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Abstract

We prove openness and discreteness for nonconstant mappings belonging to
W 1,n

loc (Ω,Rn), n ≥ 3, with dilatation in certain Orlicz spaces which are strictly
larger then all Lp

loc(Ω), p > n− 1. This result contributes to decreasing the gap
between known results and a conjecture of Iwaniec and Šverák.

1. Introduction

Let Ω be a connected open set in R
n, n ≥ 2, and F : Ω → R

n a mapping in the Sobolev
space W 1,1

loc (Ω,Rn). The mapping F is said to have finite dilatation if there exists a
function K such that for almost all x ∈ Ω, 1 ≤ K(x) <∞ and

|DF (x)|n ≤ K(x)JF (x),

where |DF (x)| = sup {|DF (x)ξ| : |ξ| ≤ 1} is the operator norm of the differential
DF (x) of F at x and JF (x) = detDF (x).

An important theorem due to Reshetnyak [9] states that if F ∈ W 1,n
loc (Ω,Rn)

is nonconstant and its dilatation K is bounded (i.e. F is quasiregular), then F is
continuous, open and discrete, i.e. preimages and images of open sets are open and
preimages of single points consist of isolated points. For more about quasiregular
mappings, see e.g. Reshetnyak [10] and Rickman [11].

In 1993, Iwaniec and Šverák [4] conjectured that the conclusion of Reshetnyak’s
theorem is true whenever F ∈ W 1,n

loc (Ω,Rn) and K ∈ Ln−1
loc (Ω), and proved it for

n = 2. Their method does not directly generalize to higher dimensions. An example
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by Ball [1] shows that Reshetnyak’s theorem fails if we only assume that K ∈ Lp
loc(Ω)

for all p < n− 1.
By improving Reshetnyak’s method, Heinonen and Koskela [2] verified the conjec-

ture of Iwaniec and Šverák forK ∈ Lp
loc(Ω), p > n−1, under the additional assumption

that F is quasilight, i.e. that the preimage of each point is compact. The assumption
of quasilightness was removed by Villamor and Manfredi [13].

Iwaniec-Koskela-Onninen [5] and Kauhanen-Koskela-Malý [6] weakened the as-
sumption F ∈W 1,n

loc (Ω,Rn) while keeping K ∈ Lp
loc(Ω), p > n−1. The borderline case

p = n− 1 was recently treated by Hencl and Malý [3] by a different method under the
assumption of quasilightness.

In this paper, we combine the approach of Kauhanen, Koskela and Malý [6] with
a refinement of Villamor and Manfredi’s proof and verify the conjecture of Iwaniec and
Šverák for a class of mappings with dilatation in Orlicz spaces, namely we prove the
following theorem. (See the next section for the definitions of Young functions and
Orlicz spaces.)

Theorem 1

Let Ψ be a doubling Young function such that Ψ(t)/tn−1 is nondecreasing, n ≥ 3,

and ∫ ∞

1

(
tn−1

Ψ(t)

)1/n(n−2)
dt

t
<∞. (1)

If F ∈ W 1,1
loc (Ω,Rn) is a nonconstant mapping with dilatation belonging to the Orlicz

space LΨ
loc(Ω), such that

lim
ε→0+

ε

∫
Ω

|DF (x)|n−ε dx = 0, (2)

then F is continuous, open and discrete.

Remark 2. For Lp spaces (i.e. Ψ(t) = tp), the condition (1) is satisfied if and only if
p > n− 1. Other Young functions for which the theorem holds are e.g.

Ψ(t) =

{
tn−1(log t)n(n−2)+ε, t ≥ e,

tn−1, 0 ≤ t < e,

Ψ(t) =

{
tn−1(log t)n(n−2)(log log t)n(n−2)+ε, t ≥ ee,

en(n−2)tn−1, 0 ≤ t < ee,

and other repeated logarithms with ε > 0. If ε = 0 in the above expressions, then the
condition (1) just fails.
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2. Young functions and auxiliary results

Definition 3. A positive continuous convex function Ψ on (0,∞) satisfying

lim
t→0+

Ψ(t)
t

= 0 and lim
t→∞

Ψ(t)
t

= ∞ (3)

is called a Young function. If Ψ(2t) ≤ CΨ(t) for some constant C and all t ∈ (0,∞),
then Ψ is said to be doubling (or satisfying the ∆2-condition).

Definition 4. The Orlicz space LΨ(Ω) is the set of all measurable functions with the
Luxemburg norm

‖f‖LΨ(Ω) = inf
{
λ > 0 :

∫
Ω

Ψ
( |f(x)|

λ

)
dx ≤ 1

}
<∞,

where we interpret Ψ(0) = 0.

The following generalized Hölder inequality for Orlicz spaces is proved in the paper
by O’Neil [7, Theorem 2.3].

Theorem 5

Let Ψ1, Ψ2 and Ψ3 be Young functions such that

Ψ−1
1 (s)Ψ−1

2 (s) ≤ Ψ−1
3 (s).

If f ∈ LΨ1(Ω) and g ∈ LΨ2(Ω), then fg ∈ LΨ3(Ω) and

‖fg‖LΨ3 (Ω) ≤ 2‖f‖LΨ1 (Ω)‖g‖LΨ2 (Ω).

The following lemma shows that doubling Young functions can be assumed to
be as smooth as needed. Note that for a Young function Ψ, the monotonicity of the
function t �→ Ψ(t)/t is a direct consequence of the convexity of Ψ.

Lemma 6

Let Ψ ∈ Ck(0,∞), k ≥ 0, be a positive doubling function satisfying (3), such that

the function t �→ Ψ(t)/t is nondecreasing. Let

Ψ1(t) =
∫ t

0

Ψ(s)
s
ds.

Then Ψ1 is a doubling Young function, Ψ1 ∈ Ck+1(0,∞) and Ψ(t)/C ≤ Ψ1(t) ≤ Ψ(t)
for all t ∈ (0,∞). Moreover, LΨ(Ω) = LΨ1(Ω) and for all f ∈ LΨ(Ω), ‖f‖LΨ1 (Ω) ≤
‖f‖LΨ(Ω) ≤ 2‖f‖LΨ1 (Ω).
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Proof. The fact that Ψ1 ∈ Ck+1(0,∞) follows directly from the definition of Ψ1. The
convexity of Ψ1 is a direct consequence of the fact that Ψ(t)/t is nondecreasing. As
for the doubling condition, we have

Ψ1(2t) =
∫ t

0

Ψ(2s)
s

ds ≤ C
∫ t

0

Ψ(s)
s
ds = CΨ1(t).

To prove (3), let ε, k > 0 be arbitrary and find t1, t2 > 0 so that Ψ(s)/s < ε for all
0 < s ≤ t1 and Ψ(s)/s > k for all s ≥ t2. Then

Ψ1(t)
t

=
1
t

∫ t

0

Ψ(s)
s
ds ≤ ε for 0 < t ≤ t1,

Ψ1(t)
t

≥ 1
t

∫ t

t/2

Ψ(s)
s
ds ≥ k

2
for t ≥ 2t2.

Next, the fact that Ψ(t)/t is nondecreasing and the doubling property of Ψ1 give

Ψ1(t) ≥
∫ t

t/2

Ψ(s)
s
ds ≥ t

2

Ψ
(

1
2 t

)
1
2 t

= Ψ
(1

2
t
)
≥ Ψ(t)

C
, (4)

Ψ1(t) =
∫ t

0

Ψ(s)
s
ds ≤ tΨ(t)

t
= Ψ(t). (5)

Finally, if λ > ‖f‖LΨ1 (Ω), then (4) implies

1 ≥
∫

Ω

Ψ1

(
f(x)
λ

)
dx ≥

∫
Ω

Ψ
(
f(x)
2λ

)
dx

and hence 2λ ≥ ‖f‖LΨ(Ω). Taking infimum over all possible λ shows that ‖f‖LΨ(Ω) ≤
2‖f‖LΨ1 (Ω). Similarly, the inequality ‖f‖LΨ1 (Ω) ≤ ‖f‖LΨ(Ω) follows from (5). �

Lemma 7
Let Ψ be a continuous doubling function on (0,∞), such that Ψ(t)/tp is non-

decreasing. Let 0 < α < 1 − 1/p and define Ψ1 by Ψ−1
1 (s) = sαΨ−1(s). Then Ψ1

is a continuous doubling function on (0,∞) satisfying (3). Moreover, the function
t �→ Ψ1(t)/t is increasing.

Proof. The continuity is clear. A simple calculation shows that the doubling condition
for Ψ is equivalent to 2Ψ−1(s) ≤ Ψ−1(Cs) for some C > 1 and all s ∈ (0,∞). We then
have

2Ψ−1
1 (s) = 2sαΨ−1(s) ≤ sαΨ−1(Cs) ≤ Ψ−1

1 (Cs),

i.e. Ψ1 is doubling. To prove (3), note that

Ψ1(t)
t

=
s

Ψ−1
1 (s)

=
s1−α

Ψ−1(s)
=

(
Ψ(u)
up

)1−α

u(1−α)p−1, (6)

where s = Ψ1(t) and u = Ψ−1(Ψ1(t)) → 0+, as t→ 0+. Hence,

lim
t→0+

Ψ1(t)
t

= lim
u→0+

(
Ψ(u)
up

)1−α

u(1−α)p−1 = 0,

and similarly for t→ ∞. Finally, (6) also shows that Ψ1(t)/t is increasing. �
We shall also need the following Sobolev type inequality. For the readers conve-

nience, we repeat the short proof.
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Lemma 8

Let B and B0 ⊂ B ⊂ R
n be balls, n ≥ 3, p > 1 and 1 < q < np/(n − p). Then

there exists C > 0 such that for all u ∈W 1,p(B),

‖u‖Lq(B) ≤ C
(
‖∇u‖Lp(B) + ‖u‖Lp(B0)

)
.

Proof. Assume that this is not true. Then there exist uk ∈ W 1,p(B) so that
‖uk‖Lq(B) = 1 and ‖∇uk‖Lp(B) + ‖uk‖Lp(B0) ≤ 1/k. By the local weak sequen-
tional compactness of W 1,p(B), we can find a subsequence, also denoted uk, so that
uk → u0 weakly in W 1,p(B). The weak lower semicontinuity of the Lp-norm im-
plies ‖∇u0‖Lp(B) = ‖u0‖Lp(B0) = 0 and hence u0 = 0. On the other hand, since the
embedding W 1,p(B) ⊂ Lq(B) is compact (by e.g. Theorem 2.5.1 in Ziemer [14]), a
subsequence of {uk}∞k=1 converges to u0 in Lq(B) and ‖u0‖Lq(B) = 1. This contradicts
u0 = 0. �

3. Proof of Theorem 1

Definition 9. Let Ψ be a Young function and K ⊂ B(x0, R) = {x ∈ R
n : |x− x0| <

R} be compact. The Ψ-capacity of K with respect to the ball B(x0, 2R) is

capΨ(K,B(x0, 2R)) = inf ‖∇φ‖LΨ(B(x0,2R)),

where the infimum is taken over all continuous functions φ ∈ W 1,1(B(x0, 2R)) with
compact support in B(x0, 2R) and φ ≥ 1 on K.

The 1-dimensional Hausdorff measure is denoted H1. The following theorem is
due to Onninen [8].

Theorem 10

Let Ψ be a doubling Young function satisfying Ψ(t) ≥ Ctn−1 and

∫ ∞

1

(
t

Ψ(t)

)1/(n−2)

dt <∞.

If K ⊂ B(x0, R) ⊂ R
n, n ≥ 3, is compact, then

H1(K) ≤ C capΨ(K,B(x0, 2R)). (7)

Remark 11. In the definition of Ψ-capacity in Onninen [8], only Lipschitz continuous
functions are considered. However, the Lipschitz continuity is not used anywhere in
the proof. In fact, one only needs that all x ∈ K are Lebesgue points of φ in order to
obtain the fundamental inequality

1 ≤ C
∞∑
j=0

R

2j

∫
−B(x,10R/2j)|∇φ(y)| dy,

whose integration with respect to the Frostman measure leads to (7).
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Proof of Theorem 1. The proof is based on the ideas of Manfredi and Villamor [13].
Note first, that by Theorem 1.3 in Iwaniec–Koskela–Onninen [5] and Theorem 1.5 in
Kauhanen-Koskela-Malý [6], F is continuous and sense preserving. The openness and
discreteness of F then follows from the Titus-Young theorem (Theorem A in [12])
if we can show that H1(F−1(b)) = 0 for every b ∈ R

n (so that F−1(b) is totally
disconnected).

Exhausting Ω by countably many compacts and covering each of them by finitely
many small balls, we can write Ω as a countable union of balls Bj = B(xj , rj) so that
B(xj , 2rj) ⊂ Ω and F (Bj) ⊂ B

(
bj ,

1
2e

−e
)
, bj ∈ R

n. By the σ-subadditivity of the
Hausdorff measure, it suffices to show that H1(Bj ∩ F−1(b)) = 0.

Let B = B(x0, r) be one of the balls Bj . Replacing F by F − b, we can assume
that b = 0 ∈ F (B) and F (B) ⊂ B(0, e−e). In [13], Villamor and Manfredi constructed
a family of C2-smooth radially symmetric n-superharmonic functions Φa on B(0, e−e),
0 < a < e−e, with (among others) the following properties,

log(1/a) ≤Φa(y) ≤ log(1/a) +
1
2

+ log 2 for |y| ≤ a, (i)

Φa(y) = log(1/|y|) for a ≤ |y| ≤ e−e, (ii)

Φa(y) ≥ e for |y| ≤ e−e. (iii)

Then, under the assumption F ∈ W 1,n
loc (Ω,Rn), they prove that for every nonnegative

function η ∈ C∞
0 (Ω),∫

Ω

|∇(log Φa ◦ F )(x)|n η(x)
n

K(x)
dx ≤ C

∫
Ω

K(x)n−1|∇η(x)|n dx, (8)

where C is independent of a, see (4.1) in [13]. Under the assumptions F ∈W 1,1
loc (Ω,Rn)

and (2) considered here, the estimate (8) is proved in Kauhanen-Koskela-Malý [6],
formulas (3.1) and (3.2). In the rest of the proof, all constants C will be independent
of a, they may, however, depend on F , B and other fixed data.

Let K be a compact subset of F−1(0) ∩ B and choose a nonnegative function
η ∈ C∞

0 (B) so that η ≥ 1 on K. Following [13], we consider the functions

Va(x) =
η(x)(log Φa ◦ F )(x)

log log(1/a)

which are continuous by (iii) and satisfy Va ≥ 1 on K by (i). Moreover, as F ∈
W 1,n−1

loc (Ω) (by (2)) and log Φa are Lipschitz (using the C2-smoothness of Φa and
(iii)), we have Va ∈W 1,n−1

0 (B) and

∇Va(x) =
∇(log Φa ◦ F )(x)η(x) + (log Φa ◦ F )(x)∇η(x)

log log(1/a)
.

Let Ψ1(t) = Ψ(tn). It is easily verified that Ψ1 is also a doubling Young function
and that K1/n ∈ LΨ1(B). Moreover, the function Ψ1(t)/tn(n−1) is nondecreasing. Let
Ψ2 be defined by Ψ−1

2 (s) = s1/nΨ−1
1 (s) and let

Ψ3(t) =
∫ t

0

Ψ2(s)
s

ds.



Mappings with dilatation in Orlicz spaces 309

As n ≥ 3, Lemmas 6 and 7 imply that Ψ3 is a doubling Young function. Let us
compute the LΨ3(B)-norm of ∇Va. We have

‖∇Va‖LΨ3 (B) ≤
∥∥|∇(log Φa ◦ F )|η

∥∥
LΨ3 (B)

+
∥∥(log Φa ◦ F )|∇η|

∥∥
LΨ3 (B)

log log(1/a)
. (9)

As Ψ3(t) ≤ Ψ2(t) by Lemma 6, we have s1/nΨ−1
1 (s) ≤ Ψ−1

3 (s) and an application of
the generalized Hölder inequality (Theorem 5) yields∥∥|∇(log Φa ◦ F )|η

∥∥
LΨ3 (B)

≤ 2
∥∥|∇(log Φa ◦ F )|K−1/nη

∥∥
Ln(B)

‖K1/n‖LΨ1 (B), (10)

where ‖K1/n‖LΨ1 (B) <∞ by the assumption. By (8), we have

∥∥|∇(log Φa ◦ F )|K−1/nη
∥∥
Ln(B)

≤ C
(∫

B

K(x)n−1|∇η(x)|n dx
)1/n

, (11)

and hence the first norm on the right-hand side in (9) is bounded from above by a
constant independent of a. It remains to estimate the second term on the right-hand
side in (9). Another application of the generalized Hölder inequality (Theorem 5)
shows that ∥∥(log Φa ◦ F )|∇η|

∥∥
LΨ3 (B)

≤ C‖log Φa ◦ F‖LΨ3 (B)

≤ 2C‖log Φa ◦ F‖Ln(B)‖1‖LΨ1 (B), (12)

where ‖1‖LΨ1 (B) < ∞. The set B′ = {x ∈ B : F (x) �= 0} is open and hence there
exist c > 0 and a ball B0 ⊂ B′ so that |F (x)| > c for all x ∈ B0. In particular, for
a ≤ c and x ∈ B0, we have |log Φa ◦ F (x)| < log log(1/c) by (ii). As n ≥ 3, we have
n < np/(n− p) with p = n− 1 and Lemma 8 implies

‖log Φa ◦ F‖Ln(B) ≤ C
(
‖∇(log Φa ◦ F )‖Ln−1(B) + ‖log Φa ◦ F‖Ln−1(B0)

)
. (13)

The second term on the right-hand side does not exceed log log(1/c)|B0|1/(n−1) and the
first term is estimated as in Lemma 4 from [13]. More precisely, let η̃ ∈ C∞

0 (B(x0, 2r))
be a nonnegative function such that η̃ = 1 on B and |∇η̃| ≤ 2/r. Then by the Hölder
inequality and (8) we have

‖∇(log Φa ◦ F )‖Ln−1(B)

≤
(∫

B(x,2r)

|∇(log Φa ◦ F )(x)|n η̃(x)
n

K(x)
dx

)1/n

‖K‖1/n
Ln−1(B(x,2r))

≤ C

r
‖K‖Ln−1(B(x,2r)). (14)

Putting together (9)–(14) gives

‖∇Va‖LΨ3 (B) ≤
C

log log(1/a)
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and letting a → 0+ yields capΨ3
(K,B(x0, 2r)) = 0 for every compact subset K of

F−1(0) ∩B(x0, r). Theorem 10 then shows that H1(K) = 0, provided that∫ ∞

1

(
t

Ψ3(t)

)1/(n−2)

dt <∞.

As Ψ2(t) ≤ CΨ3(t) by Lemma 6, this follows from the following lemma and finishes
the proof of the theorem. �

Lemma 12
Let Ψ be a Young function satisfying (1) such that Ψ(t)/tn−1 is nondecreasing.

Let Ψ1 and Ψ2 be as in the proof of Theorem 1. Then∫ ∞

1

(
t

Ψ2(t)

)1/(n−2)

dt <∞. (15)

Proof. By Lemma 6, we can assume that Ψ ∈ C1(0,∞) and hence also Ψ1,Ψ2 ∈
C1(0,∞). We have, using integration by parts,∫ R

1

(
t

Ψ2(t)

)1/(n−2)

dt =
[
n− 2
n− 1

(
tn−1

Ψ2(t)

)1/(n−2)]R

1

+
1

n− 1

∫ R

1

(
t

Ψ2(t)

)(n−1)/(n−2)

Ψ′
2(t) dt. (16)

Here, the definitions of Ψ1 and Ψ2 imply

Ψ−1
2 (s) =

(
sΨ−1(s)

)1/n (17)

and hence
tn−1

Ψ2(t)
=

Ψ−1
2 (s)n−1

s
=

Ψ−1(s)1−1/n

s1/n
=

(
un−1

Ψ(u)

)1/n

,

where s = Ψ2(t) and u = Ψ−1(Ψ2(t)) → ∞, as t→ ∞. As Ψ(t)/tn−1 is nondecreasing,
we see that the first term on the right-hand side in (16) remains bounded as R→ ∞.

Next, let again u = Ψ−1(Ψ2(t)), i.e. Ψ′
2(t) dt = Ψ′(u) du. The formula (17) implies

u = tn/Ψ2(t) and hence the change of variables u = Ψ−1(Ψ2(t)) yields that the integral
on the right-hand side in (16) is equal to∫ Ψ−1(Ψ2(R))

Ψ−1(Ψ2(1))

(
u

Ψ(u)n−1

)(n−1)/n(n−2)

Ψ′(u) du.

Finally, another integration by parts shows that the last integral is equal to[
−n(n− 2)

(
un−1

Ψ(u)

)1/n(n−2)]Ψ−1(Ψ2(R))

Ψ−1(Ψ2(1))

+ (n− 1)
∫ Ψ−1(Ψ2(R))

Ψ−1(Ψ2(1))

(
un−1

Ψ(u)

)1/n(n−2)
du

u
.

As before, the first term remains bounded as R→ ∞ and can be disregarded and the
second term remains bounded as R→ ∞, by (1). �
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