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ABSTRACT
We develop an abstract extrapolation theory for the real interpolation method that
covers and improves the most recent versions of the celebrated theorems of Yano
and Zygmund. As a consequence of our method, we give new endpoint estimates
of the embedding Sobolev theorem for an arbitrary domain 2.

1. Introduction

In 1951, Yano (see [14], [15]) using the ideas of Titchmarsh in [13], proved that for
every sublinear operator T satisfying that there exists C' > 0 such that, for every

1<p<2,
<Z;H7ﬂwwdeﬁ>vp§}£§I</aﬁf@0pdu@ﬂ>ui

where (N,v) and (M, p) are two finite measure spaces, T : Llog L(u) — L(v) is
bounded. If the measures involved are not finite, then an easy modification of the
above results shows that T : Llog L(u) — Li..(v) and, in fact, T : Llog L(u) —
L'(v) + L*(v).

Quite recently, it has been proved (see [4] and [5]) that under a weaker condition
on the operator T, namely that
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166 CARRO AND MARTIN

for every measurable set A C M and every 1 < p < pg, with C independent of A and
p, it holds that
T : Llog L(n) — M(e),

is bounded, where M/(p) is the maximal Lorentz space associated to the function
©(t) =t/(1+log™ t); that is,

tfy (t)

:s
£l a0 S og" 1

It turns out that this space M () is strictly embedded in L!(v) + LP'1(v), for every
1 < p < o0, (see [6]) and therefore, Yano’s theorem was improved.
Also, in [15], p. 119, it is proved that if T is a linear operator satisfying

1T f ey < OIS llLe ), (1)
for every p near oo and, p and v are finite measures, then
T : L®(p) — Lexp(v)-

Using a duality argument, this result was recently extended, in [5], to the case of
general measures, proving that, if 7" is a linear operator satisfying (1), then

t>o (1?1(];**((1;:5 (/ G+ ”f“oo>

In the 90’s, the extrapolation theory was extended to the setting of compatible
couples of Banach spaces in real interpolation, with the works of Jawerth and Milman
(see [9], [10]) and Milman (see [11]), (see Section 5).

The purpose of this work is to present an alternative extrapolation theory for
the real interpolation method, that has the advantage, among others, of obtaining a
better range space in the case of Yano’s type result and a better domain in the case of
Zygmund’s type results than the ones known up to now. Moreover, with our theory,
the identification of the extrapolation spaces is immediate and hence the consequences
and applications are obtained in a very easy way.

The paper is organized as follows: in Section 2, we present the main results of
the theory. In particular, these results are presented in detail, in Section 3, for the
particular case that covers the real interpolation theory. To illustrate our method,
we have applied our results, in Section 4, to obtain end-point estimates for the Riesz
Potentials and for the Sobolev embedding theorem for an arbitrary domain 2. We also
present in this section, the improvement of Yano’s and Zygmund’s theorems.

Finally, in the last section of this paper, we study the relationship of our method
with the Y- and A-method of Jawerth and Milman.

As usual, the symbol f =~ g will indicate the existence of an universal positive
constant C' (independent of all parameters involved) so that (1/C)f < g < Cf, while
the symbol f < g means that f < Cg. Given (N,v) a o-finite measure space, we
shall write [|g[|,, to denote [|g]|Lr (), Ay (y) = v({x € N; |g(x)] > y}) is the distribution
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function of g with respect to the measure v, g;(t) = inf{s; A} (s) <t} is the decreasing
rearrangement and ¢3*(¢) = (1/t) g g5 (s) ds (see [1]). In what follows we shall omit the
indices ¥ whenever it is clear the measure we are working with. Also, for a measurable
set E in (0, 00), we shall denote by |E| the Lebesgue measure of the set, and whenever
it is not specified the underlying measure in (0, co) will be this one.

Let us now start our presentation by briefly recalling some classical results about
real interpolation theory. Our main references will be [1], [2] and [3] (and the references
quoted therein) where we refer the reader for further information.

We consider compatible pairs of Banach spaces A = (Ao, Al), that is, we assume
that there is a topological vector space V such that A; C V, ¢ = 0,1, continuously.
Usually we drop the terms “compatible” and “Banach” and refer to a compatible
Banach pair simply as a “pair”.

The Peetre K —functional associated with a pair A is defined, for each a € Ao+ A4;
and t > 0, by

K(a,t) = K(a,t; A) = inf { [lagl 4, + tllarll 4, ; @ = ao + a1, a; € Az} -

It is easy to see that K (¢, a) is a nonnegative and concave function of ¢ > 0, (and thus
also continuous). Therefore

t
K(a,t;A):K(a,O+;A)+/ k(a,s; A)ds,
0

where the k—functional, k(a, s; A), is a uniquely defined, nonnegative, decreasing and
right-continuous function of s > 0.

EXAMPLE 1.1: The pair A = (L*(v), L>(v)) satisfies that k(a, s; A) = f*(s), that is

K(f.1) = /0 F*(s) ds.

Let us also recall that given a positive concave function ¢ on (0, 00), the maximal
Lorentz space M () is defined (see [1]) as the set of measurable functions such that

s =330 (£ 0000)) <

and the minimal Lorentz space A(p) is defined by the condition

o = [ 7o) <o

Obviously, if ¢(0+) = 0, we have that

HfHA((p) = /0 SO()\f(y)) dy < oo.
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By analogy, we extend the definition of minimal and maximal Lorentz space to
the case of general pairs as follows (see [3]):

DEFINITION 1.1. Given a pair A= (AO,Al) and a concave function ¢, the minimal
Lorentz space, A(p; A), is the set of elements a € Ag + A; such that K(a,07;A) =0
and

lellgun = [ klasi D) dets) < o
and the maximal Lorentz space M (p; A) is the set of elements a € Ag + A; such that

K(a,t; A)
lallnr(p;a) = sup p p(t) ) <oo-
>0

Remark 1.1. i) Notice that in the case that A = (L'(v),L*°(v)), we obtain the
“classical” Lorentz spaces.
ii) Standard arguments (see [1]) show that A(y; A) and M (p; A) are Banach spaces
such that
A(p; A) C M(p; A) C Ag + Ay
continuously.
iii) If we consider the function og(t) = t!~% with 0 < 6 < 1, then

A(pa; A) = Ag 1 C M(pg; A) = Ap o0,

where the constant of the above embedding is 1, and the spaces /_lqu are the classical
real interpolation spaces defined as the set of elements a € Ag + Ay such that the
following quantity is finite

> AN
<0(1—9)q/ (t_gK(a,t))q7> , 0<f0<1,1<q< o0,
0

supt K (a,t), 0<b<1,qg=occ.
>0

lallz, . =

Acknowledgment: We want to thank Javier Soria for his useful comments and re-
marks.

2. Main results

To prove our main result, we need a technical decomposition lemma, which is funda-
mental in our theory.

Lemma 2.1

Given an element a € Ag + Ay such that K(a, 0%; A) = 0, there exists a constant
~ (depending only on A) and a collection of elements (a;);cz such that

a= Z 2%a; (convergence in Ag + Ay),
V€L
and
K(a;,t) < ymin (t, |El|)
where E; = {s € (0,00); k(a,s; A) > 2'}.
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Proof. Let a € Ay + Ay such that K(a,07;A) = 0. Since k(t) = k(a,t; A), is a
decreasing function of ¢, we have that

D 2 () < k() <D 27 xa, (1),

i€Z i€Z
where A; = {t € [0,00);2" < k(t) <21}, and hence, if we consider the interval E;,
we get that

1 , :

5 32, (1) < k(1) <23 2, (1),

€L =y
Since . .
K(a,t; A) = / k(a,s; A)ds < 22?/ XE; (s)ds
0 ez 70

and each term appearing in the above series is a concave function of ¢, satisfying that

22?/

1
XE, (8)ds < 4K(a,1; A) < oo,
0
we can apply the K —divisibility theorem (see [3], Theorem 3.2.7) to obtain a sequence
(a;)iez in Ag + Ay such that
a= Z 2%a; (convergence in Ag + A;)
i€Z
and such that the elements a; satisfy that

t
K(a;,t) < ’Y/ XE;(s)ds,
0

where ~ is a positive constant depending only on the pair A. O

We shall say that a = > oo 2%, is a diadyc decomposition of a and each

1=—0C
term a; will be called a characteristic element.

DEFINITION 2.1. Given an element @ € Ag + A; and a decreasing set £ = (0,7) in
(0,00), we say that the pair (a, E) is a characteristic pair of A, if it satisfies that
K(t, a3 A) < ymin (| ),

where ~ is a universal constant depending only on A.
An element a € Ay + A is said to be simple if there exist N € N and a finite
collection of characteristic elements (a;); such that

N
a= E 2'a;.
i=—N

As a consequence of Lemma 2.1, we obtain the following results which will be very
useful for our purpose:

Proposition 2.1
If ¢ is a concave function such that ¢(0") = 0, then

lellsgon = [ ¢ (o) du 3 2 (1),
IE€EZ

where E; = {t; k(a,t; A) > 2} and the constant in the above equivalence does not
depend on .



170 CARRO AND MARTIN

Proposition 2.2

Let ¢ be a positive concave function such that ¢(0%) = 0. Then the following
conditions hold.

a) If (a, F) is a characteristic pair of A,

lallag:a) < Yo (1E]).
b) If a =, 2"a; is a diadyc decomposition of an element a € A(p; A), then the

sequence (ZZZ\LN 2iai> converges to a in A(p; A). Consequently, the set of
_ N _
simple elements of A is dense in A(g; A).

Proof. a) Since |[la|[x(ya) = |k(a, ; A)||acp), and A(p) is a rearrangement inva-
riant function space, it follows by Theorem 4.6, p. 61 of [1], that if K(a,t;A)
fo a,s; A)(s)ds < fo s)ds, for some decreasing function h, then ||a||x(,,4)
1Pl Ace), from which the result follows. To prove b), let a € A(p; A) and let a

A

So2 2%y be a diadyc decomposition of a. Let a® = Zij\i_N 2ta;. Then, for every
N < M, we have, using a), that
N_ M
o —aMlany < D 2laillaga <7 Y. 2B,
N<|i|<M N<|i|l<M

and, by Proposition 2.1, we obtain that the last expression tends to zero whenever
N and M tend to infinity. Hence, (a)y is a Cauchy sequence in A(p; A) and by
completeness, there exists an element b € A(p; A) such that (a)y converges to b in
A(p; A). Finally, since, by Remark 1.1 ii), we have that A(p; A) C Ag+ Ay and (a )y
tends to a in Ag + A1, we get that b = a as we wanted to see. O

Proposition 2.3

Let B be any Banach space embedded in Ag+ A1 and let ¢ be a positive concave
function such that p(0") = 0. Then

A(p; A) C B

with constant K, if for every characteristic pair (a, E) of A, it holds that |la||p <
K
29 El).

Proof. Let a € A(p; A) and let a = Yicz 2a; be a diadyc decomposition of a. Then,
we have that,

N
%
| 3 2
i=—N

N kN
- > 2ails < 5 > 29(E) < Kllallagpa):
i=—N =N

Since B is complete, it is embedded in Ay + A; and (Zi]\;_N 2iai) converges to a
N

in Ag + A1, we conclude the result by standard arguments. O

Let us present now the General Setting of our method:
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DEFINITION 2.2. Let A and B two pairs. Let © be an arbitrary set of parameters and
set

Fo = {(vo,19); 0 € O},

where @y and vy are positive concave functions on (0,00) such that, for every 6 €
O, ©9(0T) = 0. Then, we say that a linear operator T is a minimal-maximal
extrapolation operator associated to the triple © = (Fo, A, B) if, for every 0 € O,

T : A(po; A) — M (1pg; B)
is bounded.

DEFINITION 2.3. Given a triple © = (Fg, A, B) and a minimal-maximal extrapolation
operator T associated to ©, we consider the function

h(t,s) = hor(t.s) = inf {%t(lt!)ﬂle} |

where ||T|o is the norm of the operator T : A(pp; A) — M (tbg; B).

From now on we shall omit the indexes ©® and 7" in the function h and we shall
simply write h(¢, s).

Observe that, for every t fixed, the function h(t,-) is a positive concave function
so that h(t,07) = 0 and, hence, we can consider the measure dh(t, s).

In this context, our first main result can be formulated as follows:

Theorem 2.1

Given a triple ©, a linear operator T is a minimal-maximal extrapolation operator
associated to © if and only if, for every t > 0 and every a € UgcoA(pg; A),

K(Ta,t; B) < /000 k(a,s; A)dh(t, s). (2)

Proof. To prove the necessary condition, let (a, E) be a characteristic pair of A. Then,
by Proposition 2.2,

5 t L[| [lo
K(Ta,t:B) < —— ||Ta Dl O T T
(Ta,t; B) < o ol < oy lallaui)
. tT oo (1)

and taking the infimum in 6§ € ©, we obtain that

K(Ta,t; B) < h(t,]E)).
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Let now a € UpcoA(pg; A) and let a =}, 2¢a; be a diadyc decomposition of a.
Set oV = Z].\L_N 2a;. Then, T(aV) = ZfV:_N 2'T'(a;) and we have that

7
N .
K(T(aN),t;B) :K< 3 21Tai,t;B>
i=—N

N
< Y 2h(tIE]) <) 2t |Ei)
i=—N

1€EZ

~ A h(tv)‘k(a,~;ﬁ) (8)) ds.

Now, since a € UpcoA(pp; A), we have that there exists 6y € © such that a € A(pg,; A)
and hence, we can similarly prove that

K(T(@)=T@),6B) < > 2'h(t,|E)
N<Ji|l<M
tIT g,
= o)

which, by Proposition 2.2, converges to zero, whenever N and M tend to infinity.
Therefore, (T(aN)) converges in By + B; to an element b such that

Z 2i9090(|Ei|)a

N<[i|<M

N

K(b,t;B)j/ h(t, M(a,..4)(s)) ds.
0

But, since a € A(py,,A), (a™)n converges, by Proposition 2.2 b), to a in A(pg,; A)
and, since T : A(pg,; A) — M (1pg,; B) is bounded, we have that (T(aN))N tends to
Ta in M(pg,; B). Therefore (T'(a")) , tends to T'a in By + By and thus, Ta = b, from
which the result follows.

Conversely, if (2) holds, then, for every 6 € ©,
K(Ta,t; B)Uy(t)
t

Ta .B) = sup
Tl arcwy;) = s

w0 (Ao () ) o (1)
= / " dy
0

oo
<170 [ (ot @) dy = 1T lelagn - B
As a trivial consequence of Theorem 2.1, we get the following extrapolation result.

Theorem 2.2 (Extrapolation theorem)

Let T be a minimal-maximal extrapolation operator associated to a triple ©.
Then, if E and D are two positive concave functions such that D(0%) = 0 and

h(t,s) < E(t)D(s), (3)
T can be extended from UgcoA(pg, A) N A(D; A) to a bounded operator
T :A(D;A) — M(R;B),
where R(t) =t/E(t).
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Proof. a) By (2), we have that, if a € UpecoA(pg, A),

K(Ta,t; B)R(t) K(Ta,t; B)

Tal pr(r.3) = Su N ST

ITallnr i) = sup t >0 B(t)
. 0 h(Ak(a,-;A)(y)’t) du < OOD A d
<) wm s ), Plveaw)

= ||a”A(D;A)-
From this and the fact that by Proposition 2.2, UpcoA(pg, A) N A(D; A) is dense in
A(D; A), we conclude the result. O
Remark 2.1. i) If h satisfies (3) and we fix D, we have that

F(t):= sup hl()t(’;))

< E(@),

and hence there exists the least concave majorant Fp of the function F'. Since obvi-
ously h(t,s) < Ep(t)D(s), we conclude that

T :A(D;A) — M(Rp; B),

where Rp(t) = t/Ep(t). Since Ep < E, we have that M(Rp;B) C M(R; B) and
hence, for D fixed, M (Rp; B) is the least range space we can get with the method of
Theorem 2.2.

Similarly, if h satisfies (3) and we fix F, then

T :A(Dg;A) — M(R;B),

where Dp is the least concave majorant of sup, (h(t, s)/E(t)) Since Dr < D, we

have that A(D; A) C A(Dg; A) and therefore, for E fixed, A(Dg; A) is the biggest
domain space we can get with our method.
ii) If we have that, for j = 1,2,

h(t,s) < Dj(t)E;(t),

with D; and Ej; concave functions and Dy < Dy, then Rp, < Rp, and hence

A(D2; A) € A(Dy; 4),

and
M(RD27B) - M(RD17B)

Now, if h satisfies (3), then h(1,s) < E(1)D(s) and hence if we denote by Dx(s) =
h(1,s), we get that for every D satisfying (3)

A(D; A) C A(Ds; A).
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Similarly, if h satisfies (3), then h(t,1) < E(t)D(1), and hence, if we denote by Ra(t) =
t/h(t,1), one can easily see that
M(Ra; B) € M(R; B),
where R(t) = t/E(t).
We shall see in the last section that the functions Ds. and Ry are connected with
the Y-method of Jawerth and Milman, and D and Ra with the A-method.

3. Real extrapolation method

In this section, the set of parameters © will be a subset of the interval (0,1), and, for
every 6 € O,
po(t) = po(t) = t'7°.
We shall consider the two classical cases:

I) Yano’s case: Here, © = (0, 6] for some 0y < 1 and 7' is a minimal-maximal extra-
polation operator such that || T|lp < 6~ for some a > 0. Then, simple computations
show that
glt=0otfo if t<s
h(t,s) =~ t\ o 4
(t,9) 5(1+log—) if t>s )
s
and, therefore, inequality (2) reads
t « oo
- t k
K(Ta,t; B) < / k(a,s)(l +log —> ds+ (1 — 90)t90/ (a,5)
0 § t

sbo

' K(a.s) AN w [T Kl
%/0 T<1+log ;) ds+ (1 —6o)t O/t gfo+1 ds,

which is related to the so-called KJ-inequalities in [9].
Obviously,

o 1 o
h(t,s) < 5<1 +log* E) < s<1 + log™ —> (1+log™ )%,
S S

and since both functions are quasi-concave (that is, equivalent to a concave function),
we can take D(s) = s(1 + log™ %)a and E(t) ~ (1 4 log™ ¢)® in our Theorem 2.2 to
conclude the following real extrapolation result.

Recall also that, as was mentioned in the introduction

A(pg; fl) = AQJ and M(pg; B) = ngo.

ds

Theorem 3.1
Let A = (Ap, A1) and B = (By, By) be two pairs and let T be a linear operator
such that
T: /_1971 — B@,oo
is bounded with ||T|| < 6=, for every 0 < 6 < 6y < 1. Then, T can be extended
continuously

N
0
where A$(A) = A(p; A) and ¢(t) = +log* 1), and M§(B) = M(¢; B) with

Y(t) =t(1 +logtt)~.
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An easy computation shows that

[e'e] _ 1 o
lollagon = [ b d) (141057 1)

and, by integration by parts, we get the following characterization of A§(A) in terms
of the K-functional:

Proposition 3.1
The space A§(A) coincides with the elements in Ay + Ay such that

. VK (t,a; A 1\*"!
supK(t,a;A)+/ (%’)<1+log+¥> dt < oo.
0

t>0

IT) Zygmund’s case: Here, © = [f1,1) for some 6; > 0 and 7' is a minimal-maximal
extrapolation operator such that [Tl < (1 — 0)~“ for some o > 0. Then, simple
computations show that

01 51=01 if s<t
h t,s) = a
(t,9) t<1+10g;) if 5>t

and, therefore, inequality (2) reads

_  k(a, s) > k(a,s) syo—t
. < _ 01 ’ ) 2
K(Ta,t;B) = (1 —01)t /0 - ds + t/t . (1 + log t) ds

" K(a,s) > K(a,s) sya—1
~ 10 ) ) °
~t 1/0 170, d8+t/t 2 (1+10gt> ds

Since .
h(t,s) < t(l +log™ Z) (1+41og™t s)?,

we can apply Theorem 2.2 to obtain the following result.

Theorem 3.2
Let A = (Ao, A1) and B = (By, By) be two pairs and let T be a linear operator
such that
T: A@J — BQ’OO

is bounded with ||T|, < (1 — )™, for every 6; < 6 < 1. Then, T can be extended
continuously

T:AY(A) - MY (B),

where A$(A) = A(p; A) with p(t) ~ (1 + log™ t)a, and M{(B) = M(v; B) with
P(t) ~ (1+1log™ 1)
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Similar to Proposition 3.2, we can also give a description of A§(A) in terms of the
K-functional.

Proposition 3.2

The space A(A) coincides with the elements in Ay + Ay such that

K(t,a; A * K(t,a; A
supM—l—/ %(1+logt)a_ldt<oo.
1

t>0

4. Applications

First of all, let us mention that although the theory has been developed for the case of

linear operators, one can very easily check that if B = (By, By) are lattices, it can be

extended, with the trivial modifications, to the case of sublinear operators (see [5]).
Let us start with two simple lemmas.

Lemma 4.1
Let 1 < po < p and let us consider A = (LP°, L>°). Then, if 6 = 1 — po/p,
Ag}l Cc L? C /_19700,

where the constants of the above embeddings do not blow up when p tends to pg.

Proof. Recall that (see [2], Theorem 5.2.1)

1/po

Kt f; A) ~ { /0 (f* ()" ds} (5)

where constants in the above equivalence only depend on py.
Thus, if (a, F) is a characteristic pair, we have that

t
/ (a*())"* ds = min (1. | B, (6)
0
Now, since p/po > 1, inequality (6) implies (see [1], Theorem 4.6, p. 61) that
lall, < [ B[P/

and Proposition 2.3 applies. The second embedding follows from (5) and Hélder’s
inequality. O

Lemma 4.2

Let 1 < p < p; and let us consider A = (L', LPt). Then, for § = p'/p’ (where ¢’
is, as usual, the conjugate exponent of q),

A(pg; A) C LP C M(pg; A),

where the constants of the above embeddings do not blow up when p tends to either
1 or p;.
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Proof. To show the first embedding, we only need to prove, by Proposition 2.3, that
if (a, F) is a characteristic pair, then

lall, < CIE|*=P/7,

where C' does not blow up when p tends to either 1 or p;.
Now, it is known (see [1], p. 311) that

K(t, f; L', L®) < CK(t, f; A),

where 6 = 1/p) and C is independent (obviously) of p. Then,

t t
/ k(s, f1 L', L) ds < C/ k(s®, f; A)s®~ 1 ds,
0 0

and hence

o 1/p 00 ) 1/p
ol = ([ s =) <o [ re e ayeena)
0 0
o 1/p
= C</ ki(t,a;A)ptp(5_1)/5+1/5—1dt> )
0

Since, K (t,a; A) < min(¢, |E|) and &2p+1—1 < 0, we have (see [1], Theorem 4.6)
that

|E| 1/p 1
lall, < C(/ tp(6=1D)/oF1/6=1 dt> = (J(f> |E|(8=1/6+1/(5p)
0 p

5(1—p)
)|E|1—10'1/10’7

1
(p +pi(1—p)
from which the first result follows.

b) The second embedding is a trivial consequence of the fact that

B (o) 1/p1
Kyl [reeras) ¢

and Holder’s inequality. O

Since the constants are very important in this theory, let us emphasize that in
what follows the space LP'! is endowed with the norm

1 [ dt
f 1= _/ f* t tl/p ,
£l == [ £ 085
and the space LP**° is endowed with the norm

1fllzree = sup /P f7(2),
t>0
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1) Yano’s Operators

Our first application is an improvement of Yano’s extrapolation theorem and follows
immediately by taking A = (L*(u), L°°(n)) and B = (L'(v), L°(v)) in Theorem 3.1.

Theorem 4.1
Let T be a sublinear operator satisfying that

T s D () — L7 (v),
is bounded with constant 1/(p — 1). Then,
¢
@i as
su 1+log*t ds.
t>g (141ogtt) / f ( 8 )

Now, if the norm of the operator T" blows up when p tends to paL instead of 1, we
also have the following generalization of Yano’s theorem:

Theorem 4.2
Let T be a sublinear operator satisfying that

T: LP () — LP(v),

is bounded with constant 1/(p — po), (po < p < p1). Then,

(/Ot(Tf)i(s)”O ds)l/pO /1 (/Ot f;(sipo ds)l/p" d

sup T = fll Lo () + t.

>0 1+log™t

Proof. If we take A = (LPo(u), L>®(p)) and B = (LP°(v),L>®(v)), we have, by
Lemma 4.1, that the hypothesis of our Theorem 3.1 is satisfied and the result fol-
lows immediately from it, (5) and Proposition 3.1. O

2) Zygmund’s Operators

If we now take A = (L' (u), L°°(n)) and B = (L*(v), L>=(v)) in Theorem 3.2, we obtain
the following improvement of Zygmund’s result (see [5]).

Theorem 4.3
Let T be a sublinear operator satisfying that, for every p > po,

T: L7 () — L (),

with constant p. Then,
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[amees
Jo sk () LY )
sup (7l 1) j/l [ (@) 7 + || fllo

And, if the norm of the operator 7" blows up when p tends to p; instead of oo,
we also have the following result:

Theorem 4.4
Let T be a sublinear operator satisfying that

T D) — L),
is bounded with constant 1/(p1 — p), (po < p < p1). Then,

e 1/p1 o° 1/p1
(Tf)y ()P o fu(s)P
sup </t T i) = £l +/1 </t <St> “ dt-

>0 1 +log* %

Proof. Let us take A = (L'(u), LP*(n)) and B = (L' (v), LP* (v)). Then, by Lemma 4.2
we have that the hypothesis of our Theorem 3.2 is satisfied and the result follows
immediately from it, (7) and Proposition 3.2. O

3) Riesz potentials

Let us consider

_ f(y) .
fo = / Jo— gyl ¥

It is known (see [12], p. 117 or [1], p. 228) that
I,:LP — L9,

where 1/¢ = 1/p — a/n, 1 < p and ¢ < co. Moreover, the constant of the above
operator behaves like 1/(p — 1) when p is near 1, and like ¢ when ¢ is near co.

To apply our results, observe that if p =1,1/¢ = 1—a/n and if g = 00, 1/p = a/n.
Therefore, we consider the pairs

A= (L', L"*) and B = (L") L),
Now, if # = (1 —1/p)/(1 — a/n), we have by Lemma 4.2, that A(pg; A) C LP, and, by
Lemma 4.1 that L™/"~® C M(ypg; B). Moreover, the constants of the above embed-
dings do not blow up when p tends to either 1 or n/a.
Consequently,
I : 14_19,1 I Be,ooy
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with constant C/0(1 — 0), for every 6, and, hence, as an immediate consequence of
Theorems 3.1 and 3.2, we obtain the following end-point estimates for the Riesz po-
tential:

Theorem 4.5

The Riesz potential I, satisfies the following estimates:

t (n—a)/n
([ arytorio=as)
0
50 1+ log" ¢

1 00 a/n
<k + | ( [ e ds) dt
0 tn/(n—a)

and,

i/ (n—) (n—a)/n
(Lo ) (s)/ =) ds)

o

sup
£>0 t(l +log" %)

Lo,

=2 llnya +

4) Sobolev Embeddings
Let Q be any domain in R™ and let WP(Q) be the classical Sobolev space

1fllwrr@) = £ llo + 1V £l

where Vf is the gradient of f, and let Wy"* () be the closure of C§°(Q) in WP ().
Then, it is known (see for example [8], p. 149) that, for every 1 <p <mn

Wol,p(Q) - an/(n—p)(Q)’

with constant C'/(n—p)(™~ 1/ Then, using our results we have the following end-point
estimates:

Theorem 4.6
t (n=1)/n
(/ f**(s)n/(n—l) ds)
0
sup
>0 t(1+1log* 1)

1/n

([T (r@ivre) )

t(1 + log™ t)1/n dt-

= Wfllwroe + [
1
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Proof. Let A= (Wy' (Q), Wy ™(Q)) and B = (L™ (=1 L), Then, it is known that

K8~ ( [

and, using Holmstedt’s formula, we have that if W = (W, (), W, >(Q))

K(t, f: A) ~ t(/too (M)n ds) l/n,

n/(n—1) S

tn/(n—l)

(n=1)/n
f** (S)n/(n—l) dS)

where, (see [7]),
K(t, f: W) ~ t(f**(t) T IVf\**(t)>-

As in Lemmas 4.1 and 4.2, one can easily see that, if § =n'/p’,
L/ (n=p) = B,

and
1‘_1971 C WOLP(Q),

both embeddings with constant independent of 8. From this and Proposition 3.2, the
result follows immediately from Theorem 3.2. O

It is important to mention that, when the domain 2 is bounded, the right hand
side of Theorem 4.6 reduces to || f|w1.n() and, that, in this case our result recovers
the well known Trudinger’s Sobolev embedding theorem.

Moreover, as far as we know, our estimates are new, for unbounded domains.

5. Relationship with the method of Jawerth and Milman

In the theory of Jawerth and Milman (see [9]), the authors work with operators T such
that
T Appr;0 — Bogoos

is bounded with constant ||7]|s.

First of all, the space By, oo.xc = M (10g; B), where 1 (t) = t/oy(t). However, the
first difference of their method with ours is that for the domain spaces they work with
the J-method of interpolation, while we consider the spaces A(pg; A) which are easily
seen to be K-spaces.

In the classical real case when pg(t) = og(t) = t, we get that
A#e,l;J = AG,I;K = A(‘P%A)v

with @g(t) = t1=% and, hence, both theories coincide, although the techniques devel-
oped are completely different.
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Now, following the notation introduced in Remark 2.1, let

Dg(s) = h(l, S), Rg(t) = RDE (t)
and "
RA(t) = m, DA(S) = DRA (s)

Then, the following results hold.

Theorem 5.1
Z {IT|loA(pg: A)} = A(Ds; A)
6cO

Proof. To show the first embedding, it is enough to see that

Apg; A) € A(Dx; A), 0 €6,
with constant ||T']|g. Now, by definition of Dy, we have that
Dsi(s) < [[Tlope(s)
or equivalently . .
| apsts) <1l [ dgats

and by Hardy’s lemma

oo

HGHA(DE;Z) S/O k(a,s; A)dDs(s) < ||TH9/0 k(a,s; A)dpg(s)
A

from which the result follows.
To prove the opposite embedding, it is enough by Proposition 2.3, to prove it for
a characteristic pair. Let (a, F) be a characteristic pair of A. Then, for every 6 € ©,

lally~ _{irtoacenny = 1Tho lallayim < I1Tlowo( 12D,
and taking infimum in 6, we get
lalls>, timioaeimy < BEITlowo(|£])} = Dx(IE]). O

Proposition 5.1

The space A(Ds; A) is the least minimal Lorentz space so that
Age; A) C A(Ds; A),

with norm less than or equal to ||T||g.
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Proof. Let ¢ be such that, for every 6 € ©,
A(po; A) C A(g; 4),

with norm less than or equal to ||T|lg. Then, if (a, E) is a characteristic pair for A, we
get that

o0

/Oo k(a, s; A)dg(s) < IITHe/ k(a, 53 A)dpo(s) < [ Tlloge(| E])
0 0

and hence,

|mmwgyaAmesmegfquTmmumn=dhumy

Therefore
A(Ds; A) C A(p; A). O

Now, the ¥-method asserts that (under appropriate conditions)

T:> | TloA(pe; A) — Y M(pe; B),
bco bco

and hence it is interesting to know the relation between the range spaces in both
theories. That is, between Y, M (pg; B) and M (Ry; B).

Proposition 5.2

If M (p; B) satisfies that M (¢g; B)CM (p; B), 0 € ©, with constant 1, then

M(Rx; B) C M(p; B)

Proof. We have that
plt) < inf wg(t) = A1)

and since
_ ITlewa(s)t _ [ Tllepe(s)t _ [Tllowa(s)t
A = 90(t) = Talopetrr = T IThowe®t —  hits)
o (1) 0 "4 (t)

we have that

- h(t,s) h(t,s)’
and hence (1 .
s
A(t) < tinf —— = o
* hlts) - sup, h§119)>
Therefore,
‘1 h(t,s) <t
L h(Ls) T D)
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and since ﬁ is quasi-concave, Ex(t) < T where Rx(t) = t/Ex(t). Consequently

<la

lallyrepim < <

laenm) = lallar(rsm);

that is
M(Ry;B) € M(p; B). O

Corollary 5.1

If Y yco M(vy) is a maximal Lorentz space, then, for every pair B,

M(Rs; B) C > M(yy; B

0cO

It is easy to see that, in the Yano’s case, the hypothesis of the above corollary
holds, since, if 1 — 6y = 1/po and @a(t) = t*~%, then

> M(e) = L'+ Lo
0<6<6

Moreover, by (4),

1\«
Ds(s) = s(log" ~) 45" x50 (s),
and
Rs:(t) = min (t,tl/p"),

and hence

M(Rg)=L'+LP>® = " M(yy).

0<0<6o

That is, the X-method coincide, in this particular case, with our method.
In particular, if pg = 0o, we get that

T:L(OogL)® — L* + L°°,

L(log L)* {f, / f( log dt<oo}.

Now, if we consider the space

where

L(1+log L) = {f; /OOO f*(t)(l +log* %)adt < oo} :

we have that L(1 + logL)* C L(log L)* and hence, the ¥-method asserts that, if T
satisfies the hypotheses of Theorem 3.1 with 8y = 0,

T:L(1+logL)* — L'+ L™
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is bounded, while with our method we can get a much smaller range space, namely
T:L(1+1logL)* — My,
where, for every p > 1, (see [6])
Mo C L'+ P c LY + L™ c L' + L™,

and all the above embeddings are strict.
A similar argument can be done for the A-method. That is, from Theorem 3.1 in
[9], we have that

Minsi ) = ) <ﬁM(%;B)>~

Also, it is easily seen that M (Ra; B) is the smallest maximal Lorentz space containing
M (Wg; B) with norm 1/||T||g and if (ycq A(ge) is a minimal Lorentz space, then

() Ales; A) C A(Das A). (8)
fco

As before, in the Zygmund’s case, if 1 — 0; = 1/p; and pg(t) = t'7%, then

() Algs) = LN LP,
01<0<1

and the embedding (8) is an equivalence. Therefore, we recover, in this particular case,
the A-method.
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