Collect. Math. 53, 3 (2002), 303-311
(c) 2002 Universitat de Barcelona

Mappings with dilatation in Orlicz spaces

Jana Björn
Department of Mathematics, Lund University
P. O. Box 118, SE-221 00 Lund, Sweden
E-mail: jabjo@maths.lth.se

Received January 25, 2002. Revised April 11, 2002

Abstract

We prove openness and discreteness for nonconstant mappings belonging to $W_{\text {loc }}^{1, n}\left(\Omega, \mathbb{R}^{n}\right), n \geq 3$, with dilatation in certain Orlicz spaces which are strictly larger then all $L_{\text {loc }}^{p}(\Omega), p>n-1$. This result contributes to decreasing the gap between known results and a conjecture of Iwaniec and Šverák.

1. Introduction

Let Ω be a connected open set in $\mathbb{R}^{n}, n \geq 2$, and $F: \Omega \rightarrow \mathbb{R}^{n}$ a mapping in the Sobolev space $W_{\text {loc }}^{1,1}\left(\Omega, \mathbb{R}^{n}\right)$. The mapping F is said to have finite dilatation if there exists a function K such that for almost all $x \in \Omega, 1 \leq K(x)<\infty$ and

$$
|D F(x)|^{n} \leq K(x) J_{F}(x),
$$

where $|D F(x)|=\sup \{|D F(x) \xi|:|\xi| \leq 1\}$ is the operator norm of the differential $D F(x)$ of F at x and $J_{F}(x)=\operatorname{det} D F(x)$.

An important theorem due to Reshetnyak [9] states that if $F \in W_{\mathrm{loc}}^{1, n}\left(\Omega, \mathbb{R}^{n}\right)$ is nonconstant and its dilatation K is bounded (i.e. F is quasiregular), then F is continuous, open and discrete, i.e. preimages and images of open sets are open and preimages of single points consist of isolated points. For more about quasiregular mappings, see e.g. Reshetnyak [10] and Rickman [11].

In 1993, Iwaniec and Šverák [4] conjectured that the conclusion of Reshetnyak's theorem is true whenever $F \in W_{\text {loc }}^{1, n}\left(\Omega, \mathbb{R}^{n}\right)$ and $K \in L_{\text {loc }}^{n-1}(\Omega)$, and proved it for $n=2$. Their method does not directly generalize to higher dimensions. An example

Keywords: Capacity, discrete mapping, finite dilatation, Hausdorff measure, open mapping, Orlicz space, Young function.

MSC2000: Primary: 30C65, Secondary: 46E30, 73C50.
by Ball [1] shows that Reshetnyak's theorem fails if we only assume that $K \in L_{\text {loc }}^{p}(\Omega)$ for all $p<n-1$.

By improving Reshetnyak's method, Heinonen and Koskela [2] verified the conjecture of Iwaniec and Šverák for $K \in L_{\mathrm{loc}}^{p}(\Omega), p>n-1$, under the additional assumption that F is quasilight, i.e. that the preimage of each point is compact. The assumption of quasilightness was removed by Villamor and Manfredi [13].

Iwaniec-Koskela-Onninen [5] and Kauhanen-Koskela-Malý [6] weakened the assumption $F \in W_{\text {loc }}^{1, n}\left(\Omega, \mathbb{R}^{n}\right)$ while keeping $K \in L_{\text {loc }}^{p}(\Omega), p>n-1$. The borderline case $p=n-1$ was recently treated by Hencl and Malý [3] by a different method under the assumption of quasilightness.

In this paper, we combine the approach of Kauhanen, Koskela and Maly [6] with a refinement of Villamor and Manfredi's proof and verify the conjecture of Iwaniec and Šverák for a class of mappings with dilatation in Orlicz spaces, namely we prove the following theorem. (See the next section for the definitions of Young functions and Orlicz spaces.)

Theorem 1

Let Ψ be a doubling Young function such that $\Psi(t) / t^{n-1}$ is nondecreasing, $n \geq 3$, and

$$
\begin{equation*}
\int_{1}^{\infty}\left(\frac{t^{n-1}}{\Psi(t)}\right)^{1 / n(n-2)} \frac{d t}{t}<\infty \tag{1}
\end{equation*}
$$

If $F \in W_{\text {loc }}^{1,1}\left(\Omega, \mathbb{R}^{n}\right)$ is a nonconstant mapping with dilatation belonging to the Orlicz space $L_{\mathrm{loc}}^{\Psi}(\Omega)$, such that

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0+} \varepsilon \int_{\Omega}|D F(x)|^{n-\varepsilon} d x=0 \tag{2}
\end{equation*}
$$

then F is continuous, open and discrete.

Remark 2. For L^{p} spaces (i.e. $\Psi(t)=t^{p}$), the condition (1) is satisfied if and only if $p>n-1$. Other Young functions for which the theorem holds are e.g.

$$
\begin{aligned}
& \Psi(t)= \begin{cases}t^{n-1}(\log t)^{n(n-2)+\varepsilon}, & t \geq e \\
t^{n-1}, & 0 \leq t<e\end{cases} \\
& \Psi(t)= \begin{cases}t^{n-1}(\log t)^{n(n-2)}(\log \log t)^{n(n-2)+\varepsilon}, & t \geq e^{e} \\
e^{n(n-2)} t^{n-1}, & 0 \leq t<e^{e}\end{cases}
\end{aligned}
$$

and other repeated logarithms with $\varepsilon>0$. If $\varepsilon=0$ in the above expressions, then the condition (1) just fails.

2. Young functions and auxiliary results

Definition 3. A positive continuous convex function Ψ on $(0, \infty)$ satisfying

$$
\begin{equation*}
\lim _{t \rightarrow 0+} \frac{\Psi(t)}{t}=0 \quad \text { and } \quad \lim _{t \rightarrow \infty} \frac{\Psi(t)}{t}=\infty \tag{3}
\end{equation*}
$$

is called a Young function. If $\Psi(2 t) \leq C \Psi(t)$ for some constant C and all $t \in(0, \infty)$, then Ψ is said to be doubling (or satisfying the Δ_{2}-condition).

Definition 4. The Orlicz space $L^{\Psi}(\Omega)$ is the set of all measurable functions with the Luxemburg norm

$$
\|f\|_{L^{\Psi}(\Omega)}=\inf \left\{\lambda>0: \int_{\Omega} \Psi\left(\frac{|f(x)|}{\lambda}\right) d x \leq 1\right\}<\infty
$$

where we interpret $\Psi(0)=0$.
The following generalized Hölder inequality for Orlicz spaces is proved in the paper by O'Neil [7, Theorem 2.3].

Theorem 5

Let Ψ_{1}, Ψ_{2} and Ψ_{3} be Young functions such that

$$
\Psi_{1}^{-1}(s) \Psi_{2}^{-1}(s) \leq \Psi_{3}^{-1}(s) .
$$

If $f \in L^{\Psi_{1}}(\Omega)$ and $g \in L^{\Psi_{2}}(\Omega)$, then $f g \in L^{\Psi_{3}}(\Omega)$ and

$$
\|f g\|_{L^{\Psi_{3}}(\Omega)} \leq 2\|f\|_{L^{\Psi_{1}}(\Omega)}\|g\|_{L^{\Psi_{2}}(\Omega)} .
$$

The following lemma shows that doubling Young functions can be assumed to be as smooth as needed. Note that for a Young function Ψ, the monotonicity of the function $t \mapsto \Psi(t) / t$ is a direct consequence of the convexity of Ψ.

Lemma 6

Let $\Psi \in C^{k}(0, \infty), k \geq 0$, be a positive doubling function satisfying (3), such that the function $t \mapsto \Psi(t) / t$ is nondecreasing. Let

$$
\Psi_{1}(t)=\int_{0}^{t} \frac{\Psi(s)}{s} d s
$$

Then Ψ_{1} is a doubling Young function, $\Psi_{1} \in C^{k+1}(0, \infty)$ and $\Psi(t) / C \leq \Psi_{1}(t) \leq \Psi(t)$ for all $t \in(0, \infty)$. Moreover, $L^{\Psi}(\Omega)=L^{\Psi_{1}}(\Omega)$ and for all $f \in L^{\Psi}(\Omega),\|f\|_{L^{\Psi_{1}}(\Omega)} \leq$ $\|f\|_{L^{\Psi}(\Omega)} \leq 2\|f\|_{L^{\Psi_{1}}(\Omega)}$.

Proof. The fact that $\Psi_{1} \in C^{k+1}(0, \infty)$ follows directly from the definition of Ψ_{1}. The convexity of Ψ_{1} is a direct consequence of the fact that $\Psi(t) / t$ is nondecreasing. As for the doubling condition, we have

$$
\Psi_{1}(2 t)=\int_{0}^{t} \frac{\Psi(2 s)}{s} d s \leq C \int_{0}^{t} \frac{\Psi(s)}{s} d s=C \Psi_{1}(t)
$$

To prove (3), let $\varepsilon, k>0$ be arbitrary and find $t_{1}, t_{2}>0$ so that $\Psi(s) / s<\varepsilon$ for all $0<s \leq t_{1}$ and $\Psi(s) / s>k$ for all $s \geq t_{2}$. Then

$$
\begin{array}{ll}
\frac{\Psi_{1}(t)}{t}=\frac{1}{t} \int_{0}^{t} \frac{\Psi(s)}{s} d s \leq \varepsilon & \text { for } 0<t \leq t_{1} \\
\frac{\Psi_{1}(t)}{t} \geq \frac{1}{t} \int_{t / 2}^{t} \frac{\Psi(s)}{s} d s \geq \frac{k}{2} & \text { for } t \geq 2 t_{2}
\end{array}
$$

Next, the fact that $\Psi(t) / t$ is nondecreasing and the doubling property of Ψ_{1} give

$$
\begin{align*}
& \Psi_{1}(t) \geq \int_{t / 2}^{t} \frac{\Psi(s)}{s} d s \geq \frac{t}{2} \frac{\Psi\left(\frac{1}{2} t\right)}{\frac{1}{2} t}=\Psi\left(\frac{1}{2} t\right) \geq \frac{\Psi(t)}{C} \tag{4}\\
& \Psi_{1}(t)=\int_{0}^{t} \frac{\Psi(s)}{s} d s \leq t \frac{\Psi(t)}{t}=\Psi(t) \tag{5}
\end{align*}
$$

Finally, if $\lambda>\|f\|_{L^{\Psi_{1}}(\Omega)}$, then (4) implies

$$
1 \geq \int_{\Omega} \Psi_{1}\left(\frac{f(x)}{\lambda}\right) d x \geq \int_{\Omega} \Psi\left(\frac{f(x)}{2 \lambda}\right) d x
$$

and hence $2 \lambda \geq\|f\|_{L^{\Psi}(\Omega)}$. Taking infimum over all possible λ shows that $\|f\|_{L^{\Psi}(\Omega)} \leq$ $2\|f\|_{L^{\Psi_{1}}(\Omega)}$. Similarly, the inequality $\|f\|_{L^{\Psi_{1}}(\Omega)} \leq\|f\|_{L^{\Psi}(\Omega)}$ follows from (5).

Lemma 7

Let Ψ be a continuous doubling function on $(0, \infty)$, such that $\Psi(t) / t^{p}$ is nondecreasing. Let $0<\alpha<1-1 / p$ and define Ψ_{1} by $\Psi_{1}^{-1}(s)=s^{\alpha} \Psi^{-1}(s)$. Then Ψ_{1} is a continuous doubling function on $(0, \infty)$ satisfying (3). Moreover, the function $t \mapsto \Psi_{1}(t) / t$ is increasing.

Proof. The continuity is clear. A simple calculation shows that the doubling condition for Ψ is equivalent to $2 \Psi^{-1}(s) \leq \Psi^{-1}(C s)$ for some $C>1$ and all $s \in(0, \infty)$. We then have

$$
2 \Psi_{1}^{-1}(s)=2 s^{\alpha} \Psi^{-1}(s) \leq s^{\alpha} \Psi^{-1}(C s) \leq \Psi_{1}^{-1}(C s)
$$

i.e. Ψ_{1} is doubling. To prove (3), note that

$$
\begin{equation*}
\frac{\Psi_{1}(t)}{t}=\frac{s}{\Psi_{1}^{-1}(s)}=\frac{s^{1-\alpha}}{\Psi^{-1}(s)}=\left(\frac{\Psi(u)}{u^{p}}\right)^{1-\alpha} u^{(1-\alpha) p-1} \tag{6}
\end{equation*}
$$

where $s=\Psi_{1}(t)$ and $u=\Psi^{-1}\left(\Psi_{1}(t)\right) \rightarrow 0+$, as $t \rightarrow 0+$. Hence,

$$
\lim _{t \rightarrow 0+} \frac{\Psi_{1}(t)}{t}=\lim _{u \rightarrow 0+}\left(\frac{\Psi(u)}{u^{p}}\right)^{1-\alpha} u^{(1-\alpha) p-1}=0
$$

and similarly for $t \rightarrow \infty$. Finally, (6) also shows that $\Psi_{1}(t) / t$ is increasing.
We shall also need the following Sobolev type inequality. For the readers convenience, we repeat the short proof.

Lemma 8

Let B and $B_{0} \subset B \subset \mathbb{R}^{n}$ be balls, $n \geq 3, p>1$ and $1<q<n p /(n-p)$. Then there exists $C>0$ such that for all $u \in W^{1, p}(B)$,

$$
\|u\|_{L^{q}(B)} \leq C\left(\|\nabla u\|_{L^{p}(B)}+\|u\|_{L^{p}\left(B_{0}\right)}\right)
$$

Proof. Assume that this is not true. Then there exist $u_{k} \in W^{1, p}(B)$ so that $\left\|u_{k}\right\|_{L^{q}(B)}=1$ and $\left\|\nabla u_{k}\right\|_{L^{p}(B)}+\left\|u_{k}\right\|_{L^{p}\left(B_{0}\right)} \leq 1 / k$. By the local weak sequentional compactness of $W^{1, p}(B)$, we can find a subsequence, also denoted u_{k}, so that $u_{k} \rightarrow u_{0}$ weakly in $W^{1, p}(B)$. The weak lower semicontinuity of the L^{p}-norm implies $\left\|\nabla u_{0}\right\|_{L^{p}(B)}=\left\|u_{0}\right\|_{L^{p}\left(B_{0}\right)}=0$ and hence $u_{0}=0$. On the other hand, since the embedding $W^{1, p}(B) \subset L^{q}(B)$ is compact (by e.g. Theorem 2.5.1 in Ziemer [14]), a subsequence of $\left\{u_{k}\right\}_{k=1}^{\infty}$ converges to u_{0} in $L^{q}(B)$ and $\left\|u_{0}\right\|_{L^{q}(B)}=1$. This contradicts $u_{0}=0$.

3. Proof of Theorem 1

Definition 9. Let Ψ be a Young function and $K \subset B\left(x_{0}, R\right)=\left\{x \in \mathbb{R}^{n}:\left|x-x_{0}\right|<\right.$ $R\}$ be compact. The Ψ-capacity of K with respect to the ball $B\left(x_{0}, 2 R\right)$ is

$$
\operatorname{cap}_{\Psi}\left(K, B\left(x_{0}, 2 R\right)\right)=\inf \|\nabla \phi\|_{L^{\Psi}\left(B\left(x_{0}, 2 R\right)\right)}
$$

where the infimum is taken over all continuous functions $\phi \in W^{1,1}\left(B\left(x_{0}, 2 R\right)\right)$ with compact support in $B\left(x_{0}, 2 R\right)$ and $\phi \geq 1$ on K.

The 1-dimensional Hausdorff measure is denoted H^{1}. The following theorem is due to Onninen [8].

Theorem 10

Let Ψ be a doubling Young function satisfying $\Psi(t) \geq C t^{n-1}$ and

$$
\int_{1}^{\infty}\left(\frac{t}{\Psi(t)}\right)^{1 /(n-2)} d t<\infty
$$

If $K \subset B\left(x_{0}, R\right) \subset \mathbb{R}^{n}, n \geq 3$, is compact, then

$$
\begin{equation*}
H^{1}(K) \leq C \operatorname{cap}_{\Psi}\left(K, B\left(x_{0}, 2 R\right)\right) \tag{7}
\end{equation*}
$$

Remark 11. In the definition of Ψ-capacity in Onninen [8], only Lipschitz continuous functions are considered. However, the Lipschitz continuity is not used anywhere in the proof. In fact, one only needs that all $x \in K$ are Lebesgue points of ϕ in order to obtain the fundamental inequality

$$
1 \leq C \sum_{j=0}^{\infty} \frac{R}{2^{j}} f_{B\left(x, 10 R / 2^{j}\right)}|\nabla \phi(y)| d y
$$

whose integration with respect to the Frostman measure leads to (7).

Proof of Theorem 1. The proof is based on the ideas of Manfredi and Villamor [13]. Note first, that by Theorem 1.3 in Iwaniec-Koskela-Onninen [5] and Theorem 1.5 in Kauhanen-Koskela-Malý [6], F is continuous and sense preserving. The openness and discreteness of F then follows from the Titus-Young theorem (Theorem A in [12]) if we can show that $H^{1}\left(F^{-1}(b)\right)=0$ for every $b \in \mathbb{R}^{n}$ (so that $F^{-1}(b)$ is totally disconnected).

Exhausting Ω by countably many compacts and covering each of them by finitely many small balls, we can write Ω as a countable union of balls $B_{j}=B\left(x_{j}, r_{j}\right)$ so that $\overline{B\left(x_{j}, 2 r_{j}\right)} \subset \Omega$ and $F\left(B_{j}\right) \subset B\left(b_{j}, \frac{1}{2} e^{-e}\right), b_{j} \in \mathbb{R}^{n}$. By the σ-subadditivity of the Hausdorff measure, it suffices to show that $H^{1}\left(B_{j} \cap F^{-1}(b)\right)=0$.

Let $B=B\left(x_{0}, r\right)$ be one of the balls B_{j}. Replacing F by $F-b$, we can assume that $b=0 \in F(B)$ and $F(B) \subset B\left(0, e^{-e}\right)$. In [13], Villamor and Manfredi constructed a family of C^{2}-smooth radially symmetric n-superharmonic functions Φ_{a} on $B\left(0, e^{-e}\right)$, $0<a<e^{-e}$, with (among others) the following properties,

$$
\begin{array}{rlrl}
\log (1 / a) \leq & \Phi_{a}(y) & \leq \log (1 / a)+\frac{1}{2}+\log 2 & \\
\text { for }|y| \leq a \\
& \Phi_{a}(y)=\log (1 /|y|) & & \text { for } a \leq|y| \leq e^{-e} \tag{iii}\\
& \Phi_{a}(y) \geq e & & \text { for }|y| \leq e^{-e}
\end{array}
$$

Then, under the assumption $F \in W_{\mathrm{loc}}^{1, n}\left(\Omega, \mathbb{R}^{n}\right)$, they prove that for every nonnegative function $\eta \in C_{0}^{\infty}(\Omega)$,

$$
\begin{equation*}
\int_{\Omega}\left|\nabla\left(\log \Phi_{a} \circ F\right)(x)\right|^{n} \frac{\eta(x)^{n}}{K(x)} d x \leq C \int_{\Omega} K(x)^{n-1}|\nabla \eta(x)|^{n} d x \tag{8}
\end{equation*}
$$

where C is independent of a, see (4.1) in [13]. Under the assumptions $F \in W_{\text {loc }}^{1,1}\left(\Omega, \mathbb{R}^{n}\right)$ and (2) considered here, the estimate (8) is proved in Kauhanen-Koskela-Maly [6], formulas (3.1) and (3.2). In the rest of the proof, all constants C will be independent of a, they may, however, depend on F, B and other fixed data.

Let K be a compact subset of $F^{-1}(0) \cap B$ and choose a nonnegative function $\eta \in C_{0}^{\infty}(B)$ so that $\eta \geq 1$ on K. Following [13], we consider the functions

$$
V_{a}(x)=\frac{\eta(x)\left(\log \Phi_{a} \circ F\right)(x)}{\log \log (1 / a)}
$$

which are continuous by (iii) and satisfy $V_{a} \geq 1$ on K by (i). Moreover, as $F \in$ $W_{\text {loc }}^{1, n-1}(\Omega)$ (by (2)) and $\log \Phi_{a}$ are Lipschitz (using the C^{2}-smoothness of Φ_{a} and (iii)), we have $V_{a} \in W_{0}^{1, n-1}(B)$ and

$$
\nabla V_{a}(x)=\frac{\nabla\left(\log \Phi_{a} \circ F\right)(x) \eta(x)+\left(\log \Phi_{a} \circ F\right)(x) \nabla \eta(x)}{\log \log (1 / a)}
$$

Let $\Psi_{1}(t)=\Psi\left(t^{n}\right)$. It is easily verified that Ψ_{1} is also a doubling Young function and that $K^{1 / n} \in L^{\Psi_{1}}(B)$. Moreover, the function $\Psi_{1}(t) / t^{n(n-1)}$ is nondecreasing. Let Ψ_{2} be defined by $\Psi_{2}^{-1}(s)=s^{1 / n} \Psi_{1}^{-1}(s)$ and let

$$
\Psi_{3}(t)=\int_{0}^{t} \frac{\Psi_{2}(s)}{s} d s
$$

As $n \geq 3$, Lemmas 6 and 7 imply that Ψ_{3} is a doubling Young function. Let us compute the $L^{\Psi_{3}}(B)$-norm of ∇V_{a}. We have

$$
\begin{equation*}
\left\|\nabla V_{a}\right\|_{L^{\Psi_{3}}(B)} \leq \frac{\left\|\left|\nabla\left(\log \Phi_{a} \circ F\right)\right| \eta\right\|_{L^{\Psi_{3}}(B)}+\left\|\left(\log \Phi_{a} \circ F\right)|\nabla \eta|\right\|_{L^{\Psi_{3}}(B)}}{\log \log (1 / a)} \tag{9}
\end{equation*}
$$

As $\Psi_{3}(t) \leq \Psi_{2}(t)$ by Lemma 6 , we have $s^{1 / n} \Psi_{1}^{-1}(s) \leq \Psi_{3}^{-1}(s)$ and an application of the generalized Hölder inequality (Theorem 5) yields

$$
\begin{equation*}
\left\|\left|\nabla\left(\log \Phi_{a} \circ F\right)\right| \eta\right\|_{L^{\Psi_{3}}(B)} \leq 2\left\|\left|\nabla\left(\log \Phi_{a} \circ F\right)\right| K^{-1 / n} \eta\right\|_{L^{n}(B)}\left\|K^{1 / n}\right\|_{L^{\Psi_{1}}(B)} \tag{10}
\end{equation*}
$$

where $\left\|K^{1 / n}\right\|_{L^{\Psi_{1}}(B)}<\infty$ by the assumption. By (8), we have

$$
\begin{equation*}
\left\|\left|\nabla\left(\log \Phi_{a} \circ F\right)\right| K^{-1 / n} \eta\right\|_{L^{n}(B)} \leq C\left(\int_{B} K(x)^{n-1}|\nabla \eta(x)|^{n} d x\right)^{1 / n} \tag{11}
\end{equation*}
$$

and hence the first norm on the right-hand side in (9) is bounded from above by a constant independent of a. It remains to estimate the second term on the right-hand side in (9). Another application of the generalized Hölder inequality (Theorem 5) shows that

$$
\begin{align*}
\left\|\left(\log \Phi_{a} \circ F\right) \mid \nabla \eta\right\| \|_{L^{\Psi_{3}}(B)} & \leq C\left\|\log \Phi_{a} \circ F\right\|_{L^{\Psi_{3}}(B)} \\
& \leq 2 C\left\|\log \Phi_{a} \circ F\right\|_{L^{n}(B)}\|1\|_{L^{\Psi_{1}}(B)} \tag{12}
\end{align*}
$$

where $\|1\|_{L^{\Psi_{1}}(B)}<\infty$. The set $B^{\prime}=\{x \in B: F(x) \neq 0\}$ is open and hence there exist $c>0$ and a ball $B_{0} \subset B^{\prime}$ so that $|F(x)|>c$ for all $x \in B_{0}$. In particular, for $a \leq c$ and $x \in B_{0}$, we have $\left|\log \Phi_{a} \circ F(x)\right|<\log \log (1 / c)$ by (ii). As $n \geq 3$, we have $n<n p /(n-p)$ with $p=n-1$ and Lemma 8 implies

$$
\begin{equation*}
\left\|\log \Phi_{a} \circ F\right\|_{L^{n}(B)} \leq C\left(\left\|\nabla\left(\log \Phi_{a} \circ F\right)\right\|_{L^{n-1}(B)}+\left\|\log \Phi_{a} \circ F\right\|_{L^{n-1}\left(B_{0}\right)}\right) \tag{13}
\end{equation*}
$$

The second term on the right-hand side does not exceed $\log \log (1 / c)\left|B_{0}\right|^{1 /(n-1)}$ and the first term is estimated as in Lemma 4 from [13]. More precisely, let $\tilde{\eta} \in C_{0}^{\infty}\left(B\left(x_{0}, 2 r\right)\right)$ be a nonnegative function such that $\tilde{\eta}=1$ on B and $|\nabla \tilde{\eta}| \leq 2 / r$. Then by the Hölder inequality and (8) we have

$$
\begin{align*}
\| \nabla & \left(\log \Phi_{a} \circ F\right) \|_{L^{n-1}(B)} \\
& \leq\left(\int_{B(x, 2 r)}\left|\nabla\left(\log \Phi_{a} \circ F\right)(x)\right|^{n} \frac{\tilde{\eta}(x)^{n}}{K(x)} d x\right)^{1 / n}\|K\|_{L^{n-1}(B(x, 2 r))}^{1 / n} \\
& \leq \frac{C}{r}\|K\|_{L^{n-1}(B(x, 2 r))} \tag{14}
\end{align*}
$$

Putting together (9)-(14) gives

$$
\left\|\nabla V_{a}\right\|_{L^{\Psi_{3}}(B)} \leq \frac{C}{\log \log (1 / a)}
$$

and letting $a \rightarrow 0+$ yields $\operatorname{cap}_{\Psi_{3}}\left(K, B\left(x_{0}, 2 r\right)\right)=0$ for every compact subset K of $F^{-1}(0) \cap B\left(x_{0}, r\right)$. Theorem 10 then shows that $H^{1}(K)=0$, provided that

$$
\int_{1}^{\infty}\left(\frac{t}{\Psi_{3}(t)}\right)^{1 /(n-2)} d t<\infty
$$

As $\Psi_{2}(t) \leq C \Psi_{3}(t)$ by Lemma 6, this follows from the following lemma and finishes the proof of the theorem.

Lemma 12

Let Ψ be a Young function satisfying (1) such that $\Psi(t) / t^{n-1}$ is nondecreasing. Let Ψ_{1} and Ψ_{2} be as in the proof of Theorem 1. Then

$$
\begin{equation*}
\int_{1}^{\infty}\left(\frac{t}{\Psi_{2}(t)}\right)^{1 /(n-2)} d t<\infty \tag{15}
\end{equation*}
$$

Proof. By Lemma 6, we can assume that $\Psi \in C^{1}(0, \infty)$ and hence also $\Psi_{1}, \Psi_{2} \in$ $C^{1}(0, \infty)$. We have, using integration by parts,

$$
\begin{align*}
\int_{1}^{R}\left(\frac{t}{\Psi_{2}(t)}\right)^{1 /(n-2)} d t= & {\left[\frac{n-2}{n-1}\left(\frac{t^{n-1}}{\Psi_{2}(t)}\right)^{1 /(n-2)}\right]_{1}^{R} } \\
& +\frac{1}{n-1} \int_{1}^{R}\left(\frac{t}{\Psi_{2}(t)}\right)^{(n-1) /(n-2)} \Psi_{2}^{\prime}(t) d t \tag{16}
\end{align*}
$$

Here, the definitions of Ψ_{1} and Ψ_{2} imply

$$
\begin{equation*}
\Psi_{2}^{-1}(s)=\left(s \Psi^{-1}(s)\right)^{1 / n} \tag{17}
\end{equation*}
$$

and hence

$$
\frac{t^{n-1}}{\Psi_{2}(t)}=\frac{\Psi_{2}^{-1}(s)^{n-1}}{s}=\frac{\Psi^{-1}(s)^{1-1 / n}}{s^{1 / n}}=\left(\frac{u^{n-1}}{\Psi(u)}\right)^{1 / n}
$$

where $s=\Psi_{2}(t)$ and $u=\Psi^{-1}\left(\Psi_{2}(t)\right) \rightarrow \infty$, as $t \rightarrow \infty$. As $\Psi(t) / t^{n-1}$ is nondecreasing, we see that the first term on the right-hand side in (16) remains bounded as $R \rightarrow \infty$.

Next, let again $u=\Psi^{-1}\left(\Psi_{2}(t)\right)$, i.e. $\Psi_{2}^{\prime}(t) d t=\Psi^{\prime}(u) d u$. The formula (17) implies $u=t^{n} / \Psi_{2}(t)$ and hence the change of variables $u=\Psi^{-1}\left(\Psi_{2}(t)\right)$ yields that the integral on the right-hand side in (16) is equal to

$$
\int_{\Psi^{-1}\left(\Psi_{2}(1)\right)}^{\Psi^{-1}\left(\Psi_{2}(R)\right)}\left(\frac{u}{\Psi(u)^{n-1}}\right)^{(n-1) / n(n-2)} \Psi^{\prime}(u) d u
$$

Finally, another integration by parts shows that the last integral is equal to

$$
\left[-n(n-2)\left(\frac{u^{n-1}}{\Psi(u)}\right)^{1 / n(n-2)}\right]_{\Psi^{-1}\left(\Psi_{2}(1)\right)}^{\Psi^{-1}\left(\Psi_{2}(R)\right)}+(n-1) \int_{\Psi^{-1}\left(\Psi_{2}(1)\right)}^{\Psi^{-1}\left(\Psi_{2}(R)\right)}\left(\frac{u^{n-1}}{\Psi(u)}\right)^{1 / n(n-2)} \frac{d u}{u}
$$

As before, the first term remains bounded as $R \rightarrow \infty$ and can be disregarded and the second term remains bounded as $R \rightarrow \infty$, by (1).

Acknowledgement. This research has been partly supported by the Swedish Research Council. I also wish to thank Juha Heinonen for introducing me to this problem.

References

1. J. Ball, Global invertibility of Sobolev functions and the interpenetration of matter, Proc. Roy. Soc. Edinburgh Sect. A 88 (1981), 315-328.
2. J. Heinonen and P. Koskela, Sobolev mappings with integrable dilatations, Arch. Rational Mech. Anal. 125 (1993), 81-97.
3. S. Hencl and J. Malý, Mappings of dinite distortion: Hausdorff measure of zero sets, Preprint 2001.
4. T. Iwaniec and V. Šverák, On mappings with integrable dilatation, Proc. Amer. Math. Soc. 118 (1993), 181-188.
5. T. Iwaniec, P. Koskela, and J. Onninen, Mappings of finite distortion: monotonicity and continuity, Invent. Math. 144 (2001), 507-531.
6. J. Kauhanen, P. Koskela, and J. Malý, Mappings of finite distortion: discreteness and openness, Arch. Ration. Mech. Anal. 160 (2001), 135-151.
7. R. O'Neil, Fractional integration in Orlicz spaces, I, Trans. Amer. Math. Soc. 115 (1965), 300-328.
8. J. Onninen, Orlicz capacities and Hausdorff measures in metric spaces, (in preparation).
9. Yu.G. Reshetnyak, Space mappings with bounded distortion, Sibirsk. Mat. Zh. 8 (1967), 629-658 (in Russian), Siberian Math. J. 3 (1967), 466-486 (English trans1.).
10. Yu.G. Reshetnyak, Spatial mappings with bounded distortion, Nauka, Moscow, 1982 (in Russian), Amer. Math. Soc., Providence, RI, 1989 (English transl.).
11. S. Rickman, Quasiregular mappings, Springer-Verlag, Berlin, 1993.
12. C.J. Titus and G.S. Young, The extension of interiority, with some applications, Trans. Amer. Math. Soc. 103 (1962), 329-340.
13. E. Villamor and J.J. Manfredi, An extension of Reshetnyak's theorem, Indiana Univ. Math. J. 47 (1998), 1131-1145.
14. W.P. Ziemer, Weakly differentiable functions, Sobolev spaces and functions of bounded variation, Springer-Verlag, New York, 1989.
