degree N is called normalized if
it is minimal (cf. §7) and if the direct image f.W¢, g of the hyperelliptic divisor W¢ /g
(cf. [24]) has the form

(10) Fe(Weys) = 3e[0p,/s] + (e + 1) Eg[2]#

where (as before) ¢ = 0 if N is even and € = 1 if N is odd, and [0g,,g] denotes the
Cartier divisor associated the zero-section O, /s and Eg[2]# := Eg[2] — [05/s] (viewed
as effective relative Cartier divisors on Eg).

The basic properties of normalized genus 2 covers of Eg/S are summarized in the
following theorem.

Theorem 3.2

(a) If f : C — Eg is a normalized genus 2 cover of degree N, then so is any base-change
f(T) :CT:CXsT%ET:ES XsT.

(b) If C/S is flat and locally of finite presentation, and if S is reduced, then an S-
morphism f : C — FEg is a normalized genus 2 cover of degree N if and only if
fs: Cs — Es = E ® k(s) Is a normalized genus 2 cover of degree N, for all s € S.
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(c) If f : C — Eg is a normalized genus 2 cover then we have
(11) fooc/s = [—1]gs o f.

Conversely, if f : C — Eg is a minimal cover satisfying (11) and if for at least one
s € S the induced map fs : Cy — E; is normalized, then f is normalized.

(d) Let f : C — Eg be a normalized genus 2 cover of degree N. If N is odd, or
if N is even and C/S has 6 distinct Weierstrass sections, then there is a closed
S-immersion j : C — J = Jo/g of C into its Jacobian (cf. §7) such that

(12) jooc=[-1]y0j, Apof=fioj, and 0;(5)Nj(C)=0.

In particular, there is always a suitable etale faithfully flat base change S’/S such
that there exists an immersion j : C(g) — J(g) satisfying (12).

(e) In the situation of (d), the image § = j(C) C J is a symmetric theta-divisor on
J. If N is odd, then 6 is the unique symmetric theta-divisor satisfying

(13) 6 N Ker(£.)[2] = Ker(f.)[2]* := Ker(£.)[2] \ [0].
If N is even, then 0 is a symmetric theta divisor satisfying
(14) 6 NKer(f.)[2] = 0.

Moreover, if ¢ is any symmetric theta-divisor on J satisfying (14), then 6’ = T, (6),
for some x € Ker(f,)[2](5").

(f) Let C/S be a curve of genus 2. If f : C — Eg is a minimal cover of degree N,
then f* : Jgps/s — Joys is an injective homomorphism of degree N, i.e. we have
)\E;/So (f*)oAcysof* =[Nljy,, s Conversely, if h: Jpg — Joys is an injective
homomorphism of degree N, then there exists a normalized cover f : C — Eg of
degree N such that f* = h.

(g) If f: C — Eg is a minimal genus 2 cover, then there is a unique z € Eg(S) such

that T, o f is a normalized cover.

Proof. (a) First note that f(p) is minimal because f is (cf. §7). Moreover, since the
formation of W¢,g commutes with base-change (cf. [24], Proposition 6.3), and since
the same is true for the direct image of relative Cartier divisors by Lemma 7.3 of the
appendix, we see that the analogue of (10) also holds for f(ry, and so f(r) is also
normalized.

(b) If f is a normalized genus 2 cover, then so is f,, Vs € S, by part (a). Conversely,
if fs: Cs — Es is a genus 2 cover of degree N for all s € S, then C'/S is a smooth curve
of genus 2 (use [1], 2.4/8), and so f is a genus 2 cover of degree N which is minimal
(cf. §2.2). Moreover, since by hypothesis (and base-change) we have

(fWeys)s = (f)We, sn(s) = 3€[0B, jn(s)] + (e + 1) Es[2]7
= (3¢[0ps/s] + (e + 1) Es[2]7)s,

for all s € S, we can conclude from (50) that (10) holds, and so f is normalized.
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(c) Since it is enough to prove (11) after a faithfully flat base-change, we may
assume that there exists a Weierstrass section w of C'//S. Then P := f(w) € Eg[2](5)
because [P] = f.[w] < fulWe/s < 3E5[2].

Write fi = foocys and fo = [~1]gg o f. Then f; : C' — Eg are two S-morphisms
which by Proposition 2.2 satisfy (f1)s = (f2)s, Vs € S, and so by rigidity we there is a
section 1 € Es(S) such that f1 = (nopc) + fo; cf. [30], p. 116. But since o¢,g (resp.
[—1]) fixes w (resp. P), we have fi(w) = P = fa(w) and so n = 0., which means that
f1 = fo, as desired.

We now prove the converse. Again, it is enough to prove this after a faithfully flat
base change (because distinct relative Cartier divisors stay distinct after a faithfully
flat base change). Thus, we may assume that

(f)  C/S has six Weierstrass sections and Jo,g/S has sixteen 2-torsion sections.

Then Eg/S has four 2-torsion sections Py = 0, P;, P», P5 (because () implies that f,
maps Jo,5[2](S) surjectively to Jgg,5[2](S) as f« is surjective with integral fibres).
Thus, if wq, ..., ws denote the Weierstrass sections, then we have by (11) that f(w;) €
Es[2](S) and so fuWe s = 3 fulw;] = Z?:o n;[P;]. Specializing this equation at the
given s € S yields (fs):We, = (filWe)s)s = > nil(F;)s]. But since the 2-torsion
sections of Eg/S are mapped injectively to those of F,/k(s), it follows that (Pp)s =
0,(P1)s,--.,(Ps3)s are precisely the 2-torsion points of E,. Thus, since f is normalized
we obtain ng = 3¢ and n; = (¢ + 1), for i > 0, and so f is also normalized.

(d) Suppose first that N is odd, and put Wy := f*([0gs]) xc Weys. We claim
that Wy is an effective relative Cartier divisor on C/S of degree 3. For this we shall
use Lemma 7.4 of the appendix. Since the formation of Wy commutes with base-
change, we see by Proposition 2.4(a) that deg((Wp)s) = 3 for all s € S. Choose a
finite faithfully flat base-change S’/.S such that we have 6 distinct Weierstrass sections
w; € Wey,s. By the proof of (c) we know that P; = f(w;) € Es[2](S') and so by
specializing to any fibre we see that (after renumbering) Og,, P1, P2, P3 are distinct
and that P, = Ps = FPs = Og,. Thus, w4, ws,ws are 3 sections of Wy, and so by
Lemma 7.4 we conclude that W) is a relative Cartier divisor of C'/S.

Thus, Wi = We g — Wy is a also relative Cartier divisor of degree 3 and we have
f« W} = Es[2]# (since this is obviously true after a suitable faithfully flat base change).
Put £ := Oc(W}) ® wa} g € Pic(C'). Then L has relative degree 1, and therefore gives
rise to a closed embedding j, : C' — J (cf. §7). By Proposition 2.4, properties (12)
hold fibre-by-fibre, and so by the same argument as in (c¢) we conclude that (12) holds
over S.

If N is even, and we have 6 Weierstrass sections of C'/S, then we choose 3 of these
to obtain a relative Cartier divisor W{ with the property that (f.W()s = E,[2]#, for
one fixed s € S. It then follows that f.W/) = Eg[2]# because both sides are sums
of 2-torsion sections, and the 2-torsion sections of Eg/S are mapped bijectively to
those of the fibre Ey/k(s). Then the invertible sheaf £L = O (W) ® wa} g defines an
embedding j = jz : C — J which (by the same argument as in the case that N is odd)
satisfies (12).

The last assertion clearly follows from the first because we can always choose a
suitable (étale) faithfully flat base-change so as to obtain 6 distinct Weierstrass sections
(since We g is etale).



16 KANI

(e) Since j = j. is the embedding defined by an invertible sheaf £ € Pic(C)
of relative degree 1 = g — 1, it is clear that § = j(C) is a theta-divisor (cf. §7).
Furthermore, [-1]0 = j(oc(C')) = 0 by the first equation of (12), and so € is symmetric.

Next we show that if N is odd, then 6 satisfies (13). For this we first note that
Ker(f)[2] is a finite etale group scheme of rank 4 (because Ker(f,)/S is an elliptic
curve by (42); cf. also Proposition 5.2 below). Furthermore, since it is enough to verify
(13) after a faithfully flat base-change, we may assume without loss of generality that
We,s has six Weierstrass sections wy, ..., ws. Then by the discussion of (d) we see
that Ker(f.)[2](S) = {0, j(wa4),j(ws),j(we)} and so (13) follows.

To see that 6 is uniquely characterized by this property, we argue as follows. If
0" is another symmetric theta-divisor, then by Lemma 7.1 of the appendix we know
that 6’ = T,(0), for some = € Jo/g(S). Moreover, x € Jey/g[2](S) since 6 and ¢ are
both symmetric. By specializing to a fibre J,; we conclude by the uniqueness assertion
of Corollary 2.5 that 0] = T, (0s) and that hence x(s) = 0 = 0(s). But then z =0
since Joy s[2] is a finite etale group scheme, and so #’ = 0. This proves the assertion
in case that N is odd, and the case that N is even is proved similarly.

(f) Since the first assertion is just a restatement of (46), we only need to prove
the second statement.

Suppose first that C'/S satisfies (1), and let w be a Weierstrass section. Then the
image 6 = j,,(C) of the embedding j,, : C — J¢/g is a symmetric theta-divisor of ¢/,
and so there is a unique automorphism o € Autg(C) such that j, oo = [—1] 0 j,.
Clearly, o fixes the 6 Weierstrass sections and hence ¢ = o¢ is the hyperelliptic
involution. Put f’ = h* o j,, where h* = = ho Ac/s JC/S — JES/S = Fg. Then
flooc = (h*)o[-1]y0jw = [-1]gs © (R*) 0 juw = [-1]Eg © [, so f' satisfies (11).
Furthermore, (f')* = j% o (h*) = _)‘(j‘}s o(Agys oh) = —h,so f'is minimal.

We now claim that there exists an = € Eg[2](S) such that f = T,0f’ is normalized.
To see this, fixan s € §. Then by Theorem 2.6 there is a normalized cover fs : Cs — E;
such that (fs)* = —hs, and so by the Albanese property (cf. §7) there exists x5 € E4(k)
(where k = k(s)) such that f. =T, o fs. Since fs and f! both satisfy (11), it follows
that x5 € F¢[2](k). Since () implies that E5[2](S) — E[2](k) is surjective, there exists
an x € FEg[2](S) such that f := T, o f’ specializes at s to the given fs. Then f also
satisfies (11), and so f is normalized by part (c) above. In addition, f* = (f')* = —h.
Thus, replacing f by f o o¢ yields the desired f (since o* = [—1];).

We now remove the hypothesis that C/S satisfies () and hence consider an ar-
bitrary genus 2 curve C'/S. Then there exists a finite, faithfully flat base change
B : 8" — S such that C(g)/S" satisfies (1) and so, by what was just shown, there exists
a normalized morphism [ : C(s/y — E(g) such that (f')* = hg).

It is clearly enough to show that f’ = f(g/) for some morphism f : C' — Eg, for
then f is automatically normalized (since f’ is) and satisfies f* = h (because we have
f(*S,) = h(gs)). Furthermore, the existence of f will follow by faithfully-flat descent (cf.
[1], Theorem 6.1/6(a)) once we have shown that pjf’" = p5f’, where p, = pr; : 8" :=
S'xg 8" — 8',i=1,2, denote the two projections and p; f' : C(giy — E(gy denotes
the base-change of f via p;.

Since f’ is normalized, we have by part (d) (or by construction) that there exists
L € Pic(Cgy) such that the embedding j = jz : C(g) — JC s /57 satisfies [—1] o j =
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jooc g, and f'= hz‘s,)oj. Here, as above, h* = iLO)\C/S and so hZ‘S,) = )\E;,/S,o(f/)*.
Put Ez = p;‘ﬁ S PiC(C(Sn)). Since AO(L;,) = (AC/S)(S”) and )\0/5 is a principal
polarization, it follows that x := cl(£; ® £5') € PicOC/S(S”) = Jeoys(8"), and so
pij =Jjc, = Tw 0 jr, = Tp 0 p3j. In addition we note that x € Jo/g[2](S”) because
[—1]opfj =pljo OC sy for ¢ = 1,2. Now since h* is defined over S, pjh* = hz‘s//)
does not depend on i and so we obtain

Pif" = higm opij = hign o Tyopsj =T ohigm opsj=Twopsf

with @' = hig. (z) € Es[2](5").

To prove that py f’ = p5f’, it is thus enough to show that =’ = 0 or, equivalently,
that € Ker(h*)(S"). For this, consider 0; := p;j(C(sr)), for i = 1,2; note that
01 = T,(02). Since p!f’ is normalized, we have by part (e) that 6; is a symmetric
theta-divisor of A, /s~ which satisfies 6; N Ker(h{g.,))[2] = Ker(hz‘s,,))[Q]# (resp.,
0;NKer(h{g.)[2] = 0) if N is odd (resp. if IV is even) because Ker(p; (f').) = Ker(h*).
Thus, by the uniqueness assertion of part (e) we obtain 6; = 05 (resp. 61 = 1,0, with
y € Ker(h*)[2](S”)) and so z = 0 (resp. x = y € Ker(h*)[2](S”)). (Recall that if
O(01) ~ T7(O(01)), then z = 0 because Ac/g is a principal polarization.) Thus, in
both cases x € Ker(h*)(S”) and so pif’ = p5(f'), as desired.

(g) First note that such an x € Eg(S) is uniquely determined by f, for if f' :=
T, ofand T,, o f=T,, ., of are both normalized, then we must have

Ty, (3¢l085] + (e + 1) E[2]%) = 3¢[0,] + (¢ + 1) E[2]7,

which is impossible unless x93 — 1 = 0 or, equivalently, 1 = x5.

To prove the existence of such an x, we first apply part (f) to obtain a normalized
cover f': C — Eg such that (f')* = f* and hence also f, = f. by duality (cf. (47)).
Then by Lemma 7.2 there exists a unique = € Eg(.S) such that f' = T, o f, as desired. O

For later use let us also observe that the analogue of Proposition 2.1 carries over
to genus 2 families and thus has the following important consequence.

Proposition 3.3

(a) If f: C — Eg is a minimal genus 2 cover of degree N > 3 and o € Autg(C) is an
automorphism such that f oa = f, then a = idc.

(b) Let f; : C; — Eg, i = 1,2 be two normalized genus 2 covers of Eg/S of degree
N >3, and let p: S” — S be a faithfully flat, quasi-compact cover of S. If there
exists an S'-isomorphism o' : (C1) sy — (C2)(sry such that (f2)sn o/ = (f1)(s),
then there is a unique S-isomorphism o : C; = Cs such that a(gy = ', and we
have fyoa = fi.
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Proof. (a) First note that it follows from Proposition 2.1 (and Theorem 3.2(a)) that
as = idc,, for all s € §. Thus, if S is reduced, then so is C' and thus it follows
that o = idc because C'/S is separated. (Indeed, let v : Ker(a,3) — X be the
subscheme of coincidences of o and # = idc. Then Ker(c, 3) is a closed subscheme
of X by [11], (I, 5.2.5). Furthermore, v is surjective (since this is true fibre-by-fibre),
hence schematically dominant since C' is reduced (use [11], (I, 5.4.3)). Thus, v is an
epimorphism (by [11], (I, 5.4.6)), and so, since a oy = 3 o~y by definition, it follows
that o = f3.)

Now suppose that S is an arbitrary scheme; without loss of generality, however, we
may assume that S is locally noetherian. Then the map S,.q — S is defined by a locally
nilpotent ideal of Og (cf. [11], (I, 4.5.8)). Now since the scheme of automorphisms
Autg(C) is finite and unramified (this is a special case of [2], Theorem (1.11)), it
follows that the induced map Auts(C) — Autg, ,(Creq) is injective (cf. [11], (IV,
17.1.2)(iv)). Thus, a = idc, as desired.

(b) It is clearly enough to construct a such that a gy = o/, for then the second
property follows since p is faithfully flat. Furthermore, the existence of a will follow by
faithfully-flat descent (cf. [1], Theorem 6.1/6(a)) once we have shown that pja’ = p5a/,
where p; = pr; : S” ;= S5" x5 5" — 5’ denote the two projections.

Now since pi(fi)(s:y = p3(fi)sy = (fi)sry, for i = 1,2, we have (f2)(s) o
pja’ = pi((f2)sy o o) = pj((fi)s)) = (fi)sny, for j = 1,2. Thus, if we put
B = (pio/) ! opsa’ € Autgr((Ch)(sy), then we obtain (f1)(sv) o B = (f1)(sr). Now
since (f1)(s7) : (C1)(s7) — E(sry is a normalized genus 2 cover by Theorem 3.2(a), we
have by part (a) that 8 = id(c,),, , and so pja’ = p3a’, as desired. [J

Notation. Let us now put, for any K-scheme S,
Hg}K N(8) = {C’ 4, Es : f is a genus 2 cover of degree N}/:,

where two covers f; : C; — FEg are called isomorphic (notation: f; ~ fs) if there
is an isomorphism ¢ : C; — Cj such that f; = fo o . Note that if 3 : S" — S is
a K-morphism, then the rule f — f(g) induces a map Hg/x n(8) : Hp/k n(S) —
HEe/k,n(S"), and so we obtain a contravariant functor

HS}K,N :M/K — Sets,

called the Hurwitz functor of genus 2 covers of E/K of degree N.
This functor has several natural subfunctors. For example, if we let

M (S) = M7 (S) © Ml v (S) € HE) e (S)

denote the subsets of Hg/) KN

covers which are normalized, respectively which are minimal, then Theorem 3.2(a) and

(S) consisting of those (equivalence classes of) genus 2

its proof show that these define subfunctors

He/x,n = HE)K.n : Sch) — Sets  and E”}'}‘{,N:M/KHS@S
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of the (full) Hurwitz functor Hg} k. n- Similarly, if H is a finite flat K-subgroup scheme

of E of order #H|N, and we let HS}K ~ gz (S) denote the set of (equivalence classes
of) genus 2 covers f : C — Eg with Ker(f) = Ag(H)g, then we obtain a subfunctor

Hg)KN’H of HS}K,N. Note that by definition we have that H2) = Hmin

E/K,No0 ~ '"'E/K,N"

It turns out that the functor Hg, k n of normalized genus 2 covers is the main
“building block” of all these Hurwitz functors, for all the others can be expressed in
terms of it.

Proposition 3.4

(a) Let H be a finite flat K-subgroup schemes of E of order # H|N with #H # N, and
let g« E— Eg := E/H denote the quotient map and 7y := )\}_31 0T} 0 AEy
Ey — E its (modified) dual map. Then the assignment (z, f) — T, o wy o f
defines an isomorphism of functors

v kNH Nk X HE, /K N/#H — Hg}K,N,H;

in particular, H’g}"}(w ~hp/x X Hg/k,N-
(b) If E[N]/K is a constant group scheme and S is connected, then

(2) 0 (2)
HE/K,N(S) - UHES*(E/K,N)HE/K’N’H(S)7

where S*(E /K, N) denotes the set of K-subgroup schemes H of E of order #H|N
with #H # N.

Proof. (a) If S is a K-scheme, z € E(S) and f : C — (Ey)s is a normalized cover of
degree N/#H, then fp ., := T, o (ny)(s)o f:C — Eg is a genus 2 cover of degree N
and we have Ker((fr,2)*) = Ker(f* o (7}){s)) = Ker(muAgy) = Aps (Hs) = Ap(H)s.
Since this assignment is clearly compatible with the equivalence relations of covers, we
obtain a map

(ve/rnm)s t E(S) X Hpy ke N/ga(S) — H(E2}K,N,H(S)'

To see that this is an injection, suppose z,z’ € E(S) and f : C — (Fgy)s and f’ :
C’" — (En)s are two normalized covers such that fy , ~ (f') g, ie. fl’LLw, 0= fH.uz,
for some ¢ : C = C’. Then (f' o @)* o ()" = f* o (7h)* and so (f' o p)* = f*
because (7;)* is an epimorphism (being an isogeny). Thus, by Lemma 7.2 we know
that f' o =T, 0 f, for some y € E(S). But since f oy and f’ are both normalized,
we have by Theorem 3.2(g) that y = 0, i.e. that f ~ f’. Moreover, we then have
that T, o (7 )(sy 0 f = Tor o (7 ) sy o f/ o = Ty o (mhy) sy o f, and so T = Ty
because (%) (s) © f is an epimorphism (being faithfully flat). Thus also z = 2/, and
so (Vg/Kk,N,H)s 1s injective.

We next show that (vg,x v m)s is surjective. For this, let f : C'— Eg be a genus
2 cover with Ker(f*) = Ag(H)s = Ker((7%)(s)). Then f* is Ker((7})(s))-invariant,
and so f* = ho (r})s), for some (injective) homomorphism h : Jigy) s — Jo of
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degree N/#H. By Theorem 3.2(f) there exists a normalized cover f': C' — Ep such
that (f')* = h. But then ((7%)(s)o f')* = ho(n}) sy = [*, and so f = Tyo(7y)(syo f’,
for some x € Eg(S) by Lemma 7.2, and so (Vg n,m)s is surjective.

Since the bijections (vg /EK,N, 1 )s are clearly compatible with base change, it fol-
lows that they yield the desired isomorphism of functors.

(b) It is immediate that the union of the right hand side is disjoint and is contained
in Hg} K. ~ (). To prove the opposite inclusion, let f : C' — Eg be an arbitrary genus
2 cover of degree N and put H = Ker(f*). Then #H|N (and #H # N), hence
H < Jp |N] ~ Eg[N]. Since E[N] is a constant group scheme (and S is connected),
every S-subgroup scheme of Eg[N] is of the form Hg, for a (constant) K-subgroup
scheme H < FE, and so cl(f : C — Eg) € Hg}K7N7H(S) with H € S*(E/K,N), as
desired. [

Remark. In the above Proposition 3.4(b) we can replace the hypothesis that E[N] be
constant by the weaker assumption that E[M] be constant for every M|N, M # N
(as the above proof shows). In particular, we see that if N is a prime then Hg} KN =

min

E/K,N*

4. The modular curves Xg/x n and Xg g v

For a given elliptic curve E/K, let
XE/K,N M/K — Sets

denote the functor which “classifies E[N]-structures of elliptic curves”. Thus, if S is any
K-scheme, then Xg, i n(S) = {(E',1)}/ ~ is the set of isomorphism classes of pairs
(E’,1) consisting of an elliptic curve E’/S and an S-isomorphism 1 : Es[N] = E'[N]
of the S-group schemes of N-torsion points of Es and E’; here two such pairs are
equivalent, i.e. (E},11) ~ (E%5,3), if there is an S-isomorphism ¢ : Ef = E} such
that 13 = ¢ o1y. Furthermore, if 8 : S’ — S is any K-morphism, then the map
Xe/ kN (B) : Xp/k.N(S) = Xg/k,n(S) is given by base-change, i.e. by the assignment
(B, ) = (Eg,s)-

Theorem 4.1

If N > 3 is invertible in K, then the functor X,k n is representable by a smooth
affine curve Xg, i n/K which is a twist of the usual (affine) modular curve X}, /K
which classifies elliptic curves with level-N-structures. More precisely, if K'/K is
any extension field such that the N-torsion points of E are K-rational over K’, then
Xp/kn @K ~ Xy oK'
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Proof. This is analogous to Corollary 4.7.2 of [19] and is proved by exactly the same
techniques. To explain this more precisely, fix a finite étale group scheme G /K of rank
N? and consider the moduli problem Pg sk “which classifies G-structures of elliptic
curves”. By this we mean the contravariant functor

Pak :E_ll/K — Sets

from the category Ell,x of elliptic curves E'/S over variable K-schemes S (cf. [19],
(4.1), (4.13)) defined by Pg/x(E/S) = Isoms_g,(Gs, E'[N]), the set of all S-group
isomorphisms « : Gg = G xS = E'[N]. (Each such « will be called a G-structure
of E'/S.)

Note that in the case that G = Gy := Z/NZ x Z/NZ is the constant group
scheme of rank N2, a G-structure is the same as a (naive) level-N-structure (or T'(NV)-
structure) in the sense of [19], (3.1). Furthermore, since the above functor Xg,k n
depends only on the K-group scheme E[N] (which has rank N2), we see that this
functor is closely related to the functor Pg(n)/x; in fact, we have

Xp/k,N = 75E[N]/K 1 Sch i — Sets,

where P is the functor on Sch i associated to P in the sense of [19], p. 108 and p.
125; i.e. P classifies isomorphism classes of elliptic curves with P-structures.

Now the same argument as that of [19], Corollary 4.7.2 shows that Pg is repre-
sentable by a smooth affine curve. Indeed, P,k is relatively representable and finite
étale (since for a given E’/S, the functor (of S-schemes) T' — Isomp_g,(Gr, Ef[N])
is represented by a finite étale S-scheme; cf. [19], 1.6.7). Moreover, Pg/ is rigid for
N > 3 (cf. [19], Corollary 2.7.2), and so Pg/k is representable by [19], (4.7.0); in
particular, Pg/k is representable by [19], A.4.2 (p. 126).

Applying this to the case that G = E[N] shows that Xg /g n = 75E[N]/K is
representable by a K-scheme Xp/x n. Furthermore, if K'/K is as given, then
Ey[N] ~ (Gn)/k', and so Pg,,(N] =~ P(GN)/K//K/’ which implies that Xp/x y @K' =
Xpg,.,/k',n = (Xn)/ k. Since the latter is a smooth affine curve over K’ (cf. [19],
Corollary 4.7.2), it follows (by faithfully flat descent) that X,k n is a smooth affine
curve over K. [

Remark. 1f N < 2, then the functor Xr, k n is no longer representable by a scheme.
Indeed, in this case the above moduli problem Py, is not rigid because [—1] acts tri-
vially, and so it follows from [19], (A.4.2), that the moduli functor Xz, x v = Prn]/K
is not representable (because Peny i s still relatively representable). However, the
discussion of [19], §8.1 show that X'p,n n is always coarsely representable by a normal
affine curve X,k n-

It is well-known that the curves X /K and hence Xpg/, i n are not geometrically
connected; indeed, each is a sum of ¢(NN) irreducible components over K. Now for the
curves X/ g v, this decomposition already takes place over K (even though (Xy),/x
may still be irreducible as a K-scheme). The reason for this is that it is possible to
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define a determinant of an isomorphism 1 : Eg[N] — E’[N], as the following lemma
shows.

Lemma 4.2

Let E/S and E'/S be elliptic curves over a scheme S, and suppose v : E[N] =
E'[N] is an S-isomorphism, where N is invertible in S. Then there is a unique auto-
morphism det(y) € Autg(un) ~ ((Z/NZ)*),s such that

(15) ey o (1 x ) = det(¥) oey,

where ey : E[N| x E[N] — un and €'y : E'[N] x E'[N] — un denote the ey-pairings
of E and E'.

Proof. Viewing E[N] as a (locally constant) étale sheaf of Z/NZ-modules on S, let
A4 E[N] be its second exterior power with respect to A = Z/NZ (which is formed
analogous to the tensor product of étale sheaves; cf. [25], p. 79); thus, A4 E[N] is a
(locally constant) étale sheaf of A-modules. Since ey is an alternating pairing (cf. [19],
p. 90, 505), we have an induced A-homomorphism of étale sheaves ey : A2E[N] — uy
because for any étale sheaves M,N of A-modules we have the canonical isomorphism
(analogous to [25], Proposition 11.3.19)

Hom 4 (A4 M, N) ~ Alt4(M?, N).

Now since ey is non-degenerate (cf. [19], p. 90) it follows that €y is an isomorphism,
and hence det (1)) := @y o A%()) o €5 is the unique automorphism of py such that
(15) holds. O

By the above lemma we thus see that for any ¢ € (Z/NZ)*, the rule

Xp/k,n,e(S) = {(E' ¢) € Xp/k N (S) : det(yh) = [e]uy }

defines an open and closed subfunctor Xg,k n . of Xr i n which is therefore repre-
sented by an open and closed K-subscheme Xp/ i n. of Xg kN, and we have the
decomposition

XE/K,N = H XE/K,N,e-
e€(Z/NZ)*

In fact, each Xp, g n . is geometrically irreducible, as we shall now show:

Corollary 4.3

If N > 3 is invertible in K, then for each ¢ € (Z/NZ)*, the functor Xg/k n, is
representable by a smooth, affine, geometrically irreducible curve Xg,k n,./K which
is a twist of the usual (affine) modular curve X'(N)/K ({n) of level N which classifies
elliptic curves with level-N-structures (of fixed determinant (y). More precisely, if

K'/K is any extension field such that the N-torsion points of E are rational over K’,
then XE/K,N,&‘ & K/ ~ X/(N)/K/
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Proof. By Igusa and/or Deligne/Rapoport [2], Corollary IV.5