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Abstract

We find an explicit integral representation for bounded holomorphic functions f(z)
on sectors |Arg(z)| < ψ in terms of the kernel z(z + λ)−2 and present some
applications to operator theory. Namely, given a sectorial operator A we define
the functional calculusA→ f(A) and find pointwise estimates and moment type
inequalities for ‖f(A)x‖. We show that sectorial operators have a boundedH∞-
functional calculus on a dense subspace. We also find exact estimates for the norm
‖e−λA‖ of analytic semigroups.

1. Introduction

The classical Riesz-Dunford functional calculus for unbounded closed operators A is
based on the formula (see [10])

f(A) =
1
2π

∫
∂G

f(λ)
λ−Adλ , (1.1)

where f(z) is an appropriate holomorphic function on a domain G and Sp(A) ⊂ G.
When f is bounded and we want to find a necessary and sufficient condition on A
under which

‖f(A)‖ ≤ C‖f‖∞, (1.2)

the representation (1.1) is not very convenient. Work with sectorial operators [6], [7]
has shown that a convenient necessary and sufficient condition can be given in terms
of the expression A(A+ λ)−2 which corresponds to the function z → z(z + λ)−2.
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We find here an explicit integral representation for bounded holomorphic functions
f(z) on sectors |Arg(z)| < ψ by means of the kernel z(z+λ)−2 and the boundary values
of f(z) (see (2.2)) and present some applications to operator theory. Using the operator
kernel A(A + λ)−2 one can define a bounded H∞-functional calculus A → f(A) for
sectorial operators A of type θ < ψ and find sharp estimates of the form (1.2). Also,
we prove the moment type pointwise estimates:

‖f(A)x‖ ≤ K(ψ, α, β) ‖Aαx‖β/(α+β) ‖A−βx‖α/(α+β) ‖f‖∞

for every x ∈ D(Aα)∩D(A−β), 0 < α, β ≤ 1 (see (4.1)). In particular, this shows that
the calculus exists at least on the dense subspace D(A) ∩D(A−1).

It is known that sectorial operators A of type θ < π/2 generate holomorphic
semigroups e−λA. We prove an inequality of the form

‖f(A)‖ ≤ C‖f ′‖∞

which provides an exact estimate for the norm ‖e−λA‖ (see 5.3).
Holomorphic functions on sectors can be represented in terms of different kernels.

For instance, the representation (7.2) below is based on a Poisson-like kernel and was
used in the functional calculus in [4], [5]. This kernel, however, contains fractional
powers which is inconvenient for computations and for the estimates we need. Because
of its pure resolvent form, the kernel A(A + λ)−2 seems to be the natural choice for
constructing a functional calculus based on resolvent properties.

Bounded H∞-functional calculus for Hilbert space operators of type θ was cons-
tructed by McIntosh [16], [18]. An alternative approach was presented in [4], [17]. The
Banach space case was first addressed in [6]. Further developments can be found in [1],
[2], [4], [5], [7], [8], [9], [11], [14], [15], [23].

The paper is organized as follows: Section 2 presents the integral representation
and its proof is given in Section 7. In Section 3 we describe the functional calculus.
Section 4 is dedicated to the mentioned above moment inequality and in Section 5 one
finds the norm estimate for bounded holomorphic semigroups. Section 6 deals with a
functional calculus for two resolvent commuting operators.

2. The integral representation

Throughout, given 0 < ψ ≤ π we define the angular sector

Sψ =
{
z ∈ C: z 
= 0, |Arg(z)| < ψ

}

with closure Sψ. Let H∞(Sψ) be the Banach algebra of all bounded holomorphic
functions on Sψ with the “sup” norm ‖f‖∞.

We use also the standard convolution for two functions on the line,

(f ∗ g)(r) =
∫ +∞

−∞
f(u)g(r − u)du .



Integral representation of functions on sectors, functional calculus and norm estimates 289

Theorem 2.1

Suppose f(z) is a bounded holomorphic function on the sector Sψ, 0 < ψ ≤ π.

Then f(z) has the representation

f(z) =
∫

R

W̃ψ(z, u)
(
fψ ∗ kψ

)
(u)du (2.1)

where

W̃ψ(z, u) =
1
2

(
zeu+i(π−ψ)

(z + eu+i(π−ψ))2
+

zeu−i(π−ψ)

(z + eu−i(π−ψ))2

)
.

Also, here

fψ(r) =
1
2
(
f(er+iψ) + f(er−iψ)

)

is the boundary value of the function on the sides of the sector and

kψ(r) =
1
π2

ln
∣∣∣∣coth

( πr
4ψ

)
coth

( πr

4(π − ψ)

)∣∣∣∣ (ψ < π)

kπ(r) =
1
π2

ln
∣∣∣coth

(r
4

)∣∣∣ (ψ = π)

is an even function on the real line with

kψ(r) ≥ 0, ‖kψ‖1 =
∫

R

kψ(r)dr = 1 .

The proof is given in Section 7. Note that

‖fψ ∗ kψ‖∞ ≤ ‖fψ‖∞‖kψ‖1 = ‖f‖∞ .

The substitution eu = t brings (2.1) to a form more convenient for some applications

f(z) =
∫ +∞

0

Wψ(z, t)
(
fψ ∗ kψ

)
(ln t)dt (2.2)

or

f(z) =
∫ +∞

0

Wψ(z, t)Fψ(t)dt

with

Wψ(z, t) =
1
2

(
zei(π−ψ)

(z + tei(π−ψ))2
+

ze−i(π−ψ)

(z + te−i(π−ψ))2

)
,

and
‖Fψ‖∞ ≤ ‖f‖∞ .

Here

Fψ(t) = (fψ ∗ kψ)(ln t) =
∫ ∞

0

1
2
(
f(xeiψ) + f(xe−iψ)

)
kψ

(
ln
t

x

)dx
x
.
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One can also write

Wψ(z, t) =
−z
2

(
e−iψ

(z − te−iψ)2
+

eiψ

(z − teψ)2

)
,

and in particular,

Wπ(z, t) =
z

(z + t)2
,

Wπ/2(z, t) =
2z2t

(z2 + t2)2
. (2.3)

Example 2.2: If f(z) is a bounded holomorphic function on Sπ = C\(−∞, 0], then

f(z) =
∫ +∞

0

z

(z + t)2
(fπ ∗ kπ)(ln t)dt .

When ψ = π/2 and f ∈ H∞(Sπ/2):

f(z) =
∫ +∞

0

2z2t
(z2 + t2)2

Fπ/2(t)dt ,

where

Fπ/2(t) =
(
fπ/2 ∗ kπ/2

)
(ln t) =

1
π2

∫ ∞

0

(
f(ix) + f(−ix)

)
ln

∣∣∣∣ t+ xt− x

∣∣∣∣ dxx .

This follows from

kπ/2(r) =
2
π2

ln
∣∣∣coth

(r
2

)∣∣∣ , kπ/2
(

ln
( t
x

))
=

1
π2

ln
∣∣∣∣ t+ xt− x

∣∣∣∣ .

Lemma 2.3

Suppose 0 < ψ ≤ π and z = reiθ ∈ Sψ, i.e |θ| < ψ. Then

w(ψ, θ) ≡
∫

R

∣∣W̃ψ(z, u)
∣∣du =

∫ ∞

0

∣∣Wψ(z, t)
∣∣dt <∞ , (2.4)

and

w(ψ, θ) ≤ 1
2

( |π − (ψ − θ)|
| sin(ψ − θ)| +

|π − (ψ + θ)|
| sin(ψ + θ)|

)
, w

(π
2
, θ

)
=

2θ
sin 2θ

.
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Proof. Set α = θ ± ψ. Then −2π < α < 2π, α 
= 0. The lemma follows from the
evaluation ∫ ∞

0

rdt

|t− reiα|2 =
|π − |α| |
| sinα| ,

(assuming that the right hand side is 1 when α = ±π). The case ψ = π/2 is done
separately by using (2.3). �

3. Functional calculus

Let X be a complex Banach space with dual X ′.

Definition. A closed, densely defined operator A on X is called an operator of type
θ, 0 ≤ θ < π, if σ(A) ⊆ Sθ and

‖λ(A+ λ)−1‖ ≤Mφ, ∀λ ∈ Sπ−φ , ∀φ : θ < φ ≤ π (3.1)

(with the agreement that S0 = [0,∞)).
One operator A is of type θ < π/2 exactly when −A generates a bounded holo-

morphic semigroup of angle π/2− θ [20]. If A is of type θ and A−1 is densely defined,
then A−1 is also of type θ with constant 1 +Mφ in (3.1) [3].

Notation. We denote the set of all injective type θ operators with dense range (i.e.
A−1 is densely defined) by Tθ. Thus A ∈ Tθ if and only if A−1 ∈ Tθ.

For operators A of type θ and every ψ, θ < ψ ≤ π, one can define the functional
calculus f → f(A),∀f ∈ H∞(Sψ) by plugging A in the place of z inWψ(z, t) (see (2.2))

A→Wψ(A, t) =
1
2

(
Aei(π−ψ)

(A+ tei(π−ψ))2
+

Ae−i(π−ψ)

(A+ te−i(π−ψ))2

)

(Operator fractions 1/B stand for B−1.) Then we define f(A) by the formula

〈f(A)x, y〉 =
∫ ∞

0

〈Wψ(A, t)x, y〉(fψ ∗ kψ)(ln t)dt (3.2)

(x ∈ X, y ∈ X ′).
Under the condition Pψ = Pψ(A),

Pψ:
∫ ∞

0

∣∣〈Wψ(A, t)x, y〉
∣∣dt ≤ Cψ‖x‖ ‖y‖ , ∀x ∈ X, ∀y ∈ X ′, (3.3)

the integral in (3.2) is absolutely convergent.

Theorem 3.1

Let A be an injective operator of type θ, 0 ≤ θ < π, with a dense range

(i.e. A ∈ Tθ). Then:
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(I) If Pψ holds for some θ < ψ ≤ π, then the mapping f → f(A) is a bounded

H∞(Sψ)-functional calculus with (λ + z)−1 → (λ + A)−1 for all 0 
= λ ∈ Sπ−ψ
and f(z) = 1 → f(A) = I.
Moreover,

‖f(A)‖ ≤ Cψ‖f‖∞ (3.4)

(II) If A has a bounded H∞(Sψ) calculus as above for some ψ, θ < ψ < π, then Pφ
holds for all φ, ψ < φ ≤ π with constant w(φ, ψ)Cψ, (the constant w(ψ, φ) is

defined in (2.4)).

This streamlines Theorem 5.1 from [6]. In part (I), condition Pψ provides the
convergence in (3.2) and (3.4) readily follows. We need A to be injective with a dense
range in order to prove the properties of the calculus. It is easy to see that A−1 exists
and is densely defined if and only if (cf. [24])

s− lim
λ→0

λ(λ+A)−1 = 0, λ ∈ Sπ−θ . (3.5)

The proof of Theorem 2.1 in Section 7 shows that our calculus can be reduced to the
one defined in [5] (as we can substitute A for z in (7.2), (7.3), (7.5)). It also agrees
with the calculus discussed in [7]. We want to demonstrate here how (3.5) guarantees
the property 1 → I. Define

Vψ(A, t) =
1
2

(
tei(π−ψ)

A+ tei(π−ψ)
+

te−i(π−ψ)

A+ te−i(π−ψ)

)
(3.6)

so that
d

dt
Vψ =Wψ.

Also, s− limt→∞ V (A, t) = I and s− limt→0 V (A, t) = 0, from (3.5). Now if f(z) = 1,
then

f(A) =
∫ ∞

0

Wψ(A, t)dt = Vψ(A, t)|∞0 = I.

The homomorphic property of the calculus is proved either following the ideas from [5],
[6] or the general scheme presented in [17]. One can reason also this way: since the
representation (2.1) is, in fact, a modification of the Cauchy integral formula (1.1), one
can refer to the classical functional calculus for closed (unbounded) operators developed
by Dunford and Schwartz [10]. Part (II) of the theorem was proved in [6], but without
the explicit estimate. For convenience we give it here. Let x ∈ X, y ∈ X ′. The
calculus f → f(A), ∀f ∈ H∞(Sψ) defines a bounded linear functional f → 〈f(A)x, y〉
on H∞(Sψ) which has an integral representation

〈f(A)x, y〉 =
∫
Sψ

f(z)dµx,y(z) , ‖µx,y‖ ≤ Cψ‖x‖ ‖y‖ .
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Then, according to Lemma 2.3:

∫ ∞

0

|〈Wφ(A, t)x, y〉|dt =
∫ ∞

0

∣∣∣∣∣
∫
Sψ

Wφ(z, t)dµx,y(z)

∣∣∣∣∣ dt

≤
∫
Sψ

(∫ ∞

0

|Wφ(z, t)|dt
)
d|µx,y|

=
∫
Sψ

w(φ, ψ)d|µx,y| ≤ w(φ, ψ)Cψ‖x‖ ‖y‖ .

Corollary 3.2

When the operator A ∈ Tθ has a bounded H∞(Sψ)-functional calculus, so does

the operator A−1.

Proof. Using the substitution t→ 1/t we see that Pψ(A) = Pψ(A−1). �

4. Interpolation inequalities

In this section we shall use the classical definition of fractional powers of operators [17]:

Aα =
sin(απ)
π

∫ ∞

0

tα−1A(A+ t)−1dt, 0 < Reα < 1 .

A proof of the following estimate can be found in [19, Lemma 2].

Lemma 4.1

Let A be a type θ operator. Then for every ψ, θ < ψ ≤ π, and every α, 0 ≤ α ≤ 1,

there is a constant C(ψ, α) such that ∀λ ∈ Sπ−ψ, λ 
= 0.

‖Aα(A+ λ)−1‖ ≤ C(ψ, α) |λ|α−1

where C(ψ, 0) =Mψ, C(ψ, 1) = 1 +Mψ and for 0 < α < 1:

C(ψ, α) =
sin(πα)
πα(1 − α)

Mψ(1 +Mψ).

(Recall that Mψ is introduced in (3.1).)

The following theorem provides a moment type inequality.

Theorem 4.2

Suppose A ∈ Tθ and x ∈ D(Aα) ∩ (A−β) where 0 < α, β ≤ 1. Then the integral

f(A)x =
∫ ∞

0

(
Wψ(A, t)x

)
Fψ(t)dt
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converges absolutely whenever f ∈ H∞(Sψ), ψ > θ, and

‖f(A)x‖ ≤ K(ψ, α, β) ‖Aαx‖β/(α+β) ‖A−βx‖β/(α+β) ‖f‖∞. (4.1)

The constant K(ψ, α, β) is given explicitly below in (4.3).

Proof. With λ ∈ Sπ−ψ, λ 
= 0 one can write the estimate

(1)
∥∥∥∥ A

(A+ λ)2
x

∥∥∥∥ =
∥∥∥∥
( A

A+ λ

)( Aβ

A+ λ

)
A−βx

∥∥∥∥ ≤ (1 +Mψ)C(ψ, β) ‖A−βx‖ |λ|β−1

which we shall use when λ is close to zero, and also the estimate
∥∥∥∥ A

(A+ λ)2
x

∥∥∥∥ =
∥∥∥∥
( A1−α

A+ λ

)( λ

A+ λ

)( 1
λ

)
Aαx

∥∥∥∥
≤ C(ψ, 1 − α)Mψ‖Aαx‖ |λ|−α−1(2)

to be used for large |λ|.
For every p > 0 one has:

∫ ∞

0

‖Wψ(A, t)x‖dt =
∫ p

0

+
∫ ∞

p

≤ a
∫ p

0

tβ−1dt

+ b
∫ ∞

p

t−α−1dt =
a

β
pβ +

b

α
p−α

where
a = (1 +Mψ)C(ψ, β) ‖A−βx‖ , b =Mψ C(ψ, 1 − α) ‖Aαx‖ .

We are using (1) and (2) for the first and second integrals correspondingly. Minimizing
the right hand side for p > 0 (with p = (b/a)1/(α+β)) one comes to

∫ ∞

0

‖Wψ(A, t)x‖dt ≤ K(ψ, α, β)‖Aαx‖β/(α+β)‖A−βx‖α/(α+β), (4.2)

which yields (4.1). Here

K(ψ, α, β) =
(
C(ψ, 1 − α)Mψ

)β/(α+β)(
C(ψ, β)(1 +Mψ)

)α/(α+β)
( 1
α

+
1
β

)
(4.3)

Taking f(z) = zis, s ∈ R, in (4.1) defines locally bounded imaginary powers Aisx with

‖Aisx‖ ≤ K(ψ, α, β) ‖Aαx‖β/(α+β) ‖A−βx‖α/(α+β)eψ|s| (4.4)

for all ψ > θ.
The theorem is also true for complex α, β in which case we replace α, β in (4.3)

by Reα,Reβ. When α, β = 1, inequality (4.1) reduces to:

‖f(A)x‖ ≤ 2Mψ(1 +Mψ)
(
‖Ax‖ ‖A−1x‖

)1/2‖f‖∞ (4.5)

(∀ψ > 0, ∀f ∈ H∞(Sψ), ∀x ∈ D(A) ∩D(A−1)). �
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Remark 4.3. Note that when A is injective with dense range, the subspace D(A) ∩
D(A−1) is dense inX (see [22, p. 431]). Because of (4.2), all representations in Section 7
with A in the place of z will converge on a dense set. This also provides legitimacy to
the representations in the next section.

Interpolation results of a different nature were obtained by Dore [8, 9].

5. Estimates for analytic semigroups

Condition Pψ can be replaced by restrictions on the function f ensuring the convergence
of the integral in (3.2). This way we can define f(A) for certain functions in H∞(Sψ).
Set

‖f ′ψ‖1 =
1
2

∫ ∞

0

∣∣eiψf ′(teiψ) + e−iψf ′(te−iψ)
∣∣dt .

Proposition 5.1

Let A ∈ Tθ and let the function f ∈ H∞(Sψ), ψ > θ, be analytic in a larger sector

and such that

‖f ′ψ‖1 <∞, fψ(∞) = 0 . (5.1)

Then the representation

f(A) =
∫ ∞

0

Wψ(A, t)(fψ ∗ kψ)(ln t)dt

is weakly convergent and we have

‖f(A)‖ ≤Mψ‖f ′ψ‖1 . (5.2)

Proof. We integrate by parts to get

f(A) =
∫ +∞

0

Wψ(A, t)(fψ ∗ kψ)(ln t)dt = −
∫ +∞

0

Vψ(A, t)(f ′ψ ∗ kψ)(ln t)
dt

t

where Vψ is defined above in (3.6). The intermediate term is zero, because the Lebesgue
dominated convergence theorem and (5.1) imply:

lim
r→∞

(
fψ ∗ kψ

)
(r) = lim

r→∞
fψ(r) = fψ(∞) = 0 .

According to Remark 4.3, the representations above are understood in a week sense
on a dense subspace. We also have

‖Vψ(A, t)‖ ≤Mψ

and ∫ +∞

0

∣∣(f ′ψ ∗ kψ)(ln t)
∣∣dt
t

=
∫

R

∣∣(f ′ψ ∗ kψ)(u)
∣∣du ≤ ‖f ′ψ‖1.
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Our estimate follows immediately. �

It is known that when θ < π/2, the operator −A generates a holomorphic semi-
group with angle π/2− θ. (This follows also from the next corollary.) We shall find an
estimate for the norm of this semigroup in terms of the constant Mψ from the original
estimate on the resolvent (3.1).

Corollary 5.2

Let A be an injective operator of type θ < π/2 with a dense range. Let λ ∈ Sπ/2−θ
and set Argλ = arctan(Imλ/Reλ). Then for every ψ: θ < ψ < π/2 − |Argλ| we have:

‖e−λA‖ ≤ 1
2
Mψ

(
1

cos(Arg(λ) + ψ)
+

1
cos(Arg(λ) − ψ)

)
. (5.3)

Here the constant Mψ, according to the maximum principle, can be defined by

Mψ = sup
t>0

‖t(A+ te±(π−ψ))−1‖ .

Proof. Apply Proposition 5.1 to the function fλ(z) = e−λz. One has

‖f ′ψ‖1 =
1
2

∫ ∞

0

∣∣eiψλe−λteiψ + e−iψλe−λte
−iψ ∣∣dt

≤ 1
2

(
1

cos(Arg(λ) + ψ)
+

1
cos(arg(λ) − ψ)

)
.

The estimate (5.3) follows immediately from (5.2).
Suppose that A is a positive Hilbert space operator. Then θ = 0 and Mψ =

1, ∀ψ > 0. For real λ > 0, (5.3) becomes

‖e−λA‖ ≤ 1
cosψ

.

Setting ψ → 0 we come to the expected inequality ‖e−λA‖ ≤ 1 which is the best
possible for positive operators. In this sense (5.3) is exact. This inequality is of
a different nature compared to the usual estimates for ‖e−λA‖; it works well when
Arg(λ) ± ψ ≈ 0 and not so well when Arg(λ) + ψ ≈ π/2. �

6. Functions of two variables and a calculus for two commuting operators

Using integral representations analogous to (2.1) for bounded holomorphic functions
of many variables, one can define joint functional calculus for two or more commut-
ing operators. Suppose f(z, w) is a bounded holomorphic function on the Cartesian
product of two sectors: Sψ and Sφ.

Recently Lancien et al [15] and Albrecht et al [1] defined the calculus A,B →
f(A,B), where A,B are two (resolvent) commuting operators of types less than ψ and
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φ correspondingly. Such a calculus can be constructed very easily when we use the
integral representation

f(z, w) =
∫ +∞

0

∫ +∞

0

Wψ(z, t)Wφ(w, s)F (t, s) dt ds

with
‖F‖∞ ≤ ‖f‖∞.

This integral representation is obtained in the same way as the (single integral) repre-
sentation in Section 7 below. The function F (t, s) is defined by the repeated convolu-
tion

F (eu, ev) =
∫

R×R

f̃ψ,φ(p, q)kψ(u− p)kφ(v − q) dp dq

(Here eu = t, ev = s, and f̃ψ,φ(p, q) represents the boundary values of f(z, w) on the
sides of the sectors Sψ and Sφ.)

When the condition

Pψ,φ :
∫ ∞

0

∫ ∞

0

∣∣〈Wψ(A, t)Wφ(B, s)x, y〉
∣∣ dt ds ≤ Cψ,φ ‖x‖ ‖y‖ ,

(∀x ∈ X, ∀y ∈ X ′) is satisfied, then the formula

〈f(A,B)x, y〉 =
∫ +∞

0

∫ +∞

0

〈Wψ(A, t)Wφ(B, s)x, y〉F (t, s) dt ds

defines the desired calculus with

‖f(A,B)‖ ≤ Cψ,φ‖f‖∞ .

One direct corollary is this:

Proposition 6.1

Suppose the operator A has a bounded H∞(Sψ)-functional calculus (i.e. Pψ(A))
holds - see (3.3)), and the operator B is separated from zero in Sφ: ∃ ε > 0,

‖(B + λ)−1‖ ≤ M(φ,B)
|λ| + ε , ∀λ ∈ Sπ−φ .

Then f(A,B)x is defined for every x ∈ D(B) and

‖f(A,B)x‖ ≤ ε−1CψM(φ,B)‖Bx‖ ‖f‖∞ .

When B is bounded,

‖f(A,B)‖ ≤ ε−1CψM(φ,B) ‖B‖ ‖f‖∞ .
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Proof. For every x ∈ D(B) and every y ∈ X ′ one has∫ ∞

0

∫ ∞

0

|〈Wψ(A, t)Wφ(B, s)x, y〉| dt ds ≤ CψM(φ,B) ‖y‖ ‖Bx‖
∫ ∞

0

(s+ ε)−2ds ,

which implies the above estimate. �

7. Proof of Theorem 2.1

We need some simple technical lemmas. The first one is a fact from Fourier transform
theory.

Lemma 7.1

Let a > 0 and suppose that f(z) is holomorphic and bounded on the strip G =
{z|0 ≤ Im(z) ≤ a} and zero at infinity. Then for every real t:

eat
∫ +∞

−∞
eitxf(x)dx =

∫ +∞

−∞
eit(x−ia)f(x)dx =

∫ +∞

−∞
eitxf(x+ ia)dx .

Here and further we assume that all involved integrals exist. The proof follows from
Cauchy’s theorem applied to the function eit(z−ia)f(z) on G.

Corollary 7.2

Suppose that f(z) is holomorphic and bounded on the strip {|Im(z)| ≤ a} and

zero at infinity. Then for every real t:

cosh(at)
∫ +∞

−∞
eitxf(x)dx =

∫ +∞

−∞
eitx

1
2
(
f(x+ ia) + f(x− ia)

)
dx .

Lemma 7.3

Let f(z) be a bounded holomorphic function on the right half plane Sπ/2. Then

we have the representation

f(z) =
1
π

∫ +∞

−∞
f(it)

z

z2 + t2
dt (7.1)

where f(it) is the boundary value of the function.

Proof. For real z, (7.1) is the well-known Poisson representation. It is true for all
z ∈ Sπ/2 too by the uniqueness theorem. �

Lemma 7.4

Suppose f ∈ H∞(Sψ), 0 < ψ ≤ π. Then

f(z) =
1
ψ

∫
R

fψ(r)
zπ/(2ψ)eπr/(2ψ)

zπ/ψ + eπr/ψ
dr (7.2)

with fψ(r) = 1
2

(
f(er+iψ) + f(er−iψ)

)
, the boundary value of f .
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Proof. If z ∈ Sψ, then w = zπ/(2ψ) ∈ Sπ/2 and the function g(w) ≡ f(z) = f(w2ψ/π)
belongs to H∞(Sπ/2). By (7.1)

f(z) = g(w) =
1
π

∫ +∞

−∞
g(it)

w

w2 + t2
dt

=
1
π

∫ ∞

0

(
g(it) + g(−it)

) w

w2 + t2
dt

=
1
π

∫ ∞

0

(
f(eiψt2ψ/π) + f(e−iψt2ψ/π)

) w

w2 + t2
dt

=
2
π

∫ ∞

0

f̃ψ(t2ψ/π)
zπ/(2ψ)

zπ/ψ + t2
dt

where
f̃ψ(t2ψ/π) =

1
2
(
f(t2ψ/πeiψ) + f(t2ψ/πe−iψ)

)

is the boundary value of the function on the rays reiψ, re−iψ, r > 0. Substitute here

t2ψ/π = er, t = eπr/(2ψ), fψ(r) = f̃ψ(er)

to get (7.2). �

Example 7.5: When ψ = π we have

f(z) =
1
π

∫ +∞

−∞
fπ(r)

z1/2er/2

z + er
dr

for any bounded holomorphic function on Sπ = C\(−∞, 0].
The kernel

zπ/(2ψ)eπr/(2ψ)

zπ/ψ + eπr/ψ

has already been used for the functional calculus in [5] (see also [4]). We want to express
this kernel in terms of W̃ψ(z, u). Consider the Fourier transforms (with z ∈ Sψ):

zπ/(2ψ)eπr/(2ψ)

zπ/ψ + eπr/ψ
=
ψ

2π

∫
R

e−irs
zis

cosh(ψs)
ds (7.3)

and

zis =
sinh(πs)
πs

∫
R

eisu
zeu

(z + eu)2
du (7.4)

The first one is the inverse Fourier transform of

zis =
cosh(ψs)
ψ

∫ +∞

−∞
eirs

zπ(2ψ)eπr/(2ψ)

zπ/ψ + eπr/ψ
dr

which is (7.2) for f(z) = zis.
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The second one, (7.4), comes from the representation

zα =
sin(πα)
π

∫ ∞

0

tα−1 z

z + t
dt , 0 < Re (α) < 1

after integration by parts and setting α = is, t = eu (cf. [3]).
We multiply and divide (7.4) by cosh((π − ψ)s). Applying Corollary 7.2 with

a = π − ψ we get

zis =
sinh(πs)

πs cosh((π − ψ)s)

∫
R

eisu W̃ψ(z, u)du .

This substituted in (7.3) gives

zπ/(2ψ)eπr/(2ψ)

zπ/ψ + eπr/ψ
= ψ

∫
R

W̃ψ(z, u)
(

1
2π

∫
R

eis(u−r)
sinh(πs)

πs cosh(ψs) cosh((π − ψ)s)
ds

)
du

= ψ
∫

R

W̃ψ(z, u) kψ(u− r) du

where

kψ(r) =
1
2π

∫
R

eisr
sinh(πs)

πs cosh(πs) cosh((π − ψ)s)
ds .

As we shall see, kψ ∈ L1(R). Also, W̃ψ(z, u) ∈ L1(R) ∩ L∞(R) as a function of
u, according to (2.4). Therefore, their convolution is also in L1(R) ∩ L∞(R) and is
uniformly continuous on R. The equality

zπ/(2ψ)eπr/(2ψ)

zπ/ψ + eπr/ψ
= ψ

∫
R

W̃ψ(z, u)kψ(u− r)du (7.5)

can be justified this way: both sides are continuous L1 functions with the same Fourier
transform:

ψ

2π
zis

cosh(ψs)
.

Now (2.1) follows from (7.2) combined with (7.5). To complete the proof we need to
check the properties of kψ(r). Write

sinh(πs) = sinh
(
(π − ψ + ψ)s

)
= sinh

(
(π − ψ)s

)
cosh(ψs) + cosh

(
(π − ψ)s

)
sinh(ψs).

This way

sinh(πs)
s cosh((π − ψ)s) cosh(ψs)

=
tanh((π − ψ)s)

s
+

tanh(ψs)
s

,

π2kψ(r) =
1
2

∫
R

eisr
sinh(πs)

s cosh(ψs) cosh((π − ψ)s)
ds

=
∫ ∞

0

cos(rs)
tanh((π − ψ)s)

s
ds+

∫ ∞

0

cos(rs)
tanh(ψs)

s
ds

= ln
∣∣∣∣coth

rπ

4(π − ψ)

∣∣∣∣ + ln
∣∣∣∣coth

rπ

4ψ

∣∣∣∣ = ln
∣∣∣∣coth

rπ

4(π − ψ)
coth

rπ

4ψ

∣∣∣∣
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(see [21, p. 470, n. 8], or [12, 1.9. (28)]).
Therefore

kψ(r) =
1
π2

ln
∣∣∣∣coth

( πr
4ψ

)
coth

( πr

4(π − ψ)

)∣∣∣∣ .
This is obviously a non-negative even function defined on R\{0} and absolutely

integrable on R. Also, ‖kψ‖1 = 1 according to [21, p. 535, n. 7]. When ψ = π, one has

kπ(r) =
1
π2

ln
∣∣∣coth

(r
4

)∣∣∣ .
The proof is complete.

Comment 7.6. To understand better the function kψ, it is good to look at its graph.
We present here the graph of kψ(x),−∞ < x < +∞, with ψ = π/4 (Figure 1).

Figure 1

In conclusion, I want to express my gratitude to the referee whose competent
remarks helped to improve the paper.
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