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Abstract

Let G be a finite group. The group of homotopy self-equivalences EG(X) of
an orthogonal G-sphere X is related to the Burnside ring A(G) of G via the
stabilization map I: EG(X) ⊂ [X,X]G → {X,X}G = A(G) from the set of
G-homotopy classes of self-equivalences of X to the ring of stable G-homotopy
classes of self-maps of X (that is, the 0-th dimensional G-homotopy group of S0,
which is isomorphic to the Burnside ring). As a consequence of the properties of I ,
EG(X) is equal to an extension of a subgroup of the group of units in A(G) with
the kernel of I . The aim of the paper is to give examples of a family of equivariant
(dihedral) spheres with the property that the kernel of I is a non-abelian torsion-
free group with many generators, and to give estimates on the structure of EG(X)
itself.

1. Introduction

Let Sn, with n > 0, denote the sphere of dimension n. The canonical stabilization map
I sending homotopy classes of self-maps to stable homotopy classes is a bijection from
[Sn, Sn] to {Sn, Sn}. Moreover, the group of self homotopy equivalences E(Sn) of Sn is
the finite cyclic group of order 2. On the other hand, if we consider equivariant spheres
in the category of G-spaces and G-maps (with G finite group) these properties do not
hold. If S is a G-sphere, it can be that the canonical stabilization map I: [S, S]G →
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{S, S}G = A(G) from the monoid of equivariant homotopy classes of self-maps of S
to the ring of stable homotopy classes of self-maps (which is isomorphic to the 0-th
dimensional equivariant homotopy group of S0 and to the Burnside ring of the group
G) is not a bijection. It is trivial to see that it can be not onto, and it was first found
by Rubinsztein [5] that it can be not mono.

This idea can be applied to the problem of homotopy self-equivalences of equiv-
ariant spheres, in the framework of the classical results relating equivariant stable
homotopy theory to ordinary stable homotopy theory (dating back to the works of G.
Segal, A. Kosinski, T. tom Dieck and H. Hauschild): it is easy to see that I sends the
group of equivariant homotopy self-equivalences EG(S) ⊂ [S, S]G to the group of units
A(G)∗ of the Burnside ring (which is a finite abelian 2-group). As before, it is trivial
to see that the image IEG(S) can be properly contained in A(G)∗, and that I can be
non-injective even if restricted to EG(S). The purpose of this paper is to provide some
examples of equivariant spheres with the property that the kernel of I: EG(S) → A(G)∗

is an infinite non-abelian group. Actually, we produce a family of spheres Xk, with
k = 2 . . .∞, equivariant with respect to a suitable group Gk depending upon k, such
that the following theorem holds:

Theorem 1

The group of homotopy self-equivalences EGk
(Xk) is an extension of the kernel of

the stabilization map I by a subgroup of order 22k−1 and index 4 in the group of units

of the Burnside ring A(G)∗:

(1) I: ker I >→ EGk
(Xk) →→ Z

2k−1
2 ⊂ A(Gk)∗ = Z

2k+1
2 .

The kernel ker I is a non-abelian torsion-free solvable group of Hirsch length h(ker I) =
3k − 2k − k and derived length l(ker I) bounded by

(2)
k

2
≤ l(Gk) ≤ k − 1.

The interesting fact is that therefore ker I is never trivial, for k ≥ 2, and it is
always non-abelian, for k ≥ 3.

In the last decades many results have been proved about homotopy self-equivalen-
ces: for general surveys and the state-of-the-art we refer to the well-known references
[6, 4, 3]. In [3] one can find a complete and up-to-date bibliography.

I sincerely wish to express my thanks to the referee, who improved significantly
the results of the paper with some generous comments.

2. Preliminaries

If G is a group acting on a space X, then let Gx be the isotropy group of x (that is, the
stabilizer of x, or the fixer of x), Gx = {g ∈ G | gx = x}. Then the space of the points
fixed by a subgroup K ⊂ G is denoted by XK = {x ∈ X | Kx = x}; the singular set
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of XK is XK
s = {x ∈ XK | Gx = K}. If f :X → X is a G-equivariant map and K a

subgroup of G, the restriction of f to XK is denoted by fK :XK → XK . The isotropy
type of an isotropy group K ⊂ G is the conjugacy class of K and is denoted with
(K). The normalizer of the subgroup K of G in G is denoted by NGK and is equal
to {g ∈ G | gKg−1 = K}. The Weyl group WGK is equal to the quotient NGK/K.
The monoid (with respect to composition of maps) of free G-homotopy classes of
self-maps of X is denoted by [X,X]G; the ring of stable G-homotopy classes of self-
maps of X is denoted by {X,X}G. If X is a sphere, then {X,X}G is isomorphic
to the Burnside ring A(G) (e.g. via the equivariant degree homomorphism). The
equivariant degree homomorphism is defined as follows: for every f :X → X and
for every conjugacy class (K), let dG(f)(K) = deg(fK). If all the subgroups of G

are of isotropy, then this defines a homomorphism degG: [X,X]G → ∏
(K) Z inducing

a homomorphism degG: {X,X}G → ∏
(K) Z. Now, if dimXG ≥ 1 then the image

degG{X,X}G ⊂ ∏
(K) Z coincides with the image of the Burnside ring A(G) in its

ghost ring
∏

(K) Z (see e.g. the last chapter of [7] for more details), and therefore
A(G) is isomorphic to {X,X}G in a canonical way. This isomorphism actually can be
seen as the definition itself of A(G) in case G is a compact Lie group.

We recall that the derived length l(G) of a (solvable) group G is the length of the
shortest abelian series in G (i.e. the number of its non-trivial factors). A group has
derived length 0 if it is trivial, 1 if it is abelian. If the length is at least 2, the group
is non-abelian. The Hirsch length h(G), also known as torsion-free rank, of a group
G is the number of infinite cyclic factors in a polycyclic decomposition of G, that is
the number of infinite factors in a series of finite length with factors which are either
torsion or infinite cyclic groups.

3. Dihedral spheres

Let n ≥ 2 be an integer; let ζn and h be the transformations of the complex plane C

defined by ζn(z) = e(2πi)/nz and h(z) = z, for every z ∈ C. With an abuse of notation
it is possible to write ζn = e(2πi)/n. With the symbol D2n we denote the dihedral
group of order 2n, generated by ζn and h. Let G be equal to D2n, N ⊂ G the normal
subgroup of G generated by ζn and H the subgroup generated by h.

For any integer j let V (j) be the (2-dimensional real) linear representation of D2n

given by the action ζn · z = ζjnz and h · z = z. Therefore the space fixed by the element
ζαn ∈ G, with α = 0 . . . n− 1, is

(V (j))ζ
α
n =

{
V (j) if αj ≡ 0 mod n

0 if αj ≡ 0 mod n
,

while the space fixed by the element ζαnh ∈ G, with α = 0 . . . n − 1 is
(
V (j)

)ζα
nh =

< eαjπ/ni >, where < z > denotes the one-dimensional subspace of the vector space
V (j) over R generated by the element z.
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If j1, j2, . . . , jk are integers, with k ≥ 2, then let D(j1, j2, . . . , jk) denote the unit
sphere in V (j1) ⊕ V (j2) ⊕ . . . ⊕ V (jk), endowed with the D2n-action. Assume that
n = p1p2 . . . pk is the product of the k first odd primes pi. We denote the corresponding
dihedral group with Gk. For every i = 1 . . . k, let ji = n/pi, and Xk the unit sphere
D(j1, j2, . . . , jk) for such a choice of ji.

Some properties of X and G are the following:

(i) Two subgroups of Gk are conjugated if and only if they have the same order.

(ii) The minimal non-trivial subgroups of Gk (up to conjugacy) are the cyclic
normal groups of order pi generated by ζjin and H =< h >.

(iii) The normal proper subgroups of Gk have odd order.

(iv) All the subgroups of Gk are isotropy subgroups, except Gk and the normal
subgroup of index 2.

The first three statements are simple. The fourth is a consequence of the following
computations. The space fixed by H is a (k − 1)-dimensional sphere; it is the unit
sphere in the vector space of the real parts of the V (ji), with i = 1 . . . k. The Weyl
group WGH is trivial. The singular set XH

s in XH is given by the points in XH

with coordinates (z1, z2, . . . , zk) such that
∏k

i=1 zi = 0 (that is, such that at least one
coordinate is zero; it is the union of the intersections of the hyperplanes zi = 0 with
XH). Actually, the isotropy group of a point (z1, z2, . . . , zk) is the intersection of the
isotropy groups of zi ∈ V (ji), for i = 1 . . . k. The principal isotropy type in X is
trivial. Therefore the trivial subgroup of G is isotropy. Moreover, the singular set Xs

is the union of the points fixed by the minimal cyclic subgroups of Gk. That is, the n

conjugated copies of H fix (k − 1)-spheres, while the normal cyclic groups < ζjin > fix
the (2k−3)-sphere of equation zi = 0. The Weyl groups act on such spheres, and they
are G′-homeomorphic to equivariant G′-spheres defined as D(j′1, . . . , j

′
k−1) for suitable

j′i and a suitable homomorphic image G′ of G (the Weyl groups themselves). More
precisely, there are two kind of subgroups in G: normal and non-normal (i.e. odd
order or even order): the space fixed by a normal subgroup N  G is, regarded as a
G/N -space, equivariantly homeomorphic to a G/N -sphere D(j′1, . . . , j

′
k′) for suitable

j′i and k′ < k; k′ is equal to the number of minimal odd-order cyclic subgroups G

not contained in N . On the other hand, the space fixed by a non-normal subgroup K

(which has always trivial Weyl group) is equal to D(j′1, . . . , j
′
k′)H

′
for suitable j′i and

k′ < k, where H ′ denotes the minimal subgroup of order 2 in G/N0 and N0 denotes
the maximal subgroup of K normal in G. That is, it is again equal to a sphere of
dimension k′ − 1 with as singular set the coordinates hyperplanes (if k′ > 0). Like
before, k′ is equal to the number of minimal cyclic odd-order subgroups not in N0. If
k′ = 1, then XK is a zero-dimensional sphere. If k′ = 0, that is if N0 has order n, then
clearly K = G and hence the fixed point set is empty.
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4. Some results on equivariant spheres

Let G be a finite group and X be an orthogonal G-sphere. Consider the stabilization
map I: EG(X) → A(G)∗. If K is an isotropy group in G for X, then let γK denote
the number of positive-dimensional components of the space X(K)/G (which is the
subspace of the orbit space X/G of the elements with isotropy type equal to (K)). It
is not difficult to see that it is homeomorphic to XK/WGK. These numbers will play
a key role in the computation of the kernel of I.

Proposition 2

The kernel ker I of I: EG(X) → A(G)∗ is a torsion-free solvable group, with Hirsch

length equal to

h(G) =
∑
(K)

(γK − 1),

where γK as above is equal to |π0(XK/WGK)| and (K) ranges over the set of isotropy

classes such that dimXK ≥ 1.

Proof. As a consequence of Theorem 1.1 of [2], there is an abelian series

1 = ker IN ⊂ ker IN−1 . . . ⊂ ker I1 ⊂ ker I0 = ker I

such that
ker Ij−1

ker Ij
∼=

{
Z

(γKj
−1) if dimXKj > 0

0 if dimXKj = 0,

where N is the number of isotropy types in X. This implies the proposition. �

Proposition 3

The kernel ker I of I : EG(X) → A(G)∗ has derived length l(ker I) ≤ d, where

d denotes the maximum dimension of spheres in X fixed by subgroups K such that

γK ≥ 2 and dimXK ≥ 1.

Proof. Let Xd denote the union in X of all the spheres of dimension at most d fixed by
some non-trivial elements in G, with 0 ≤ d. It is a G-invariant subspace, and therefore
there is a well-defined homomorphism (with respect to composition of maps) given
by restriction ri : ker I → [Xi, Xi]str, where the latter symbol denotes the homotopy
classes of maps preserving the stratification Xi ⊃ Xi−1 ⊃ . . . X0. A homotopy class f
is in ker ri if and only if it is G-homotopic to a map which is the identity on Xi. The
kernels ker ri are a chain of subgroups of ker I such that

1  ker rd  ker rd−1  . . .  ker r0  ker I

and ker ri/ ker ri+1 can be embedded in the product
∏

K [XK , XK ]∗XK
s

of groups of the
self-equivalences of XK which are the identity on XK

s , modulo relative homotopy and
with dimXK = i + 1. But this is a product of abelian groups, thus the series ker ri
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has abelian factors. On the other hand it is not difficult to see that ker rd = 1 (this is
a consequence of the fact that if K is the principal isotropy type in X then γK = 1)
and that ker I = ker r0, because there are no self-equivalences in spheres of dimension
0 which are not detected by the degree. Thus the abelian series is actually of length
d. �

The following corollary is an immediate consequence of Proposition 3. Note that
if the proof of Proposition 3 had been carried out directly on EG(X), then the upper
bound would have been d + 2 instead of d + 1.

Corollary 4

The group of homotopy self-equivalences EG(X) is a solvable group with derived

length at most d + 1 and at least l(ker I).

5. Homotopy self-equivalences of Xk

Now let k ≥ 2 and go back to the equivariant sphere X = Xk defined in Section 3.
All the proper subgroups (other than the normal subgroup of index 2) of Gk are of
isotropy, and there is just one conjugacy class for each order. Let H be the isotropy
subgroup generated by h ∈ Gk as above. The complement of the singular part XH

s

in XH has 2k components. Because the Weyl group WGH is trivial, γH = 2k. On
the other hand, since the minimal cyclic subgroups N of odd order are normal, it is
γN = 1. Now, because of the recursive property sketched at the end of Section 2, this
is what happens in general to the subgroups: if K is a normal subgroup of G them
γK = 1; otherwise, K is isomorphic to N0×|Z2 for a suitable subgroup N0 normal in G,
and WGK = 1. Moreover, in this case the space XK is equal to a sphere of dimension
k′ − 1, and the singular set XK

s to the intersection with the coordinates hyperplanes.
Thus, again γK = 2k

′
.

Proposition 5

The kernel ker I of the stabilization map

I: EG(Xk) → A(G)∗

is a torsion-free solvable group of Hirsch length

h(Gk) = 3k − 2k − k.

Proof. Because of Proposition 2, ker I is a torsion-free solvable group of Hirsch rank

∑
(K)

(γK − 1) .
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The sum ranges over all the isotropy types of G such that dimXK ≥ 1; if K is normal
then γK = 1, therefore the sum ranges over all the conjugacy classes of subgroups in
G that are non-normal, and such that dimXK ≥ 1. These consist of all the even-
order proper subgroups of G. The number conjugacy classes of such subgroups fixing
a sphere of dimension d − 1 is equal, up to conjugacy, to

(
k
d

)
. Thus the rank of ker I

is equal to

rk =
k∑

d=2

(
k
d

)
(2d − 1) = 3k − 2k − k.

This completes the proof. �

Proposition 6

The image of EGk
(Xk) in A(G)∗ under the stabilization map I is a subgroup of

index 4 in A(G)∗.

Proof. The double suspension of the self-join Σ2Xk ∗ Xk, with diagonal action on
Xk has the property that all the subgroups of Gk are isotropy (Gk and the maximal
normal subgroup N are the only subgroups of G that are isotropy for Σ2Xk ∗Xk but
not for Xk) and that

[Σ2Xk ∗Xk,Σ2Xk ∗Xk]Gk
= {Xk, Xk}Gk

= A(Gk)

(see [5]); hence the index of the image of the stabilization map in A(Gk)∗

I: EGk
(Xk) → A(Gk)∗ = EGk

(Σ2Xk ∗Xk)

is equal to the index of the image of EGk
(Xk) in EGk

(Σ2Xk ∗Xk), under the inclusion
given by f �→ Σ2f ∗ 1. It is not difficult to show that this has index 4, by the method
given in [2], so the proof follows. Compare with the proof of the following proposition,
where the method is applied directly. �

Proposition 7

The group of units in the Burnside ring A(Gk)∗ is an elementary abelian 2-group

of order 22k+1.

Proof. Consider again EGk
(Σ2Xk ∗Xk): the degree homomorphism

dG: EGk
(Σ2Xk ∗Xk) →

∏
(K)

Z
∗ ⊂

∏
(K)

Z

is mono, and hence, by applying again Theorem 1.1 of [2], it is obtained that A(G)∗ is
an elementary abelian 2-group with at most κ(Σ2Xk ∗Xk) generators, where κ denotes
the number of isotropy groups with Weyl group of order at most 2. In our case, there
are exactly 2k conjugacy classes of subgroups with trivial isotropy, and one conjugacy
class with index 2 in Gk (the maximal normal subgroup of Gk). Therefore, κ = 2k +1,
and therefore the order of A(Gk)∗ is at most 22k+1. To show that this is actually
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an equality, we proceed by using the fact that the order of A(G)∗ is the number of
solutions of the equation y · T ∈ {0, 2}2k+1

, where 2k+1 is the number of conjugacy
classes of subgroups of Gk, T is the table of marks matrix of Gk, that is the 2k+1×2k+1

lower triangular matrix with entries equal to
∣∣∣(G

K

)H ∣∣∣ (the cardinality of the fixed point
set of the action of H on the set of left K-cosets in G; see [2] for further details); and
y is a 2k+1-dimensional row vector of integers. Let yK denote the entry corresponding
to the conjugacy class of subgroups (K). We can rewrite the same system of equations
as

(3) ∀(H) ≤ (G):
∑

(K)≥(H)

yK

∣∣∣∣∣
(
G

K

)H
∣∣∣∣∣ ∈ {0, 2}.

Consider now first the subgroups K ⊂ G belonging to the following class I: either
they are self-normalizing, or of index 2 in G. These subgroups consist of the non-
normal subgroups, plus G and the maximal normal subgroup N . If H belongs to I
then whenever (K) ≥ (H) necessarily K ∈ I. This means that in the equations (3)
corresponding to a subgroup H in I the only non-zero coefficients of the yK ’s are those
K ∈ I. That is, the integers yK with K ∈ I are completely determined once they
solve the sub-system of equations

(4) ∀(H) ≤ (G), H ∈ I:
∑

(K)≥(H)
K∈I

yK

∣∣∣∣∣
(
G

K

)H
∣∣∣∣∣ ∈ {0, 2}.

But because
∣∣∣(G

H

)H ∣∣∣ = |WGH|, on the diagonal of this sub-matrix there are only 1’s
and one 2 (corresponding to N). Thus the matrix can be inverted, and the number of
solutions in the yK is exactly 2k + 1, i.e. the number of conjugacy classes in I.

Now we show that every such (2k + 1)-tuple can be extended to a solution y ∈
Z

2k+1
, i.e. that given a solution of the restricted system (4) it is possible to define

integers yK also for K ∈ I such that the global equations (3) hold. If K is a subgroup
not in I, then its order is odd. Moreover, for each K there is a unique conjugacy class
(K ′) of subgroups of order 2|K|. Define yK = − 1

2yK′ . By assumption, if H is in I
then (3) is automatically satisfied. Otherwise, the equations can be written as follows:

(5)
∑

(K)≥(H)
K �∈I

yK

[∣∣∣∣∣
(
G

K

)H
∣∣∣∣∣ + y′K

∣∣∣∣∣
(

G

K ′

)H
∣∣∣∣∣
]

+ yN

∣∣∣∣GN
∣∣∣∣ + yG ∈ {0, 2}.

Now, because H  G we have for all K∣∣∣∣∣
(
G

K

)H
∣∣∣∣∣ =

∣∣∣∣GK
∣∣∣∣ = 2

∣∣∣∣ GK ′

∣∣∣∣
thus equation (5) can be written as

(6)
∑

(K)≥(H)
K �∈I

[(
− 1

2
y′K

)
2

∣∣∣∣ GK ′

∣∣∣∣ + y′K

∣∣∣∣ GK ′

∣∣∣∣
]

+ yN

∣∣∣∣GN
∣∣∣∣ + yG ∈ {0, 2},

that is 2yN + YG ∈ {0, 2}, and this is certainly true because it is equation (4) with
H = N .

As a consequence, the number of generators of the Burnside ring is exactly 2k +1,
i.e. the claim. �
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6. The derived length

The collection of the previous propositions can easily be seen as a proof of the first part
of Theorem 1. There is only to give the lower bound of the derived length l(ker I). So
consider once more the abelian series ker ri in ker I defined in the proof of Proposition 3.
Let d denote the maximum dimension of a sphere fixed by a subgroup K with γK ≥ 2.
In our case, d = k − 1. If k = 2, then ker I = Z

3 and l(ker I) = 1, being abelian. So
from now on, assume k ≥ 3.

Proposition 8

For every i = 1 . . . d− 1 the group ker ri−1/ker ri+1 is non-abelian.

Proof. The group ker ri−1/ker ri+1 by definition is isomorphic to the image of ker ri−1

under the restriction homomorphism ri+1; that is, its elements can be seen as homotopy
classes of isotropy stratification preserving equivariant (with respect to the Weyl group
action) self-equivalences defined on fixed spheres of dimension i + 1, that are the
identity whenever restricted to spheres of dimension i−1 and such that the restriction
to any single sphere of dimension i + 1 or i has degree 1. The group ker ri−1/ker ri
can be embedded in ker ri−1/ker ri+1 as follows: an element is, as above, a class of
orientation-preserving self-equivalences on Xi that fix Xi−1 and that have degree 1
whenever restricted to single spheres of dimension i. Let f0 denote such a map. We
will extend f0 to a map f on Xi+1.

Let XK be a sphere of dimension i+ 1 in Xd; the singular set XK
s is equal to the

intersection of XK with Xi, therefore fK
s is defined as the restriction of f0. If γK = 1,

then there is a single map with the appropriate degree, and therefore f can be defined
on XK . Otherwise, XK

s is the union of i + 2 spheres of dimension i in XK , which
divide XK into γK = 2i+2 components.

Every component of XK is homeomorphic to the interior of a i+ 1-simplex ∆i+1,
and the interiors of its i + 2 i-dimensional faces are components of XK ∩Xi \Xi−1.
The total amount of such faces for all the components of XK is therefore (i + 2)2i+1.

So let ∆i+1 be one of the components of XK and ∆i+1 × I the cartesian product
with the unit interval. We first define a map fc on ∆i+1 × {0} ∪ ∂∆i+1 × I, and then
by composition with the cylinder map

∆i+1 → ∆i+1 × {0} ∪ ∂∆i+1 × I

we obtain a map on ∆i+1. The map fc is defined by fc(x, t) = x if x ∈ ∆i+1 ∩Xi−1

or t = 0; else, fc(x, 1) = fK
s if x ∈ ∂∆i+1 = ∆i+1 ∩XK

s . The side-faces of the cylinder
are of the form ∆i × I, where ∆i is a i-simplex in ∆i+1. The map on the boundary
of ∆i × I is thus defined, and attains its values outside inside the sphere Si in XK

containing ∆i. It is therefore possible to extend fc in a unique (up to homotopy) way
such that the image of ∆i × I does not contain any point of the component of the
complement of Si containing ∆i+1. Doing this for all the faces of ∆i+1, and for all the
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possible components ∆i+1 in XK gives a well-defined map fK . The degree in ∆i+1 of
fK relative to a regular point x ∈ XK is, by construction, equal to

deg(fK |∆i+1;x) =




1 if x ∈ ∆i+1

−
∑

∆i∈∂∆i+1

wf (∆i) · χ∆i+1,∆i
(x) if x ∈ XK \ ∆i+1,(7)

where χ∆i+1,∆i(x) is defined to be, 0 or 1 if x respectively is or is not in the same
component of XK \ Si as ∆i+1, and Si as above is the i-sphere containing ∆i; f∆i

denotes the map f0 restricted to the sphere Si; furthermore, wf (∆i) denotes the degree
deg(f∆i

|∆i;x′ ∈ Si \ ∆i). Then by construction∑
∆i∈Si

−wf (∆i) = deg(f∆i
) − 1 = 0,

and summing the equations in (7) allows to conclude that deg(fK) = 1.
We have proved that this construction gives an embedding, not a homomorphism.

In fact, as seen in Remark 1, it is not a homomorphism.
Now let Si one of the i-spheres in XK for a K, and let ∆i and ∆

′
i two consecutive

i-faces in Si. Let ϕ : Si → Si be the map which is the identity whenever restricted
to Si ∩Xi−1, such that the degree of ϕ in ∆i relative to a point in ∆

′
i is 1, and the

degree in ∆
′
i relative to a point in ∆i is −1. It is a stratified self-equivalence of Si, with

as inverse the map constructed in the same way but exchanging the roles of ∆i and
∆

′
i. Extend it then to fK

s , being it the identity on the other spheres in XK
s , and to a

map fK :XK → XK with the procedure above described. Let ϕ′ the map XK → XK

obtained in the same fashion, by starting with the inverse of the equivalence ϕ in Si,
instead. To show that actually ϕ′ is the inverse of ϕ (as stratified maps of XK), it is
sufficient to show that the composition ϕϕ′ is homotopic (relative to the stratification)
to the identity. We again use the local degrees:

deg(ϕϕ′|∆′
i+1;∆

′′
i+1)

=
∑
∆i+1

deg(ϕ|∆i+1; ∆′′
i+1) · deg(ϕ′|∆′

i+1; ∆i+1)

=
∑

∆i+1 �=∆′
i+1

∆i+1 �=∆′′
i+1

∑
∆i∈∂∆i+1
∆′

i
∈∂∆′

i+1

wϕ(∆i)wϕ′(∆′
i)χ∆i+1,∆i

(∆′′
i+1)χ∆′

i+1,∆
′
i
(∆i+1)

+ deg(ϕ|∆′′
i+1; ∆

′′
i+1) deg(ϕ′|∆′

i+1; ∆
′′
i+1)(

+ deg(ϕ|∆′
i+1; ∆

′′
i+1) deg(ϕ′|∆′

i+1; ∆
′
i+1)

)
.

The last term, of course, occurs if and only if ∆′
i+1 = ∆′′

i+1. In this case, the sum of
the two last terms vanishes; but the first sum can be written as

∑
∆′

i
∈∂∆′

i+1

wϕ′(∆′
i)

( ∑
∆i+1 �=∆′

i+1
∆i+1 �=∆′′

i+1

∑
∆i∈∂∆i+1

wϕ(∆i)

× χ∆i+1,∆i(∆
′′
i+1)χ∆′

i+1,∆
′
i
(∆i+1)

)
;
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moreover, the product wϕ(∆i)wϕ′(∆′
i) is different than zero if and only if both ∆i and

∆′
i belong to the set {∆i,∆

′
i}; thus, for such terms in the sum the product

χ∆i+1,∆i(∆
′′
i+1)χ∆′

i+1,∆
′
i
(∆i+1)

is equal to one if and only if ∆′
i+1 and ∆′′

i+1 both belong to the same component
of XK \ Si (where Si is the sphere containing ∆i. This immediately implies that if
∆′

i+1 and ∆′′
i+1 do not belong to the same component, then deg(ϕϕ′|∆′

i+1; ∆
′′
i+1) = 0.

Otherwise, there are just two non-zero terms in the sum, i.e. those corresponding to
the two components ∆i+1 such that ∆i ∈ ∂∆i+1 or ∆

′
i ∈ ∂∆i+1. But by definition the

sum wϕ(∆i) + wϕ(∆′
i) vanishes, and hence deg(ϕϕ′|∆′

i+1; ∆
′′
i+1) = 0. With a similar

argument it is easy to show that deg(ϕϕ′|∆′
i+1; ∆

′
i+1) = 1, that is, ϕ′ is the (stratified

homotopical) inverse of ϕ.
Now, consider a self-equivalence of degree one m:XK → XK which extends the

identity on XK
s ; let M(∆i+1,∆′

i+1) denote the degree of m restricted to a component
∆i+1 relative to a point in ∆′

i+1. As a matrix, M is of the form I +M0, where M0 is a
matrix such that M0(∆i+1,∆′

i+1) does not depend upon ∆′
i+1 and with trace equal to

0. Every matrix M ′
0 with integer coefficients, constant columns and trace 0 can occur

as a degrees matrix I + M ′
0 for some self-equivalence.

We want to show that ϕm ∼ mϕ. To do that, it is better to simplify the procedures
used above (see also Remark 1 below). Let K denote the matrix of degrees of ϕ and M

the matrix of degrees of m. Then M = I +M0 for a matrix M0 with constant columns
and trace 0, and K = I +K0, where K0 is a matrix with just 4 columns different than
zero (the ones corresponding to the components ∆i+1 such that ∂∆i+1 ∩ {∆i,∆

′
i} is

not empty); the values in the column relative to a component ∆i+1 containing e.g. ∆i

are all 0 for those rows corresponding to a ∆′′
i+1 on the same component in XK \ Si

of ∆i+1, otherwise equal to −wϕ(∆i). Looking at rows, it is easy to see that in any
row of K0 there are exactly 2 non-zero values, one +1 and one −1 (see for example
the matrices occurring in Remark 1).

Now, because of the property of rows of K0 and columns of M0, K0M0 = 0.
On the other hand M0K0 is the zero matrix if and only if the trace of the matrix
M ′

0, obtained by deleting all the rows and columns corresponding to components ∆i+1

belonging to one of the two components of XK \ Si, is zero. But it’s clear that it
is possible to select M0 in a way that this does not occur: for example, M0 might
have just two columns, one full of 1’s, corresponding to a ∆i+1, and one full of −1’s,
corresponding to a ∆′

i+1 on the different component in XK \ Si. Thus fm ∼ mf if
and only if

(I + K0)(I + M0) − (I + M0)(I + K0) = K0M0 −M0K0 = 0,

but K0M0 −M0K0 = M0K0 = 0, and hence fm ∼ mf .
To complete the proof, it suffices to extend such maps to the whole Xi+1 as

the identity outside XK : for the same reason, it occurs that for all i the group
ker ri−1/ker ri+1 is not commutative. �
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We are now in the position to finish the proof of Theorem 1. Applying Proposi-
tion 8, it is seen that the abelian series

1 = ker rd  ker rd−1  . . .  r0 = ker I

has non-abelian consecutive factors ker ri−1/ker ri+1. Therefore its derived length must
be at least (d + 1)/2. Being d = k − 1, the derived length l(ker I) is thus at least k/2.
The proof of the theorem is finished.

7. Remarks

Remark 1. The extension procedure used in the proof of Proposition 8 actually does
not yield an homomorphism. To see the reason, consider two maps ϕ1 and ϕ2 defined
in the same way as ϕ above, with the faces ∆i and ∆

′
i used for ϕ1 different than the

ones used for the definition of ϕ2. For example, in a 2-sphere XK , let 1 . . . 8 denote the
components of XK ∩X1, such that {1, 2, 3, 4} is the upper hemisphere, {1, 2, 5, 6} the
East hemisphere and {2, 3, 6, 7} the North hemisphere (assume the East-Nord plane
to be horizontal). Then ϕ1, defined using the faces {1, 4} and {5, 8} (i.e. the faces
belonging to the boundaries of 1 and 4, or 5 and 8), has matrix form I + K1, with

K1 =




0 0 0 0 1 0 0 −1
0 0 0 0 1 0 0 −1
0 0 0 0 1 0 0 −1
0 0 0 0 1 0 0 −1
1 0 0 −1 0 0 0 0
1 0 0 −1 0 0 0 0
1 0 0 −1 0 0 0 0
1 0 0 −1 0 0 0 0




.

Using the faces {2, 3} and {6, 7} instead, the matrix form is I + K2, with

K2 =




0 0 1 0 0 0 −1 0
0 0 1 0 0 0 −1 0
0 1 0 0 0 −1 0 0
0 1 0 0 0 −1 0 0
0 0 1 0 0 0 −1 0
0 0 1 0 0 0 −1 0
0 1 0 0 0 −1 0 0
0 1 0 0 0 −1 0 0




.

Since K1K2 −K2K1 is a matrix with 8 rows equal to the vector

(1,−1, 1,−1,−1, 1,−1, 1),

K1K2 − K2K1 = 0, and so the composition (I + K1)(I + K2) cannot be the map
obtained using the procedure of above, starting from the restriction of the composition
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ϕ1ϕ2, for the simple reason that the restrictions of ϕi commute, while the maps ϕ1

and ϕ2 themselves not. In fact, these commute if and only if

(I + K1)(I + K2) − (I −K1)(I −K2) = 0 ⇐⇒ K1K2 −K2K1 = 0.

Remark 2. The group of self-equivalences of S1 fixing 4 distinct points (i.e. the first
step in the inductive process of defining maps on Xk) is represented as follows: let B

denote the set of all the 4× 4 matrices with integer coefficients that can be written as
I +M , where I is the identity matrix and M any 4× 4–matrix with constant columns
and trace equal to −2 or 0. Then, if M1 and M2 are such matrices, M1M2 = Tr(M1)M2,
and

(I + M1)(I + M2) = I + M1 + M2 + Tr(M1)M2.

It is a group with respect to the product of matrices, isomorphic to Z
3 ×| Z2. The

action of Z2 on Z
3 is non-trivial, as can be seen by the fact that, if Tr(M) = 0 and

Tr(M2) = −2, then I + M2 has order 2 and acts as

(I + M2)(I + M)(I + M2) = I −M = (I + M)−1.

But, taking local degrees, it is possible to see that B is actually isomorphic to the
group of self-equivalences fixing 4 points. Thus, by restricting to the sphere S1 ⊂ Xk

for some k ≥ 2, the sequence Z
3 → B → Z2 is a homomorphic image of the sequence

ker I → EGk
(Xk) → A(G)∗. That is, A(G)∗ cannot be a direct factor of EGk

(Xk) (but
the torsion group of EGk

(Xk) is still unknown).

Remark 3. The quotient X2/G2 is a sphere. To see that, proceed as follows: the group
G2 has polycyclic decomposition as Z3  Z15  G2. D(3, 5)/Z3 is a sphere (actually,
it is a orbifold with a singular part of dimension 1 of cone points). Then Z15 acts
on this quotient, again providing as a quotient a sphere with another circle of cone
points. These two circles are linked in the resulting sphere, as well as their pre-images
in D(3, 5). The last factor of the series is Z2 and the quotient of D(3, 5)/(Z15) under
this action is again a sphere, with a third circle of cone points, which intersect the
other two described above.

Another more general way of proving the same result is the following: consider
the map

Λ:D(j1, . . . , jk) → S2k−1

defined by

Λ: (z1, . . . , zk) �→
(
z1

zp1−1
1

|z1|p1−1
, . . . , zk

zpk−1
k

|zk|pk−1

)
∈ S2k−1 ⊂ C

k.

It is easy to see that Λ(x) = Λ(y) if and only if there is a power ζαn such that y = ζαnx.
Thus Λ provides a homeomorphism from D(j1, . . . , jk)/N to S2k−1, where N denotes
the maximal cyclic normal subgroup of G. Furthermore, the Λ is Gk-equivariant, if we
define the action of G on S2k−1 as h(z1, z2, . . . , zk) = (z1, . . . , zk) and ζnz = z. The
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quotient Xk/Gk is thus equal to the quotient S2k−1/h, i.e. the join RP k−1 ∗ Sk−1; if
k = 2 then this is equal to the three-sphere S1 ∗ S1 = S3.

Remark 4. As we have seen in Section 2, there is a (unique) inclusion Gk ↪→ Gk+1 and
a (unique) projection Gk+1 →→ Gk, as long as an inclusion Xk ↪→ Xk+1, which is Gk+1-
equivariant (using the projection to let Gk+1 act on Xk). Thus EGk

(Xk) = EGk+1(Xk),
and so there is a well-defined restriction Gk+1-homomorphism

EGk+1(Xk+1) →→ EGk
(Xk).

It is possible to see that it is onto, and that its kernel is an solvable non-abelian group
with Hirsch length 2 3k − 2k − 1.

The spheres Xk can be seen as the a direct system Xk ⊂ Xk+1 of G∞-spheres,
where G∞ is the direct limit of the Gk’s. Let X∞ denote such limit. Using again the
restriction homomorphism, there are surjective projections EG∞(X∞) →→ EGk

(Xk) for
every k. Thus EG∞(X∞) is a group with infinitely many generators.

Remark 5. It is also possible to consider the general case of the dihedral group G = D2n.
The 3-dimensional dihedral sphere D(q1, q2) defined as above might be of some interest
by itself: if q1 and q2 are arbitrary integers such that (q1, n) = (q2, n) = 1, then the
quotient D(q1, q2)/G is another (orbifold) sphere. The partial factorization

D(q1, q2) → D(q1, q2)/N → D(q1, q2)/G,

where N =< ζn >⊂ G is the normal n-cyclic subgroup, gives rise to two maps of
degrees n and 2 (the first is the covering)

S3 → L
(
n, q−1

1 q2
)
→ S3,

where L(n, q−1
1 q2) is the lens space and the inverse q−1

1 is meant as inverse modn.
Another feature of this equivariant sphere is that the singular set of points of isotropy
of order 2 is a link of n circles, with linking numbers 1. In case of X2 these circles are
not disjoint.
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Montreal, Quebec, 1988), Lecture Notes in Mathematics 1425, Springer-Verlag, Berlin, 1990.

5. R.L. Rubinsztein, On the equivariant homotopy of spheres, Dissertationes Math. 134 (1976), 48.
6. J.W. Rutter, Spaces of homotopy self-equivalences, A survey, Lecture Notes in Mathematics 1662,

Springer-Verlag, Berlin, 1997.
7. T. tom Dieck, Transformation groups, Walter de Gruyter & Co., Berlin, New York, 1987.
8. J. Tornehave, Equivariant maps of spheres with conjugate orthogonal actions, Current trends in

algebraic topology, part 2 (London, Ont., 1981), 275–301, Amer. Math. Soc., Providence, R.I.,
1982.

9. D. Wilczynski, Fixed point free equivariant homotopy classes, Fund. Math. 123 (1984), 47–60.


