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Abstract

We develop an abstract extrapolation theory for the real interpolation method that
covers and improves the most recent versions of the celebrated theorems of Yano
and Zygmund. As a consequence of our method, we give new endpoint estimates
of the embedding Sobolev theorem for an arbitrary domain Ω.

1. Introduction

In 1951, Yano (see [14], [15]) using the ideas of Titchmarsh in [13], proved that for
every sublinear operator T satisfying that there exists C > 0 such that, for every
1 < p ≤ 2, ( ∫

N
|Tf(x)|p dν(x)

)1/p

≤ C

p− 1

( ∫
M

|f(x)|p dµ(x)
)1/p

,

where (N , ν) and (M, µ) are two finite measure spaces, T : L logL(µ) −→ L1(ν) is
bounded. If the measures involved are not finite, then an easy modification of the
above results shows that T : L logL(µ) −→ L1

loc(ν) and, in fact, T : L logL(µ) −→
L1(ν) + L∞(ν).

Quite recently, it has been proved (see [4] and [5]) that under a weaker condition
on the operator T , namely that( ∫

N
|TχA(x)|p dν(x)

)1/p

≤ C

p− 1
µ(A)1/p,
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for every measurable set A ⊂ M and every 1 < p ≤ p0, with C independent of A and
p, it holds that

T : L logL(µ) −→ M(ϕ),

is bounded, where M(ϕ) is the maximal Lorentz space associated to the function
ϕ(t) = t/(1 + log+ t); that is,

‖f‖M(ϕ) = sup
t>0

tf∗∗
ν (t)

1 + log+ t
·

It turns out that this space M(ϕ) is strictly embedded in L1(ν) + Lp,1(ν), for every
1 < p < ∞, (see [6]) and therefore, Yano’s theorem was improved.

Also, in [15], p. 119, it is proved that if T is a linear operator satisfying

‖Tf‖Lp(ν) ≤ Cp‖f‖Lp(µ), (1)

for every p near ∞ and, µ and ν are finite measures, then

T : L∞(µ) −→ Lexp(ν)·

Using a duality argument, this result was recently extended, in [5], to the case of
general measures, proving that, if T is a linear operator satisfying (1), then

sup
t>0

(Tf)∗∗ν (t)
(1 + log+(1/t))

≤ C

( ∫ ∞

1

f∗∗
µ (t)

dt

t
+ ‖f‖∞

)
·

In the 90’s, the extrapolation theory was extended to the setting of compatible
couples of Banach spaces in real interpolation, with the works of Jawerth and Milman
(see [9], [10]) and Milman (see [11]), (see Section 5).

The purpose of this work is to present an alternative extrapolation theory for
the real interpolation method, that has the advantage, among others, of obtaining a
better range space in the case of Yano’s type result and a better domain in the case of
Zygmund’s type results than the ones known up to now. Moreover, with our theory,
the identification of the extrapolation spaces is immediate and hence the consequences
and applications are obtained in a very easy way.

The paper is organized as follows: in Section 2, we present the main results of
the theory. In particular, these results are presented in detail, in Section 3, for the
particular case that covers the real interpolation theory. To illustrate our method,
we have applied our results, in Section 4, to obtain end-point estimates for the Riesz
Potentials and for the Sobolev embedding theorem for an arbitrary domain Ω. We also
present in this section, the improvement of Yano’s and Zygmund’s theorems.

Finally, in the last section of this paper, we study the relationship of our method
with the Σ- and ∆-method of Jawerth and Milman.

As usual, the symbol f ≈ g will indicate the existence of an universal positive
constant C (independent of all parameters involved) so that (1/C)f ≤ g ≤ Cf , while
the symbol f 
 g means that f ≤ Cg. Given (N , ν) a σ–finite measure space, we
shall write ‖g‖p to denote ‖g‖Lp(ν), λνg(y) = ν({x ∈ N ; |g(x)| > y}) is the distribution
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function of g with respect to the measure ν, g∗ν(t) = inf{s;λνg(s) ≤ t} is the decreasing
rearrangement and g∗∗ν (t) = (1/t)

∫ t

0
g∗ν(s) ds (see [1]). In what follows we shall omit the

indices ν whenever it is clear the measure we are working with. Also, for a measurable
set E in (0,∞), we shall denote by |E| the Lebesgue measure of the set, and whenever
it is not specified the underlying measure in (0,∞) will be this one.

Let us now start our presentation by briefly recalling some classical results about
real interpolation theory. Our main references will be [1], [2] and [3] (and the references
quoted therein) where we refer the reader for further information.

We consider compatible pairs of Banach spaces Ā =
(
A0, A1

)
, that is, we assume

that there is a topological vector space V such that Ai ⊂ V, i = 0, 1, continuously.
Usually we drop the terms “compatible” and “Banach” and refer to a compatible
Banach pair simply as a “pair”.

The Peetre K−functional associated with a pair Ā is defined, for each a ∈ A0+A1

and t > 0, by

K(a, t) = K(a, t; Ā) = inf
{
‖a0‖A0

+ t ‖a1‖A1
; a = a0 + a1, ai ∈ Ai

}
·

It is easy to see that K(t, a) is a nonnegative and concave function of t > 0, (and thus
also continuous). Therefore

K(a, t; Ā) = K(a, 0+; Ā) +
∫ t

0

k(a, s; Ā) ds,

where the k−functional, k(a, s; Ā), is a uniquely defined, nonnegative, decreasing and
right-continuous function of s > 0.

Example 1.1: The pair Ā =
(
L1(ν), L∞(ν)

)
satisfies that k(a, s; Ā) = f∗(s), that is

K(f, t) =
∫ t

0

f∗(s) ds.

Let us also recall that given a positive concave function ϕ on (0,∞), the maximal
Lorentz space M(ϕ) is defined (see [1]) as the set of measurable functions such that

‖f‖M(ϕ) = sup
t>0

(
f∗∗(t)ϕ(t)

)
< ∞,

and the minimal Lorentz space Λ(ϕ) is defined by the condition

‖f‖Λ(ϕ) =
∫ ∞

0

f∗(s) dϕ(s) < ∞.

Obviously, if ϕ(0+) = 0, we have that

‖f‖Λ(ϕ) =
∫ ∞

0

ϕ
(
λf (y)

)
dy < ∞.



168 Carro and Mart́ın

By analogy, we extend the definition of minimal and maximal Lorentz space to
the case of general pairs as follows (see [3]):

Definition 1.1. Given a pair Ā =
(
A0, A1

)
and a concave function ϕ, the minimal

Lorentz space, Λ(ϕ; Ā), is the set of elements a ∈ A0 + A1 such that K(a, 0+; Ā) = 0
and

‖a‖Λ(ϕ;Ā) =
∫ ∞

0

k(a, s; Ā) dϕ(s) < ∞,

and the maximal Lorentz space M(ϕ; Ā) is the set of elements a ∈ A0 + A1 such that

‖a‖M(ϕ;Ā) = sup
t>0

(
K(a, t; Ā)

t
ϕ(t)

)
< ∞·

Remark 1.1. i) Notice that in the case that Ā =
(
L1(ν), L∞(ν)

)
, we obtain the

“classical” Lorentz spaces.
ii) Standard arguments (see [1]) show that Λ(ϕ; Ā) and M(ϕ; Ā) are Banach spaces

such that
Λ(ϕ; Ā) ⊂ M(ϕ; Ā) ⊂ A0 + A1

continuously.
iii) If we consider the function ϕθ(t) = t1−θ with 0 < θ < 1, then

Λ(ϕθ; Ā) = Āθ,1 ⊂ M(ϕθ; Ā) = Āθ,∞,

where the constant of the above embedding is 1, and the spaces Āθ,q are the classical
real interpolation spaces defined as the set of elements a ∈ A0 + A1 such that the
following quantity is finite

‖a‖Āθ,q
=




(
θ(1 − θ)q

∫ ∞

0

(
t−θK(a, t)

)q dt
t

)1/q

, 0 < θ < 1, 1 ≤ q < ∞,

sup
t>0

t−θK(a, t), 0 < θ < 1, q = ∞.

Acknowledgment: We want to thank Javier Soria for his useful comments and re-
marks.

2. Main results

To prove our main result, we need a technical decomposition lemma, which is funda-
mental in our theory.

Lemma 2.1
Given an element a ∈ A0 + A1 such that K(a, 0+; Ā) = 0, there exists a constant

γ (depending only on Ā) and a collection of elements (ai)i∈Z such that

a =
∑
i∈Z

2iai (convergence in A0 + A1),

and
K(ai, t) ≤ γ min

(
t, |Ei|

)
where Ei =

{
s ∈ (0,∞); k(a, s; Ā) > 2i

}
.
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Proof. Let a ∈ A0 + A1 such that K(a, 0+; Ā) = 0. Since k(t) = k(a, t; Ā), is a
decreasing function of t, we have that∑

i∈Z

2iχAi(t) ≤ k(t) ≤
∑
i∈Z

2i+1χAi(t),

where Ai =
{
t ∈ [0,∞); 2i < k(t) ≤ 2i+1

}
, and hence, if we consider the interval Ei,

we get that
1
2

∑
i∈Z

2iχEi(t) ≤ k(t) ≤ 2
∑
i∈Z

2iχEi(t).

Since

K(a, t; Ā) =
∫ t

0

k(a, s; Ā) ds ≤ 2
∑
i∈Z

2i
∫ t

0

χEi
(s) ds

and each term appearing in the above series is a concave function of t, satisfying that

2
∑
i∈Z

2i
∫ 1

0

χEi(s) ds ≤ 4K(a, 1; Ā) < ∞,

we can apply the K−divisibility theorem (see [3], Theorem 3.2.7) to obtain a sequence
(ai)i∈Z in A0 + A1 such that

a =
∑
i∈Z

2iai (convergence in A0 + A1)

and such that the elements ai satisfy that

K(ai, t) ≤ γ

∫ t

0

χEi(s) ds,

where γ is a positive constant depending only on the pair Ā.

We shall say that a =
∑∞

i=−∞ 2iai is a diadyc decomposition of a and each
term ai will be called a characteristic element.

Definition 2.1. Given an element a ∈ A0 + A1 and a decreasing set E = (0, r) in
(0,∞), we say that the pair

(
a,E

)
is a characteristic pair of Ā, if it satisfies that

K(t, a; Ā) ≤ γ min
(
t, |E|

)
,

where γ is a universal constant depending only on Ā.
An element a ∈ A0 + A1 is said to be simple if there exist N ∈ N and a finite

collection of characteristic elements (ai)i such that

a =
N∑

i=−N

2iai.

As a consequence of Lemma 2.1, we obtain the following results which will be very
useful for our purpose:

Proposition 2.1
If ϕ is a concave function such that ϕ(0+) = 0, then

‖a‖Λ(ϕ;Ā) =
∫ ∞

0

ϕ
(
λk(a,.;Ā)(y)

)
dy ≈

∑
i∈Z

2iϕ
(
|Ei|

)
,

where Ei = {t; k(a, t; Ā) > 2i} and the constant in the above equivalence does not
depend on ϕ.
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Proposition 2.2

Let ϕ be a positive concave function such that ϕ(0+) = 0. Then the following

conditions hold.

a) If (a,E) is a characteristic pair of Ā,

‖a‖Λ(ϕ;Ā) ≤ γϕ(|E|).

b) If a =
∑

i∈Z
2iai is a diadyc decomposition of an element a ∈ Λ(ϕ; Ā), then the

sequence

( ∑N
i=−N 2iai

)
N

converges to a in Λ(ϕ; Ā). Consequently, the set of

simple elements of Ā is dense in Λ(ϕ; Ā).

Proof. a) Since ‖a‖Λ(ϕ;Ā) = ‖k(a, .; Ā)‖Λ(ϕ), and Λ(ϕ) is a rearrangement inva-
riant function space, it follows by Theorem 4.6, p. 61 of [1], that if K(a, t; Ā) =∫ t

0
k(a, s; Ā)(s) ds ≤

∫ t

0
h(s) ds, for some decreasing function h, then ‖a‖Λ(ϕ;Ā) ≤

‖h‖Λ(ϕ), from which the result follows. To prove b), let a ∈ Λ(ϕ; Ā) and let a =∑∞
i=−∞ 2iai be a diadyc decomposition of a. Let aN =

∑N
i=−N 2iai. Then, for every

N < M , we have, using a), that

‖aN − aM‖Λ(ϕ;Ā) ≤
∑

N<|i|≤M

2i‖ai‖Λ(ϕ;Ā) ≤ γ
∑

N<|i|≤M

2iϕ(|Ei|),

and, by Proposition 2.1, we obtain that the last expression tends to zero whenever
N and M tend to infinity. Hence, (aN )N is a Cauchy sequence in Λ(ϕ; Ā) and by
completeness, there exists an element b ∈ Λ(ϕ; Ā) such that (aN )N converges to b in
Λ(ϕ; Ā). Finally, since, by Remark 1.1 ii), we have that Λ(ϕ; Ā) ⊂ A0 +A1 and (aN )N
tends to a in A0 + A1, we get that b = a as we wanted to see.

Proposition 2.3

Let B be any Banach space embedded in A0 +A1 and let ϕ be a positive concave

function such that ϕ(0+) = 0. Then

Λ(ϕ; Ā) ⊂ B

with constant K, if for every characteristic pair (a,E) of Ā, it holds that ‖a‖B ≤
K
2 ϕ(|E|).

Proof. Let a ∈ Λ(ϕ; Ā) and let a =
∑

i∈Z
2iai be a diadyc decomposition of a. Then,

we have that,

∥∥∥ N∑
i=−N

2iai
∥∥∥
B
≤

N∑
i=−N

2i‖ai‖B ≤ K

2

N∑
i=−N

2iϕ(|Ei|) ≤ K‖a‖Λ(ϕ;Ā).

Since B is complete, it is embedded in A0 + A1 and
( ∑N

i=−N 2iai
)
N

converges to a

in A0 + A1, we conclude the result by standard arguments.

Let us present now the General Setting of our method:
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Definition 2.2. Let Ā and B̄ two pairs. Let Θ be an arbitrary set of parameters and
set

FΘ =
{
(ϕθ, ψθ); θ ∈ Θ

}
,

where ϕθ and ψθ are positive concave functions on (0,∞) such that, for every θ ∈
Θ, ϕθ(0+) = 0. Then, we say that a linear operator T is a minimal-maximal
extrapolation operator associated to the triple Θ̄ = (FΘ, Ā, B̄) if, for every θ ∈ Θ,

T : Λ(ϕθ; Ā) −→ M(ψθ; B̄)

is bounded.

Definition 2.3. Given a triple Θ̄ = (FΘ, Ā, B̄) and a minimal-maximal extrapolation
operator T associated to Θ̄, we consider the function

h(t, s) = hΘ̄,T (t, s) = inf
θ∈Θ̄

{
ϕθ(s)t‖T‖θ

ψθ(t)

}
,

where ‖T‖θ is the norm of the operator T : Λ(ϕθ; Ā) −→ M(ψθ; B̄).

From now on we shall omit the indexes Θ̄ and T in the function h and we shall
simply write h(t, s).

Observe that, for every t fixed, the function h(t, ·) is a positive concave function
so that h(t, 0+) = 0 and, hence, we can consider the measure dh(t, s).

In this context, our first main result can be formulated as follows:

Theorem 2.1

Given a triple Θ̄, a linear operator T is a minimal-maximal extrapolation operator

associated to Θ̄ if and only if, for every t > 0 and every a ∈ ∪θ∈ΘΛ(ϕθ; Ā),

K(Ta, t; B̄) 

∫ ∞

0

k(a, s; Ā)dh(t, s). (2)

Proof. To prove the necessary condition, let (a,E) be a characteristic pair of Ā. Then,
by Proposition 2.2,

K(Ta, t; B̄) ≤ t

ψθ(t)
‖Ta‖M(ψθ;B̄) ≤

t‖T‖θ
ψθ(t)

‖a‖Λ(ϕθ;Ā)


 t‖T‖θϕθ(|E|)
ψθ(t)

,

and taking the infimum in θ ∈ Θ, we obtain that

K(Ta, t; B̄) 
 h(t, |E|).
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Let now a ∈ ∪θ∈ΘΛ(ϕθ; Ā) and let a =
∑

i∈Z
2iai be a diadyc decomposition of a.

Set aN =
∑N

i=−N 2iai. Then, T (aN ) =
∑N

i=−N 2iT (ai) and we have that

K
(
T (aN ), t; B̄

)
= K

( N∑
i=−N

2iTai, t; B̄
)



N∑

i=−N

2ih(t, |Ei|) ≤
∑
i∈Z

2ih(t, |Ei|)

≈
∫ ∞

0

h(t, λk(a,·;Ā)(s)) ds.

Now, since a ∈ ∪θ∈ΘΛ(ϕθ; Ā), we have that there exists θ0 ∈ Θ such that a ∈ Λ(ϕθ0 ; Ā)
and hence, we can similarly prove that

K
(
T (aN ) − T (aM ), t; B̄

)



∑
N≤|i|≤M

2ih(t, |Ei|)

≤ t‖T‖θ0
ψθ0(t)

∑
N≤|i|≤M

2iϕθ0(|Ei|),

which, by Proposition 2.2, converges to zero, whenever N and M tend to infinity.
Therefore,

(
T (aN )

)
N

converges in B0 + B1 to an element b such that

K(b, t; B̄) 

∫ ∞

0

h
(
t, λk(a,·;Ā)(s)

)
ds.

But, since a ∈ Λ(ϕθ0 , Ā), (aN )N converges, by Proposition 2.2 b), to a in Λ(ϕθ0 ; Ā)
and, since T : Λ(ϕθ0 ; Ā) → M(ψθ0 ; B̄) is bounded, we have that

(
T (aN )

)
N

tends to
Ta in M(ϕθ0 ; B̄). Therefore

(
T (aN )

)
N

tends to Ta in B0 +B1 and thus, Ta = b, from
which the result follows.

Conversely, if (2) holds, then, for every θ ∈ Θ,

‖Ta‖M(Ψθ;B̄) = sup
t>0

K(Ta, t; B̄)Ψθ(t)
t



∫ ∞

0

h
(
λk(a,·;Ā)(y), t

)
Ψθ(t)

t
dy

≤ ‖T‖θ
∫ ∞

0

ϕθ

(
λk(a,·;Ā)(y)

)
dy = ‖T‖θ‖a‖Λ(ϕθ;Ā).

As a trivial consequence of Theorem 2.1, we get the following extrapolation result.

Theorem 2.2 (Extrapolation theorem)
Let T be a minimal-maximal extrapolation operator associated to a triple Θ̄.

Then, if E and D are two positive concave functions such that D(0+) = 0 and

h(t, s) ≤ E(t)D(s), (3)

T can be extended from ∪θ∈ΘΛ(ϕθ, Ā) ∩ Λ(D; Ā) to a bounded operator

T : Λ(D; Ā) −→ M(R; B̄),

where R(t) = t/E(t).
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Proof. a) By (2), we have that, if a ∈ ∪θ∈ΘΛ(ϕθ, Ā),

‖Ta‖M(R;B̄) = sup
t>0

K(Ta, t; B̄)R(t)
t

= sup
t>0

K(Ta, t; B̄)
E(t)



∫ ∞

0

h
(
λk(a,·;Ā)(y), t

)
E(t)

dy ≤
∫ ∞

0

D
(
λk(a,·;Ā)(y)

)
dy

= ‖a‖Λ(D;Ā).

From this and the fact that by Proposition 2.2, ∪θ∈ΘΛ(ϕθ, Ā) ∩ Λ(D; Ā) is dense in
Λ(D; Ā), we conclude the result.

Remark 2.1. i) If h satisfies (3) and we fix D, we have that

F (t) := sup
s

h(t, s)
D(s)

≤ E(t),

and hence there exists the least concave majorant ED of the function F . Since obvi-
ously h(t, s) ≤ ED(t)D(s), we conclude that

T : Λ(D; Ā) −→ M(RD; B̄),

where RD(t) = t/ED(t). Since ED ≤ E, we have that M(RD; B̄) ⊂ M(R; B̄) and
hence, for D fixed, M(RD; B̄) is the least range space we can get with the method of
Theorem 2.2.

Similarly, if h satisfies (3) and we fix E, then

T : Λ(DR; Ā) −→ M(R; B̄),

where DR is the least concave majorant of supt

(
h(t, s)/E(t)

)
. Since DR ≤ D, we

have that Λ(D; Ā) ⊂ Λ(DR; Ā) and therefore, for E fixed, Λ(DR; Ā) is the biggest
domain space we can get with our method.

ii) If we have that, for j = 1, 2,

h(t, s) ≤ Dj(t)Ej(t),

with Dj and Ej concave functions and D1 ≤ D2, then RD1 ≤ RD2 and hence

Λ(D2; Ā) ⊂ Λ(D1; Ā),

and
M(RD2 ; B̄) ⊂ M(RD1 ; B̄).

Now, if h satisfies (3), then h(1, s) ≤ E(1)D(s) and hence if we denote by DΣ(s) =
h(1, s), we get that for every D satisfying (3)

Λ(D; Ā) ⊂ Λ(DΣ; Ā).
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Similarly, if h satisfies (3), then h(t, 1) ≤ E(t)D(1), and hence, if we denote by R∆(t) =
t/h(t, 1), one can easily see that

M(R∆; B̄) ⊂ M(R; B̄),
where R(t) = t/E(t).

We shall see in the last section that the functions DΣ and RΣ are connected with
the Σ-method of Jawerth and Milman, and D∆ and R∆ with the ∆-method.

3. Real extrapolation method

In this section, the set of parameters Θ will be a subset of the interval (0, 1), and, for
every θ ∈ Θ,

ϕθ(t) = ψθ(t) = t1−θ.

We shall consider the two classical cases:

I) Yano’s case: Here, Θ = (0, θ0] for some θ0 < 1 and T is a minimal-maximal extra-
polation operator such that ‖T‖θ ≤ θ−α for some α > 0. Then, simple computations
show that

h(t, s) ≈




s1−θ0tθ0 if t ≤ s

s
(
1 + log

t

s

)α

if t > s
(4)

and, therefore, inequality (2) reads

K(Ta, t; B̄) 

∫ t

0

k(a, s)
(

1 + log
t

s

)α

ds + (1 − θ0)tθ0
∫ ∞

t

k(a, s)
sθ0

ds

≈
∫ t

0

K(a, s)
s

(
1 + log

t

s

)α−1

ds + (1 − θ0)tθ0
∫ ∞

t

K(a, s)
sθ0+1

ds,

which is related to the so-called KJ-inequalities in [9].
Obviously,

h(t, s) ≤ s

(
1 + log+ t

s

)α

≤ s

(
1 + log+ 1

s

)α

(1 + log+ t)α,

and since both functions are quasi-concave (that is, equivalent to a concave function),
we can take D(s) = s

(
1 + log+ 1

s

)α and E(t) ≈ (1 + log+ t)α in our Theorem 2.2 to
conclude the following real extrapolation result.

Recall also that, as was mentioned in the introduction
Λ(ϕθ; Ā) = Āθ,1 and M(ϕθ; B̄) = B̄θ,∞.

Theorem 3.1
Let Ā = (A0, A1) and B̄ = (B0, B1) be two pairs and let T be a linear operator

such that
T : Āθ,1 → B̄θ,∞

is bounded with ‖T‖ ≤ θ−α, for every 0 < θ ≤ θ0 ≤ 1. Then, T can be extended
continuously

T : Λα
0 (Ā) → Mα

0 (B̄),
where Λα

0 (Ā) = Λ(ϕ; Ā) and ϕ(t) = t(1 + log+ 1
t )

α, and Mα
0 (B̄) = M(ψ; B̄) with

ψ(t) = t(1 + log+ t)−α.
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An easy computation shows that

‖a‖Λα
0 (Ā) ≈

∫ ∞

0

k(t, a; Ā)
(

1 + log+ 1
t

)α

dt,

and, by integration by parts, we get the following characterization of Λα
0 (Ā) in terms

of the K-functional:

Proposition 3.1

The space Λα
0 (Ā) coincides with the elements in A0 + A1 such that

sup
t>0

K(t, a; Ā) +
∫ 1

0

K(t, a; Ā)
t

(
1 + log+ 1

t

)α−1

dt < ∞ .

II) Zygmund’s case: Here, Θ = [θ1, 1) for some θ1 > 0 and T is a minimal-maximal
extrapolation operator such that ‖T‖θ ≤ (1 − θ)−α for some α > 0. Then, simple
computations show that

h(t, s) ≈




tθ1s1−θ1 if s ≤ t

t
(
1 + log

s

t

)α

if s > t

and, therefore, inequality (2) reads

K(Ta, t; B̄) 
 (1 − θ1)tθ1
∫ t

0

k(a, s)
sθ1

ds + t

∫ ∞

t

k(a, s)
s

(
1 + log

s

t

)α−1

ds

≈ tθ1
∫ t

0

K(a, s)
s1+θ1

ds + t

∫ ∞

t

K(a, s)
s2

(
1 + log

s

t

)α−1

ds

Since
h(t, s) ≤ t

(
1 + log+ 1

t

)α

(1 + log+ s)α,

we can apply Theorem 2.2 to obtain the following result.

Theorem 3.2

Let Ā = (A0, A1) and B̄ = (B0, B1) be two pairs and let T be a linear operator

such that

T : Āθ,1 → B̄θ,∞

is bounded with ‖T‖θ ≤ (1 − θ)−α, for every θ1 ≤ θ < 1. Then, T can be extended

continuously

T : Λα
1 (Ā) → Mα

1 (B̄),

where Λα
1 (Ā) = Λ(ϕ; Ā) with ϕ(t) ≈

(
1 + log+ t

)α
, and Mα

1 (B̄) = M(ψ; B̄) with

ψ(t) ≈
(
1 + log+ 1

t

)−α
.
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Similar to Proposition 3.2, we can also give a description of Λα
1 (Ā) in terms of the

K-functional.

Proposition 3.2

The space Λα
1 (Ā) coincides with the elements in A0 + A1 such that

sup
t>0

K(t, a; Ā)
t

+
∫ ∞

1

K(t, a; Ā)
t2

(1 + log t)α−1 dt < ∞ .

4. Applications

First of all, let us mention that although the theory has been developed for the case of
linear operators, one can very easily check that if B̄ = (B0, B1) are lattices, it can be
extended, with the trivial modifications, to the case of sublinear operators (see [5]).

Let us start with two simple lemmas.

Lemma 4.1

Let 1 ≤ p0 < p and let us consider Ā = (Lp0 , L∞). Then, if θ = 1 − p0/p,

Āθ,1 ⊂ Lp ⊂ Āθ,∞,

where the constants of the above embeddings do not blow up when p tends to p0.

Proof. Recall that (see [2], Theorem 5.2.1)

K(t, f ; Ā) ≈
{∫ tp0

0

(
f∗(s)

)p0
ds

}1/p0

(5)

where constants in the above equivalence only depend on p0.
Thus, if (a,E) is a characteristic pair, we have that∫ t

0

(
a∗(s)

)p0
ds 
 min

(
t, |E|p0

)
. (6)

Now, since p/p0 > 1, inequality (6) implies (see [1], Theorem 4.6, p. 61) that

‖a‖p 
 |E|p0/p

and Proposition 2.3 applies. The second embedding follows from (5) and Hölder’s
inequality.

Lemma 4.2

Let 1 ≤ p < p1 and let us consider Ā = (L1, Lp1). Then, for θ = p′1/p
′ (where q′

is, as usual, the conjugate exponent of q),

Λ(ϕθ; Ā) ⊂ Lp ⊂ M(ϕθ; Ā),

where the constants of the above embeddings do not blow up when p tends to either
1 or p1.
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Proof. To show the first embedding, we only need to prove, by Proposition 2.3, that
if (a,E) is a characteristic pair, then

‖a‖p ≤ C|E|1−p′
1/p

′
,

where C does not blow up when p tends to either 1 or p1.
Now, it is known (see [1], p. 311) that

K(t, f ;L1, L∞) ≤ CK(tδ, f ; Ā),

where δ = 1/p′1 and C is independent (obviously) of p. Then,

∫ t

0

k(s, f ;L1, L∞) ds ≤ C

∫ t

0

k(sδ, f ; Ā)sδ−1 ds,

and hence

‖a‖p =
( ∫ ∞

0

k(t, a;L1, L∞)
p
dt

)1/p

≤ C

( ∫ ∞

0

k(tδ, a; Ā)
p
tp(δ−1) dt

)1/p

= C

( ∫ ∞

0

k(t, a; Ā)ptp(δ−1)/δ+1/δ−1dt

)1/p

·

Since, K(t, a; Ā) 
 min(t, |E|) and δ−1
δ p+ 1

δ−1 ≤ 0, we have (see [1], Theorem 4.6)
that

‖a‖p ≤ C

( ∫ |E|

0

tp(δ−1)/δ+1/δ−1 dt

)1/p

= C

(
1

p + 1
δ (1 − p)

)
|E|(δ−1)/δ+1/(δp)

= C

(
1

p + p′1(1 − p)

)
|E|1−p′

1/p
′
,

from which the first result follows.

b) The second embedding is a trivial consequence of the fact that

K(t, f ; Ā) ≈ t

( ∫ ∞

t
p′
1

f∗∗(s)p1 ds

)1/p1

, (7)

and Hölder’s inequality.

Since the constants are very important in this theory, let us emphasize that in
what follows the space Lp,1 is endowed with the norm

‖f‖Lp,1 =
1
p

∫ ∞

0

f∗(t)t1/p
dt

t
,

and the space Lp,∞ is endowed with the norm

‖f‖Lp,∞ = sup
t>0

t1/pf∗∗(t),
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1) Yano’s Operators

Our first application is an improvement of Yano’s extrapolation theorem and follows
immediately by taking Ā = (L1(µ), L∞(µ)) and B̄ = (L1(ν), L∞(ν)) in Theorem 3.1.

Theorem 4.1

Let T be a sublinear operator satisfying that

T : Lp,1(µ) −→ Lp,∞(ν),

is bounded with constant 1/(p− 1). Then,

sup
t>0

∫ t

0

(Tf)∗ν(s) ds

(1 + log+ t)



∫ ∞

0

f∗
µ(s)

(
1 + log+ 1

s

)
ds .

Now, if the norm of the operator T blows up when p tends to p+
0 instead of 1, we

also have the following generalization of Yano’s theorem:

Theorem 4.2

Let T be a sublinear operator satisfying that

T : Lp(µ) −→ Lp(ν),

is bounded with constant 1/(p− p0), (p0 < p ≤ p1). Then,

sup
t>0




( ∫ t

0

(Tf)∗ν(s)
p0 ds

)1/p0

1 + log+ t


 
 ‖f‖Lp0 (µ) +

∫ 1

0

( ∫ t

0

f∗
µ(s)p0 ds

)1/p0

t
dt .

Proof. If we take Ā = (Lp0(µ), L∞(µ)) and B̄ = (Lp0(ν), L∞(ν)), we have, by
Lemma 4.1, that the hypothesis of our Theorem 3.1 is satisfied and the result fol-
lows immediately from it, (5) and Proposition 3.1.

2) Zygmund’s Operators

If we now take Ā = (L1(µ), L∞(µ)) and B̄ = (L1(ν), L∞(ν)) in Theorem 3.2, we obtain
the following improvement of Zygmund’s result (see [5]).

Theorem 4.3

Let T be a sublinear operator satisfying that, for every p > p0,

T : Lp,1(µ) −→ Lp,∞(ν),

with constant p. Then,
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sup
t>0

∫ t

0

(Tf)∗ν(s) ds

(1 + log+ 1
t )



∫ ∞

1

f∗∗
µ (t)

dt

t
+ ‖f‖∞·

And, if the norm of the operator T blows up when p tends to p−1 instead of ∞,
we also have the following result:

Theorem 4.4

Let T be a sublinear operator satisfying that

T : Lp(µ) −→ Lp(ν),

is bounded with constant 1/(p1 − p), (p0 ≤ p < p1). Then,

sup
t>0




( ∫ ∞

t

(Tf)∗ν(s)
p1 ds

)1/p1

1 + log+ 1
t


 
 ‖f‖p1 +

∫ ∞

1

( ∫ ∞

t

f∗
µ(s)p1 ds

)1/p1

t
dt ·

Proof. Let us take Ā = (L1(µ), Lp1(µ)) and B̄ = (L1(ν), Lp1(ν)). Then, by Lemma 4.2
we have that the hypothesis of our Theorem 3.2 is satisfied and the result follows
immediately from it, (7) and Proposition 3.2.

3) Riesz potentials

Let us consider

Iα =
∫

Rn

f(y)
‖x− y‖n−α

dy·

It is known (see [12], p. 117 or [1], p. 228) that

Iα : Lp −→ Lq,

where 1/q = 1/p − α/n, 1 < p and q < ∞. Moreover, the constant of the above
operator behaves like 1/(p− 1) when p is near 1, and like q when q is near ∞.

To apply our results, observe that if p = 1, 1/q = 1−α/n and if q = ∞, 1/p = α/n.
Therefore, we consider the pairs

Ā = (L1, Ln/α) and B̄ = (Ln/(n−α), L∞).

Now, if θ = (1− 1/p)/(1− α/n), we have by Lemma 4.2, that Λ(ϕθ; Ā) ⊂ Lp, and, by
Lemma 4.1 that Ln/n−α ⊂ M(ϕθ; B̄). Moreover, the constants of the above embed-
dings do not blow up when p tends to either 1 or n/α.

Consequently,
Iα : Āθ,1 −→ B̄θ,∞,
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with constant C/θ(1 − θ), for every θ, and, hence, as an immediate consequence of
Theorems 3.1 and 3.2, we obtain the following end-point estimates for the Riesz po-
tential:

Theorem 4.5

The Riesz potential Iα satisfies the following estimates:

sup
t>0

( ∫ t

0

(Iαf)∗(s)n/(n−α) ds

)(n−α)/n

1 + log+ t


 ‖f‖1 +
∫ 1

0

( ∫ ∞

tn/(n−α)
f∗(s)n/α ds

)α/n

dt

and,

sup
t>0

( ∫ tn/(n−α)

0

(Iαf)∗(s)n/(n−α) ds

)(n−α)/n

t
(
1 + log+ 1

t

)


 ‖f‖n/α +
∫ ∞

1

( ∫ ∞

t

f∗(s)n/α ds
)α/n

t
dt·

4) Sobolev Embeddings

Let Ω be any domain in R
n and let W 1,p(Ω) be the classical Sobolev space

‖f‖W 1,p(Ω) = ‖f‖p + ‖∇f‖p,

where ∇f is the gradient of f , and let W 1,p
0 (Ω) be the closure of C∞

0 (Ω) in W 1,p(Ω).
Then, it is known (see for example [8], p. 149) that, for every 1 ≤ p < n

W 1,p
0 (Ω) ⊂ Lnp/(n−p)(Ω),

with constant C/(n−p)(n−1)/n. Then, using our results we have the following end-point

estimates:

Theorem 4.6


sup

t>0

( ∫ t

0

f∗∗(s)n/(n−1) ds

)
t(1 + log+ 1

t )




(n−1)/n


 ‖f‖W 1,n(Ω) +
∫ ∞

1

( ∫ ∞

t

(
f∗∗(s) + |∇f |∗∗(s)

)n

ds

)1/n

t(1 + log+ t)1/n dt·
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Proof. Let Ā = (W 1,1
0 (Ω),W 1,n

0 (Ω)) and B̄ = (Ln/(n−1), L∞). Then, it is known that

K(t, f ; B̄) ≈
( ∫ tn/(n−1)

0

f∗∗(s)n/(n−1) ds

)(n−1)/n

and, using Holmstedt’s formula, we have that if W̄ = (W 1,1
0 (Ω),W 1,∞

0 (Ω))

K(t, f ; Ā) ≈ t

( ∫ ∞

tn/(n−1)

(K(f, s; W̄ )
s

)n

ds

)1/n

,

where, (see [7]),

K(t, f ; W̄ ) ≈ t

(
f∗∗(t) + |∇f |∗∗(t)

)
·

As in Lemmas 4.1 and 4.2, one can easily see that, if θ = n′/p′,

Lnp/(n−p) ⊂ B̄θ,∞

and
Āθ,1 ⊂ W 1,p

0 (Ω),

both embeddings with constant independent of θ. From this and Proposition 3.2, the
result follows immediately from Theorem 3.2.

It is important to mention that, when the domain Ω is bounded, the right hand
side of Theorem 4.6 reduces to ‖f‖W 1,n(Ω) and, that, in this case our result recovers
the well known Trudinger’s Sobolev embedding theorem.

Moreover, as far as we know, our estimates are new, for unbounded domains.

5. Relationship with the method of Jawerth and Milman

In the theory of Jawerth and Milman (see [9]), the authors work with operators T such
that

T : Āµθ,1;J −→ B̄σθ,∞;K

is bounded with constant ‖T‖θ.
First of all, the space B̄σθ,∞;K = M(ψθ; B̄), where ψθ(t) = t/σθ(t). However, the

first difference of their method with ours is that for the domain spaces they work with
the J-method of interpolation, while we consider the spaces Λ(ϕθ; Ā) which are easily
seen to be K-spaces.

In the classical real case when µθ(t) = σθ(t) = tθ, we get that

Āµθ,1;J = Āθ,1;K = Λ(ϕθ; Ā),

with ϕθ(t) = t1−θ and, hence, both theories coincide, although the techniques devel-
oped are completely different.
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Now, following the notation introduced in Remark 2.1, let

DΣ(s) = h(1, s), RΣ(t) = RDΣ(t)

and
R∆(t) =

t

h(t, 1)
, D∆(s) = DR∆(s).

Then, the following results hold.

Theorem 5.1

∑
θ∈Θ

{
‖T‖θΛ(ϕθ;A)

}
= Λ(DΣ;A)

Proof. To show the first embedding, it is enough to see that

Λ(ϕθ;A) ⊂ Λ(DΣ;A), θ ∈ Θ,

with constant ‖T‖θ. Now, by definition of DΣ, we have that

DΣ(s) ≤ ‖T‖θϕθ(s)

or equivalently ∫ t

0

dDΣ(s) ≤ ‖T‖θ
∫ t

0

dϕθ(s)

and by Hardy’s lemma

‖a‖Λ(DΣ;A) ≤
∫ ∞

0

k(a, s;A)dDΣ(s) ≤ ‖T‖θ
∫ ∞

0

k(a, s;A)dϕθ(s)

= ‖T‖θ ‖a‖Λ(ϕθ;A) ,

from which the result follows.
To prove the opposite embedding, it is enough by Proposition 2.3, to prove it for

a characteristic pair. Let (a,E) be a characteristic pair of Ā. Then, for every θ ∈ Θ,

‖a‖∑
θ∈Θ{‖T‖θΛ(ϕθ;A)} 
 ‖T‖θ ‖a‖Λ(ϕθ;A) ≤ ‖T‖θϕθ(|E|),

and taking infimum in θ, we get

‖a‖∑
θ∈Θ{‖T‖θΛ(ϕθ;A)} ≤ inf

θ
{‖T‖θϕθ(|E|)} = DΣ(|E|).

Proposition 5.1

The space Λ(DΣ;A) is the least minimal Lorentz space so that

Λ
(
ϕθ;A

)
⊂ Λ

(
DΣ;A

)
,

with norm less than or equal to ‖T‖θ.
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Proof. Let φ be such that, for every θ ∈ Θ,

Λ
(
ϕθ;A

)
⊂ Λ

(
φ;A

)
,

with norm less than or equal to ‖T‖θ. Then, if (a,E) is a characteristic pair for Ā, we
get that ∫ ∞

0

k(a, s;A)dφ(s) ≤ ‖T‖θ
∫ ∞

0

k(a, s;A)dϕθ(s) 
 ‖T‖θϕθ(|E|)

and hence,

‖a‖Λ(φ;A) =
∫ ∞

0

k(a, s;A)dφ(s) 
 inf
θ
{‖T‖θϕθ(|E|)} = DΣ(|E|).

Therefore
Λ(DΣ;A) ⊂ Λ(φ;A).

Now, the Σ-method asserts that (under appropriate conditions)

T :
∑
θ∈Θ

‖T‖θΛ(ϕθ; Ā) −→
∑
θ∈Θ

M(ϕθ; B̄),

and hence it is interesting to know the relation between the range spaces in both
theories. That is, between

∑
θ∈Θ M(ϕθ; B̄) and M(RΣ; B̄).

Proposition 5.2

If M(ρ;B) satisfies that M(ψθ;B)⊂M(ρ;B), θ ∈ Θ, with constant 1, then

M(RΣ;B) ⊂ M(ρ;B)

Proof. We have that
ρ(t) ≤ inf

θ
ψθ(t) := λ(t)

and since

λ(t) ≤ ψθ(t) =
‖T‖θϕθ(s)t
‖T‖θϕθ(s)t

ψθ(t)

≤ ‖T‖θϕθ(s)t

infθ
‖T‖θϕθ(s)t

ψθ(t)

=
‖T‖θϕθ(s)t

h(t, s)
,

we have that

λ(t) ≤ inf
θ

‖T‖θϕθ(s)t
h(t, s)

=
th(1, s)
h(t, s)

,

and hence

λ(t) ≤ t inf
s

h(1, s)
h(t, s)

=
t

sups
h(t,s)
h(1,s)

.

Therefore,

sup
s

h(t, s)
h(1, s)

≤ t

λ(t)
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and since t
λ(t) is quasi-concave, EΣ(t) 
 t

λ(t) , where RΣ(t) = t/EΣ(t). Consequently

‖a‖M(ρ;B) ≤ ‖a‖M(λ;B) 
 ‖a‖M(RΣ;B) ;

that is
M(RΣ;B) ⊂ M(ρ;B).

Corollary 5.1

If
∑

θ∈Θ M(ψθ) is a maximal Lorentz space, then, for every pair B̄,

M(RΣ; B̄) ⊂
∑
θ∈Θ

M(ψθ; B̄).

It is easy to see that, in the Yano’s case, the hypothesis of the above corollary
holds, since, if 1 − θ0 = 1/p0 and ϕθ(t) = t1−θ, then

∑
0<θ≤θ0

M(ψθ) = L1 + Lp0,∞.

Moreover, by (4),

DΣ(s) ≈ s
(

log+ 1
s

)α

+ s1/p0χ{s>1}(s),

and
RΣ(t) = min

(
t, t1/p0

)
,

and hence
M(RΣ) = L1 + Lp0,∞ =

∑
0<θ≤θ0

M(ψθ).

That is, the Σ-method coincide, in this particular case, with our method.
In particular, if p0 = ∞, we get that

T : L(logL)α −→ L1 + L∞,

where

L(logL)α =
{
f ;

∫ 1

0

f∗(t)
(

log
1
t

)α

dt < ∞
}
.

Now, if we consider the space

L(1 + logL)α =
{
f ;

∫ ∞

0

f∗(t)
(
1 + log+ 1

t

)α

dt < ∞
}
,

we have that L(1 + logL)α ⊂ L(logL)α and hence, the Σ-method asserts that, if T
satisfies the hypotheses of Theorem 3.1 with θ0 = 0,

T : L(1 + logL)α −→ L1 + L∞
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is bounded, while with our method we can get a much smaller range space, namely

T : L(1 + logL)α −→ M0,

where, for every p > 1, (see [6])

M0 ⊂ L1 + Lp,1 ⊂ L1 + Lp,∞ ⊂ L1 + L∞,

and all the above embeddings are strict.
A similar argument can be done for the ∆-method. That is, from Theorem 3.1 in

[9], we have that

M(R∆; B̄) =
⋂
θ∈Θ

(
1

‖T‖θ
M(ψθ; B̄)

)
.

Also, it is easily seen that M(R∆; B̄) is the smallest maximal Lorentz space containing
M(Ψθ; B̄) with norm 1/‖T‖θ and if

⋂
θ∈Θ Λ(ϕθ) is a minimal Lorentz space, then

⋂
θ∈Θ

Λ(ϕθ; Ā) ⊂ Λ(D∆; Ā). (8)

As before, in the Zygmund’s case, if 1 − θ1 = 1/p1 and ϕθ(t) = t1−θ, then

⋂
θ1≤θ<1

Λ(ϕθ) = L∞ ∩ Lp1,1,

and the embedding (8) is an equivalence. Therefore, we recover, in this particular case,
the ∆-method.
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