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Abstract

Let E be an elliptic curve over a field K of characteristic �= 2 and let N > 1 be
an integer prime to char(K). The purpose of this paper is to construct the (two-
dimensional) Hurwitz moduli space H(E/K,N, 2) which “classifies” genus 2
covers of E of degree N and to show that it is closely related to the modular curve
X(N) which parametrizes elliptic curves with level-N -structure.

More precisely, we introduce the notion of a normalized genus 2 cover of
E/K and show that the corresponding moduli space HE/K,N is an open subset
of (a twist of) X(N), and that the connected components of the Hurwitz space
H(E/K,N, 2) are of the formE×HE′/K,M for suitable elliptic curvesE′ ∼
E and divisors M |N .
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1. Introduction

In his fundamental paper of 1891, Hurwitz [14] introduced the notion of a “Hurwitz
space” as a method of classifying all finite covers f : Y → X of given degree and
ramification type over a fixed curve X/C, and showed, among many other things, that
these moduli spaces are connected complex manifolds in the case that X = P

1 (and
the covers have simple ramification type). In 1969 Fulton [10] extended these results to
families of (simple) covers of curves over P

1
S (where S is an arbitrary base scheme) by

showing that a suitably defined Hurwitz functor is representable by a scheme HN,w/Z.
The main aim of this paper is to study the Hurwitz space H(E/K,N, 2) which

classifies all genus 2 covers of fixed degree N = deg(f) of an elliptic curve X = E

over a field K. However, since this (two-dimensional) Hurwitz space is somewhat
complicated, we first simplify the problem by introducing in Section 2 the notion of a
normalized genus 2 cover, and then classify these instead (cf. Theorem 1.1). Since the
study of arbitrary genus 2 covers can be reduced to that of normalized covers, one can
then deduce easily the structure of the full Hurwitz space H(E/K,N, 2) from this; cf.
Corollary 1.3 below.

We now explain the main results of this paper in more detail. First of all, we shall
show in Section 3 how to extend the notion of a normalized genus 2 cover to families
of covers over ES = E×K S, where S is an arbitrary scheme, so as to obtain a functor

HE/K,N = Hnorm
E/K,N : SchK → Sets

which “classifies” such covers. We then prove in Subsection 5.3:

Theorem 1.1

Suppose that char(K) |/ 2N . If N ≥ 3 (respectively, if N = 2), then the functor

HE/K,N is finely (respectively, coarsely) represented by a smooth, affine and geometri-

cally connected curve HE/K,N/K which is an open subset of a certain twist XE/K,N,−1

of the modular curve X(N) of level N ; in particular, HE,N ⊗K is isomorphic to an

open subset of X(N)/K , where K denotes the algebraic closure of K.

Remarks. 1) As the proof shows, exactly the same assertion holds for elliptic curves
E/K over an arbitrary ring (or scheme) K; cf. Theorem 5.18.

2) The “twisted modular curve” XE/K,N,−1/K is defined and constructed in Sec-
tion 4 as the moduli space of the functor XE/K,N,−1 which assigns to any extension
field L/K the set XE/K,N,−1(L) of isomorphism classes of pairs (E′, ψ) where E′/L is
an elliptic curve and ψ : E[N ] ∼→ E′[N ] is an L-rational anti-isometry of the N -torsion
subgroups of E and E′.

3) The above representability results are obtained by purely algebraic techniques
and hence do not use the Riemann Existence Theorem.

From the above theorem one can easily deduce the structure of the full Hurwitz
space. Before stating the result, it useful to observe that if we restrict to minimal
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covers (i.e. those that do not factor over an isogeny of E; cf. §2 and §7), then we have
(assuming again that char(K) |/ 2N):

Corollary 1.2

IfN ≥ 3 (respectively, ifN = 2), then the functor Hmin
E/K,N which classifies minimal

genus 2 covers of E/K of degree N is finely (respectively, coarsely) represented by the

smooth, geometrically connected K-surface E ×HE/K,N .

If N is prime, then every cover of degree N is automatically minimal, so the
above corollary describes the full Hurwitz space in this case. If N is composite, then
the Hurwitz space breaks up into components which are all of the above type (except
that E and N vary):

Corollary 1.3

If N is odd (respectively, if N is even), then the functor H(2)
E/K,N which classifies

all genus 2 covers of degree N is finely (respectively, coarsely) represented by a smooth,

quasi-projective K-surface H(E/K,N, 2). Moreover, if the N -torsion points of E are

K-rational, then H(E/K,N, 2) consists of
∑

1<d|N σ(N/d) connected components;

more precisely, we have

H(E/K,N, 2) =
∐
H

(
E ×HEH/K,N/#H

)
,

where the disjoint union extends over all subgroups H ≤ E[N ] of order d|N with

d �= N , and EH = E/H.

The fact that the Hurwitz functor HE/K,N is representable by an open subset of
the modular curve XE/K,N,−1 has a number of interesting consequences. For example,
it shows that over any number field K there are only finitely many normalized genus 2
covers f : C → E of fixed degree N ≥ 7 because the genus of (the compactification of)
XE/K,N,−1 is ≥ 2 for N ≥ 7 and so #XE/K,N,−1(K) < ∞ by Faltings’ Theorem. This
means in particular that one cannot write down parametric families of such covers
when N ≥ 7, which is in sharp contrast to the fact that for N ≤ 5 (in which case
XE/K,N,−1 is a rational curve) such families are known to exist and can be written
down explicitly; cf. Krazer [21], p. 477ff, Kuhn [22], p. 48, and Frey [6], p. 96ff. Another
application of the explicit description of the Hurwitz space H(E/K,N, 2) is given in
[18], where it is used to compute the number of genus 2 covers of E/K with a given
discriminant divisor.

In order to complete the description of the Hurwitz space HE/K,N , one should
also describe the complement (the “degeneracy locus”)

DE/K,N = XE/K,N,−1 \HE/K,N .

One such description was already given in essence in [16], and so we merely need to
cite and/or translate the relevant result; cf. Theorem 6.1 below. Similarly, the number
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of points in DE/K,N was computed in [16] and [17]; a slightly weaker version of this
result may be stated as follows:

Theorem 1.4

If K is algebraically closed, then the number of points in the degeneracy locus

satisfies the inequality

(1) #DE/K,N ≤ 1
12N

(5N − 6)#
(
SL2(Z/NZ)/{±1}

)
.

Furthermore, equality holds in (1) if and only if char(K) |/ N !, i.e. if and only if either

char(K) = 0 or char(K) > N .

Finally, we give a brief sketch of the proof of the main Theorem 1.1, which in fact
constitutes a refinement and extension of the “basic construction” of genus 2 curves
(with elliptic differentials) which was presented in [8], [16]. Indeed, this construction
shows that each genus 2 cover f : C → E of degree N determines a unique pair
(E′

f , ψ) ∈ XE/K,N,−1(K) and that conversely for each such pair (satisfying a suitable
additional hypothesis) one can reconstruct the cover f : C → E. Thus, the “basic
construction” defines for each extension field L/K an injection

ΨL : HE/K,N (L) ↪→ XE/K,N,−1(L) = XE/K,N,−1(L)

and identifies the image. Here we shall see in Theorem 5.18 that this idea can be
refined to obtain an open embedding of functors

Ψ : HE/K,N ↪→ XE/K,N,−1.

However, instead of proving this directly, it is more convenient to divide the above
construction into two steps, which amounts to a factorization of Ψ as

Ψ = Ψ′ ◦ τ : HE/K,N ↪→ AE/K,N
∼→ XE/K,N,−1,

in which τ is (essentially) the Torelli map which associates to a curve its (polarized)
Jacobian and AE/K,N is the functor that classifies principally polarized abelian sur-
faces with an embedding “of degree N” of E (cf. Subsection 5.1). The fact that Ψ′ is
an isomorphism is proved in Theorem 5.10 and that τ is a monomorphism is shown
in Proposition 5.12. Finally, the image of τ is analyzed in Proposition 5.17: it is the
subfunctor JE/K,N of AE/K,N consisting of the “theta-smooth” elements (cf. Subsec-
tion 5.3).

Acknowledgments. This paper developed out the joint article [8] with G. Frey, whom
I would like to thank very much for the many stimulating and fruitful discussions we
have had over the last decade as well as for his continued interest in this research.
In addition, I would like to thank him for his kind hospitality at the Institut für
Experimentelle Mathematik, where parts of this paper were written.
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Finally, I would like to gratefully acknowledge receipt of funding from the Na-
tural Sciences and Engineering Research Council of Canada (NSERC) and also from
the Deutsche Forschungsgemeinschaft (DFG – Forschergruppe und Graduiertenkolleg
Essen) which made this research possible.

2. Normalized genus 2 covers

As in the introduction, let E/K be an elliptic curve over a field K. It will be convenient
(but not absolutely necessary) to assume in the sequel that char(K) �= 2 so as to avoid
case distinctions.

A covering f : C → E is called minimal (or optimal ([22]) or maximal ([34])) if
the induced map f∗ : JE → JC on the Jacobians is a closed immersion. Note that if
C is a curve of genus 2, then this is equivalent to the condition that f does not factor
over an isogeny of E of degree ≥ 2 (use Kuhn [22], Corollary on p. 45). Thus, by
replacing E/K by an isogenous curve if necessary, we may always assume “without
loss of generality” that f is minimal.

Minimal genus 2 covers of elliptic curves are partially analogous to the simple
covers of P

1 studied by Fulton [10]; for example, they do not have any internal auto-
morphisms, as the following result shows.

Proposition 2.1

Let f : C → E be a minimal genus 2 cover of E/K of degree N ≥ 3. If α ∈
AutK(C) is an automorphism such that f ◦ α = f , then α = idC .

Proof. Without loss of generality, we may assume that K is algebraically closed. Let
G = 〈α〉 be the (finite) group generated by α. If α �= idC , then the quotient map
π : C → C = G\C has degree deg(π) ≥ 2 and f factors over π, i.e. f = f ′ ◦ π. By
Riemann-Hurwitz we then have 2 > gC ≥ gE = 1, so gC = 1. Since f is minimal,
this forces f ′ to be an isomorphism, i.e. f is a (ramified) Galois cover with group G.
Furthermore, if we replace α by a power αn, then the same argument shows that G
cannot have any proper subgroup, and hence N = |G| is prime.

Since f is Galois, the degree of its different divisor satisfies

deg
(
Diff(f)

)
≥ N

∑
P∈Rf

(
1 − 1

eP (f)

)

where Rf = {P ∈ E(K) : eP (f) > 1}. (Note that equality holds if char(K) |/ N .)
Thus, by the Riemann-Hurwitz relation we obtain

2 = deg
(
Diff(f)

)
≥ N

2
#Rf ≥ N

2
,

and hence N ≤ 4.
Since N is prime, this leaves only the case N = 3. In this case there are three fibres

of f which have isolated Weierstrass points in them (see the proof of Proposition 2.2
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below). Thus, each of these points is fixed by α, and so we obtain deg(Diff(f)) ≥ 3,
which contradicts the Riemann-Hurwitz relation. �

It is immediate that if f : C → E is a minimal genus 2 cover of E/K, then so
is Tx ◦ f , for any x ∈ E(K), where Tx : E → E denotes the translation map. Since
Tx ◦ f is essentially the same cover as f , it is useful to “normalize” the genus 2 covers
of E/K in a certain way so as to avoid redundant translates. This will be done by
means of the Weierstrass (or hyperelliptic) divisor of C.

Notation. If C/K is a curve of genus 2, then σC denotes its hyperelliptic involution
and WC its hyperelliptic divisor. Recall that WC is the divisor of fixed points of σC
and is thus an effective divisor of degree 6. Furthermore, WC is reduced if and only if
char(K) �= 2; cf. Lønsted-Kleiman [24].

Similarly, if E/K is an elliptic curve with zero 0E , then the minus map [−1]E has
the divisor E[2] of 2-torsion points as its fixed point divisor. Note that the divisor [0E ]
defined by the point 0E is contained in E[2], and so E[2]# := E[2]− [0E ] is an effective
divisor of degree 3 on E.

Definition. A morphism f : C → E is called normalized if it is minimal and if the
norm (or direct image) f∗WC of the hyperelliptic divisor has the form

(2) f∗WC = 3ε[0E ] + (ε+ 1)E[2]#

where ε = 0 if deg(f) is even and ε = 1 if deg(f) is odd. Thus, deg(f) ≡ ε(2), and we
have more explicitly f∗WC = 3[0E ] + E[2]#, if deg(f) is odd, and f∗WC = 2E[2]#, if
deg(f) is even.

This terminology is justified by the following result:

Proposition 2.2

If f : C → E is a minimal genus 2 cover, then there is a unique point x ∈ E(K)
such that fnorm := Tx ◦ f is normalized. Furthermore, fnorm is “pseudo-normalized”

in the sense that it satisfies the relation

(3) fnorm ◦ σC = [−1]E ◦ fnorm.

Proof. It is well-known (cf. e.g. [22], p. 42) that there is a (unique) involution σE ∈
Aut(E) such that f ◦ σC = σE ◦ f . If K denotes the algebraic closure of K, then the
unique extension σC ⊗K of σC to C⊗K has four distinct fixed points P0, P1, P2, P3 ∈
E(K), which can be numbered in such a way that

(4) fK∗WC
K

= 3εP0 + (ε+ 1)(P1 + P2 + P3),

where fK : CK = C ⊗ K → EK = E ⊗ K denotes the induced cover over K (and
where, as above, deg(f) ≡ ε(2)). Indeed, if ε = 1 then this follows from [8], Lemma
2.1, or from Kuhn [22], p. 44, and if ε = 0, then this follows from the discussion of
[22] on the top of p. 48.
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From the above description is clear that P0 is Gal(K/K)-stable and hence is
rational over K. Thus, the first assertion holds with x = P0 (and only for this point).
Furthermore, in [8] and/or [22] it was already noted that the second assertion follows
from the first, for we have fnorm ◦ σC = σ′

E ◦ fnorm, where σ′
E = Tx ◦ σE ◦ T−1

x , and
σ′
E = [−1]E because the fixed point set of σ′

E is E[2]. �

Corollary 2.3

Let f : C → E be a minimal genus 2 cover of E/K. Then f is normalized if and

only if f satisfies (3) and

(5) #(f−1(0E) ∩WC) = 3ε.

Proof. If f is normalized, then clearly (5) holds by definition; cf. equation (2). Fur-
thermore, Proposition 2.2 shows that f satisfies (3).

Conversely, suppose f satisfies (3). Then the proof of Proposition 2.2 shows that
the points P0, . . . , P3 of (4) are fixed under [−1]E and hence are 2-torsion points.
Furthermore, equation (5) guarantees that P0 = 0E , and so (2) holds. �

As we shall see below in Theorem 2.6, normalized covers f : C → E are intimately
connected to the induced homomorphisms f∗ : JC → JE and/or f∗ : JE → JC on the
Jacobians. For this we first show:

Proposition 2.4

Let f : C → E be a normalized genus 2 cover of degree N , and let λE : E → Ê =
JE be the canonical polarization on E which is defined by λE(P ) = cl(OE([P ]− [0E ])).

(a) If N is odd, then there is a unique effective divisor W ′
0 ≤ WC of degree 3 such

that f∗W ′
0 = E[2]#.

(b) If N is even, and the Weierstrass points of C are K-rational, then there is a divisor

W ′
0 ≤ WC with f∗W ′

0 = E[2]#. Furthermore, if W̃ ′
0 is another divisor with this

property, then cl(OC(W ′
0 − W̃ ′

0)) ∈ Ker(f∗)[2].
(c) Let W ′

0 ≤ WC be a divisor such that f∗W ′
0 = E[2]#, and put L = OC(W ′

0)⊗ω−1
C ,

where ωC denotes the canonical sheaf of C/K. Then the map x �→ cl(OC(x −
W ′

0) ⊗ ωC) = cl(OC(x) ⊗ L−1) defines an embedding j = jL : C ↪→ JC which

satisfies

(6) 0J /∈ j(C) and j ◦ σC = [−1]J ◦ j and λE ◦ f = f∗ ◦ j.

Proof. (a) Let W0 = f∗(0E) ∩ WC and W ′
0 = WC − W0. Then W0 and W ′

0 are
both effective divisors and f∗W0 = 3(0E) by construction (and by (2)) and hence
deg(W0) = deg(W ′

0) = 3 and also f∗W ′
0 = E[2]#, as claimed.

(b) The existence of W ′
0 is clear. If W̃ ′

0 is another divisor, then we have cl(2(W ′
0 −

W̃ ′
0)) = ω⊗3

C ⊗ (ω⊗3
C )−1 � OC (cf. part(c)), so cl(W ′

0 − W̃ ′
0) ∈ JC [2]. Moreover,

f∗(cl(OC(W ′
0 − W̃ ′

0))) = cl(O(f∗W ′
0 − f∗W̃ ′

0)) = 0, so cl(W ′
0 − W̃ ′

0) ∈ Ker(f∗)[2].
(c) Since deg(OC(W ′

0)⊗ω−1
C ) = 1, the rule x �→ cl(OC(x−W ′

0)⊗ωC) is represented
by a closed immersion j : C ↪→ JC .
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We now verify that j satisfies (6). For this we may assume that K is algebraically
closed, so W ′

0 = W1 +W2 +W3 with Wi ∈ C(K).

To prove the first equation of (6) we shall use the fact that for each P ∈ C(K), the
divisor P +σC(P ) ∼ ωC is a canonical divisor on C. In particular, for each Weierstrass
point Wi ∈ C(K) we have 2Wi ∼ ωC , and so 2W ′

0 ∼ ω⊗3
C . Thus

j(P ) + j
(
σC(P )

)
= cl

(
OC(P + σC(P ) − 2W ′

0) ⊗ ω⊗2
C

)
= 0,

which proves the first equality of (6).

To prove the second equality, we first note that the points Pi := f(Wi), for
i = 1, 2, 3 are (by construction) precisely the non-trivial 2-torsion points of E, and so
cl(OC(P2 − P3)) = cl(OC(P1 − 0E)) = λE(P1). Moreover, by the Albanese property
of JC we know that f∗ ◦ j = Tx ◦ λE ◦ f , for some x ∈ JE(K). Thus, since 2W2 ∼ ωC ,
we see that

f∗(j(W1)) = f∗
(
cl(OC(W1 −W1 +W2 −W3))

)
= cl(OC(P2 − P3))

= λE(P1) = λE(f(W1)),

and so Tx(λEf(W1)) = f∗(j(W1)) = λE(f(W1)). This forces x = 0 and so f∗ ◦ j =
λE ◦ f .

Next we observe that 0J /∈ j(C). Indeed, if 0J ∈ j(C), then there is a point
P ∈ C(K) such that P ∼ OC(W ′

0) ⊗ ω−1
C ∼ W1 −W2 + W3, which is impossible as

h0(W1 −W2 +W3) = 0 (because h0(W1 +W2) = 1). �

Corollary 2.5

The curve θ := j(C) ⊂ JC of Proposition 2.4(c) is a symmetric theta-divisor of

JC , i.e. θ is an effective divisor on JC such that [−1]JCθ = θ and such that λO(θ) =
λC : JC

∼→ ĴC is the canonical principal polarization of JC . Furthermore:

(a) If N is odd, then θ is the unique symmetric theta divisor such that

(7) θ ∩ Ker(f∗)[2] = Ker(f∗)[2]# := Ker(f∗)[2] − [0].

(b) If N is even, then θ is a symmetric theta divisor satisfying

(8) θ ∩ Ker(f∗)[2] = ∅.

Moreover, if θ′ is any symmetric theta-divisor on JC satisfying (8), then θ′ = Tx(θ),
for some x ∈ Ker(f∗)[2].
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Proof. Since j is of the form P �→ cl(O(P )⊗L−1), where L is a suitable invertible sheaf
of degree 1, it is clear that θ is an effective theta-divisor. Furthermore, θ is symmetric
by the first equation of (6).

(a) To prove that θ satisfies (7) we may assume without loss of generality that K is
algebraically closed. We first observe the first equation of (6) shows that j(P ) ∈ JC [2]
if and only if P is a Weierstrass point.

We now claim that #Ker(f∗)[2] = 4. This follows either by observing that
Ker(f∗) is an elliptic curve (cf. Proposition 2.7 below) or by noting that (6) shows
that f∗(JC [2]) = JE [2] and hence it follows that

#Ker(f∗)[2] = #(Ker(f∗) ∩ JC [2]) = #JC [2]/#JE [2] = 4.

Thus, if W01,W02,W03 ∈ C(K) are the three Weierstrass points of C such that
f(W0i) = 0E , then by (6) we have Ker(f∗)[2] = {0J , j(W01), . . . , j(W03)}, and so (7)
follows.

Now let θ′ be another theta-divisor of JC satisfying (7). Then θ′ = Txθ, for some
x, and so θ′ is also irreducible. Moreover, by (7) we have θ′ ∩ θ ⊃ Ker(f∗)[2]#, which
has 3 distinct points (over K), and so (θ′.θ) ≥ 3, if θ′ �= θ. But (θ′.θ) = (θ)2 = 2 (by
Riemann-Roch), contradiction. Thus θ′ = θ.

(b) A slight modification of the proof of part (a) shows that θ satisfies (8) and
that (f∗)(θ ∩ J [2]) = E[2]# (as sets). Now suppose θ′ is another symmetric theta-
divisor satisfying (8). Then θ′ = Txθ, for some x ∈ JC [2] (because θ and θ′ are both
symmetric). If x /∈ Ker(f∗), then f∗(x) ∈ E[2]#, and so there exists y ∈ θ ∩ J [2] such
that f∗(y) = f∗(x). But then x+ y ∈ Txθ∩Ker(f∗)[2] = θ′ ∩Ker(f∗)[2], contradiction.
Thus x ∈ Ker(f∗), as claimed. �

The above proposition and its corollary lead to the fundamental fact that norma-
lized covers can be characterized by their induced homomorphisms on the Jacobians.
To state this more precisely, it is useful to introduce some equivalence relations on
covers and on homomorphisms.

Definition. Two K-covers fi : Ci → E are called equivalent if there exists an a
K-isomorphism α : C1

∼→ C2 such that f1 = f2 ◦ α. If such an α exists, then we write
f1 � f2.

Two injective homomorphisms hi : JE → Ji := JCi are called equivalent if there
exists a K-isomorphism α : J1

∼→ J2 such that h2 = α ◦ h1 and α̂ ◦ λ2 ◦ α = λ1, where
λi = λCi : Ji

∼→ Ĵi is the canonical polarization of the Jacobian Ji, for i = 1, 2. We
write h1 � h2 if such an isomorphism α exists.

Finally, we say that an injective homomorphism h : E → JC has degree N if
ĥ ◦ λC ◦ h = λJE ◦ [N ]JE ; we then write N = degλC (h).

Theorem 2.6
Let C/K be a curve of genus 2 and let N ≥ 2 be an integer. Then the assignment

f �→ f∗ induces a surjection

ρ = ρC,E,N : CovK(C,E,N) → InjHomK(JE , JC , N)

from the set CovK(C,E,N) of equivalence classes of normalized K-covers f : C → E
of degree N to the set InjHomK(JE , JC , N) of equivalence classes of injective K-homo-
morphisms h : JE ↪→ JC of degree N . Furthermore, ρ is a bijection if N > 2 or if the
Weierstrass points of C are K-rational.
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Proof. First note that if f : C → E is a normalized cover, then f∗ defines an equiva-
lence class cl(f∗) in the set InjHomK(JE , JC , N). Indeed, f∗ is injective because f is
minimal, and f∗ has degree N because f∗ = λ−1

JE
◦ (f∗)ˆ◦ λC , and so (f∗)ˆ◦ λC ◦ f∗ =

λJE ◦ (f∗ ◦f∗) = λJE ◦ [N ]JE . Furthermore, the rule f �→ cl(f∗) is compatible with the
equivalence relation on CovK(C,E,N) because if f1 � f2, then f1 = f2 ◦ α for some
α ∈ AutK(C), and so f∗

1 = (f2 ◦ α)∗ = α∗ ◦ f∗
2 . Clearly, α∗ ∈ AutK(JC) and we have

(α∗)ˆ◦ λC ◦ α∗ = λC ◦ (α∗ ◦ α∗) = λC ◦ [deg(α)] = λC . This means that f∗
1 � f∗

2 and
so the rule f �→ cl(f∗) defines a map ρ : CovK(C,E,N) → InjHomK(JE , JC , N).

We first show that ρ is surjective. Thus, let h : E ↪→ JC be an injective homo-
morphism of degree N . Assume temporarily that C/K satisfies:

(†) WC ⊂ C(K) and JC [2] ⊂ JC(K).

Since the Weierstrass points of C are now assumed to be rational, there exists an
embedding j = jP : C ↪→ JC such that θ := j(C) is a symmetric theta-divisor on JC ;
cf. Proposition 2.4 and Corollary 2.5. Then [−1]Jθ = θ, and so [−1]J induces a unique
automorphism σ on C such that j ◦ σ = [−1]J ◦ j. It is then immediate that σ has
the Weierstrass points as fixed points and hence σ = σC is the hyperelliptic involution
on C.

Define f := fh : C → E by f = h∗ ◦ j where h∗ = ĥ ◦ λC : JC → ĴE = E. Thus,
since h∗ is a homomorphism we have [−1]E ◦f = [−1]E ◦h∗ ◦j = h∗ ◦ [−1]J ◦j = h∗ ◦j ◦
σC = f ◦σC , so f is pseudo-normalized, i.e. satisfies condition (3). By Proposition 2.2
we know that there exists a (unique) point x ∈ E(K) such that fnorm := Tx ◦ f
is normalized. Since f and fnorm both satisfy (3), it follows that [−1]Ex = x, i.e.
x ∈ E[2]. Now since h∗ : J [2] → E[2] is surjective (because h∗ is surjective and the
fibres of h∗ are connected), there is a point x′ ∈ J [2] such that h∗(x′) = x, and then
fnorm = h∗ ◦ j′, where j′ = Tx′ ◦ j. Using the autoduality property of the Jacobian,
i.e., the fact that (j′)∗ = j∗ = −λ−1

C : ĴC → JC , we obtain by dualizing the above
relation that f∗

norm = (j′)∗ ◦ (h∗)∗ = −h. Thus, fnorm : C → E is a normalized cover
such that f∗

norm = −h � h, i.e. τ is surjective (provided that condition (†) holds).
To finish the proof of the surjectivity of ρ, we now remove the hypothesis (†)

and hence consider an arbitrary curve C/K. Then there exists a finite Galois cover
K ′/K such that CK′ = C ⊗ K ′ satisfies (†) and so, by what was just shown, there
exists a normalized map f = fh : CK′ → EK′ such that f∗ = −h. Furthermore,
f = λ−1

E ◦ h∗ ◦ j, where j = jL is the embedding defined by a suitable L ∈ Pic(C ′
K).

Consider the Galois twist fg of f by g ∈ Gal(K ′/K). Since jg = Tx(g) ◦ j with
x(g) = cl(Lg ⊗ L−1) ∈ Pic0(C ′

K) = J(K ′), we obtain fg = λ−1
E ◦ h∗ ◦ Tx(g) ◦ j. Now

θ′ := Tx(g)(j(C)) = j(C)g is again a symmetric theta-divisor of λC which satisfies
θ′ ⊃ Ker(h∗)[2]# (resp., θ ∩ Ker(h∗)[2] = ∅) if N is odd (resp. if N is even) because
Ker(h∗)g = Ker(h∗). Thus, θ′ = j(C) (resp. θ′ = Tx′j(C) with x′ ∈ Ker(h∗)[2]) and
so x(g) = 0 (resp. x(g) = x′ ∈ Ker(h∗)[2]). Thus, in both cases h∗ ◦ Tx(g) = h∗, and
so fg = f , for all g ∈ Gal(K ′/K). This means that f is defined over K, and so τ is
surjective in general.

It remains to show that ρ is injective (under the stated hypotheses). For this,
suppose that fi : C → E are two normalized covers such that f∗

1 � f∗
2 ; we then
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want to show that also f1 � f2. The hypothesis f∗
1 � f∗

2 means that there exists an
α ∈ AutK(JC) with property that f∗

1 = α ◦ f∗
2 and that α̂ ◦λC ◦α = λC . We then also

have (f1)∗ ◦ α = (f2)∗, for by dualizing the first relation we obtain

(f1)∗ = λ−1
JE

◦ (f∗
1 )ˆ◦ λC = λ−1

JE
◦ (f∗

2 )ˆ◦ α̂ ◦ λC = λ−1
JE

◦ (f∗
2 )ˆ◦ λC ◦ α−1 = (f2)∗ ◦ α−1,

as claimed.
To show that f1 � f2, suppose first that N is odd. Then by Proposition 2.4

there exists a K-embedding ji : C ↪→ JC such that λE ◦ fi = (fi)∗ ◦ ji and such that
θi = ji(C) is theta divisor associated to λC , for i = 1, 2. Since fi is normalized, we
have by Corollary 2.5(a) that θi ⊃ Ker((fi)∗)[2]#. Now α−1(θ1) is again a symmetric
theta-divisor (associated to λC) and

α−1(θ1) ⊃ α−1(Ker((f1)∗)[2]#) = Ker((f1)∗ ◦ α)[2]# = Ker((f2)∗)[2]#,

so θ2 = α−1(θ1) because θ2 is uniquely characterized by this property. Thus ϕ :=
((j2)−1 ◦α−1 ◦j1 ∈ AutK(C) satisfies j2 ◦ϕ = α−1 ◦j1, and so by the above identity we
have λE ◦ f1 = (f1)∗ ◦ j1 = (f2)∗ ◦α−1 ◦ j1 = (f2)∗ ◦ j2 ◦ϕ = λE ◦ f2 ◦ϕ, or f1 = f2 ◦ϕ
with ϕ ∈ AutK(C), i.e. f1 � f2.

Next assume that N is even. Then by Proposition 2.4 (b) there exists a finite
Galois extension K ′/K such that over K ′ we have embeddings ji : C ′ = C⊗K ′ ↪→ J ′ =
JC′ such that λE ◦fi = (fi)∗ ◦ ji and such that θi = ji(C) are theta divisors associated
to λC (defined over K ′). Then by Corollary 2.5(b) we have θi∩Ker((fi)∗)[2] = ∅, and so
also α−1(θ1)∩Ker((f2)∗)[2] = α−1(θ1)∩Ker((f1)∗◦α)[2] = α−1(θ1∩Ker((f1)∗)[2]) = ∅.
Thus, by the uniqueness property of θ2 it follows that θ2 = Tx(α−1(θ1)) for some x ∈
Ker((f2)∗)[2], and so ϕ := (j2)−1◦Tx◦α−1◦j1 ∈ AutK′(C ′) satisfies j2◦ϕ = Tx◦α−1◦j1.
Now since x ∈ Ker((f2)∗), we have (f2)∗ ◦ Tx = (f2)∗, and so (f2)∗ ◦ α−1 ◦ j1 =
(f2)∗ ◦ j2 ◦ ϕ = λE ◦ f2 ◦ ϕ. Thus λE ◦ f1 = (f1)∗ ◦ j1 = (f2)∗ ◦ α−1 ◦ j1 = λE ◦ f2 ◦ ϕ,
which means that f1 = f2 ◦ ϕ, with ϕ ∈ AutK′(C ′).

To conclude that f1 � f2, we still have to show that ϕ is defined over K. This
is automatic if the Weierstrass points are defined over K, for then we can choose
K ′ = K. Thus, assume that this is not the case but that N > 2. Let g ∈ Gal(K ′/K),
and consider the Galois twist ϕg ∈ AutK′(C ′) of ϕ. Since the fi’s are defined over K
we have f1 = f2 ◦ ϕg, and so, if ϕ′ = ϕg ◦ ϕ−1, then we have f2 ◦ ϕ′ = f1 ◦ ϕ−1 = f2.
Now since N ≥ 3, we have by Proposition 2.1 that ϕ′ = idC′ , and so ϕg = ϕ, for all
g ∈ Gal(K ′/K), which means that ϕ ∈ AutK(C). Thus f1 � f2, as desired, and so ρ

is injective. �

Remark. It is easy to see that the sets of Theorem 2.6 are finite; in fact, the cardinality
of CovK(C,E,N) can bounded by the number of (primitive) representations of N2 by a
suitable positive definite quadratic form associated to C (multiplied by 1/2#Aut(E));
cf. [15], Theorem 4.5.

As was mentioned in [8] or [22], each minimal genus 2 cover f : C → E induces a
splitting of the Jacobian JC up to isogeny, i.e. JC ∼ E × E′, and the complementary
elliptic curve E′ = E′

f can be chosen in a canonical way by using the (canonical)
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principal polarization λC : JC
∼→ ĴC of C. This curve E′

f plays an important role in
the “basic construction” of [8], which will be reviewed (and extended) in Section 5.

Proposition 2.7

If f : C → E is a minimal genus 2 cover of degree N , then E′ := Ker(f∗) is an

elliptic curve such that

(9) E′ ∩ f∗JE = f∗JE [N ] = E′[N ].

Thus, if π : JE×E′ → JC denotes the unique map such that π ◦ iJE = f∗ and π ◦ iE′ =
−h′, where iJE : JE ↪→ JE × E′, iE′ : E′ ↪→ JE × E′, and h′ : E′ = Ker(f∗) ↪→ JC
denote the canonical inclusions, then Ker(π) = f∗JE ∩ E′ and hence π is an isogeny

of degree N2; in particular, JC ∼ JE × E′ � E × E′.

Proof. Since f∗ = λ−1
E ◦(f∗)ˆ◦λC is the “dual” of f∗ and since f∗ is a closed immersion,

it follows that f∗ is surjective and has (geometrically) connected fibres of dimension
(dimJC − dimJE) = 1 (cf. Section 7 below). Thus, E′ is an elliptic curve.

Moreover, since f∗ is an injection and since E′ = Ker(f∗), we have

E′ ∩ f∗JE = f∗Ker(f∗ ◦ f∗) = f∗([N ]JE ) = f∗(JE [N ]).

Thus, E′ ∩ f∗JE is a finite group (scheme) of order N2 and of exponent N , and so
E′ ∩ f∗JE ≤ E′[N ]. But E′[N ] also has order N2, and so E′ ∩ f∗JE = E′[N ], which
proves the first statement. The second statement follows immediately from the first. �

Corollary 2.8

The above embedding h′ : E′ ↪→ JC , has degree N , and hence there exists a

“complementary” minimal K-cover f ′ : C → E′ of degree N such that (f ′)∗ = h′◦λ−1
E′ .

Proof. By Theorem 2.6 there is a normalized K-cover f ′ : C → E′ of degree N ′ =
degλC (h′) such that (f ′)∗ = h′ ◦ λ−1

E′ , and then (f ′)∗ = λE′ ◦ (h′)∗, where (h′)∗ =
λ−1
E′ ◦ (h′)ˆ◦ λC : JC → E′.

Recall that the sequence

0 → E′ h′
→ JC

f∗→ JE → 0

is exact by the definition of h′. Thus, dualizing this sequence and applying λC , λE′

and λJE (= λ−1
E ) yields the sequence

0 → JE
f∗
→ JC

(h′)∗→ E′ → 0

which is again exact (cf. [23], p. 216); here we have used the identification f∗ =
λ−1
C ◦ (f∗)ˆ◦ λJE . This means in particular that Ker(f ′

∗) = Ker((h′)∗) = f∗JE , and
thus, if we now apply Proposition 2.7 to f ′, then we obtain

E′ ∩ f∗JE = (f ′)∗JE′ ∩ Ker(f ′
∗) = E′[deg(f ′)].
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On the other hand, since f∗JE ∩ E′ = E′[N ] by (9), we conclude that N = deg(f ′) =
degλC (h′), as desired. �

3. Families of genus 2 covers and the Hurwitz functor HE/K,N

We now want to study families of genus 2 covers of an elliptic curve over an arbitrary
base scheme S, i.e. covers f : C → E where E/S is a (relative) elliptic curve and
C/S is a relative curve of genus 2. For the basic definitions and properties of covers
of relative curves we refer the reader to the appendix (cf. Section 7).

We first observe that every genus 2 curve C/S is hyperelliptic in the sense of
Lønsted/Kleiman [24], p. 101:

Lemma 3.1

If p : C → S is a relative curve of genus 2, then there exists a unique S-

automorphism σC/S ∈ AutS(C) which induces the hyperelliptic involution on each

fibre Cs of p.

Proof. If ω = ωC/S denotes the relative canonical sheaf of C/S, then p∗(ωC/S) is
locally free of rank g = 2, and the canonical S-morphism ϕω : C → P(ωC/S) is
surjective (because this is true fibre-by-fibre), and so condition (i) of Theorem 5.5 of
[24] holds, which means that C/S is hyperelliptic. �

As in Section 2, let E/K be an elliptic curve over a field K with char(K) �= 2
(or, more generally, over any ring (or any scheme) K in which 2 is invertible). For any
K-scheme S let ES := E ×K S be the elliptic curve over S obtained from E/K by
base-change.

Definition. A genus 2 cover f : C → ES of ES/S of degree N is called normalized if
it is minimal (cf. §7) and if the direct image f∗WC/S of the hyperelliptic divisor WC/S

(cf. [24]) has the form

(10) f∗(WC/S) = 3ε[0ES/S ] + (ε+ 1)ES [2]#

where (as before) ε = 0 if N is even and ε = 1 if N is odd, and [0ES/S ] denotes the
Cartier divisor associated the zero-section 0ES/S and ES [2]# := ES [2]− [0E/S ] (viewed
as effective relative Cartier divisors on ES).

The basic properties of normalized genus 2 covers of ES/S are summarized in the
following theorem.

Theorem 3.2

(a) If f : C → ES is a normalized genus 2 cover of degree N , then so is any base-change

f(T ) : CT = C ×S T → ET = ES ×S T .

(b) If C/S is flat and locally of finite presentation, and if S is reduced, then an S-

morphism f : C → ES is a normalized genus 2 cover of degree N if and only if

fs : Cs → Es = E ⊗ κ(s) is a normalized genus 2 cover of degree N , for all s ∈ S.



14 Kani

(c) If f : C → ES is a normalized genus 2 cover then we have

(11) f ◦ σC/S = [−1]ES ◦ f.

Conversely, if f : C → ES is a minimal cover satisfying (11) and if for at least one

s ∈ S the induced map fs : Cs → Es is normalized, then f is normalized.

(d) Let f : C → ES be a normalized genus 2 cover of degree N . If N is odd, or

if N is even and C/S has 6 distinct Weierstrass sections, then there is a closed

S-immersion j : C ↪→ J = JC/S of C into its Jacobian (cf. §7) such that

(12) j ◦ σC = [−1]J ◦ j, λE ◦ f = f∗ ◦ j, and 0J(S) ∩ j(C) = ∅.

In particular, there is always a suitable etale faithfully flat base change S′/S such

that there exists an immersion j : C(S′) ↪→ J(S′) satisfying (12).
(e) In the situation of (d), the image θ = j(C) ⊂ J is a symmetric theta-divisor on

J . If N is odd, then θ is the unique symmetric theta-divisor satisfying

(13) θ ∩ Ker(f∗)[2] = Ker(f∗)[2]# := Ker(f∗)[2] \ [0].

If N is even, then θ is a symmetric theta divisor satisfying

(14) θ ∩ Ker(f∗)[2] = ∅.

Moreover, if θ′ is any symmetric theta-divisor on J satisfying (14), then θ′ = Tx(θ),
for some x ∈ Ker(f∗)[2](S′).

(f) Let C/S be a curve of genus 2. If f : C → ES is a minimal cover of degree N ,

then f∗ : JES/S → JC/S is an injective homomorphism of degree N , i.e. we have

λ−1
ES/S

◦ (f∗)ˆ◦λC/S ◦ f∗ = [N ]JES/S . Conversely, if h : JES ↪→ JC/S is an injective

homomorphism of degree N , then there exists a normalized cover f : C → ES of

degree N such that f∗ = h.

(g) If f : C → ES is a minimal genus 2 cover, then there is a unique x ∈ ES(S) such

that Tx ◦ f is a normalized cover.

Proof. (a) First note that f(T ) is minimal because f is (cf. §7). Moreover, since the
formation of WC/S commutes with base-change (cf. [24], Proposition 6.3), and since
the same is true for the direct image of relative Cartier divisors by Lemma 7.3 of the
appendix, we see that the analogue of (10) also holds for f(T ), and so f(T ) is also
normalized.

(b) If f is a normalized genus 2 cover, then so is fs, ∀s ∈ S, by part (a). Conversely,
if fs : Cs → Es is a genus 2 cover of degree N for all s ∈ S, then C/S is a smooth curve
of genus 2 (use [1], 2.4/8), and so f is a genus 2 cover of degree N which is minimal
(cf. §2.2). Moreover, since by hypothesis (and base-change) we have

(f∗WC/S)s = (fs)∗WCs/κ(s) = 3ε[0Es/κ(s)] + (ε+ 1)Es[2]#

= (3ε[0ES/S ] + (ε+ 1)ES [2]#)s,

for all s ∈ S, we can conclude from (50) that (10) holds, and so f is normalized.
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(c) Since it is enough to prove (11) after a faithfully flat base-change, we may
assume that there exists a Weierstrass section w of C/S. Then P := f(w) ∈ ES [2](S)
because [P ] = f∗[w] ≤ f∗WC/S ≤ 3ES [2].

Write f1 = f ◦σC/S and f2 = [−1]ES ◦f . Then fi : C → ES are two S-morphisms
which by Proposition 2.2 satisfy (f1)s = (f2)s,∀s ∈ S, and so by rigidity we there is a
section η ∈ ES(S) such that f1 = (η ◦ pC) + f2; cf. [30], p. 116. But since σC/S (resp.
[−1]) fixes w (resp. P ), we have f1(w) = P = f2(w) and so η = 0ES , which means that
f1 = f2, as desired.

We now prove the converse. Again, it is enough to prove this after a faithfully flat
base change (because distinct relative Cartier divisors stay distinct after a faithfully
flat base change). Thus, we may assume that

(†) C/S has six Weierstrass sections and JC/S/S has sixteen 2-torsion sections.

Then ES/S has four 2-torsion sections P0 = 0, P1, P2, P3 (because (†) implies that f∗
maps JC/S [2](S) surjectively to JES/S [2](S) as f∗ is surjective with integral fibres).
Thus, if w1, . . . , w6 denote the Weierstrass sections, then we have by (11) that f(wi) ∈
ES [2](S) and so f∗WC/S =

∑
f∗[wj ] =

∑3
i=0 ni[Pi]. Specializing this equation at the

given s ∈ S yields (fs)∗WCs = (f∗WC/S)s =
∑

ni[(Pi)s]. But since the 2-torsion
sections of ES/S are mapped injectively to those of Es/κ(s), it follows that (P0)s =
0, (P1)s, . . . , (P3)s are precisely the 2-torsion points of Es. Thus, since fs is normalized
we obtain n0 = 3ε and ni = (ε+ 1), for i > 0, and so f is also normalized.

(d) Suppose first that N is odd, and put W0 := f∗([0ES ]) ×C WC/S . We claim
that W0 is an effective relative Cartier divisor on C/S of degree 3. For this we shall
use Lemma 7.4 of the appendix. Since the formation of W0 commutes with base-
change, we see by Proposition 2.4(a) that deg((W0)s) = 3 for all s ∈ S. Choose a
finite faithfully flat base-change S′/S such that we have 6 distinct Weierstrass sections
wi ∈ WCS′/S′ . By the proof of (c) we know that Pi = f(wi) ∈ ES [2](S′) and so by
specializing to any fibre we see that (after renumbering) 0ES , P1, P2, P3 are distinct
and that P4 = P5 = P6 = 0ES . Thus, w4, w5, w6 are 3 sections of W0, and so by
Lemma 7.4 we conclude that W0 is a relative Cartier divisor of C/S.

Thus, W ′
0 = WC/S −W0 is a also relative Cartier divisor of degree 3 and we have

f∗W ′
0 = ES [2]# (since this is obviously true after a suitable faithfully flat base change).

Put L := OC(W ′
0)⊗ω−1

C/S ∈ Pic(C). Then L has relative degree 1, and therefore gives
rise to a closed embedding jL : C → J (cf. §7). By Proposition 2.4, properties (12)
hold fibre-by-fibre, and so by the same argument as in (c) we conclude that (12) holds
over S.

If N is even, and we have 6 Weierstrass sections of C/S, then we choose 3 of these
to obtain a relative Cartier divisor W ′

0 with the property that (f∗W ′
0)s = Es[2]#, for

one fixed s ∈ S. It then follows that f∗W ′
0 = ES [2]# because both sides are sums

of 2-torsion sections, and the 2-torsion sections of ES/S are mapped bijectively to
those of the fibre Es/κ(s). Then the invertible sheaf L = OC(W ′

0) ⊗ ω−1
C/S defines an

embedding j = jL : C → J which (by the same argument as in the case that N is odd)
satisfies (12).

The last assertion clearly follows from the first because we can always choose a
suitable (étale) faithfully flat base-change so as to obtain 6 distinct Weierstrass sections
(since WC/S is etale).
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(e) Since j = jL is the embedding defined by an invertible sheaf L ∈ Pic(C)
of relative degree 1 = g − 1, it is clear that θ = j(C) is a theta-divisor (cf. §7).
Furthermore, [−1]θ = j(σC(C)) = θ by the first equation of (12), and so θ is symmetric.

Next we show that if N is odd, then θ satisfies (13). For this we first note that
Ker(f∗)[2] is a finite etale group scheme of rank 4 (because Ker(f∗)/S is an elliptic
curve by (42); cf. also Proposition 5.2 below). Furthermore, since it is enough to verify
(13) after a faithfully flat base-change, we may assume without loss of generality that
WC/S has six Weierstrass sections w1, . . . , w6. Then by the discussion of (d) we see
that Ker(f∗)[2](S) = {0, j(w4), j(w5), j(w6)} and so (13) follows.

To see that θ is uniquely characterized by this property, we argue as follows. If
θ′ is another symmetric theta-divisor, then by Lemma 7.1 of the appendix we know
that θ′ = Tx(θ), for some x ∈ JC/S(S). Moreover, x ∈ JC/S [2](S) since θ and θ′ are
both symmetric. By specializing to a fibre Js we conclude by the uniqueness assertion
of Corollary 2.5 that θ′s = Tx(s)(θs) and that hence x(s) = 0 = 0(s). But then x = 0
since JC/S [2] is a finite etale group scheme, and so θ′ = θ. This proves the assertion
in case that N is odd, and the case that N is even is proved similarly.

(f) Since the first assertion is just a restatement of (46), we only need to prove
the second statement.

Suppose first that C/S satisfies (†), and let w be a Weierstrass section. Then the
image θ = jw(C) of the embedding jw : C ↪→ JC/S is a symmetric theta-divisor of λC/S ,
and so there is a unique automorphism σ ∈ AutS(C) such that jw ◦ σ = [−1] ◦ jw.
Clearly, σ fixes the 6 Weierstrass sections and hence σ = σC is the hyperelliptic
involution. Put f ′ = h∗ ◦ jw, where h∗ = ĥ ◦ λC/S : JC/S → ĴES/S = ES . Then
f ′ ◦ σC = (h∗) ◦ [−1]J ◦ jw = [−1]ES ◦ (h∗) ◦ jw = [−1]ES ◦ f ′, so f ′ satisfies (11).
Furthermore, (f ′)∗ = j∗w ◦ (h∗) = −λ−1

C/S ◦ (λC/S ◦ h) = −h, so f ′ is minimal.
We now claim that there exists an x ∈ ES [2](S) such that f = Tx◦f ′ is normalized.

To see this, fix an s ∈ S. Then by Theorem 2.6 there is a normalized cover fs : Cs → Es

such that (fs)∗ = −hs, and so by the Albanese property (cf. §7) there exists xs ∈ Es(k)
(where k = κ(s)) such that f ′

s = Txs ◦ fs. Since fs and f ′
s both satisfy (11), it follows

that xs ∈ Es[2](k). Since (†) implies that ES [2](S) → Es[2](k) is surjective, there exists
an x ∈ ES [2](S) such that f := Tx ◦ f ′ specializes at s to the given fs. Then f also
satisfies (11), and so f is normalized by part (c) above. In addition, f∗ = (f ′)∗ = −h.
Thus, replacing f by f ◦ σC yields the desired f (since σ∗ = [−1]J).

We now remove the hypothesis that C/S satisfies (†) and hence consider an ar-
bitrary genus 2 curve C/S. Then there exists a finite, faithfully flat base change
β : S′ → S such that C(S′)/S

′ satisfies (†) and so, by what was just shown, there exists
a normalized morphism f ′ : C(S′) → E(S′) such that (f ′)∗ = h(S′).

It is clearly enough to show that f ′ = f(S′) for some morphism f : C → ES , for
then f is automatically normalized (since f ′ is) and satisfies f∗ = h (because we have
f∗
(S′) = h(S′)). Furthermore, the existence of f will follow by faithfully-flat descent (cf.

[1], Theorem 6.1/6(a)) once we have shown that p∗1f
′ = p∗2f

′, where pi = pri : S′′ :=
S′ ×S S

′ → S′, i = 1, 2, denote the two projections and p∗i f
′ : C(S′′) → E(S′′) denotes

the base-change of f ′ via pi.
Since f ′ is normalized, we have by part (d) (or by construction) that there exists

L ∈ Pic(C(S′)) such that the embedding j = jL : C(S′) → JC(S′)/S
′ satisfies [−1] ◦ j =
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j◦σC(S′) and f ′ = h∗(S′)◦j. Here, as above, h∗ = ĥ◦λC/S and so h∗(S′) = λ−1
ES′/S′ ◦(f ′)∗.

Put Li = p∗iL ∈ Pic(C(S′′)). Since λO(Li) = (λC/S)(S′′) and λC/S is a principal
polarization, it follows that x := cl(L1 ⊗ L−1

2 ) ∈ Pic0
C/S(S′′) = JC/S(S′′), and so

p∗1j = jL1 = Tx ◦ jL2 = Tx ◦ p∗2j. In addition we note that x ∈ JC/S [2](S′′) because
[−1] ◦ p∗i j = p∗i j ◦ σC(S′′) , for i = 1, 2. Now since h∗ is defined over S, p∗i h

∗ = h∗(S′′)

does not depend on i and so we obtain

p∗1f
′ = h∗(S′′) ◦ p∗1j = h∗(S′′) ◦ Tx ◦ p∗2j = Tx′ ◦ h∗(S′′) ◦ p∗2j = Tx′ ◦ p∗2f ′

with x′ = h∗(S′′)(x) ∈ ES [2](S′′).
To prove that p∗1f

′ = p∗2f
′, it is thus enough to show that x′ = 0 or, equivalently,

that x ∈ Ker(h∗)(S′′). For this, consider θi := p∗i j(C(S′′)), for i = 1, 2; note that
θ1 = Tx(θ2). Since p∗i f

′ is normalized, we have by part (e) that θi is a symmetric
theta-divisor of λC(S′′)/S

′′ which satisfies θi ∩ Ker(h∗(S′′))[2] = Ker(h∗(S′′))[2]# (resp.,
θi∩Ker(h∗(S′′))[2] = ∅) if N is odd (resp. if N is even) because Ker(p∗i (f

′)∗) = Ker(h∗).
Thus, by the uniqueness assertion of part (e) we obtain θ1 = θ2 (resp. θ1 = Tyθ2 with
y ∈ Ker(h∗)[2](S′′)) and so x = 0 (resp. x = y ∈ Ker(h∗)[2](S′′)). (Recall that if
O(θ1) � T ∗

z (O(θ1)), then z = 0 because λC/S is a principal polarization.) Thus, in
both cases x ∈ Ker(h∗)(S′′) and so p∗1f

′ = p∗2(f
′), as desired.

(g) First note that such an x ∈ ES(S) is uniquely determined by f , for if f ′ :=
Tx1 ◦ f and Tx2 ◦ f = Tx2−x1 ◦ f ′ are both normalized, then we must have

T ∗
x2−x1

(
3ε[0ES ] + (ε+ 1)E[2]#

)
= 3ε[0ES ] + (ε+ 1)E[2]#,

which is impossible unless x2 − x1 = 0 or, equivalently, x1 = x2.
To prove the existence of such an x, we first apply part (f) to obtain a normalized

cover f ′ : C → ES such that (f ′)∗ = f∗ and hence also f ′
∗ = f∗ by duality (cf. (47)).

Then by Lemma 7.2 there exists a unique x ∈ ES(S) such that f ′ = Tx◦f , as desired. �

For later use let us also observe that the analogue of Proposition 2.1 carries over
to genus 2 families and thus has the following important consequence.

Proposition 3.3

(a) If f : C → ES is a minimal genus 2 cover of degree N ≥ 3 and α ∈ AutS(C) is an

automorphism such that f ◦ α = f , then α = idC .

(b) Let fi : Ci → ES , i = 1, 2 be two normalized genus 2 covers of ES/S of degree

N ≥ 3, and let p : S′ → S be a faithfully flat, quasi-compact cover of S. If there

exists an S′-isomorphism α′ : (C1)(S′)
∼→ (C2)(S′) such that (f2)(S′)◦α′ = (f1)(S′),

then there is a unique S-isomorphism α : C1
∼→ C2 such that α(S′) = α′, and we

have f2 ◦ α = f1.
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Proof. (a) First note that it follows from Proposition 2.1 (and Theorem 3.2(a)) that
αs = idCs , for all s ∈ S. Thus, if S is reduced, then so is C and thus it follows
that α = idC because C/S is separated. (Indeed, let γ : Ker(α, β) → X be the
subscheme of coincidences of α and β = idC . Then Ker(α, β) is a closed subscheme
of X by [11], (I, 5.2.5). Furthermore, γ is surjective (since this is true fibre-by-fibre),
hence schematically dominant since C is reduced (use [11], (I, 5.4.3)). Thus, γ is an
epimorphism (by [11], (I, 5.4.6)), and so, since α ◦ γ = β ◦ γ by definition, it follows
that α = β.)

Now suppose that S is an arbitrary scheme; without loss of generality, however, we
may assume that S is locally noetherian. Then the map Sred → S is defined by a locally
nilpotent ideal of OS (cf. [11], (I, 4.5.8)). Now since the scheme of automorphisms
AutS(C) is finite and unramified (this is a special case of [2], Theorem (1.11)), it
follows that the induced map AutS(C) → AutSred(Cred) is injective (cf. [11], (IV,
17.1.2)(iv)). Thus, α = idC , as desired.

(b) It is clearly enough to construct α such that α(S′) = α′, for then the second
property follows since p is faithfully flat. Furthermore, the existence of α will follow by
faithfully-flat descent (cf. [1], Theorem 6.1/6(a)) once we have shown that p∗1α

′ = p∗2α
′,

where pi = pri : S′′ := S′ ×S S
′ → S′ denote the two projections.

Now since p∗1(fi)(S′) = p∗2(fi)(S′) = (fi)(S′′), for i = 1, 2, we have (f2)(S′′) ◦
p∗jα

′ = p∗j ((f2)(S′) ◦ α′) = p∗j ((f1)(S′)) = (f1)(S′′), for j = 1, 2. Thus, if we put
β = (p∗1α

′)−1 ◦ p∗2α′ ∈ AutS′′((C1)(S′′)), then we obtain (f1)(S′′) ◦ β = (f1)(S′′). Now
since (f1)(S′′) : (C1)(S′′) → E(S′′) is a normalized genus 2 cover by Theorem 3.2(a), we
have by part (a) that β = id(C1)S′′ , and so p∗1α

′ = p∗2α
′, as desired. �

Notation. Let us now put, for any K-scheme S,

H(2)
E/K,N (S) =

{
C

f→ ES : f is a genus 2 cover of degree N
}
/�,

where two covers fi : Ci → ES are called isomorphic (notation: f1 � f2) if there
is an isomorphism ϕ : C1 → C2 such that f1 = f2 ◦ ϕ. Note that if β : S′ → S is
a K-morphism, then the rule f �→ f(S′) induces a map HE/K,N (β) : HE/K,N (S) →
HE/K,N (S′), and so we obtain a contravariant functor

H(2)
E/K,N : Sch/K → Sets,

called the Hurwitz functor of genus 2 covers of E/K of degree N .
This functor has several natural subfunctors. For example, if we let

HE/K,N (S) = Hnorm
E/K,N (S) ⊂ Hmin

E/K,N (S) ⊂ H(2)
E/K,N (S)

denote the subsets of H(2)
E/K,N (S) consisting of those (equivalence classes of) genus 2

covers which are normalized, respectively which are minimal, then Theorem 3.2(a) and
its proof show that these define subfunctors

HE/K,N = Hnorm
E/K,N : Sch/K → Sets and Hmin

E/K,N : Sch/K → Sets
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of the (full) Hurwitz functor H(2)
E/K,N . Similarly, if H is a finite flat K-subgroup scheme

of E of order #H|N , and we let H(2)
E/K,N,H(S) denote the set of (equivalence classes

of) genus 2 covers f : C → ES with Ker(f) = λE(H)S , then we obtain a subfunctor
H(2)
E/K,N,H of H(2)

E/K,N . Note that by definition we have that H(2)
E/K,N,0 = Hmin

E/K,N .

It turns out that the functor HE/K,N of normalized genus 2 covers is the main
“building block” of all these Hurwitz functors, for all the others can be expressed in
terms of it.

Proposition 3.4

(a) Let H be a finite flat K-subgroup schemes of E of order #H|N with #H �= N , and

let πH : E → EH := E/H denote the quotient map and π′
H := λ−1

E ◦ π∗
H ◦ λEH :

EH → E its (modified) dual map. Then the assignment (x, f) �→ Tx ◦ π′
H ◦ f

defines an isomorphism of functors

νE/K,N,H : hE/K ×HEH/K,N/#H
∼→ H(2)

E/K,N,H ;

in particular, Hmin
E/K,N � hE/K ×HE/K,N .

(b) If E[N ]/K is a constant group scheme and S is connected, then

H(2)
E/K,N (S) =

⋃̇
H∈S∗(E/K,N)

H(2)
E/K,N,H(S),

where S∗(E/K,N) denotes the set of K-subgroup schemes H of E of order #H|N
with #H �= N .

Proof. (a) If S is a K-scheme, x ∈ E(S) and f : C → (EH)S is a normalized cover of
degree N/#H, then fH,x := Tx ◦ (π′

H)(S) ◦ f : C → ES is a genus 2 cover of degree N
and we have Ker((fH,x)∗) = Ker(f∗ ◦ (π′

H)∗(S)) = Ker(πHλES ) = λES (HS) = λE(H)S .
Since this assignment is clearly compatible with the equivalence relations of covers, we
obtain a map

(νE/K,N,H)S : E(S) ×HEH/K,N/#H(S) → H(2)
E/K,N,H(S).

To see that this is an injection, suppose x, x′ ∈ E(S) and f : C → (EH)S and f ′ :
C ′ → (EH)S are two normalized covers such that fH,x � (f ′)H,x′ , i.e. f ′

H,x′ ◦ϕ = fH,x,
for some ϕ : C ∼→ C ′. Then (f ′ ◦ ϕ)∗ ◦ (π′

H)∗ = f∗ ◦ (π′
H)∗ and so (f ′ ◦ ϕ)∗ = f∗

because (π′
H)∗ is an epimorphism (being an isogeny). Thus, by Lemma 7.2 we know

that f ′ ◦ϕ = Ty ◦ f , for some y ∈ EH(S). But since f ◦ϕ and f ′ are both normalized,
we have by Theorem 3.2(g) that y = 0, i.e. that f � f ′. Moreover, we then have
that Tx ◦ (π′

H)(S) ◦ f = Tx′ ◦ (π′
H)(S) ◦ f ′ ◦ ϕ = Tx′ ◦ (π′

H)(S) ◦ f , and so Tx = Tx′

because (π′
H)(S) ◦ f is an epimorphism (being faithfully flat). Thus also x = x′, and

so (νE/K,N,H)S is injective.
We next show that (νE/K,N,H)S is surjective. For this, let f : C → ES be a genus

2 cover with Ker(f∗) = λE(H)S = Ker((π∗
H)(S)). Then f∗ is Ker((π∗

H)(S))-invariant,
and so f∗ = h ◦ (π∗

H)(S), for some (injective) homomorphism h : J(EH)(S)
→ JC of
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degree N/#H. By Theorem 3.2(f) there exists a normalized cover f ′ : C → EH such
that (f ′)∗ = h. But then ((π′

H)(S)◦f ′)∗ = h◦(π∗
H)(S) = f∗, and so f = Tx◦(π′

H)(S)◦f ′,
for some x ∈ ES(S) by Lemma 7.2, and so (νE/K,N,H)S is surjective.

Since the bijections (νE/K,N,H)S are clearly compatible with base change, it fol-
lows that they yield the desired isomorphism of functors.

(b) It is immediate that the union of the right hand side is disjoint and is contained
in H(2)

E/K,N (S). To prove the opposite inclusion, let f : C → ES be an arbitrary genus
2 cover of degree N and put H = Ker(f∗). Then #H|N (and #H �= N), hence
H ≤ JES [N ] � ES [N ]. Since E[N ] is a constant group scheme (and S is connected),
every S-subgroup scheme of ES [N ] is of the form HS , for a (constant) K-subgroup
scheme H ≤ E, and so cl(f : C → ES) ∈ H(2)

E/K,N,H(S) with H ∈ S∗(E/K,N), as
desired. �

Remark. In the above Proposition 3.4(b) we can replace the hypothesis that E[N ] be
constant by the weaker assumption that E[M ] be constant for every M |N , M �= N

(as the above proof shows). In particular, we see that if N is a prime then H(2)
E/K,N =

Hmin
E/K,N .

4. The modular curves XE/K,N and XE/K,N,ε

For a given elliptic curve E/K, let

XE/K,N : Sch/K → Sets

denote the functor which “classifies E[N ]-structures of elliptic curves”. Thus, if S is any
K-scheme, then XE/K,N (S) = {(E′, ψ)}/� is the set of isomorphism classes of pairs
(E′, ψ) consisting of an elliptic curve E′/S and an S-isomorphism ψ : ES [N ] ∼→ E′[N ]
of the S-group schemes of N -torsion points of ES and E′; here two such pairs are
equivalent, i.e. (E′

1, ψ1) � (E′
2, ψ2), if there is an S-isomorphism ϕ : E′

1
∼→ E′

2 such
that ψ2 = ϕ ◦ ψ1. Furthermore, if β : S′ → S is any K-morphism, then the map
XE/K,N (β) : XE/K,N (S) → XE/K,N (S′) is given by base-change, i.e. by the assignment
(E′, ψ) �→ (E′

S′ , ψ(S′)).

Theorem 4.1

If N ≥ 3 is invertible in K, then the functor XE/K,N is representable by a smooth

affine curve XE/K,N/K which is a twist of the usual (affine) modular curve X ′
N/K

which classifies elliptic curves with level-N -structures. More precisely, if K ′/K is

any extension field such that the N -torsion points of E are K-rational over K ′, then

XE/K,N ⊗K ′ � X ′
N ⊗K ′.
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Proof. This is analogous to Corollary 4.7.2 of [19] and is proved by exactly the same
techniques. To explain this more precisely, fix a finite étale group scheme G/K of rank
N2 and consider the moduli problem PG/K “which classifies G-structures of elliptic
curves”. By this we mean the contravariant functor

PG/K : Ell/K → Sets

from the category Ell/K of elliptic curves E′/S over variable K-schemes S (cf. [19],
(4.1), (4.13)) defined by PG/K(E/S) = IsomS−gp(GS , E

′[N ]), the set of all S-group
isomorphisms α : GS = G ×K S

∼→ E′[N ]. (Each such α will be called a G-structure
of E′/S.)

Note that in the case that G = GN := Z/NZ × Z/NZ is the constant group
scheme of rank N2, a G-structure is the same as a (naive) level-N -structure (or Γ(N)-
structure) in the sense of [19], (3.1). Furthermore, since the above functor XE/K,N

depends only on the K-group scheme E[N ] (which has rank N2), we see that this
functor is closely related to the functor PE[N ]/K ; in fact, we have

XE/K,N = P̃E[N ]/K : Sch/K → Sets,

where P̃ is the functor on Sch/K associated to P in the sense of [19], p. 108 and p.
125; i.e. P̃ classifies isomorphism classes of elliptic curves with P-structures.

Now the same argument as that of [19], Corollary 4.7.2 shows that PG is repre-
sentable by a smooth affine curve. Indeed, PG/K is relatively representable and finite
étale (since for a given E′/S, the functor (of S-schemes) T �→ IsomT−gp(GT , E

′
T [N ])

is represented by a finite étale S-scheme; cf. [19], 1.6.7). Moreover, PG/K is rigid for
N ≥ 3 (cf. [19], Corollary 2.7.2), and so PG/K is representable by [19], (4.7.0); in
particular, P̃G/K is representable by [19], A.4.2 (p. 126).

Applying this to the case that G = E[N ] shows that XE/K,N = P̃E[N ]/K is
representable by a K-scheme XE/K,N . Furthermore, if K ′/K is as given, then
E′
K [N ] � (GN )/K′ , and so PEK′ [N ] � P(GN )/K′/K′ , which implies that XE/K,N ⊗K ′ =

XEK′/K′,N = (XN )/K′ . Since the latter is a smooth affine curve over K ′ (cf. [19],
Corollary 4.7.2), it follows (by faithfully flat descent) that XE/K,N is a smooth affine
curve over K. �

Remark. If N ≤ 2, then the functor XE/K,N is no longer representable by a scheme.
Indeed, in this case the above moduli problem PE[N ]/K is not rigid because [−1] acts tri-
vially, and so it follows from [19], (A.4.2), that the moduli functor XE/K,N = P̃E[N ]/K

is not representable (because PE[N ]/K is still relatively representable). However, the
discussion of [19], §8.1 show that XE/N,N is always coarsely representable by a normal
affine curve XE/K,N .

It is well-known that the curves XN/K and hence XE/K,N are not geometrically
connected; indeed, each is a sum of φ(N) irreducible components over K. Now for the
curves XE/K,N , this decomposition already takes place over K (even though (XN )/K
may still be irreducible as a K-scheme). The reason for this is that it is possible to
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define a determinant of an isomorphism ψ : ES [N ] → E′[N ], as the following lemma
shows.

Lemma 4.2

Let E/S and E′/S be elliptic curves over a scheme S, and suppose ψ : E[N ] ∼→
E′[N ] is an S-isomorphism, where N is invertible in S. Then there is a unique auto-

morphism det(ψ) ∈ AutS(µN ) � ((Z/NZ)×)/S such that

(15) e′N ◦ (ψ × ψ) = det(ψ) ◦ eN ,

where eN : E[N ] ×E[N ] → µN and e′N : E′[N ] ×E′[N ] → µN denote the eN -pairings

of E and E′.

Proof. Viewing E[N ] as a (locally constant) étale sheaf of Z/NZ-modules on Set, let
∧2
AE[N ] be its second exterior power with respect to A = Z/NZ (which is formed

analogous to the tensor product of étale sheaves; cf. [25], p. 79); thus, ∧2
AE[N ] is a

(locally constant) étale sheaf of A-modules. Since eN is an alternating pairing (cf. [19],
p. 90, 505), we have an induced A-homomorphism of étale sheaves eN : ∧2E[N ] → µN
because for any étale sheaves M ,N of A-modules we have the canonical isomorphism
(analogous to [25], Proposition II.3.19)

HomA(∧2
AM,N) � AltA(M2, N).

Now since eN is non-degenerate (cf. [19], p. 90) it follows that eN is an isomorphism,
and hence det(ψ) := e′N ◦ ∧2(ψ) ◦ e−1

N is the unique automorphism of µN such that
(15) holds. �

By the above lemma we thus see that for any ε ∈ (Z/NZ)×, the rule

XE/K,N,ε(S) =
{
(E′, ψ) ∈ XE/K,N (S) : det(ψ) = [ε]µN

}

defines an open and closed subfunctor XE/K,N,ε of XE/K,N which is therefore repre-
sented by an open and closed K-subscheme XE/K,N,ε of XE/K,N , and we have the
decomposition

XE/K,N =
∐

ε∈(Z/NZ)×

XE/K,N,ε.

In fact, each XE/K,N,ε is geometrically irreducible, as we shall now show:

Corollary 4.3

If N ≥ 3 is invertible in K, then for each ε ∈ (Z/NZ)×, the functor XE/K,N,ε is

representable by a smooth, affine, geometrically irreducible curve XE/K,N,ε/K which

is a twist of the usual (affine) modular curve X ′(N)/K(ζN ) of level N which classifies

elliptic curves with level-N -structures (of fixed determinant ζN ). More precisely, if

K ′/K is any extension field such that the N -torsion points of E are rational over K ′,
then XE/K,N,ε ⊗K ′ � X ′(N)/K′ .



Hurwitz spaces of genus 2 covers 23

Proof. By Igusa and/or Deligne/Rapoport [2], Corollary IV.5.6, the modular curve
X(N)/K(ζN ) is smooth and geometrically irreducible and hence so is X ′(N) =
X(N) \ {cusps}. Since the functor XEK′/K′,N,ε is isomorphic (over K ′) to the functor
X (N) defining X ′(N), it follows that XE/K,N,ε⊗K ′ � X ′(N)/K′ , and so XE/K,N,ε is
geometrically irreducible. �

Remarks. (a) The modular curves XE/K,N and XE/K,N,1 were already studied by Frey
[5] and Kraus-Oesterlé [20], respectively.

(b) Although we had tacitly always assumed above thatK is a field, this hypothesis
is never used. Thus, (essentially) the same conclusions hold if K is an arbitrary
commutative ring (or even an arbitrary scheme).

(c) If N ≤ 2, then XE/K,N,ε = XE/K,N , for ε ∈ (Z/NZ)× = {1}, and so by the
remark after Theorem 4.1 we see that XE/K,N,ε is coarsely represented by a normal
affine curve XE/K,N,ε. By using [19], Proposition 8.1.6 we see that XE/K,N,ε ⊗K =
X ′(N), and so XE/K,N,ε is again a smooth irreducible curve.

5. The basic construction

5.1. The functor AE/K,N

We now return to the Hurwitz functor HE/K,N which was defined in Section 3 and show
that it is (finely) representable. To this end we shall generalize the “basic construction”
of genus 2 covers presented in [8], [16] so as to obtain an (open) embedding of functors

Ψ : HE/K,N ↪→ XE/K,N,−1.

Before defining this functor in full generality, let us briefly recall that this “basic
construction” shows that any (minimal) genus 2 K-cover f : C → E of degree N

determines a unique pair (E′
f , ψf ) ∈ XE/K,n,−1(K) where E′

f/K is the complementary
elliptic curve (cf. Proposition 2.7) and ψf : E[N ] ∼→ E′[N ] is an anti-isometry, i.e. an
isomorphism of determinant −1, and that conversely for each such a pair (satisfying a
suitable additional hypothesis) one can reconstruct the cover f : C → E.

We shall now see that the same statement holds for (normalized) genus 2 covers
of ES/S over an arbitrary base S. However, instead of proving this directly, it is
more convenient to divide the above construction into two steps, which amounts to a
factorization of Ψ as

Ψ = Ψ′ ◦ τ : HE/K,N ↪→ AE/K,N
∼→ XE/K,N,−1,

in which τ is (essentially) the Torelli map which associates to a curve its (polarized)
Jacobian and AE/K,N is the functor that classifies principally polarized abelian surfaces
with an embedding “of degree N” of E. In order to explain these terms more precisely,
we introduce the following definition and notation.
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Definition. Let J/S be an abelian scheme with a principal polarization λ : J ∼→ Ĵ .
Then an injective homomorphism h : ES ↪→ J is said to have degree N if we have

(16) ĥ ◦ λ ◦ h = λES/S ◦ [N ]ES .

Notation. E/K be an elliptic curve E/K and N ≥ 2 be an integer. For any K-scheme
S let

AE/K,N (S) = {(J, λ, h)}/�
denote the set of isomorphism classes of triples (J, λ, h) consisting of an abelian scheme
J/S of relative dimension 2, a principal polarization λ : J ∼→ Ĵ of J , and an injective
homomorphism h : ES ↪→ J of degree N . Here, two such triples (J, λ, h) and (J ′, λ′, h′)
are called isomorphic if there exists an S-isomorphism α : J ∼→ J ′ such that λ′ = ĥ◦λ◦h
and h′ = α ◦ h; we then write (J, λ, h) � (J ′, λ′, h′). It is immediate that if β : S′ → S
is any K-morphism, then the triple β∗(J, λ, h) := (J(S′), λ(S′), h(S′)) obtained from
(J, λ, h) by base-change induces an element in AE/K,N (S′) and so we have a (functorial)
map

AE/K,N (β) : AE/K,N (S) → AE/K,N (S′).

We have thus defined a contravariant functor

AE/K,N : Sch/K → Sets.

As a first step of the basic construction we define the “Torelli map” τ which was
mentioned above.

Proposition 5.1
If f : C → ES is a minimal genus 2 cover of degree N , then hf := f∗ ◦ λES/S :

ES → J is an injective homomorphism of degree N . Thus, the rule (f : C → ES) �→
(JC/S , λC/S , hf ) defines a morphism of functors

τ : HE/K,N → AE/K,N .

Proof. Since f is minimal, f∗ : JES → JC/S is an injective homomorphism (by
definition). Now by (46) we have [N ]JES/S = f∗ ◦ f∗ = λ−1

ES/S
◦ (f∗)ˆ◦λC/S ◦ f∗, which

shows that f∗ and hence hf has degree N . �

5.2. The isomorphism Ψ′ : AE/K,N → XE/K,N,−1

Our next aim is to construct the morphism Ψ′ : AE/K,N → XE/K,N,−1. For this,
we first prove:

Proposition 5.2
Let J/S be an abelian scheme of relative dimension 2 with a principal polarization

λ : J ∼→ Ĵ , and let h : ES → J be an injective homomorphism of degree N . If
h∗ := ĥ ◦ λ : J → JES/S denotes the “dual” of h, then E′

h := Ker(h∗) is an elliptic
curve over S, and there is a unique isomorphism

ψh : ES [N ] ∼→ E′
h[N ]

of the N -torsion subgroup schemes of ES/S and E′
h/S such that h′ ◦ ψh = h|ES [N ],

where h′ : E′
h = Ker(h∗) ↪→ J denotes the associated closed immersion.
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Proof. Since h : ES ↪→ J is a closed immersion, its “dual” h∗ : J → JES/S is surjective
and has connected fibres by (42). Clearly, these fibres have dimension 2 − 1 = 1 and
so E′

h := Ker(h∗) is an elliptic curve over S which has a natural closed immersion
h′ : E′

h ↪→ J .
Consider the fibre product H := ES ×J E

′
h via the closed immersions h and h′:

H
pr2→ E′

h

pr1↓ ↓ h′

ES
h→ J

Since h and h′ are closed immersions, so are pr2 and pr1. Moreover, since E′
h = Ker(h∗)

and h∗ ◦ h = λES/S ◦ [N ]ES , the image of H with respect to pr1 is Ker(h∗ ◦ h) =
Ker(λES/S ◦ [N ]ES ) = ES [N ] and so H is finite and flat of rank N2 and is annihilated
by multiplication by N . Thus, the image of H under pr2 is contained in E′

h[N ] and
so is equal to E′[N ] since both group schemes have rank N2. Thus, if H ′ denotes
the common image of h ◦ pr1 = h′ ◦ pr2 in J , then the restrictions of h and h′ to the
respective N -torsion subgroups induce isomorphisms

h|ES [N ] : ES [N ] ∼→ H ′ and h′|E′
h
[N ] : E′

h[N ] ∼→ H ′,

and so ψh := (h′|E′
h
[N ])

−1 ◦ h|ES [N ] : ES [N ] ∼→ E′
h[N ] is the desired isomorphism.

Note that since h′ is a (closed) immersion (hence a monomorphism), ψh is uniquely
determined by the indicated property. �

Corollary 5.3

If (h′)∗ = (h′)ˆ◦ λ : J → JE′
h
, then we have

(17) h
(
Ker(h∗ ◦ h)

)
= h′

(
Ker((h′)∗ ◦ h′)

)
= ES ×J E

′
h � ES [N ]

and hence the injection h′ : E′
h ↪→ J also has degree N .

Proof. The above proof shows that h(Ker(h∗ ◦ h)) = H ′ = ES ×J E
′
h � ES [N ]. To

prove that also h′(Ker((h′)∗ ◦ h′)) = ES ×J E
′
h, we first note that by the definition of

h′ we have the exact sequence (of abelian schemes)

(18) 0 → E′
h
h′
→ J

h∗
→ JES → 0.

Dualizing this sequence and composing with λ and κES : ES
∼→ ĴES yields the sequence

(19) 0 → ES
h→ J

(h′)∗→ JES → 0

which is again exact by (43); here we have also used the fact that λ−1 ◦ (h∗)ˆ◦ κES =
λ−1 ◦ λ̂ ◦ (ĥ)ˆ◦ κES = h. Thus we have h(ES) = Ker((h′)∗) and hence, since h′ is
injective, we obtain

h′
(
Ker((h′)∗ ◦ h′)

)
= h(ES) ∩ h′(E′

h) = ES ×J E
′
h,

which proves (17).
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To prove that h′ has degree N , i.e. that the equation (h′)∗ ◦ h′ = λE′
h
◦ [N ] holds,

it is enough (by rigidity) to prove this fibre-by-fibre, so assume S = Spec(F ), where F
is a field. Now since (h′)∗ ◦ h′ = ĥ′ ◦ λ ◦ h is a polarization on E′

h (cf. (37)), it follows
that (h′)∗ ◦h′ = λE′

h
◦ [n] for some n > 0 since all polarizations on E′

h are of this form.
But since Ker((h′)∗ ◦ h′) � EF [N ] has rank N2, it follows that n = N , and so h′ has
degree N , as claimed. �

By the above proposition, each triple (J, λ, h) determines a pair (E′
h, ψh) and

hence an element XE/K,N (S). It is easy to see that this construction is compatible
with the equivalence relation of covers; more precisely, we have:

Proposition 5.4

Suppose Ji/S are two abelian schemes of relative dimension 2 with principal pola-

rizations λi : Ji
∼→ Ĵi and that hi : ES → Ji are injective homomorphisms of degree N ,

for i = 1, 2. If α : J1
∼→ J2 is an isomorphism such that λ2 = α̂◦λ1 ◦α and h2 = α◦h1,

then there is an induced isomorphism α′ : E′
h1

∼→ E′
h2

such that α′ ◦ψh1 = ψh2 , and α′

is uniquely characterized by this property if N ≥ 3. (If N = 2 and S is connected, then

α′ is unique up to sign.) In particular, the assignment (J, λ, h) �→ (E′
h, ψh) defines a

morphism of functors

Ψ′ : AE/K,N → XE/K,N .

Proof. We first show that if N ≥ 3 (resp. if N = 2 and S is connected), then α′ is
uniquely determined (resp. is uniquely determined up to sign) by this property. Indeed,
if α′′ : E′

h1

∼→ E′
h2

is another such isomorphism, then β := (α′)−1 ◦ α′′ ∈ AutS(E′
h1

)
satisfies β|E′

h1
[N ] = idE′

h1
[N ], and so β = idE′

h1
(resp. β = ±idE′

h1
) by [19], p. 85, which

means that α′′ = α′ (resp. that α′′ = ±α′).
We now prove the existence of α′. Dualizing the relation h2 = α ◦ h1 (and com-

posing with λi) yields h∗2 = h∗1 ◦ α∗, where α∗ = λ−1
2 ◦ α̂ ◦ λ1 = α−1, where the latter

equality follows from the hypothesis λ2 = α̂ ◦ λ1 ◦ α. Thus h∗1 = h∗2 ◦ α, and so by the
universal property of kernels, α induces a (unique) isomorphism α′ : E′

h1
= Ker(h∗1)

∼→
E′
h2

= Ker(h∗2) such that h′2 ◦ α′ = α ◦ h′1, where h′i : E′
hi

= Ker(h∗i ) ↪→ Ji are the
canonical inclusions.

It is now easy to see that α′◦ψf1 = ψf2 . Indeed, using the defining equation of ψh1

(cf. Proposition 5.2), we have h′2 ◦α′ ◦ψh1 = α ◦h′1 ◦ψh1 = α ◦ (h1)|ES [N ] = (h2)|ES [N ],
which means that α′ ◦ψh1 satisfies the defining equation of ψh2 , and so ψh2 = α′ ◦ψh1 ,
as claimed.

Thus the map (J, λ, h) �→ (E′
h, ψh) is compatible with the equivalence relations

and hence determines a map Ψ′
S : AE/K,N (S) → XE/K,N (S). Since this map is

clearly compatible with base-change, Ψ′ = {Ψ′
S}S defines a morphism of functors

Ψ′ : AE/K,N → XE/K,N . �

We next show that Ψ′ maps AE/K,N into the component XE/K,N,−1 of XE/K,N

and that Ψ′ : AE/K,N → XE/K,N,−1 is an isomorphism of functors. For this we shall
first prove the following result.
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Proposition 5.5

In the situation of Proposition 5.2, let A := ES ×S E
′
h denote the product surface

over S and let π : A → J be defined by

(20) π = h ◦ prES + h′ ◦ prE′
h

where prES : A → ES and prE′
h

: A → E′
h are the projections. Then π is an isogeny of

degree N2 whose kernel is Gψh = Graph(−ψh) ⊂ ES [N ] ×S E
′
f [N ] ⊂ A, the graph of

the isomorphism −ψh. Furthermore, if π′ : J → A is defined by

(21) π′ := iES/S ◦ λ−1
ES/S

◦ h∗ + iE′
h
◦ λ−1

E′
h
/S ◦ (h′)∗

where iES : ES ↪→ A and iE′
h

: E′
h ↪→ A are the canonical embeddings and (h′)∗ :=

(h′)ˆ◦ λ, then we have π′ ◦ π = [N ]A and π ◦ π′ = [N ]J . Furthermore, if λA = λES/S ⊗
λE′

h
/S : A ∼→ Â denotes the product polarization, then we have the commutative

diagram

(22)

A
λA→ Â

π↓ ↓π̂′

J
λ→ Ĵ

π′↓ ↓π̂

A
λA→ Â .

Proof. Let k : Kψ := Ker(π) ↪→ A denote the closed immersion defined by the kernel
of π and let p = (prES )|Kψ = prES ◦ k : Kψ → ES , and p′ = (prE′)|Kψ = prE′ ◦ k :
Kψ → E′ = E′

h denote the restriction of the projection maps of A to Kψ. Then by the
universal property of kernels it follows from (20) that (Kψ, p,−p′) is the fibre product
ES ×J E

′ with respect to the maps h and h′. Thus, by the proof of Proposition 5.2, it
follows that p and p′ factor over the immersions jN : ES [N ] ↪→ ES and j′N : E′[N ] ↪→
E′ as p = jN ◦pN and p′ = j′N ◦p′N , and that pN : Kψ

∼→ ES [N ] and p′N : Kψ
∼→ E′[N ]

are isomorphisms. Thus, ψh = −p′N ◦ p−1
N , and so, if γ = γ−ψh : ES [N ] → A[N ]

denotes the graph morphism, then we have

(jN × j′N ) ◦ γ ◦ pN = k : Kψ ↪→ A

because

prES ◦ (jN × j′N ) ◦ γ ◦ pN = jN ◦ prES [N ] ◦ γ ◦ pN
= jN ◦ idES [N ] ◦ pN = p = prES ◦ k

and

prE′ ◦ (jN × j′N ) ◦ γ ◦ pN = j′N ◦ prE′[N ] ◦ γ ◦ pN
= j′N ◦ (−ψh) ◦ pN = j′N ◦ p′N = p′ = prE′ ◦ k.
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Since pN is an isomorphism, this equation means that Kψ = Graph(−ψh) (as closed
subschemes of A), as desired. Moreover, since Graph(−ψh) � ES [N ] has rank N2, we
see that π is an isogeny (because A/S and J/S both have relative dimension 2).

In order to verify that π′ ◦ π = [N ]A, we first observe that

(23) λ−1
ES/S

◦ h∗ ◦ h = [N ]ES , h
∗ ◦ h′ = 0, (h′)∗ ◦ h = 0, λ−1

E′/S ◦ (h′)∗ ◦ h′ = [N ]E′ .

Indeed, the first and last equation of (23) are a restatement of (16) (since both h and
h′ have degree N by Corollary 5.3), and the second and third equations follow from
the exact sequences (18) and (19).

Now by (20), (21) and (23) we obtain

π′ ◦ π = (iES ◦ λ−1
ES/S

◦ h∗ + iE′
h
◦ λ−1

E′
h
/S ◦ (h′)∗) ◦ (h ◦ prES + h′ ◦ prE′

h
)

= iES ◦ [N ]ES ◦ prES + iE′
h
◦ [N ]E′

h
◦ prE′

h

= (iES ◦ prES + iE′
h
◦ prE′

h
) ◦ [N ]A = [N ]A,

as claimed. Furthermore, from this we get π ◦ π′ ◦ π = π ◦ [N ]A = [N ]J ◦ π, and so
π ◦ π′ = [N ]J since π is an isogeny and hence an epimorphism in AbSch/S .

It remains to show that the diagram (22) commutes. For this we first observe that
if ϕ = ϕES ,E′ : Â ∼→ JES/S ×S JE′/S is the canonical isomorphism of (39), then

(24) ϕ ◦ π̂ ◦ λ = iJES/S ◦ h∗ + iJE′
h
/S

◦ (h′)∗

because

ϕ ◦ π̂ ◦ λ = ϕ ◦ (h ◦ prES )ˆ◦ λ+ ϕ ◦ (h′ ◦ prE′
h
)ˆ◦ λ = ϕ ◦ p̂rES ◦ ĥ ◦ λ

+ ϕ ◦ p̂rE′
h
◦ ĥ′ ◦ λ = iJES/S ◦ h∗ + iJE′

h
/S

◦ (h′)∗.

From (24), (20) and (23) we obtain

ϕ ◦ π̂ ◦ λ ◦ π = (iJES/S ◦ h∗ + iJE′
h
/S

◦ (h′)∗) ◦ (h ◦ prES + h′ ◦ prE′
h
)

= iJES/S ◦ λES/S ◦ [N ]ES ◦ prES + iJE′
h
/S

◦ λE′
h
/S ◦ [N ]E′

h
◦ prE′

h

= (λES/S × λE′
h
/S) ◦ [N ]A = ϕ ◦ λA ◦ π′ ◦ π.

Thus, ϕ◦π̂◦λ◦π = ϕ◦λA◦π′◦π, and hence π̂◦λ = λA◦π′ because ϕ is an isomorphism
and π is an isogeny. Thus, the bottom square of (22) commutes, and hence so does
the top square since it is the dual of the bottom square. �
Remarks. (a) The commutative diagram (22) is essentially the diagram on p. 157 of
[8], where it is proved by a slightly different method (in the case that S = Spec(K)
and J = JC/K).

(b) The maps π and π′ can also be characterized by the properties

(25) π ◦ iES = h and π ◦ iE′
h

= h′,

(26) prES ◦ π′ = λ−1
ES/S

◦ h∗ and prE′
h
◦ π′ = λ−1

E′
h
/S ◦ (h′)∗.

Corollary 5.6
We have NλA = π̂ ◦ λ ◦ π, and so Graph(−ψh) ≤ A[N ] is an isotropic subgroup

of A[N ] with respect to eNλA . Thus, ψh : ES [N ] ∼→ E′[N ] is an anti-isometry, i.e.
e′N ◦ (ψh ×S ψh) = [−1]µN ◦ eN .
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Proof. By commutativity of the bottom square of (22) we obtain (π̂ ◦ λ) ◦ π = (λA ◦
π′) ◦ π = λA ◦ [N ]A, which proves the first assertion.

Thus, by the functorial property (38), we have for every S-scheme T and for all
T -valued points x, y ∈ Graph(−ψf ) = Ker(π) that

eNλA(x, y) = eπ̂◦λ◦π(x, y)
(38)
= eλ(π(x), π(y)) = eλ(0, 0) = 1,

which means that Graph(−ψh) is an isotropic subgroup of A[N ] (with respect to eNλA).
Since λA = λ1⊗λ2 is the product polarization (with λ1 = λES/S and λ2 = λE′

h
/S),

we have eNλA = (eNλ1 ◦ (pr1 × pr1)) · (eNλ2 ◦ (pr2 × pr2)). Thus, applying this to
x = (x′,−ψh(x′)) and y = (y′,−ψh(y′)), where x′, y′ ∈ ES [N ](T ), yields

eNλ1(x′, y′)eNλ2(−ψh(x′),−ψh(y′)) = eNλA(x, y) = 1,

which proves that −ψh (and hence also ψh) is an anti-isometry. �

This therefore shows that Ψ′ maps AE/K,N into the (−1)-component of XE/K,N ,
i.e. into XE/K,N,−1. In order to show that Ψ′ is an isomorphism, we shall construct an
inverse morphism Ψ′′ : XE/K,N,−1 → AE/K,N . To this end, we shall prove:

Proposition 5.7

Suppose E′/S is an elliptic curve with an anti-isometry ψ : ES [N ] ∼→ E′[N ]. Let

A = ES ×S E
′ and let Gψ := Graph(−ψ) ≤ ES [N ]×S E

′[N ] = A[N ] denote the graph

of −ψ. Then the quotient J = Jψ := A/Gψ is a projective abelian scheme and the

quotient map π = πψ : A → J = A/Gψ is an isogeny of degree N2. Furthermore,

there exists a unique isogeny π′ : J → A such that π′ ◦π = [N ]A and π ◦π′ = [N ]J . In

addition, J has a unique principal polarization λJ : J ∼→ Ĵ such that λJ ◦ π = π̂′ ◦ λA,

where λA = λES/S ⊗ λE′/S denotes the product polarization of A = ES ×S E′, and

then we also have π̂ ◦ λJ = λA ◦ π′.

Proof. Since Gψ � ES [N ] is a finite, flat closed subscheme of the (strongly) projec-
tive group scheme A/S, the quotient group scheme J := A/Gψ exists and is quasi-
projective; cf. Raynaud [33], Theorem 1(iv) and/or [1], Theorem 8.2/12. Furthermore,
it is immediate that the quotient map π : A → J = A/Gψ is finite, flat, and surjective
and so J/S is projective; cf. [11], (II, 6.6.4). Since it is immediate that the fibres of
Js = As/(Gψ)s are geometrically irreducible, we see that Js is an abelian scheme.

It is thus clear that π : A → J is an isogeny of order N2 since Gψ � ES [N ]
has rank N2. Moreover, since Gψ ≤ A[N ] = Ker([N ]A), it follows by the universal
property of quotients (cf. [30], p. 3) that [N ]A = π′ ◦ π, for some homomorphism
π′ : J → A. Clearly, π′ is an isogeny (since π and [N ]A are). By the same argument
as in the proof of Proposition 5.5 one concludes that π ◦ π′ = [N ]J holds as well.

We now construct λJ . For this, we first note that there can be at most one
isomorphism λ : J ∼→ Ĵ such that λ ◦ π = π̂′ ◦ λA, for π is an epimorphism. Thus, it is
enough to prove that λ exists after a faithfully flat base extension S′/S (and that it is
a polarization).
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Since ψ is an anti-isometry, Gψ is an isotropic subgroup with respect to ENλA (see
the proof of Corollary 5.6). Now λA = λΘ, where Θ = pr∗1O([0ES/S ])⊗ pr∗2O([0E′/S ]).
Thus, by Lemma 5.8 below we know that after a suitable finite, faithfully flat base
extension (which, for ease of notation, will be suppressed in the sequel), there is an
invertible sheaf M on J such that ΘN � π∗M, and so λA ◦ [N ]A = λΘN = λπ∗M =
π̂ ◦ λM ◦ π, the latter by (37). Thus π̂′ ◦ λA ◦ [N ]A = π̂′ ◦ π̂ ◦ λM ◦ π = λM ◦ π ◦ [N ]A,
and so π̂′ ◦ λA = λM ◦ π since [N ]A is an epimorphism. Thus λJ = λM is the desired
polarization. Note that since deg(π) = deg(π′) = N2, it follows that deg(λJ) =
deg(λA) = 1, i.e. that λJ is a principal polarization.

Finally, to prove that the last equation also holds, we multiply the previous equa-
tion by π̂ to obtain π̂ ◦ λJ ◦ π = π̂ ◦ π̂′ ◦ λA = [N ]Â ◦ λA = λA ◦ [N ]A = λA ◦ π′ ◦ π,
which implies that π̂ ◦ λJ = λA ◦ π′ because π is an epimorphism. �

In the above proof we had used the following basic fact about the descent of
polarizations.

Lemma 5.8

Let π : A → B be an isogeny of abelian S-schemes and let L ∈ Pic(A) be an

ample invertible sheaf on A. If Ker(π) is an isotropic subgroup of K(L) := Ker(λL)
with respect to the pairing eL, then there exists a finite, faithfully flat extension S′/S
and an invertible sheaf M′ on B(S′) such that L(S′) � π∗

(S′)M′, where L(S′) denotes

the pullback of L to A(S′).

Proof. This can be proved by a modification of the proof of the Corollary on p. 231 of
Mumford [32] (see also [28], Corollary VI.1.3). As in [32], §23 and/or [27]), let G(L)
denote the theta-group associated to L; recall that G(L) fits into an exact sequence

0 → Gm → G(L)
p→ K(L) → 0.

Let H = Ker(π) and G = p−1(H). Since eL is given by the commutator of G(L),
the isotropy of H means that G is commutative. Now by [25], Lemma III.4.17 (and
its proof) there is finite faithfully flat extension S′/S such that G(S′) � Gm × H(S′)

(as group schemes). Thus, there is a homomorphism α : H(S′) → G(S′) such that
p ◦ α = id, which means that L(S′) = π∗(M′) by [27], Theorem 4.1. �

Corollary 5.9

In the situation of Proposition 5.7, the maps hψ := πψ ◦ iES : ES → Jψ and

h′ψ := πψ ◦ iE′ : E′ → Jψ are injective homomorphisms of degree N whose “duals”

h∗ψ := ĥψ ◦ λJ and (h′ψ)∗ := ĥ′ψ ◦ λJ satisfy the relations

(27) h∗ψ = λES/S ◦ prES ◦ π′
ψ and (h′ψ)∗ = λE′/S ◦ prE′ ◦ π′

ψ,

and hence fit into the exact sequences

(28) 0 → E′ h
′
ψ→ Jψ

h∗
ψ→ JES/S → 0 and 0 → ES

hψ→ Jψ
(h′
ψ)∗

→ JE′/S → 0.
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In particular, the assignment (E′, ψ) �→ (Jψ, λJψ , hψ) defines a morphism of functors

Ψ′′ : XE/K,N,−1 → AE/K,N .

Proof. Since ψ is an isomorphism, we have Ker(hψ) = i−1
ES

(Gψ ∩ iES (ES)) = Ker(ψ) =
{0}, and so hψ is an injective homomorphism. Similarly, h′ψ is also an injective homo-
morphism.

We next verify (27). By definition,

h∗ψ = ĥψ ◦ λJ = îES ◦ π̂ ◦ λJ = îES ◦ λA ◦ π′ = λES/S ◦ prES ◦ π′,

where the last equality used (40). This proves the first equation of (27), and the second
is proved similarly.

The fact that hψ and h′ψ have degree N follows immediately from (27) because

ĥψ ◦ λJ ◦ hψ = h∗ψ ◦ hψ
(27)= λES/S ◦ prES ◦ π′ ◦ π ◦ iES

= λES/S ◦ prES ◦ [N ]A ◦ iES = λES/S ◦ [N ]ES .

Thus, hψ has degree N , and a similar computation shows that h′ψ also has degree N .
Next we show that the sequences (28) are exact. By (27) we have

h∗ψ ◦ h′ψ = λES/S ◦ prES ◦ π′ ◦ π ◦ iE′ = λES/S ◦ prES ◦ iE′ ◦ [N ]E′ = 0,

and similarly, (h′ψ)∗ ◦ hψ = 0. Moreover, since hψ and h′ψ are injective, their duals h∗ψ
and (h′ψ)∗ are surjective and have connected fibres (cf. (42)), and so it follows easily
that the sequences (28) are exact.

Finally, we verify that the assignment (E′, ψ) �→ cl(Jψ, λJψ , hψ) defines a functor.
Indeed, by the above we know that the (isomorphism class of the) triple (Jψ, λJψ , hψ)
lies in AE/K,N (S). Furthermore, it is easy to see that this assignment is compatible
with the equivalence relation on XE/K,N,−1(S), for if (E′′, ψ′) � (E′, ψ) via α : E′ ∼→
E′′ (with α ◦ ψ = ψ′), then α̃ := idES × α : A = ES ×S E′ ∼→ A′ := ES ×S E′′

is an isomorphism such that α̃(Gψ) = Gψ′ , and so we have an induced isomorphism
α : Jψ

∼→ Jψ′ such that πψ′ ◦ α̃ = α◦πψ, from which one easily concludes that α defines
an isomorphism (Jψ, λJψ , hψ) � (Jψ′ , λJψ′ , hψ′).

Thus, we have a well-defined map Ψ′′
S : XE/K,N,−1(S) → AE/K,N (S). Since this

map is clearly compatible with base-change, the collection Ψ′′ = {Ψ′′
S}S defines the

desired morphism of functors Ψ′′ : XE/K,N,−1 → AE/K,N . �

Theorem 5.10

The morphisms

Ψ′ : AE/K,N → XE/K,N,−1 and Ψ′′ : XE/K,N,−1 → AE/K,N

are inverses of each other and hence are isomorphisms.
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Proof. Fix a K-scheme S, and let cl(J, λ, h) ∈ AE/K,N (S). Then by definition

Ψ′′
S

(
Ψ′
S(cl(J, λ, h))

)
= Ψ′′

S

(
cl(E′

h, ψh)
)

= cl
(
Jψh , λJψh , hψh

)
,

where E′
h = Ker(ĥ ◦ λ) and Jψh = Ah/Gψh with Ah = ES ×S E′

h. Now by Propo-
sition 5.5 the map π : Ah → J is the quotient map with respect to Gψh , and hence
we have a canonical identification J = Jψh . Furthermore, since λ ◦ π = π̂′ ◦ λAh (by
Proposition 5.5 again), we have (by definition) λJψh = λ. Finally, hψh = iES ◦ π = h

by equation (25), and so Ψ′′
S(Ψ′

S(cl(J, λ, h))) = cl(J, λ, h).
Conversely, let cl(E′, ψ) ∈ XE/K,N,−1(S). Then

Ψ′
S

(
Ψ′′
S(cl(E′, ψ))

)
= Ψ′

S

(
cl(Jψ, λJψ , hψ)

)
= cl

(
E′
hψ
, ψhψ

)
.

Here Jψ = A/Gψ and λJ are as defined in Proposition 5.7 and hψ = πψ ◦ iES as in
Corollary 5.9. Furthermore, E′

hψ
= Ker(h∗ψ), and ψhψ is the unique anti-isometry such

that (hψ)′◦ψhψ = (hψ)|ES [N ], where (hψ)′ : E′
hψ

↪→ Jψ denotes the canonical inclusion.
From the first exact sequence in (28) we see that E′ = Ker(h∗ψ), and so there

exists a unique isomorphism α : E′ ∼→ E′
hψ

such that (hψ)′ ◦ α = h′ψ := πψ ◦ iE′ .
We now claim that

(29) ψhψ = α ◦ ψ or, equivalently, (id× α)(Gψ) = Gψhψ
,

where, as above, Gψ ≤ ES ×S E′ and Gψhψ
≤ ES ×S E′

hψ
denotes the graph of −ψ

and of −ψhψ , respectively.
To prove (29), put π = hψ ◦ prES +(hψ)′ ◦ prE′

hψ
. Then we have π ◦ (id×α) = πψ

because

(
π ◦ (id× α)

)
◦ iES =

(
hψ ◦ prES ◦ iES

)
+

(
(hψ)′ ◦ α ◦ prE′ ◦ iES = hψ = πψ ◦ iES

and

(π ◦ (id× α)) ◦ iE′ = (hψ ◦ prES ◦ iE′) + ((hψ)′ ◦ α ◦ prE′ ◦ iE′

= (hψ)′ ◦ α = h′ψ = πψ ◦ iE′ .

Now by Proposition 5.5 we have Ker(π) = Gψhψ
, and so

Gψhψ
= Ker(π) = Ker((id× α) ◦ πψ) = (id× α)(Ker(πψ)) = (id× α)(Gψ)

since Ker(πψ) = Gψ by definition of πψ. This proves (29), and hence α defines an
isomorphism (E′, ψ) � (E′

hψ
, ψhψ ). This means that

Ψ′
S

(
Ψ′′
S(cl(E′, ψ))

)
= cl

(
E′
hψ
, ψhψ

)
= cl(E′, ψ),

and so Ψ′
S and Ψ′′

S are inverse maps of each other. �

Remarks. (a) Note that the above theorem does not require any hypotheses on the
base field K, and hence is true even if char(K)|2N . In fact, the hypothesis that K is
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a field was never used, and so the same result holds if E/K is an elliptic curve over an
arbitrary ring (or scheme) K.

(b) The above theorem is actually a special case of general result which is valid for
arbitrary abelian varieties. More precisely, let E/K be an abelian variety (or abelian
scheme) of (relative) dimension d and let λ : E → Ê be a polarization. Fix an integer
g ≥ 1, and consider, for a K-scheme S, the sets

A(g)
E/K,λ(S) =

{
cl(A, λA, h)

}
and X (g)

E/K,λ,−1(S) =
{
cl(B, λB , ψ)

}

in which A/S, B/S are abelian schemes of dimension g, λA : A ∼→ Â is a principal
polarization, h : E ↪→ A an injective homomorphism of “type λ”, i.e. ĥ ◦ λ ◦ h = λ,
λB : B → B̂ is a polarization and ψ : Ker(λ) ∼→ Ker(λB) is an anti-isometry (with
respect to the pairings eλ and eλB ). These definitions lead to functors A(g)

E/K,λ and

X (g)
E/K,λ,−1 which generalize the functors A and X above; clearly

AE/K,N = A(2)
E/K,NλE/K

and XE/K,N,−1 = X (1)
E/K,NλE/K ,−1 (if d = 1).

Now the above proof of Theorem 5.10 can be modified to show that we have in general
an isomorphism of functors:

(30) Ψ : A(g)
E/K,λ

∼→ X (g−d)
E/K,λ,−1.

By combining Theorem 5.10 with the fundamental representability result of Corol-
lary 4.3 we obtain

Corollary 5.11

If N ≥ 3 is invertible in K, then the smooth affine curve XE/K,N,−1 represents

the functor AE/K,N .

5.3. The Torelli map τ : HE/K,N → AE/K,N

We now turn to study the Torelli map τ : HE/K,N → AE/K,N in more detail. The
following result may be viewed as a version of Torelli’s theorem for (special) genus 2
families of curves.

Proposition 5.12

If N ≥ 3, then the Torelli map τ : HE/K,N → AE/K,N is a monomorphism.

Proof. Fix a K-scheme S and suppose that fi : Ci → ES , i = 1, 2, are two normalized
genus 2 covers of ES/S and such that τS(cl(f1)) = τS(cl(f2)). We want to show
that cl(f1) = cl(f2), i.e. that there exists an S-isomorphism ϕ : C1 → C2 such that
f1 = f2 ◦ ϕ.

The hypothesis τS(cl(f1)) = τS(cl(f2)) means that there exists an isomorphism
α : JC1

∼→ JC2 such that α̂◦λC2/S ◦α = λC1/S and α◦h1 = h2, where hi := f∗
i ◦λES/S .
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Since (fi)∗ = λ−1
JES/S

◦ (f∗
i )ˆ◦ λCi/S = h∗i , the proof of Proposition 5.4 shows that we

also have (f1)∗ = (f2)∗ ◦ α. We now treat the case that N is odd or even separately.
(a) Suppose first that N is odd. Then there exists a sheaf Li ∈ Pic(JCi/S) of

relative degree 1 such that (fi)∗ ◦ jLi = λES/S ◦ fi, for i = 1, 2; cf. Theorem 3.2(d).
Put θi = jLi(Ci), which is a symmetric theta-divisor of JCi/S , i.e. λO(θi) = λCi/S and
[−1]θi = θi. Since λO(α∗θ2) = α̂◦λO(θ2)◦α = λO(θ1), we see that θ′1 := α−1θ2 is a theta
divisor of JC1/S . Clearly, θ′1 is symmetric because [−1]θ′1 = [−1]α−1θ2 = α−1[−1]θ2 =
θ′1. Furthermore, by (13) we have

θ′1 ∩ Ker((f1)∗)[2] = α−1(θ2 ∩ Ker((f2)∗)[2])

= α−1(Ker((f2)∗)[2]#) (13)= Ker((f1)∗)[2]#.

Thus, θ1 and θ′1 are two symmetric theta-divisors satisfying (13), and so by the unique-
ness assertion of Theorem 3.2(e) it follows that θ1 = θ′1. This means that α−1

|θ2 : θ2
∼→ θ1

is an isomorphism, and hence there is a unique S-isomorphism ϕ : C1
∼→ C2 such that

jL2 ◦ ϕ = α ◦ jL1 . Then f2 ◦ ϕ = (f2)∗ ◦ jL2 ◦ ϕ = (f2)∗ ◦ α ◦ jL1 = (f1)∗ ◦ jL1 = f1, as
desired.

(b) Now suppose that N ≥ 4 is even. By Proposition 3.3(b) it is enough to verify
that the assertion is true after a finite faithfully flat base change S′/S which we can
choose by Theorem 3.2(d) in such a way that there exist sheaves Li ∈ Pic((JCi/S)(S′))
of relative degree 1 such that (fi)∗ ◦ jLi = λES/S ◦ fi, for i = 1, 2. (In addition, we
can assume that C(S′)/S

′ has a section.) By a similar argument as for the odd case
we conclude that there exists an x ∈ Ker(f1)∗[2](S′) such that Txα−1θ2 = θ1, where
θi = jLi((Ci)(S′)), and so there is a unique S′-isomorphism ϕ : (C1)(S′)

∼→ (C2)(S′)

such that jL2 ◦ϕ = α ◦ T−x ◦ jL1 . Since −x ∈ Ker(f1)∗[2], a similar computation as in
the odd case shows that f2 ◦ ϕ = f1, and so the assertion follows. �

Corollary 5.13

If f : C → ES is a normalized genus 2 cover of degree N , then E′
f = Ker(f∗)

is an elliptic curve over S and we have a unique anti-isometry ψf : ES [N ] ∼→ E′
f [N ]

such that (f ′)∗ ◦ ψf = (f∗)|ES [N ], where (f ′)∗ : E′
f ↪→ JC/S denotes the canonical

embedding. Furthermore, the rule (f : C → ES) �→ (E′
f , ψf ) defines a functor

Ψ = Ψ′ ◦ τ : HE/K,N → XE,N,−1

which is a monomorphism if N ≥ 3.

Proof. Since Ψ := Ψ′ ◦ τ is a monomorphism for N ≥ 3 by Theorem 5.10 and Proposi-
tion 5.12, all the assertions follow once we have shown that (E′

f , ψf ) is a representative
of Ψ′

S(τS(cl(f))). But this is clear, for by definition

Ψ′
SτS(cl(f)) = Ψ′

S

(
cl(JC/S , λC/S , hf )

)
= cl(E′

hf
, ψhf ),

where
hf = f∗ ◦ λES/S , E′

hf
= Ker(h∗f ) = Ker(f∗) = E′

f ,
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and ψf := ψhf is uniquely determined by h′f ◦ ψf = (hf )|ES [N ], with h′f = (f ′)∗ :
E′
f ↪→ JC/S . �

Remark. The above Proposition 5.12 and its Corollary 5.13 are also true for N = 2
provided that we replace the functors HE/K,2, AE/K,2 and XE/K,2,−1 by their respec-
tive sheafifications H†

E/K,2, A
†
E/K,2 and X †

E/K,2,−1 with respect to the fppf-topology
(cf. [1], p. 201).

The final step in the basic construction is to identify the image of HE/K,N in
AE/K,N with respect to the Torelli map τ . The criterion that will be given below
amounts essentially to the condition that the theta-divisor(s) associated to the po-
larization λJ of an abelian surface J/S be smooth over S. However, since a given
polarization need not have a theta-divisor that is rational over S, this condition has
to be suitably modified. To this end we introduce the following concept.

Definition. A principal polarization λ : J → Ĵ of an abelian scheme J/S is called
theta-smooth at s ∈ S if the principal polarization

λs : Js := J ⊗ κ(s) ∼→ Ĵs

obtained by base change with κ(s), the algebraic closure of κ(s), has a theta-divisor
θs which is smooth over κ(s).

We now prove the following fundamental fact which is also of independent interest.

Proposition 5.14

If J/S is an abelian scheme of relative dimension 2 with a principal polarization

λ : J → Ĵ , then following conditions are equivalent:

(i) (J, λ) is a Jacobian, i.e. there is a smooth curve C/S of genus 2 such that

(JC/S , λC/S) � (J, λ).
(ii) λ is theta-smooth for all s ∈ S.

(iii) There exists a finite, faithfully flat base extension β : S′ → S such that λ(S′) has

an associated theta-divisor θ′ which is smooth over S′.

Proof. (i) ⇒ (ii): Let s ∈ S. Since Cs has genus 2 = dim(Js), the image jx(Cs) of
jx : Cs ↪→ Js (for any x ∈ Cs(κ(s))) is a smooth theta-divisor of Js associated to λs,
and so λ is theta-smooth at s, for all s ∈ S.

(ii) ⇒ (iii): By Lemma 5.15 below we know that there exists a finite, faithfully flat
cover β : S′ → S such that λ(S′) has a theta-divisor θ′, and then θ′

s′
is a theta-divisor

of λs′ , for all s′ ∈ S′. Since θ′
s′

is unique up to a translation on Js′ , condition (ii)

implies that θ′
s′

is smooth over κ(s′), and hence θ′s′ is smooth over κ(s′). Thus, θ′s′ is
smooth for all s′ ∈ S′, and so it follows that θ′ is smooth over S′.

(iii) ⇒ (i): We first prove that there exists a smooth curve C/S such that C ′ :=
C(S′) � θ′. For this we shall use the method of descent of Grothendieck (cf. [1],
Theorem 6.1/7) applied to the pair (θ′,L′), where L′ = ωθ′/S′ ; note that ωθ′/S′ is an
ample invertible sheaf on θ′ because θ′ is a smooth curve of genus 2 over S′.
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To apply this method, consider S′′ := S′×S S
′ with the two projections pi : S′′ →

S′ and let θ′′i := p∗i θ
′ = θ′(pi) be the base change of θ′ via pi, for i = 1, 2. Now θ′′1 and

θ′′2 are both theta-divisors on J ′′ := J(S′′) with respect to the principal polarization
λ′′ := λ(S′′), and so by Lemma 7.1 there exists a unique section x ∈ J ′′(S′′) such that
T ∗
x (θ′′2 ) = θ′′1 , i.e. t := (Tx)|θ′′1 : θ′′1

∼→ θ′′2 is an isomorphism of S′′-curves. Furthermore,
since p∗iL′ = ωθ′′

i
/S′′ = Ω1

θ′′
i
/S′′ , it follows that we have a canonical sheaf isomorphism

ω : t∗p∗2L′ � p∗1L′. Using the fact that x and ω are uniquely defined, it is now easy
to check that the pair (t, ω) satisfies the cocyle condition and hence defines a descent
datum on (θ′,L′). Thus, by Grothendieck’s theorem ([1], Theorem 6.1/7), there exists
a scheme C/S (and a sheaf L ∈ Pic(C)) such that C(S′) � θ′. Furthermore, since θ′/S′

is a smooth curve of genus 2, so is C/S (since S′/S is faithfully flat).
To show that JC/S � J , let j′ : C ′ := C(S′) � θ′ ↪→ J ′ denote the embedding

constructed above, and consider the morphism f ′ : C ′ ×S′ C ′ → Ĵ ′ defined by f ′ =
λ◦s◦ j′× j′, where s : J ′×S′ J ′ → J ′ denotes the minus map (x, y) �→ x−y. We claim
that f ′ = f(S′), for some f : C ×S C → Ĵ . By descent theory ([1], Theorem 6.1/6(a)),
it is enough to show that p∗1f

′ = p∗2f
′, where as above pi : S′′ = S′ ×S S

′ → S′ are the
projections.

Suppose first that x′′, y′′ ∈ C(S′′) are two sections. Then

(p∗i f
′)(x′′, y′′) = λ

(
p∗i j

′(x′′) − p∗i j
′(y′′)

)
= cl

(
(T ∗

p∗
i
j′(x′′)p

∗
iO(θ′) ⊗ (p∗iO(θ′))−1

)
⊗

(
T ∗
p∗
i
j′(y′′)p

∗
iO(θ′) ⊗ (p∗iO(θ′))−1)−1

)
= cl

(
T ∗
p∗
i
j′(x′′)p

∗
iO(θ′) ⊗ (T ∗

p∗
i
j′(y′′)p

∗
iO(θ′))−1

)
.

Now by the above we know that there exists an x ∈ J(S′′) such that p∗2j
′ = Tx ◦ p∗1j′

and T ∗
xp

∗
2O(θ′) � p∗1O(θ′), and so

T ∗
p∗2j

′(x′′)p
∗
2O(θ′) � T ∗

p∗1j
′(x′′)T

∗
xp

∗
2O(θ′) � T ∗

p∗1j
′(x′′)p

∗
1O(θ′)

(and similarly for x′′ replaced by y′′.) This therefore gives

p∗1(f
′)(x′′, y′′) = cl(T ∗

p∗1j
′(x′′)p

∗
1O(θ′) ⊗

(
T ∗
p∗1j

′(y′′)p
∗
1O(θ′))−1

)
= cl(T ∗

p∗2j
′(x′′)p

∗
2O(θ′) ⊗

(
T ∗
p∗2j

′(y′′)p
∗
2O(θ′))−1

)
= p∗2(f

′)(x′′, y′′).

Repeating the same argument with arbitrary T -valued points (for a scheme T/S′′)
shows that we have p∗1(f

′) = p∗2(f
′).

Thus, by descent theory, there exists a unique morphism f : C ×S C → Ĵ such
that f(S′) = f ′. It is immediate from the definition that f ◦ δ = 0, where δ is the
diagonal map, and so by the Albanese property (∗∗∗) (applied to λ−1 ◦ f : C ×C → J)
there exists a unique homomorphism h : JC/S → J such that h ◦ fC/S = λ−1 ◦ f .
Now h is an isomorphism because after base-change it is clear from the definition that
f ′ = λ ◦ fC′/S′ . �

Above we had used:

Lemma 5.15
If λ : A → Â is a polarization of an abelian scheme A/S, then there exists a finite,

faithfully flat base extension β : S′ → S such that λ(S′) is defined by an invertible
sheaf L′ ∈ Pic(A(S′)). Furthermore, if λ is a principal polarization, then L′ can be
chosen such that L′ � O(θ′) for a theta-divisor θ′ on A(S′).
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Proof. First note that by Mumford [30], p. 121, there exists L ∈ Pic(A) such that
λL = 2λ. Then A[2] ≤ K(L) is an isotropic subgroup, and so by Lemma 5.8 there
exists a finite, faithfully flat base extension β0 : S′

0 → S such that L(S′
0)

� [2]∗(L′
0), for

some L′
0 ∈ Pic(A(S′

0)
). Then by a similar argument as in [32], p. 231, there exist, after a

suitable finite, faithfully flat base-change β1 : S′ → S′
0, invertible sheaves L′ ∈ Pic(A′)

and M′ ∈ Pic(S′) such that L(S′) � (L′)2 ⊗ p∗A′(M′), where A′ = A(S′). Then
2λ(S′) = λL(S′) = λ(L′)2 = 2λL′ , and so λ(S′) = λL. This proves the first assertion.

To prove the second assertion, consider M := p∗L′, where p : A(S′) → S′ is
the structure map. Then M is locally free of rank 1 cf. [30], p. 123; recall that λ

is now assumed to be a principal polarization. Thus M ∈ Pic(S), and hence L′′ :=
L′ ⊗ (p∗M)−1 satisfies p∗(L′′) � OS . Via this isomorphism, the global section idOS ∈
Hom(OS ,OS) = Γ(S,OS) gives rise to a global section of L′′ which defines a relative
Cartier divisor θ′ representing L′′ (see the discussion on p. 212ff of [1]), and so the
second assertion follows. �

Corollary 5.16

If λ is a principal polarization of an abelian scheme J/S of relative dimension 2,

then the subset Sθ−sm(λ) ⊂ S consisting of those points of S at which λ is theta-

smooth is an open subset of S.

Proof. By the lemma there exists a finite faithfully flat base extension β : S′ → S such
that λ(S′) has a theta-divisor θ ⊂ J(S′). Then by definition (cf. [11], (IV, 17.3.7)) the
set θsm ⊂ θ of smooth points of θ/S′ is an open subset of θ and hence S′

0 = S′\p(θ\θsm)
is also open (since the structure map p = pJ(S′) : J(S′) → S′ is proper). By definition
(and [11], (IV.17.8.2)) S′

0 is the set of points s ∈ S where θs is smooth, and so S′
0 =

β−1(Sθ−sm(λ)). Since β is faithfully flat (and hence is open and surjective), it follows
that Sθ−sm(λ) is open in S. �

Notation. For each K-scheme S let

JE/K,N (S) = Aθ−sm
E/K,N (S) ⊂ AE/K,N (S)

denote the subset consisting of those classes cl(J, λ, h) such that J is theta-smooth
(for all s ∈ S). Since any base-change of a theta-smooth abelian scheme is again
theta-smooth, this defines a subfunctor JE/K,N of AE/K,N .

Proposition 5.17

The functor JE/K,N is an open subfunctor of AA/K,N . Furthermore, the Torelli

morphism τ : HE/K,N → AE/K,N factors over JE/K,N and defines a surjection

τ : HE/K,N → JE/K,N

which is an isomorphism for N ≥ 3. In particular, τ is an open embedding of functors

(if N ≥ 3).
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Proof. Let S be a K-scheme and let F : hS → JE/K,N be a morphism of func-
tors. If we write F (idS) = cl(J, λ, h) ∈ AE/K,N (S), then by Corollary 5.16 the set
U := Sθ−sm(λ) ⊂ S at which λ is theta-smooth is an open subset of S, and so
F (idS)|U := (J(U), λ(U), h(U)) ∈ JE/K,N (U). Clearly, f(idS)|U represents the fibre
product JE/K,N ×AE/K,N hS , which means that JE/K,N is an open subfunctor of
AE/K,N . This proves the first assertion.

Since each Jacobian is theta-smooth, it is immediate that τ maps into JE/K,N .
To prove that τ is surjective, let S be a K-scheme and let cl(J, λ, h) ∈ JE/K,N (S).
Then by Proposition 5.14 there exists a smooth curve C/S of genus 2 such that
(JC/S , λC/S) � (J, λ). Moreover, by Theorem 3.2(f) there exists a normalized cover
f : C → ES of degree N such that f∗ = h. Thus τS(cl(f)) = cl(J, λ, h), and so τ is
surjective. Moreover, if N ≥ 3 then τ is an isomorphism because τS is injective by
Corollary 5.13. �

This, therefore, completes the “basic construction”. We can now summarize our
results as follows.

Theorem 5.18

The functor Ψ : HE/K,N → XE/K,N,−1 is an open embedding of functors if N ≥ 3;

in particular, Ψ is relatively representable. Thus, if N ≥ 3 is invertible in K, then

HE/K,N is represented by a smooth curve HE/K,N/K which is an open subscheme of

the (twisted) modular curve XE/K,N,−1. In particular, the fibres of HE/K,N/K are

geometrically irreducible.

Proof. Recall that Ψ = Ψ′ ◦ τ (cf. Corollary 5.13). Since Ψ′ is an isomorphism by
Theorem 5.10 and τ is an open embedding by Proposition 5.17 (if N ≥ 3), the first
assertion follows.

Now if N ≥ 3 is invertible in K, then by Corollary 4.3 the twisted modular curve
XE/K,N−1 represents the functor XE/K,N,−1, and so by the first assertion HE/K,K

is represented by an open subscheme HE/K,N of XE/K,N,−1. Since XE/K,N,−1 is a
smooth K-curve with geometrically connected fibres (cf. Corollary 4.3), the same is
true for HE/K,N if (and only if) each geometric fibre (HE/K,N )s is not empty.

To see that this is the case, write k = κ(s) and let E′/k be an elliptic curve
which is not isogenous to Ek. Since k is algebraically closed (and char(k) |/ N), there
exists an anti-isometry ψ : Ek[N ] ∼→ E′[N ], which determines a triple cl(J, λ, h) =
Ψ′′
k(cl(Ek, E

′, ψ)) ∈ AE/K,N (k). But then λ is automatically theta-smooth (cf. [8],
Proposition 1.4 or Theorem 6.1 below), and so HE/K,N (k) �= ∅ by Proposition 5.17. �

Remark. Note that if N ≥ 3, then the above Theorem 5.18 includes Theorem 1.1 of
the introduction as a special case. We shall deal with the case N = 2 at the end of
this section.

The “basic construction” itself is the following statement, which follows from the
fact that τ : HE/K,N → JE/K,N is surjective (Proposition 5.17) and that Ψ′ is bijective
(Theorem 5.10).
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Corollary 5.19 (Basic Construction)

If E′/S is an elliptic curve and ψ : ES [N ] → E′[N ] is an anti-isometry which

is “theta-smooth” (in the sense that the induced principal polarization λJ on Jψ =
(ES ×S E′)/Graph(−ψ) is theta-smooth), then there is a normalized genus 2 cover

f : C → ES of degree N such that the associated anti-isometry ψf is equivalent to ψ.

Moreover, every normalized genus 2 cover of degree N ≥ 2 arises in this way.

Remarks. (a) A small blemish in the above result is that the notion of a theta-smooth
anti-isometry is defined in a round-about way. However, by using the results of [16] it
is possible to give a definition that is intrinsic to the data (E′, ψ) as will be explained
in the next section; cf. Theorem 6.1.

(b) Although the basic idea and underlying steps of this “basic construction” are
as in [8], there is one notable difference in the method of proof. In [8], the existence
of the curve C associated to a (theta-smooth) anti-isometry ψ was proved by using
(for N odd) a characterization of a suitable symmetric theta-divisor in terms of its
linear equivalence class; cf. [8], Proposition 1.1. This was replaced here by a different
characterization in terms of a condition involving certain 2-torsion points of Jψ; cf.
Theorem 3.2(e) (together with some descent arguments).

We can now prove the Main Theorem (Theorem 1.1) and its corollaries which were
stated in the Introduction.

Proof of Theorem 1.1. If N ≥ 3, then the assertion is just a special case of Theorem
5.18, and so it is enough to consider the case N = 2.

In this case we have by the Remark (c) at the end of §4 that the functor XE/K,2,−1

is coarsely represented by the smooth, geometrically irreducible curve XE/K,2,−1/K ,
and so the same is true for the functor AE/K,2 � XE/K,2,−1; cf. Theorem 5.10. Thus,
by the argument of Proposition 5.17 the open subfunctor JE/K,2 of AE/K,2 is coarsely
represented by the open subscheme HE/K,2 of θ-smooth points of XE/K,2,−1.

Now by Proposition 5.17, the Torelli map τS : HE/K,2(S) → JE/K,2(S) is always
surjective, and so the argument of Proposition 5.12 shows that τS is bijective for
S = Spec(k), where k is an algebraically closed field. Moreover, the same argument
shows that τ induces an isomorphism τ : H†

E/K,2

∼→ J †
E/K,2 of the sheafifications of

these functors with respect to the fppf-topology (cf. [1], p. 201), and so XE/K,2 and
JE/K,2 are both coarsely represented by the scheme HE/K,2. �

Proof of Corollary 1.2. Since Hmin
E/K,N � hE/K ×HE/K,N by Proposition 3.4 and since

HE/K,N is finely (coarsely) represented by HE/K,N by Theorem 1.1, it follows that
Hmin
E/K,N is finely (coarsely) represented by E ×K HE/K,N . �

Proof of Corollary 1.3. This is similarly an immediate consequence of Proposition 3.4
and Theorem 1.1. �
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6. The degeneracy locus DE/K,N

In the previous section we had constructed the moduli space HE/K,N as an open
subset of the twisted modular curve XE/K,N−1. In order to complete the description
of HE/K,N , we need to analyze the “degeneracy locus”

DE/K,N := XE/K,N,−1 \HE/K,N .

As a set1, DE/K,N is the disjoint union of its fibres (DE/K,N )s = DEs/κ(s),N , and so
it is enough to describe these. Thus, we may assume in the sequel that K = κ(s) is a
field.

For an algebraically closed field K, the results of [16] yield an explicit description
of the set DE/K,N . To be able to connect these results with the set DE/K,N , we first
recall that Proposition 5.17 yields a natural identification

(31) DE/K,N = {cl(E′, ψ) ∈ XE/K,N,−1(K) : ψ is reducible}

where, as in [16], p. 98, an anti-isometry ψ : E[N ] → E′[N ] is called reducible if its
associated theta-divisor θ on Jψ is reducible. Note that since the theta-divisor θ is
reducible if and only if it is not smooth, the anti-isometry ψ is reducible if and only if
it is not theta-smooth in the sense of Corollary 5.19.

Several characterizations of reducible anti-isometries were given in [16]; one of
these is the following.

Theorem 6.1

An isometry ψ : E[N ] ∼→ E′[N ] is reducible if and only if there exist four isogenies

fi : E → Ei and f ′
i : Ei → E′, for i = 1, 2, satisfying the following conditions:

deg(f1) + deg(f2) = N,(32)

Ker(f1) ∩ Ker(f2) = {0},(33)

f ′
1 ◦ f1 = −f ′

2 ◦ f2,(34)

(f ′
i)

∗ ◦ ψ = (fi)|E[N ], for i = 1, 2,(35)

where (f ′
i)

∗ = λ−1
Ei

◦ f̂ ′
i ◦ λE′ : E′ → Ei denotes the “dual” of f ′

i .

In particular, if N is prime, then ψ is reducible if and only if there exists an integer

k with 0 < k < N and an isogeny f : E → E′ of degree k(N − k) such that

f|E[N ] = kψ.

Proof. The first assertion is Corollary 2.4 of [16] (with f ′
2 replaced by −f ′

2), and the
second is explained in Remark 2.5. �

1 Although DE/K,N is a priori just a closed subset of HE/K,N , we can give it a unique subscheme structure by
observing that it is the underlying set of the subscheme which represents a suitable closed subfunctor of XE/K,N,−1.
However, since this extra structure is not required in the sequel, we shall not explain this in more detail here.
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In addition, the main results of [16] and [17] can be re-interpreted to yield a
formula for the number of points in the degeneracy locus DE/K,N (which is finite by
Theorem 1.1).

Theorem 6.2

If N ≥ 3, then the number of points in DE/K,N is

(36) #DE/K,N =
1
2

N−1∑
k=1

σ(E, k(N − k), N) ≤ 1
24N

(5N − 6)#SL2(Z/NZ),

where σ(E, n,N) denotes the number of subgroup schemes H ≤ E of order n such

that E[p] �≤ H, for all primes p|N . Furthermore, equality holds in (36) if and only if

char(K) |/ N !. On the other hand, for N = 2 we have #DE/K,2 = 1.

Proof. As in [16], p. 107, let r(E,E′, N) denote the number of reducible anti-isometries
ψ : E[N ] → E′[N ]. Then from formula (31) it follows that

#DE/K,N =
∑
E′

r(E,E′, N)
#Aut(E′)

,

where the sum extends over a system of representatives of the isomorphism classes
of elliptic curves E′/K. (Note that #DE/K,2 equals twice that sum (with N = 2)
because −ψ = ψ in this case.) But this sum is exactly the left hand side of the
“mass formula” (4.1) of Theorem 4.1 of [16], p. 115, and so the (first) equality of
(36) is just a restatement of the formula (4.1). Similarly, the inequality of (36) is a
restatement Theorem 6 of [17], in which it is also asserted that equality holds if and
only if char(K) |/ N !. (Note that for N = 2 the right hand side of (36) equals 1/2, and
so #DE/K,2 = 1.) �

Remark. The above result shows that if char(K) = 0, then DE/K,N consists asymp-
totically of 5/(4π2)N3 points because

#SL2(Z/NZ) = N3
∏
p|N

(
1 − 1

p2

)
∼ 1

ζ(2)
N3 =

6
π2

N3.

7. Appendix: Jacobians of relative curves

The purpose of this appendix is review (and extend) some of the basic facts concerning
the Jacobians of relative curves C/S. The main references for these facts are [30],
Chapter 6, and [1], Chapter 9. In addition, we review some facts concerning relative
Cartier divisors.

Definition. If g ≥ 1, then a (relative) curve of genus g is a proper, smooth morphism
p : C → S (of finite presentation) whose fibres Cs are geometrically connected curves



42 Kani

of genus g. If g = 1, then we assume in addition that there exists a section η : S → C;
in this case it follows from [30], p. 124, that C/S is an abelian scheme of relative
dimension 1 with zero-section 0C = η.

Basic Facts: 1) Projectivity: Each relative curve C/S is strongly projective in the
sense of Altman-Kleiman; cf. [1], p. 211. More precisely, if g ≥ 2, then the relative
dualizing sheaf ωC/S is S-ample (in fact, ω⊗n

C/S is relatively very ample for n ≥ 3 by
[2], p. 78), and if g = 1 then the invertible sheaf OC(η) associated to the section η is
S-ample (cf. [1], Remark 9.3/2) (in fact, OC(η)⊗n is relatively very ample for n ≥ 3).

2) Jacobians: The (relative) Picard-functor PicC/S is representable by a smooth,
separated S-scheme PicC/S which is locally of finite presentation, and we have a de-
composition

PicC/S =
∐
n∈Z

J
(n)
C/S

where J (n)
C/S = (PicC/S)n denotes the open and closed subscheme of PicC/S consisting

of all line bundles of degree n; cf. [1], Theorem 9.3/1. Thus, for each S-scheme T we
have a functorial injection

cl : Pic(n)(XT )/p∗(T )Pic(T ) ↪→ J
(n)
C/S(T ) = Hom

(
T, J

(n)
C/S

)

which is surjective if and only there exists a universal sheaf on C×S J
(n); cf. [29], p. 34.

Furthermore, J (0)
C/S = (PicC/S)0 coincides with the identity component JC/S := Pic0

C/S

of PicC/S and is an abelian scheme over S ([1], loc. cit. and Proposition 9.4/4). In
addition, each J

(n)
C/S is strongly projective over S and is an S-torsor under JC/S ; cf. [1],

Theorem 8.2/5, Theorem 9.3/1 or [29], p. 34. In particular, if there is an invertible sheaf
L ∈ Pic(n)(C) of relative degree n, then the map g �→ g · cl(L) defines an isomorphism
TL : JC/S

∼→ J
(n)
C/S of S-schemes.

3) Duality and Polarizations: The dual abelian scheme ĴC/S := Pic0
J/S of

J = JC/S exists and there is an explicit isomorphism λC/S : JC/S
∼→ ĴC/S ; which is

described in more detail in 5) below.
More generally, for any (projective) abelian scheme A/S, its dual Â = Pic0

A/S =
PicτA/S exists and is a (projective) abelian scheme (cf. [30], p. 117 and [4], p. 3);
here, PicτA/S(T ) consists of those L ∈ Pic(AT )/Pic(T ) such that (a power of) Lt
is algebraically equivalent to 0, for all t ∈ T . By functoriality, any homomorphism
f : A → B of abelian schemes induces a homomorphism f̂ = f∗ : B̂ → Â, called the
dual homomorphism. Furthermore, the canonical map κA : A → ˆ̂

A is an isomorphism
(cf. [4], p. 3; this follows from [32], p. 132), and we have f = κ−1

B ◦ ˆ̂
f ◦ κA.

Each invertible sheaf L ∈ Pic(A) defines an S-homomorphism λL : A → Â by the
rule x �→ cl(T ∗

xL ⊗ L−1) (functorially in S); cf. [30], p. 120. Note that if h : B → A is
any S-homomorphism, then we have

(37) λh∗L = ĥ ◦ λL ◦ h,

as is immediate from the definition of ĥ.
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If L is (relatively) ample, then λL is an isogeny and hence a polarization in the
sense of Mumford [30], p. 120. (However, not every polarization is of this form.) Note
that if λ : A → Â is a polarization, then λ is symmetric in the sense that λ̂ ◦ κA = λ;
cf. [4], p. 4.

Each polarization λ = λL : A → Â induces a (non-degenerate) pairing

eλ : K(λ) ×S K(λ) → (Gm)/S ,

where K(λ) = Ker(λ); cf. [32], p. 228ff and [4], p. 5. This pairing is related to the
usual eN -pairing eN : A[N ]×S Â[N ] → µN by the formula eN ◦ (idA[N ] × λ) = eNλ, if
λ is a principal polarization (and N is invertible in S); cf. formula (4) on p. 228 of [32].
We also note that if π : B → A is an isogeny, then we have the formula

(38) eπ̂◦λ◦π = eλ ◦ π × π on π−1K(λ) × π−1K(λ);

cf. property (1) of [32], p. 228 (combined with the fact that π̂ ◦ λL ◦ π = λπ∗L, as is
evident from the definitions).

4) Products of Abelian Schemes: It is immediate that the category AbSch/S
of abelian S-schemes (with group homomorphisms) is an additive category (in the sense
of [13], p. 75). Thus, if A1, A2 are two abelian S-schemes, then A = A1 ×S A2 is a
co-product of A1 and A2 in AbSch/S with respect to the maps iA1 = idA1 ×0A2 : A1 =
A1 ×S S → A and iA2 = 0A2 × idA2 : A2 = S ×S A2 → A; cf. [13], Proposition II.9.1.
Furthermore, by duality it then follows that Â is a product of Â1 and Â2 with respect
to the morphisms îA1 and îA2 , and so there is a unique isomorphism

(39) ϕA1,A2 : Â ∼→ Â1 × Â2 such that prÂk ◦ ϕA1,A2 = îAk , for k = 1, 2;

we then also have that ϕA1,A2 ◦ p̂rAk = iÂk , for k = 1, 2.
Note that if λk : Ak → Âk, k = 1, 2 are two polarizations, then the unique map

λ = λ1 ⊗ λ2 : A → Â such that ϕA1,A2 ◦ λ = λ1 ×S λ2, or, equivalently, such that

(40) îAk ◦ (λ1 ⊗ λ2) = λk ◦ prAk , for k = 1, 2,

is again a polarization (since this is true fibre-by-fibre), called the product polarization
of A = A1 ×S A2 defined by λ1 and λ2.

For later use we also note that if f : A → B is a homomorphism of abelian schemes
then

(41) f is finite ⇔ f̂ is surjective.

(Indeed, since f is finite (respectively, surjective) if and only if fs has this property for
all s ∈ S (observe that f is proper and use [11], (IV, 18.12.4), respectively, (I, 3.6.1)),
it is enough to verify this for S = Spec(K), K a field, in which case this is known; cf.
[23], p. 125.) Furthermore we have

f is a closed immersion ⇔ Ker(f̂) is an abelian subscheme of B̂(42)

and f̂ is surjective.
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(Again, this is known in the case that the base is a field (cf. [23], p. 216). The general
case be reduced to the field case by noting that f is a closed immersion if and only
if fs : As → Bs has this property for all s ∈ S (use [11], (IV, 18.12.6)) and similarly,
Ker(f̂) is an abelian subscheme if and only if Ker(fs) = Ker(f)s is an abelian subvariety
(i.e. is geometrically reduced and irreducible).) Note that it follows easily from (42)
that if

0 → A
f→ B

g→ C → 0

is an exact sequence of abelian S-schemes, then the dual sequence is also exact (and
conversely):

(43) 0 → Ĉ
ĝ→ B̂

f̂→ Â → 0.

5) Theta-divisors: If JC/S is the Jacobian of a relative curve C/S of genus g,
then there is a canonical principal polarization λC/S : JC/S

∼→ ĴC/S ; cf. [30], p. 118
or [29], p. 40. In general, λC/S is not of the form λL, for some L ∈ Pic(C), even if
S = Spec(K), K a field. However, if C/S has a section or, more generally, if C/S has
an invertible sheaf of relative degree g − 1, then there exits a theta-divisor θ on JC/S ,
i.e. an effective relative Cartier divisor θ ⊂ JC/S such that λC/S = λO(θ); cf. [29], p.
40. More precisely, θ is constructed as follows. Let Θ = Im(Cg−1 → J

(g−1)
C/S ), which

is an effective relative Cartier divisor on J (g−1) (for any base S); cf. [29], p. 35. If
we have an invertible sheaf L of relative degree g − 1, then it induces an isomorphism
TL : JC/S

∼→ J
(g−1)
C/S , and the inverse image θL = T ∗

LΘ of Θ under TL is a theta-divisor
on JC/S .

Note that any two theta-divisors are translates of each other:

Lemma 7.1

Let D be an effective relative Cartier divisor on a strongly projective abelian

scheme p : A → S and let L = OA(D) be its associated invertible sheaf.

(a) If H0(As,Ls) = 1 and H1(As,Ls) = 0, for all s ∈ S, then the canonical map

p∗OA = OS → p∗L is an isomorphism. Thus, if D′ is any effective relative Cartier

divisor such that cl(OA(D′)) = cl(L) in PicA/S(S), then D′ = D (as effective

Cartier divisors).

(b) If L is ample and defines a principal polarization λL : A ∼→ Â, and D′ is an effective

relative Cartier divisor such that λOA(D′) = λL (or such that cl(OA(D′ −D)) ∈
Pic0

A/S(S)), then D′ = T ∗
x (D), for some x ∈ A(S).

Proof. (a) Without loss of generality we may assume that S is locally noetherian.
Since D is an effective divisor, it defines an injection fD : OA ↪→ OA(D) = L, which
induces an injection p∗(fD) : p∗(OA) = OS ↪→ p∗(L). Now the hypotheses on L imply
that R1p∗L = 0 and that p∗L is locally free and that p∗Ls ⊗ κ(s) ∼→ H0(As,Ls) is
an isomorphism; cf. [12], Theorem III.12.11. Since H0(As,OAs)

∼→ H0(As,Ls) is an
isomorphism, it follows that p∗(fD)s : p∗(OA)s

∼→ p∗(L)s is surjective, for all s ∈ S, and
hence so is p∗(fD) : p∗(OA) → p∗(L) by Nakayama. Thus, p∗(fD) is an isomorphism.
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Moreover, since the above result is also true after an arbitrary base-change, it
follows that p∗L is cohomologically flat in dimension 0. Thus, by [1], Proposition 8.2/7,
the set of effective relative Cartier divisors D′ ∈ Div+(A/S) of A/S with cl(OA(D′)) =
cl(L) (in PicA/S(S)) is parametrized by P(F), where F is the dual of p∗(L) � OS .
But then P(F) = S, and so HomS(S,P(F)) = {idS}, which proves the assertion.

(b) First note that if λL′ = λL then λL⊗L−1 = 0 and hence L′ ⊗ L−1 ∈
Pic0(A/S) (by the definition of Pic0(A/S)); in particular, cl(L′⊗L−1) ∈ Pic0

A/S(S) =
Pic0(A/S)/p∗Pic(S).

Now since λL : A ∼→ Â = Pic0
A/S is an isomorphism, there exists an x ∈ A(S) such

that cl(OA(D′−D)) = cl(T ∗
xL⊗L−1), and so cl(OA(D′)) = cl(T ∗

xL) = cl(O(T ∗
xD)) in

PicA/S(S). By the Riemann-Roch Theorem and the Vanishing Theorem ([32], p. 150)
L (and hence also T ∗

xL) satisfies the hypotheses of part (a), and hence it follows that
D′ = T ∗

x (D), as desired. �
6) The Autoduality of Jacobians: If a : S → C is a section of C/S, then

there is an S-morphism ja : C → JC/S which represents the map z �→ cl(OC(z − a));
cf. [29], p. 43. Furthermore, the induced map j∗a : ĴC/S = Pic0

J/S → JC/S = Pic0
C/S is

an isomorphism which satisfies λC/S ◦ j∗a = −idJ ([29], p. 43); in particular, j∗a does
not depend on a. Note that ja is a closed immersion since this is known to be true
fibre-by-fibre and so we can apply [11] (IV, 18.12.6) again. Furthermore, ja has the
following universal property (usually called the Albanese property of JC/S):

(∗) If A/S is an abelian scheme and f : C → A an S-morphism such that f(a) = 0A,
the zero-section of A/S, then there is a unique S-homomorphism f∗ : JC → A

such that f = f∗ ◦ ja; in fact, f∗ is given by the formula f∗ = −κ−1
A ◦ (f∗)∗ ◦λC/S.

Proof of (*). Suppose first that there exists an f∗ with f = f∗ ◦ ja. Then the map
f∗ : Â = Pic0

A/S → JC/S = Pic0
C/S induced by f satisfies λC/S ◦f∗ = λC/S ◦(f∗◦ja)∗ =

λC/S ◦ j∗a ◦ (f∗)∗ = −(f∗)∗. Dualizing this equation and composing it with κ−1
A and κJ

yields

f∗ =κ−1
A ◦ (f∗)∗∗ ◦ κJ = −κ−1

A ◦ (λC/S ◦ f∗)∗ ◦ κJ
= − κ−1

A ◦ (f∗)∗ ◦ λ∗
C/S ◦ κJ = −κ−1

A ◦ (f∗)∗ ◦ λC/S ,

the latter by the symmetry of λC/S . This proves the uniqueness of f∗ and the asserted
formula for f∗.

To prove the existence of f∗, define f∗ by this formula. Since this definition
commutes with base-change, we have for each s ∈ S that (f∗)s ◦ ja,s = fs because the
autoduality property holds over a field (cf. [26], p. 185) (and by uniqueness). But then
f, f∗ ◦ ja : C → A are two S-morphisms whose fibres agree, and so by rigidity ([30], p.
116) there is a section η of pA : A → S such that f = (η ◦ pC) · (f∗ ◦ ja). But since
f(a) = 0A = (f∗ ◦ ja)(a), it follows that η = 0A, and so f = f∗ ◦ ja, as claimed. �

More generally, if L ∈ Pic(C) has relative degree 1, then there is a closed immer-
sion jL : C → JC/S which represents the map z �→ cl(OC(z) ⊗ L−1), and we have
λC/S ◦ j∗L = −idJ . Furthermore, if C/S has a section, then it follows from (∗) that jL
satisfies the following universal property:
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(∗∗) If f : C → A any S-morphism to an abelian scheme A/S, then there is a unique
S-homomorphism f∗ : JC/S → A and section η ∈ A(S) such that f = Tη ◦ f∗ ◦ jL.

There is another universal property (also called the Albanese property) which is
sometimes more useful since it does not require the existence of sections and hence
applies to an arbitrary base S. For this, let sC/S : C ×S C → JC/S be the morphism
defined by the rule sC/S(x, y) = cl(O(x− y)), where x, y ∈ C(T ) are T -valued points
and T is any S-scheme. Note that if δ : C → C ×S C denotes the diagonal morphism,
then sC/S ◦ δ = 0 (the constant map). Then by a similar argument as in [26], we have
the following analogue of [26], Proposition 6.4:

(∗∗∗) If f : C ×S C → A is any S-morphism to an abelian scheme A/S such that
f ◦ δ = 0, then there is a unique S-homomorphism f∗ : JC/S → A such that
f = f∗ ◦ sC .

7) Covers of Relative Curves: If N and g′ ≥ 1 are positive integers, then a
genus g′ cover of C/S of degree N is an S-morphism f : C ′ → C where C ′/S is curve
of genus g′ such that for each s ∈ S the induced morphism fs : C ′

s → Cs has degree N .
Since each fs is then automatically finite, surjective and flat (the latter since the local
rings of Cs are discrete valuation rings), it follows (by using [11], (IV, 11.3.11)) that f
a finite, flat and surjective morphism. Each such cover induces homomorphisms

f∗ : JC/S → JC′/S and f∗ := λ−1
C/S ◦ (f∗)∗ ◦ λC′/S : JC′/S → JC/S ,

where first is given by functoriality and the second by dualizing the first (and composing
with λC′/S and λ−1

C/S). Thus, f∗ and f∗ are essentially dual to each other; more
precisely, the dual of f∗ is

(44) (f∗)ˆ= λC′/S ◦ f∗ ◦ λ−1
C/S ,

for

(f∗)ˆ=
(
λ−1
C/S ◦ (f∗)ˆ◦ λ−1

C/S

)̂
= λ̂C′/S ◦ (f∗)ˆ̂◦ λ̂−1

C/S

= (λ̂C′/S ◦ κJC′ ) ◦
(
κ−1
JC′ ◦ (f∗)ˆ̂◦ κJC

)
◦

(
κ−1
JC
λ̂−1
C/S

)
= λC′/S ◦ f∗ ◦ λ−1

C/S .

Note that if C ′/S has a section a′ ∈ C ′(S), then the homomorphism (jf(a) ◦ f)∗ :
JC′/S → JC/S defined by the Albanese property (∗) is the same as f∗, i.e. we have
f∗ = (jf(a) ◦ f)∗, as can be seen by using the formula for (jf(a) ◦ f)∗ given in (∗) (and
a short computation). Thus we have for any section x′ ∈ C ′(S):

(45) f∗
(
cl(OC′(x′ − a′))

)
= cl

(
OC(f(x′) − f(a′))

)
.

We also observe that we have the formula

(46) f∗ ◦ f∗ = [N ]JC/S ,

where [N ]JC/S denotes the multiplication by N map on JC/S . (Indeed, if S = Spec(K)
is a field, then this is well-known (by using the previous formula). Thus, for an arbitrary
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base S, we see that the formula holds fibre-by-fibre, and hence is true over S by rigidity
([30], p. 116) since both sides are homomorphisms of abelian schemes.)

If fi : C ′ → C, i = 1, 2, are two S-covers, then it follows immediately from the
definitions and from (44) that we have

(47) f∗
1 = f∗

2 ⇔ (f1)∗ = (f2)∗.

In the case that C = E is an elliptic curve over S, then more can be said:

Lemma 7.2

If E/S is a relative elliptic curve and if fi : C ′ → E, i = 1, 2 are two S-covers,

then

(48) (f1)∗ = (f2)∗ ⇔ f1 = Tx ◦ f2, for some (unique) x ∈ E(S).

Proof. First note that if such an x exists, then it is uniquely determined by f1 and f2

because f2 is faithfully flat and hence is an epimorphism (cf. e.g. [26], Theorem I.2.17).
Moreover, we then have (f1)∗ = (f2)∗, as follows immediately from the formula (45)
(applied to all S-schemes S′ in place of S).

To prove the converse, suppose now that (f1)∗ = (f2)∗. If C ′(S) �= ∅, then
by the autoduality property (∗∗) of the Jacobian there exist xi ∈ E(S) such that
fi = Txi ◦ (fi)∗ ◦ jy, where y ∈ C ′(S), and so Tx1−x2 ◦ f2 = f1.

In the general case, choose a finite, faithfully flat base change β : S′ → S such
that C ′(S′) �= ∅. Then, by what was just shown, there exists x′ ∈ C ′

(S′)(S
′) such that

Tx′ ◦ (f2)(S′) = (f1)(S′). It is enough to show that Tx′ = t(S′), for a (unique) morphism
t : E → E, for then t = Tx with x = t(0E) ∈ E(S) because x(S′) = Tx′(0ES′ ) = x′,
and thus Tx ◦ f2 = f1, as desired.

Now the existence of t follows by faithfully-flat descent (cf. [1], Theorem 6.1/6(a))
once we have shown that p∗1Tx′ = p∗2Tx′ , where pi = pri : S′′ := S′×S S

′ → S′, i = 1, 2,
denote the two projections and p∗i Tx′ : E(S′′) → E(S′′) denotes the base-change of Tx′

via pi.
For this, we first note that since p∗1((fi)(S′)) = p∗2((fi)(S′)) = (fi)(S′′) for i = 1, 2,

we have

p∗1(Tx′)p∗1
(
(f2)(S′)

)
= p∗1

(
Tx′ ◦ (f2)(S′)

)
= p∗1

(
(f1)(S′)

)
= p∗2

(
(f1)(S′)

)
= p∗2(Tx′)p∗2

(
(f2)(S′)

)
= p∗2(Tx′)p∗1

(
(f2)(S′)

)
.

Now since f2 and hence p∗1((f2)(S′)) is faithfully flat, it is an epimorphism, so p∗1(Tx′) =
p∗2(Tx′), as desired. �

Definition. An S-cover f : C ′ → C (of degree N) is called minimal if any one of the
following equivalent conditions holds:

(i) f∗ : JC/S → JC′/S is a closed immersion;
(ii) (fs)∗ : JCs/κ(s) → JC′

s/κ(s) is a closed immersion for all s ∈ S;
(iii) f∗ : JC′/S → JC/S is surjective and Ker(f∗) is an abelian subscheme of JC′/S .
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[To see that these conditions are equivalent, note that the following implications hold:
(iii) ⇒ (i): Use (42).
(i) ⇒ (ii): Clear, since (fs)∗ = (f∗)s and since the base change of any closed

immersion is again a closed immersion by [11], (I, 4.3.6).
(ii) ⇒ (iii): By (42) we know that (f∗)s = (fs)∗ is surjective for all s ∈ S, and

hence so is f∗. Thus f∗ is flat (use [11] (IV, 11.3.11)), and hence so is Ker(f∗)/S.
Furthermore, f∗ has connected fibres (since each (f∗)s does by (42)), and so Ker(f∗)
is an abelian subscheme of JC/S .]

Note that condition (i) shows that if f is minimal, then so is any base change
f(T ) : C ′

(T ) → C(T ) (because the base change of any closed immersion is again a closed
immersion).

For later use we also append here some basic facts about relative Cartier divisors.

8) Relative Cartier Divisors: These are defined for any scheme X/S which is
flat and of finite presentation; cf. [11], §IV.21.15, [19], §1.1 or [1], p. 212ff. For any
base-change S′/S, the pull-back DS′ of a relative Cartier divisor D ∈ Div(X/S) is
defined and is a relative Cartier divisor of X(S′)/S

′; cf. [11], (IV, 21.15.8).
If f : C ′ → C is an S-cover of curves, then we have induced homomorphisms

f∗ : Div(C/S) → Div(C ′/S) and f∗ : Div(C ′/S) → Div(C/S)

between the groups Div(C/S) and Div(C ′/S) of relative Cartier divisors, and these
map effective divisors to effective divisors (cf. [11], §IV.21.15). In addition, we have
f∗f∗D = ND, for all D ∈ Div(C/S); cf. [11], (IV, 21.5.6).

We note that the formation of f∗ commutes with base-change by [11], (IV,
21.15.9), and the same is true for f∗ by Lemma 7.3 below. In addition, for divisors
D ∈ Div(C/S) and D′ ∈ Div(C ′/S) we have

deg(f∗D) = deg(f) deg(D) and deg(f∗D′) = deg(D′).

Indeed, the first formula is Lemma 1.2.8 of [19], and the second follows (by base-change)
from the corresponding formula for curves over a field.

Furthermore, if a′ ∈ C ′(S) is a section and [a′] ∈ Div(C ′/S) denotes the associated
relative Cartier divisor (cf. [19], Lemma 1.2.2), then we have

f∗[a′] = [f(a′)],

as can be seen by tracing through the definitions. (The discussion of [19], p. 33, could
also be used here.)

Lemma 7.3

Let p : X → S be flat and locally of finite presentation, and let f : X ′ → X be

finite and flat. Then for every relative Cartier divisor D′ ∈ Div(X ′/S), the direct image

f∗D′ ∈ Div(X/S) is a relative Cartier divisor of X/S, and its formation commutes with

every base-change g : S′ → S in the sense that we have the equality

(49) (f(S′))∗
(
g∗(X′)(D

′) = g∗(X)(f∗D
′), for all D′ ∈ Div(X ′/S).
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Proof. The first assertion is proved in [11], (IV, 21.15.8). To prove the second, recall
first that the pullbacks of relative Cartier divisors is always defined ([11], (IV, 21.15.9)),
and so both sides of (49) are defined. Thus, the same proof of [11], Proposition (IV,
21.5.8) applies (where this formula is proven for arbitrary Cartier divisors but only for
flat base-change so as to guarantee that the relevant pull-backs are defined). �

Over general base S, equality of two relative Cartier divisors D,D′ ∈ Div+(C/S)
of C/S cannot be decided in the fibres Cs; indeed, this is already false for sections.
However, if S is reduced, then it follows from [19], Corollary 1.3.5 that

(50) D = D′ ⇔ Ds = D′
s, for all s ∈ S,

where Ds, D
′
s ∈ Div+(Cs) denote the effective Cartier divisors induced by D and D′

on the fibre Cs.
The following lemma gives some other criteria for deciding equality (in a slightly

more general setting):

Lemma 7.4

Let C/S be a relative curve and let Z ⊂ C be a closed subscheme which is finite

over S and which has the property that d := deg(Zs) is independent of s ∈ S.

(a) If there exists an effective Cartier divisor D ⊂ Z of degree d, then Z = D.

(b) If Z has d sections z1, . . . , zd ∈ Z(S) such that for every s ∈ S, the points

z1(s), . . . , zd(s) ∈ Zs are distinct, then Z is an effective relative Cartier divisor of

C/S which is etale over S, and we have Z = [z1] + . . .+ [zd].
(c) If there exists a finite, faithfully flat base extension S′/S such that Z×SS

′ satisfies

the hypothesis of (b), then Z ∈ Div+(C/S) is etale over S.

Proof. (a) Let f : D ↪→ Z denote the closed immersion. For any s ∈ S, the induced
map fs : Ds ≤ Zs is an isomorphism because both are closed subschemes of degree d

of smooth curve Cs. Now by hypothesis D is flat, of finite presentation over S, and so
f is an isomorphism by [11], (IV, 17.9.5).

(b) Let D = [z1] + [z2] + . . .+ [zd] ∈ Div+(C/S); clearly, z1, . . . , zd are sections of
D, and D is etale over S; in fact, D = S

∐
. . .

∐
S (cf. [19], Lemma 1.8.3). We thus

have a natural morphism f : D → Z which induces isomorphisms fs : Ds → Zs, for
all s ∈ S. Thus, by the argument in (a) we see that f : D � Z is an isomorphism.

(c) By (b), Z×S S
′ is etale over S′, hence Z is etale over S by [11], (IV, 17.7.3). �

Remark. If, in the situation of Lemma 7.4, the base S is an integral noetherian scheme,
then Z is automatically an effective relative Cartier divisor. (Indeed, since C/S and
hence Z/S is projective, and the (constant) Hilbert polynomial of Zs is d = deg(Zs)
which does not depend on s ∈ S by hypothesis, it follows that Z is flat over S by [12],
Theorem III.9.9.)
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