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Abstract

Gorenstein liaison seems to be the natural notion to generalize to higher codimen-
sion the well-known results about liaison of varieties of codimension 2 in projective
space. In this paper we study points in P

3 and curves in P
4 in an attempt to see how

far typical codimension 2 results will extend. While the results are satisfactory for
small degree, we find in each case examples where we cannot decide the outcome.
These examples are candidates for counterexamples to the hoped-for extensions of
codimension 2 theorems.

For curves in projective three-space P
3
k, the theory of liaison, or linkage, is classical, and

is now a well-understood framework for the classification of algebraic space curves [21],
[12]. This theory has been successfully extended to schemes of codimension 2 in any
projective space P

n [2], [30], [26], [22, Ch. 6]. Recently a number of efforts have been
made to find a suitable extension of these results in codimension ≥ 3 [22]. Traditional
liaison uses complete intersections to link one scheme to another. In codimension
2, the property of being a complete intersection is equivalent to being arithmetically
Gorenstein [33]. Thus there are two natural ways to generalize. It appears that
complete intersection liaison is too fine a relation to give analogous results in higher
codimension. Thus attention has been focussed on Gorenstein liaison, and a number of
recent results have created an optimistic attitude that much of the codimension 2 case
will carry over naturally to higher codimension [22], [16], [4], [25], . . . The purpose of
this paper is to give some examples of Gorenstein liaison for points in P

3 and for curves
in P

4, which suggest that the situation in codimension ≥ 3 may be more complicated
than was initially suspected.
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For points in P
3, we show first that any set of n points in general position in

a plane or on a nonsingular quadric surface can be obtained from a single point by
a sequence of ascending Gorenstein biliaisons (see §1 below for definitions of these
terms). Thus any set of n points in a plane or on a quadric surface is glicci (in the
Gorenstein liaison class of a complete intersection). On a nonsingular cubic surface, we
can still show that any set of n points in general position is glicci, but we have to use
ascending and descending biliaisons and simple liaisons to prove this. For a set of n
points in general position in P

3, we show that for n ≤ 19 it is glicci, but we are unable
to prove this for n = 20. Thus a set of 20 points in general position in P

3 becomes a
candidate for a possible counterexample to the hope that all ACM schemes are glicci.

In P
4, various classes of ACM curves have been shown to be glicci, in particular,

determinantal curves and ACM curves lying on general smooth ACM rational surfaces
in P

4 [16]. We show that any general ACM curve of degree ≤ 9 or degree 10 and genus
6 in P

4 is glicci. Then we study ACM curves of degree 20 and genus 26. There are
determinantal curves of this degree and genus, but we show that a general curve in
the irreducible component of the Hilbert scheme containing the determinantal curves
cannot be obtained by ascending Gorenstein biliaison from a line. We do not know if
this curve is glicci, so we propose it as a candidate for an example of an ACM curve
that is not glicci.

For curves in P
4, we consider the set of curves with Rao module k, i.e., of dimension

1 in 1 degree only. We call such a curve minimal if its Rao module occurs in degree 0.
We show that there are minimal curves of every degree ≥ 2. Then we give examples
that suggest that there are curves in the liaison class of two skew lines that cannot be
reached by ascending Gorenstein biliaison from a minimal curve; and that there are
other curves with Rao module k that are not in the liaison class of two skew lines. We
will describe the examples and the evidence for these statements below, but in most
cases we cannot prove anything.

I hope that further study of these examples and others will establish whether these
guesses are correct or not, and help clarify some of the major questions concerning
Gorenstein liaison in codimension ≥ 3.

I would like to thank Juan Migliore for his book [22], which clearly sets out the
case for Gorenstein liaison, and which stimulated this research. I would also like to
thank him and Rosa Miró-Roig and Uwe Nagel for sharing their unpublished papers
with me. Lastly, I would like to thank the referee for many helpful suggestions, and in
particular for an idea that led to a great improvement of Example 4.6.

1. Basic results and questions

Let V1 and V2 be two equidimensional closed subschemes without embedded com-
ponents, of the same dimension r in P

n
k , the n-dimensional projective space over an

algebraically closed field k. We say V1 and V2 are linked by a complete intersection
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scheme X, if X is a complete intersection scheme of dimension r containing V1 and
V2, and if

IV2,X
∼= Hom(OV1 ,OX), and

IV1,X
∼= Hom(OV2 ,OX).

Using the language of generalized divisors on Gorenstein schemes [13, 4.1] we can say
equivalently V1 and V2 are linked by a complete intersection X if and only if there is
a complete intersection scheme S of dimension r + 1 containing V1 and V2, such that
X is an effective divisor in the linear system |mH| on S for some m > 0, where H is
the hyperplane section of S, and V2 = X − V1 as generalized divisors on S.

The equivalence relation generated by complete intersection linkage is called CI-
liaison. If the equivalence can be accomplished by an even number of links, we speak
of even CI-liaison.

A scheme X in P
n is called arithmetically Gorenstein (AG) if its homogeneous

coordinate ring R/IX is a Gorenstein ring, where R = k[x0, . . . , xn] is the homogeneous
coordinate ring of P

n, and IX is the (saturated) homogeneous ideal of X. If, in the first
definition above, we require that X be an arithmetically Gorenstein scheme, instead
of a complete intersection, then we say that V1 and V2 are linked by an AG scheme.
The equivalence relation generated by this kind of linkage is called Gorenstein liaison
(or G-liaison for short); if the equivalence can be accomplished by an even number of
G-links, then we speak of even Gorenstein liaison.

One way of obtaining AG schemes is as follows. Let S be an arithmetically Cohen-
Macaulay (ACM) scheme in P

n (this means that the homogeneous coordinate ringR/IS
is a Cohen-Macaulay ring). Assume also that S satisfies the property G1 (Gorenstein
in codimension 1 [13, p. 291]), so that we can use the language of generalized divisors.
Then any effective divisor X in the linear system |mH −K| on S, where m ∈ Z, H is
the hyperplane section, and K is the canonical divisor, is an arithmetically Gorenstein
scheme [22, 4.2.8].

Suppose now that V1 and V2 are divisors on an ACM scheme S of dimension r+1
satisfying G1, let X be an effective divisor in the linear system |mH −K| for some m,
and suppose that V2 = X−V1 as generalized divisors on S. Then it is easy to see that
V1 and V2 are linked by the AG scheme X (cf. proof of [13, 4.1] and note that since S
satisfies G1, X is an almost Cartier divisor on S [13, p. 301]). In this case we will say
that V1 and V2 are strictly G-linked. We do not know whether the equivalence relation
generated by strict G-linkages is equivalent to the G-liaison defined above, so we will
call it strict G-liaison, and if it is accomplished in an even number of steps, strict even
G-liaison.

Combining two strict G-linkages gives the following result.

Proposition 1.1 [16, 5.14], [22, 5.2.27].

Let V1 and V2 be effective divisors on an ACM scheme S satisfying G1. Suppose

that V2 ∈ |V1 + hH| for some h ∈ Z. Then V1 and V2 can be strictly G-linked in two

steps.
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Note that even though the statement in [22, 5.2.27] requires S smooth, the proof
given there works for S ACM satisfying G1 if one takes into account that any divisor
X ∈ |mH −K| is almost Cartier [13, 2.5].

The proposition above motivates the following definition. In the situation of (1.1),
we say that V2 is obtained by an elementary Gorenstein biliaison of height h from V1

[22, 5.4.7]. Because of the proposition, an elementary G-biliaison is a strict even G-
liaison. If h ≥ 0, we call the biliaison ascending.

Now we can state some of the main questions raised by trying to generalize codi-
mension 2 results to higher codimension.

Question 1.2. a) Does strict Gorenstein liaison generate the same equivalence relation

(G-liaison) as Gorenstein liaison?

b) Do the elementary Gorenstein biliaisons generate the same equivalence relation

as even G-liaison?

In codimension 2, both questions reduce to CI-liaison, for which the answers to
parts a) and b) are both yes [13, 4.1, 4.4].

Question 1.3. a) Is every ACM subscheme of P
n in the G-liaison class of a complete

intersection (in which case we say it is glicci)?

b) Can every glicci scheme be obtained by a finite sequence of ascending elemen-

tary G-biliaisons from a scheme (of the same dimension) of degree 1?

In codimension 2, part a) is the classical theorem of Gaeta [11], [29], . . . Part
b) seems likely to be true, though I do not know a reference. Note in b) it would
be equivalent to ask for ascending elementary G-biliaisons starting with any complete
intersection scheme. In higher codimension, many special cases of a) have been shown
to be true [22], [16], [25], [4]. Closely related is the theorem of Migliore and Nagel [24]
that every ACM subscheme X of P

n has a flat deformation to a glicci scheme, and
there is also a glicci scheme with the same Hilbert function as X.

For the following questions we limit the discussion to curves (locally Cohen–
Macaulay schemes of dimension 1) for simplicity. For a curve C ⊆ P

n we define
its Rao module to be the finite length graded R-module M = ⊕l∈ZH

1(IC(l)), where
IC is the ideal sheaf of C. It is easy to see that even G-liaison preserves the Rao
module, up to shift of degrees [22, 5.3.3].

Question 1.4. Does the Rao module characterize the even G-liaison class of a curve?

In other words, if C and C ′ are two curves with MC′ ∼= MC(h) for some h ∈ Z, are

C and C ′ in the same even G-liaison class? (In codimension 2, this is the well-known

theorem of Rao [30].)

Now we come to the problem of the structure of an even G-liaison class. Let
C ⊆ P

n be a curve, and let L be the class of all curves C ′ in the even G-liaison class of
C. The Rao modules of curves in L are all isomorphic up to shift. As long as the Rao
module is not zero (which is equivalent to saying the curves are not ACM), one knows
that there is a minimal leftward shift of M that can occur [22, 1.2.8]. We denote by
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L0 the subset of L consisting of those curves with the leftmost possible shift of the
Rao module, and we call these minimal curves. Let Lh denote the set of curves with
Rao module shifted h places to the right from L0, for each h ≥ 0. Then L = ∪Lh for
h ≥ 0, and each one of these Lh for h ≥ 0 is nonempty [22, 1.2.8].

In codimension 2 a biliaison class L satisfies the Lazarsfeld–Rao property [22,
5.4.2]. It says that a) L0 is a single irreducible family of curves, and b) any curve
C ∈ Lh can be obtained by a finite sequence of ascending biliaisons from a minimal
curve, plus if necessary a deformation with constant cohomology within the class Lh.
(But even for curves in P

3 it is not known if these deformations are necessary [21, IV,
5.4, p. 93].) Easy examples show that in codimension 3, L0 need not consist of a single
irreducible family of curves [22, 5.4.8]. So we rephrase the question somewhat.

Question 1.5. a) Describe the set L0 of minimal curves in an even G-liaison class.

b) Can every curve in Lh for h > 0 be obtained from a minimal curve by a finite

sequence of ascending elementary G-biliaisons, followed possibly by a flat deformation

within the family Lh?

An optimist might hope for positive answers to all these questions. However, the
examples we give below suggest that many of the answers may be no.

2. Points in P
3

Any scheme of dimension zero is ACM, so in this section we will address Question 1.3.
The study of arbitrary zero-schemes, even in P

3, becomes quite complicated, so we will
direct our attention to sets of reduced points in general position. In this section the
phrase “a general X has property Y ” will mean that there is a nonempty Zariski open
subset of the family of all X’s having the property Y .

We begin with points in P
2. In this case it is known from the theorem of Gaeta [22,

6.1.4] that any zero scheme in P
2 is licci (in the liaison class of a complete intersection),

but we give a slightly more precise statement for a general set of points and at the same
time we illustrate in a simple case the technique we will use in the later propositions.

Proposition 2.1

A set of n general points in P
2 can be obtained from a single point by a sequence

of ascending elementary biliaisons.

Proof. By induction on n. For n = 1 there is nothing to prove. For n = 2, any 2 points
lie on a line L. A single biliaison of height 1 on L reduces 2 points to 1 point. For
n = 3, 4, 5, a set of n reduced points, no three on a line, lies on a nonsingular conic.
These points can be obtained by an elementary biliaison of height 1 or 2 from a set of
1 or 2 points, and we are done by induction.

In general, let n ≥ 3. Then there is an integer d ≥ 2 such that 1
2 (d− 1)(d+ 2) <

n ≤ 1
2d(d + 3). Since curves of degree d in P

2 form a linear system of dimension
1
2d(d + 3), any set of n points will lie on a curve of degree d. Since the nonsingular
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curves form a Zariski open subset of the family of all curves, a set of n general points
in P

2 (in the sense mentioned above) will lie on a nonsingular curve C of degree d, and
will form a set of n general points on C. The genus of C is g = 1

2 (d−1)(d−2). We use
the fact that on a nonsingular curve of genus g, any divisor of degree ≥ g is effective.
Let D be the divisor of n general points on C, and let H be the hyperplane class on
C. We define a divisor D′ as follows.

D′ =



D −H if n =

1
2
(d− 1)(d+ 2) + 1

D − 2H if
1
2
(d− 1)(d+ 2) + 2 ≤ n ≤ 1

2
d(d+ 3).

Then we verify that in either case, the degree of D′ is ≥ g, so that the divisor D′ is
effective, and secondly that n′ = degD′ ≤ 1

2 (d− 1)(d+ 2).
Now, by induction on d, a general set of n′ points can be obtained from a single

point by ascending biliaisons. Since any D as above bilinks down to a D′, it follows
that by bilinking up n′ general points on C, we obtain n general points on C, as
required. �

Proposition 2.2

A set of n general points on a (fixed) nonsingular quadric surface Q ⊆ P
3 can be

obtained from a single point by a finite number of ascending elementary G-biliaisons

on Q.

Proof. The method is analogous to the proof of (2.1), except that now we use both
types of ACM curves on Q. For n = 1, there is nothing to prove. For n = 2, we
put 2 points on a twisted cubic curve, and then move them by linear equivalence (a
biliaison of height 0) until they lie on a line on Q. On that line, we obtain 2 points
by a biliaison of height 1 from 1 point. For n = 3, the points lie on a conic, and come
from 1 point by biliaison. For n = 4, 5, the points lie on a twisted cubic curve, and
reduce by biliaison to 1 or 2 points.

Now suppose n ≥ 6. Then there is an integer a ≥ 2 such that either

i) a2 + a ≤ n ≤ a2 + 2a, or
ii) a2 + 2a+ 1 ≤ n ≤ a2 + 3a+ 1.

In case i) we consider the complete intersection curve C of bidegree (a, a) on Q. It has
degree 2a and genus g = (a− 1)2 and moves in a linear system of dimension a2 + 2a.
Hence n general points lie on a smooth such curve C, forming a divisor D. The divisor
D′ = D − H on C has degree n′ = n − 2a. Since n′ ≥ a2 − a > g, the divisor D′

is effective. On the other hand n′ ≤ a2, so n′ falls in the range i) for a − 1 unless
n′ = a2, in which case it falls in range ii) for a − 1. By induction on a, a set of n′

general points can be obtained by ascending elementary G-biliaisons from a point, so
also can n points.

In case ii), we consider the ACM curve C of bidegree (a, a+1) on Q. It has degree
d = 2a+ 1, genus g = a(a− 1), and moves in a linear system of dimension a2 + 3a+ 1
on Q. So n general points form a divisor D on a nonsingular such curve C. The divisor
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D′ = D − H has degree n′ = n − 2a − 1 ≥ a2 > g, so D′ is effective. On the other
hand a2 ≤ n′ ≤ a2 + a + 1, which is range ii) for a − 1. So by induction on a again,
we can obtain D′ by biliaisons from a point, and D by a single elementary G-biliaison
for D′ on C. �

Corollary 2.3

A set of n general points on a nonsingular quadric surface Q in P
3 is in the strict

even G-liaison class of a point. In particular, it is glicci.

Proposition 2.4

A set of n general points on a (fixed) nonsingular cubic surface S in P
3 is in the

same strict Gorenstein liaison class as a point on S.

Proof. A curve C of degree d and genus g on S moves in a linear system of dimension
d+g−1. If a set of n general points is to form a divisor D on C, we need n ≤ d+g−1.
In that case the linear system D−H on C has degree ≤ g − 1, and hence may not be
effective. Thus we cannot use Gorenstein biliaisons on the cubic surface. Instead, we
will use strict Gorenstein liaison by AG divisors in the linear systems |mH − K| on
ACM curves C on S.

There are four types of smooth ACM curves on S, obtained by biliaison (of curves)
on S from the line, the conic, the twisted cubic, and the hyperplane class H, which is
a plane cubic curve. For a ≥ 1 the four types are

i) d = 3a− 2, g = 1/2
(
3a2 − 7a+ 4

)
ii) d = 3a− 1, g = 1/2

(
3a2 − 5a+ 2

)
iii) d = 3a, g = 1/2

(
3a2 − 3a

)
iv) d = 3a, g = 1/2

(
3a2 − 3a+ 2

)
.

In each case, one of these curves C with degree d and genus g (we say type (d, g)) moves
in a linear system of dimension d+ g − 1. On an ACM curve C of type (d, g), we will
consider only divisors of degree n, where g ≤ n ≤ d + g − 1. If n and n′ are both in
this range, and if n+ n′ = deg(mH −K) for some m, then a strict Gorenstein liaison
by AG divisors in the linear system |mH−K| will transform general divisors of degree
n to general divisors of degree n′ and vice versa. To explain this in more detail, let Z
be a set of n general points on S. If n ≤ d + g − 1, then Z is contained in a curve C
as above. If n′ = deg(mH −K)− n ≥ g, then there is an effective divisor Z ′ of degree
n′ such that Z + Z ′ ∈ |mH − K|. Thus Z and Z ′ are linked. The same arguments
work in reverse, starting with Z ′, assuming n′ ≤ d+ g− 1 and n ≥ g. Hence there are
Zariski open subsets U (resp. U ′) of the set of all subsets of n (resp. n′) points of S
such that each Z ∈ U is linked to a Z ′ ∈ U ′ and vice versa. If one of these is already
known to be in the strict G-liaison class of a point, we conclude so is the other. We
will write n↔ n′ by mH −K on (d, g).

For n ≤ 8, we use the following liaisons.

1) 1 ↔ 3 by H −K on (4, 1)
2) 2 ↔ 6 and 3 ↔ 5 by 2H −K on (5, 2)
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3) 6 ↔ 8 by 3H −K on (6, 3)
4) 4 ↔ 8 and 5 ↔ 7 by 3H −K on (6, 4)
5) 6 ↔ 7 by 3H −K on (7, 5).

These liaisons show that any set of n ≤ 8 general points on S is in the strict G-liaison
class of a point. Note that we must use ascending and descending liaisons to accomplish
this. For example, if n = 2, the links go 2 → 6 → 7 → 5 → 3 → 1.

For 9 ≤ n ≤ 17, we use the following links.
1) 9 ↔ 11 by 4H −K on (7, 5)
2) 7 ↔ 13 and 8 ↔ 12 by 4H −K on (8, 7)
3) 12 ↔ 17 and 13 ↔ 16 by 5H −K on (9, 9)
4) 10 ↔ 17; 11 ↔ 16; 12 ↔ 15; and 13 ↔ 14 by 5H −K on (9, 10).

Using these links a general set of 9 ≤ n ≤ 17 points is linked down to a set of 7 or 8
points treated above.

For n ≥ 18, we find an integer a such that n0 = 3
2a(a− 1) ≤ n < n1 = 3

2 (a+ 1)a.
We divide these n’s into six ranges.

A) n0 ≤ n ≤ n0 + 2
B) n0 + 3 ≤ n ≤ n0 + a− 1
C) n0 + a, n0 + a+ 1
D) n0 + a+ 2 ≤ n ≤ n0 + 2a− 2
E) n0 + 2a− 1, n0 + 2a
F) n0 + 2a+ 1 ≤ n ≤ n0 + 3a− 1.

In range A, we do
1) n0 ↔ n0 + 2 by (2a− 2)H −K on type (i) curve.
2) n0 + 1 ↔ n0 + 3a− 1 and n0 + 2 ↔ n0 + 3a− 2 by (2a− 1)H −K on type (iv).

In range B, we do
3) n0 + t↔ n′ < n0 by (2a− 2)H −K on (i).

In range C, we do
4) n0 + t↔ n′ < n0 by (2a− 2)H −K on (ii).

In range D, we do links by (2a − 1)H − K on types (ii) and (iv). If a is odd,
a = 2k + 1, start with m = n0 + 3k + 2, link on type (iv). Then alternate linkages on
type (ii) and (iv). This covers all values of n in range D, starting in the middle and
spiraling outward, until finally we land in range E. If a is even, a = 2k, start with
m = n0 + 3k, and do a link on type (ii) first, then alternate (iv) and (ii).

In range E, link by (2a− 1)H −K on type (iv), to land in range C.
In range F , link by (2a− 1)H −K on type (iii) to land in range B or C.
In summary, ranges B and C link down to n′ < n0 so are ok by induction. Ranges

E and F link down to ranges B and C. Range D spirals up and down until it lands
in range E; and finally range A links up to range F . So for example, if n = 18 (range
A), the links go 18 → 20 → 28 → 22 → 16 → 13 → 7, which we did earlier. If n = 54
(range D), the links go 54 → 55 → 53 → 56 → 52 → 40 → 35 → 27 → 23 → 15 →
12 → 8 → 6, treated above. �

Corollary 2.5
A set of n general points on a smooth cubic surface in P

3 is glicci.
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Corollary 2.6

A set of n ≤ 19 general points in P
3 is glicci.

Proof. Indeed, since the cubic surfaces in P
3 form a linear system of dimension 19, a

set of n ≤ 19 general points lie on a smooth cubic surface, and we can apply (2.4).
Using (2.2) we can also see that a set of n ≤ 9 general points can be obtained from
a single point by ascending elementary G-biliaisons. However, we can get a stronger
result, and another proof of (2.6) by another method. �

Proposition 2.7

A set of n ≤ 19 general points in P
3 is in the strict Gorenstein liaison class of

a point. Furthermore, if n �= 17, 19, it can be obtained by a sequence of ascending

elementary G-biliaisons from a point.

Proof. Again we use ACM curves (d, g) in P
3, but now we need to know how many

general points of P
3 lie on such a curve. Call this number m(d, g). This is no longer

an elementary question, because the families of these curves form a Hilbert scheme,
not a linear system. The question was studied in Perrin’s thesis [28], and depends on
semi-stability of the normal bundle. Here are his results, for the ACM curves we need:

(d, g) m reference in [28]

(1,0) 2

(2,0) 3

(3,0) 6

(4,1) 8

(5,2) 9

(6,3) 12 p. 66

(7,5) 14 p. 87

(8,7) 16 p. 10; p. 116

(9,9) 18 p. 87

(10,11) 20 p. 66

In this table m has the naive value 2d, except for (2, 0), a conic, which lies in a
plane, so can pass through at most 3 general points, and (5, 2), which lies on a quadric
surface, so can pass through at most 9 general points.

To prove our result, we use the following biliaisons and liaisons.

1) 1 ↔ 2 biliaison on (1, 0)
2) 1 ↔ 3 biliaison on (2, 0)
3) 1, 2, 3 ↔ 4, 5, 6 biliaison on (3, 0)
4) 3, 4 ↔ 7, 8 biliaison on (4, 1)
5) 4 ↔ 9 biliaison on (5, 2)
6) 4, 5, 6 ↔ 10, 11, 12 biliaison on (6, 3)
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7) 6, 7 ↔ 13, 14 biliaison on (7, 5)
8) 8, 9 ↔ 15, 16 biliaison on (8, 7)
9) 9 ↔ 18 biliaison on (9, 9)

10) 12 ↔ 17 liaison by 5H −K on (9, 9)
11) 11 ↔ 19 liaison by 5H −K on (10, 11). �

Remark 2.8. If we consider a set of 20 general points in P
3, none of the above methods

works. They do not lie on a cubic surface, so we cannot apply (2.4). They do form a
divisor D on an ACM curve (10, 11), but D−H has degree 10, less than the genus, so
it may not be effective. Liaison by 5H −K would give a divisor of degree 10, which
may not be effective. Liaison by 6H −K gives another general divisor of degree 20, so
we get nowhere.

It is conceivable that some upward liaison may eventually lead to a zero-scheme
that can then be linked back down to a point. Or perhaps there are other AG schemes
in P

3 besides the ones of the form mH −K on ACM curves that we have been using.
On the other hand, it may simply be that 20 general points in P

3 are not in the
G-liaison class of a point, so we propose this as a potential counterexample to Question
1.3. If this is so, the cone over these 20 points would be an ACM curve in P

4 that is
not glicci.

Remark 2.9. In [16, 3.1], the authors prove that any standard determinantal scheme
is glicci. Taking the t × t minors of a t × (t + 2) matrix of linear forms in P

3 gives a
zero-dimensional determinantal scheme of degree 1

6 (t+2)(t+1)t, which is glicci by the
above result. For t = 1, 2, any set of 1 or 4 points in P

3 is determinantal. However,
for t = 3, 4, the dimension calculation in [16, 10.3] show that determinantal sets of 10
points have codimension 3 in zero-schemes of degree 10, and determinantal sets of 20
points have codimension 15 among zero-schemes of degree 20.

3. ACM curves in P
4

In the literature, a number of special cases of ACM curves have been shown to be
glicci [4], [16]. In this section we begin a systematic study of ACM curves of small
degree in P

4. We show that any general ACM curve of degree ≤ 9, or a general ACM
curve of degree 10 and genus 6 can be obtained by ascending Gorenstein biliaisons
from a line. On the other hand, we show that there is an irreducible component of the
Hilbert scheme of curves of degree 20 and genus 26 whose general member is a smooth
ACM curve that cannot be obtained by ascending Gorenstein biliaisons from a line.
We propose this curve as a candidate for a possible counterexample to the question
whether every ACM curve is glicci.

We start by finding a lower bound on the genus of an ACM curve in P
4.
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Proposition 3.1

Let C be a nondegenerate (i.e., not contained in a hyperplane) ACM curve in P
4,

of degree d and arithmetic genus g. Then d ≥ 4 and g ≥ Gmin(d), where

Gmin(d) = (s− 1)d−
(
s+ 2

3

)
−

(
s+ 2

4

)
+ 1,

and s ≥ 2 is the unique integer for which
(
s+2
3

)
≤ d <

(
s+3
3

)
. Furthermore, if g =

Gmin(d), then s = s0(c), the least degree of a hypersurface containing C.

Proof. The simplest way to see this is to consider the h-vector of the curve [22, §1.4].
This is a sequence of positive integers c0 = 1, c1, c2, . . . , cr, which determine the degree
and genus of the curve according to the formulae

d =
r∑

i=0

ci, g =
r∑

i=2

(i− 1)ci.

The ci measure the Hilbert function of a graded ring R = k[x0, x1, x2]/J of finite
length, since C has codimension 3. Since R is a quotient of a polynomial ring in three
variables, we have ci ≤

(
i+2
2

)
for i ≥ 1. The hypothesis C nondegenerate implies

c1 = 3. Thus d ≥ 4. For a given value of d,, the genus will be minimized by making
each ci as large as possible for i = 2, 3, . . .. Thus for 4 ≤ d < 10 the minimum g

is attained by the h-vector 1, 3, d − 4, with genus g = d − 4. For 10 ≤ d < 20, the
minimum genus comes from the h-vector 1, 3, 6, d − 10, with g = 2d − 14. For the
general case, a short calculation with binomial coefficients gives the formula above.

The least degree s0(c) of a hypersurface containing C can be read from the h-
vector as the least i for which ci <

(
i+2
2

)
. For the h-vectors giving the minimum genus,

this is just the number s defined above. �

Remark 3.2. It seems reasonable to expect that for each d ≥ 4 and g = Gmin(d), the
set of ACM curves of degree d and genus g in P

4 should form an open subset of an
irreducible component of the Hilbert scheme of curves in P

4, and that a general such
curve should be nonsingular, but we do not know how to prove this.

Notation 3.3. We will be dealing with curves on certain rational ACM surfaces in
P

4, so here we fix some terminology and notation.
The smooth cubic scroll S is obtained by blowing up one point P ∈ P

2, and
embedding in P

4 by the complete linear system H = 2l − e, where l is the total
transform of a line in P

2, and e is the class of the exceptional divisor E. One knows
that Pic S = Z ⊕ Z, generated by l, e. We denote the divisor class al − be by (a; b).

The Del Pezzo surface S is obtained by blowing up five points P1, . . . , P5, no three
collinear in P

2, and embedding in P
4 by H = 3l−Σei. In this case Pic S = Z

6, and we
denote the divisor class al−Σbiei by (a; b1, . . . , b5). If some b’s are repeated, we denote
that with an exponent. Thus in the discussion of (8, 4) curves below, the divisor class
(5; 22, 13) means (5; 2, 2, 1, 1, 1).
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A Castelnuovo surface S in P
4 is a smooth surface of degree 5 and sectional genus

2. It can be obtained by blowing up 8 points P0, P1, . . . , P7 in P
2 and embedding by

the linear system H = (4; 2, 17) (see [27]). If the points Pi are no three collinear and
no 6 on a conic, we call it a general Castelnuovo surface. Here Pic S = Z

9, and we
denote the divisor class al − Σbiei by (a; bi).

A Bordiga surface is a smooth surface of degree 6 and sectional genus 3. It can
be obtained by blowing up ten points P1, . . . , P10 in P

2 and embedding by the linear
system H = (4; 110) [27]. If the points Pi are such that no three are collinear, no 6 on
a conic, and no 10 on a cubic curve, we call it a general Bordiga surface.

Proposition 3.4

a) If C is an integral nondegenerate ACM curve of degree d ≤ 9 in P
4, the degree-

genus pair (d, g) must be one of the following: (4, 0), (5, 1), (6, 2), (7, 3), (8, 4), (8, 5),
(9, 5), (9, 6), (9, 7).

b) For each (d, g) pair in a), the set of nonsingular nondegenerate curves in P
4

forms an open subset of an irreducible component of the Hilbert scheme, and

c) For each (d, g) pair as above, the general such curve is ACM and can be obtained

by ascending Gorenstein biliaisons from a line.

Proof. a) A lower bound on g is given by (3.1); an upper bound is given by the
Castelnuovo bound for the genus of an integral curve (see, e.g., Rathmann [31]). This
list gives all possible values of g between the lower and upper bounds.

b) For g = d − 4, the irreducibility is given by a theorem of Ein [7]. For (d, g) =
(8, 5), C is the canonical embedding of a non-hyperelliptic curve of genus 5, so the
family is irreducible. For (d, g) = (9, 6) the curve is a non-trigonal curve of genus 6,
embedded by a linear system D = K − P , so the family is irreducible (I am indebted
to E. Drozd for this observation). For (d, g) = (9, 7), the family is irreducible by a
theorem of Harris [8].

c) We do a case-by-case analysis.
For (d, g) = (4, 0), up to automorphisms of P

4, there is just one rational normal
curve C of degree 4. It lies on a smooth cubic scroll S, having divisor class (2; 0). If
H denotes the hyperplane class (2; 1), then C −H = (0;−1), which is a line. Thus C
is obtained by an ascending Gorenstein biliaison from a line on the surface S.

For (d, g) = (5, 1), suppose given a smooth nondegenerate (5, 1) curve C in P
4.

Let C0 be the abstract elliptic curve, and let D0 be the divisor corresponding to OC(1).
Then C is obtained by embedding C0 with the complete linear system |D0|. Choose
F a divisor of degree 3 on C0, and use |F | to embed C0 as a nonsingular cubic curve
C1 in P

2. Choose a point P ∈ C1. Blow up P in P
2 and embed by the linear system

H = 2l − e to get a nonsingular cubic scroll S in P
4. The image of C1 will be a

(5, 1) curve C2 ⊆ P
4, obtained by embedding C0 with the linear system |2F − P |. By

adjusting the choice of P , we may arrange that D0 ∼ 2F − P . Then C and C2 will
differ by an automorphism of P

4. We conclude that C lies on a smooth cubic scroll
S′, and has divisor class (3; 1) on S′. Then C − H = (1; 0) is a conic. The conic in
turn can be obtained ascending Gorenstein biliaison from a line on a plane. Thus C is
obtained by ascending Gorenstein biliaisons from a line.
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A similar argument shows that every smooth nondegenerate (6, 2) curve C in P
4

appears as a divisor of type (4; 2) on a smooth cubic scroll. Then C − H = (2; 1)
is a twisted cubic curve, which can in turn be obtained by an ascending Gorenstein
biliaison on a quadric surface in P

3.
The case (d, g) = (7, 3) is a little more complicated. We will consider only a

smooth nondegenerate non-hyperelliptic (7, 3) curve C in P
4. Let C0 be the abstract

curve of genus 3, and D0 the divisor giving the embedding C. Let C1 be the canonical
embedding of the non-hyperelliptic curve C0 as a smooth plane quartic curve in P

2.
Choose five points P1, . . . , P5 on C1 with no 3 collinear. Blow up P1, . . . , P5 and embed
by 3l−Σei to get a Del Pezzo surface S in P

4. The image of C1 is then a smooth (7, 3)
curve C2 ⊆ S with divisor class (4; 15), which is an embedding of C0 by the divisor
3K−ΣPi. We would like to choose the Pi so that 3K−ΣPi ∼ D0, i.e., ΣPi ∼ 3K−D0.

Case 1. The divisor 3K −D0 can be represented by 5 points, no three collinear.
In this case we find that C is contained in a Del Pezzo surface S′, with divisor class
(4; 15). Then C −H = (1; 05), which is a twisted cubic curve, so C can be obtained
from a line by ascending Gorenstein biliaisons.

Case 2. If Case 1 does not occur, one sees easily that 3K−D0 ∼ K+P for some
point P . In this case we take S to be the smooth cubic scroll obtained by blowing up
P . Then C2 is a divisor of type (4; 1) on S, and is an embedding of C0 by 2K−P ∼ D0.
So C lies on a cubic scroll, and C − 2H = (0;−1) is a line.

Note the two types of non-hyperelliptic (7, 3) curves can be distinguished by the
property that the Case 1 curves have only finitely many trisecants, while the Case 2
curves have infinitely many trisecants.

For a smooth (8, 4) curve C we use a different technique. For this curve,
h0(IC(2)) = 2, so C is contained in a unique complete intersection surface S = F2∩F ′

2.
Since the family of (8, 4) curves is irreducible, and since a general complete intersection
surface S = F2 ∩ F ′

2 is a smooth Del Pezzo surface containing a smooth (8, 4) curve
C in the divisor class (5; 22, 13), we conclude that a general such C lies on a smooth
Del Pezzo surface S, with divisor class (5; 22, 13). Then C − H = (2; 12, 03), which
is a nondegenerate smooth (4, 0) curve in P

4. Thus using the case of (4, 0) above, we
conclude that C can be obtained by ascending Gorenstein biliaisons from a line.

The case (9, 6) is similar to (8, 4), because again h0(IC(2)) = 2, we conclude that a
general smooth (9, 6) curve C lies on a Del Pezzo surface S with divisor class (6; 24, 1).
In this case C − 2H = (0; 04,−1) which is a line.

A smooth nondegenerate (8, 5) curve C in P
4 is the canonical embedding of a

non-hyperelliptic genus 5 curve. According to the theorem of Petri [32] if the curve
is not trigonal, then C is the complete intersection of three quadric hypersurfaces
C = F2 ∩ F ′

2 ∩ F ′′
2 . Let S = F2 ∩ F ′

2. Then C is the divisor 2H on S, and C −H is
an elliptic quartic curve in P

3, which can be obtained from a conic by biliaison on a
quadric surface. Thus C is obtained by ascending Gorenstein biliaisons from a line.

If the curve is trigonal, then C lies on a smooth cubic scroll S = F2 ∩ F ′
2 ∩ F ′′

2 . It
has divisor class (5; 2), so C − 2H is (1; 0), a conic, and we conclude again. Note in
this case C = H − K is arithmetically Gorenstein, even though it is not a complete
intersection.
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For (d, g) = (9, 5), arguments like the ones above show that we can embed the
general genus 5 curve as a plane quintic with a double point, and thus obtain a general
(9, 5) curve C on a Castelnuovo surface with divisor class (5; 2, 17). Then C − H =
(1, 08) is a (4, 0) curve and we use our earlier result.

Finally, every smooth (9, 7) curve C, as a curve of maximal genus, lies on a cubic
surface S as the divisor 3H, by a theorem of Harris [8]. Then C − 2H is a twisted
cubic curve, and we are done. �

Corollary 3.5

A general smooth ACM curve of degree d ≤ 9 in P
4 is glicci.

Remark 3.6. The glicciness of ACM curves lying on general ACM surfaces in P
4 and of

integral ACM curves of degree ≤ 7 was already proven in [16, §8]. Our contribution is
to show that a general smooth ACM curve of degree ≤ 9 actually does lie on a smooth
rational ACM surface, and to check the possibly stronger property that they can be
obtained from a line by ascending Gorenstein biliaisons (cf. Question 1.3b).

Note that our proof actually shows every smooth curve with (d, g) = (4, 0), (5, 1),
(6, 2) is ACM and can be obtained by ascending Gorenstein biliaisons from a line. The
same can be said for (7, 3) curves, by extending the analysis above: one can show that
a hyperelliptic (7, 3) curve lies on a cubic scroll or the cone over a twisted cubic curve,
and in both cases is obtained from a smooth (4, 0) curve by biliaison.

For the next case of (8, 4) curves, the situation is more complicated. There are
smooth hyperelliptic (8, 4) curves on a cubic scroll, but they are not ACM. Since an
ACM (8, 4) curve lies on a unique complete intersection surface S = F2 ∩ F ′

2, to study
all smooth (8, 4) curves, one would presumably have to study the possible singular
surfaces S. One approach is to use Riemann–Roch on the surface to show that the
divisor C − H is effective, but then one has to deal with not necessarily irreducible
(4, 0) curves.

The analysis becomes increasingly complex for the remaining cases, so we do not
know if c) holds for all smooth ACM curves of the given degree and genus.

Remark 3.7. For d ≥ 10, the family of smooth non-degenerate ACM curves of given
(d, g) in P

4 may not be irreducible. The first example is (d, g) = (10, 9), for which
there are two different families of such curves lying on smooth cubic scrolls.

Example 3.8: We consider smooth (10, 6) curves in P
4. Note that all the curves in

Proposition 3.4, being ACM of degree ≤ 9, are contained in quadric hypersurfaces,
since their hyperplane section is ≤ 9 points and is contained in a quadric surface of
P

3. The case (d, g) = (10, 6) is the first case where there are smooth ACM curves not
contained in a quadric hypersurface.

By the theorem of Ein [7], the family of smooth (10, 6) curves in P
4 is irreducible.

To show that a general (10, 6) curve is ACM, it suffices, by semicontinuity, to exhibit
one. A divisor of type (5; 110) on a general Bordiga surface S is the transform of a
plane quintic curve, which can be taken to be smooth, so we get a smooth (10, 6) curve
C on S. For this curve C −H = (1; 010) is a smooth (4, 0) curve, which is ACM, so C
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is also ACM. Note however that the curve just described is not general in the variety
of moduli of curves of genus 6, because it has a g25 : a representation as a plane quintic
curve.

Next, let C0 be an abstract curve of genus 6, with general moduli. Then C0 admits
a birational representation as a plane curve C1 ⊆ P

2 with four nodes P1, P2, P3, P4, no
three collinear [1]. Choose six additional points P5, . . . , P10 on C1 in general position.
Blow up P1, . . . , P10 to obtain a Bordiga surface S, containing the proper transform
C2 ⊆ S of C1. Then C2 is a smooth (10, 6) curve in P

4 with general moduli. Since the
curve has genus 6, by varying the choice of the six points P5, . . . , P10, we can obtain
any general divisor class on C2 as its hyperplane section. We conclude that the general
(10, 6) curve C in P

4 is contained in a general Bordiga surface S with divisor class
(6; 24, 16). Then C − H = (2; 14, 06), which is a smooth (4, 0) curve, so C can be
obtained by ascending Gorenstein biliaisons from a line.

To study the (10, 6) curves in more detail, we note that on a general Bordiga
surface S, there are eight divisor classes (up to permutation of the Pi) containing
(10, 6) curves. They are

D1 = (5; 110)

D2 = (6; 24, 16)

D3 = (7; 29, 0)

D4 = (7; 3, 26, 13)

D5 = (8; 33, 26, 1)

D6 = (8; 4, 29)

D7 = (9; 36, 24)

D8 = (10; 310).

Of these D3 and D6 have Rao module k. They will be discussed in the next section.
The remaining 6 cases are ACM. The first three of these, D1, D2, and D4, can be
obtained by Gorenstein biliaison from (4, 0) curves on S. However, D5 −H, D7 −H,
and D8−H are not effective divisors so these curves cannot be obtained by Gorenstein
biliaison on this surface S.

Using the arithmetically Gorenstein divisor 3H−K on S, of degree 20, the divisor
class Di is Gorenstein-linked to D8−i. It follows that D5, D7, D8 are glicci (as observed
in [16, §8]). However, we do not know whether or not these curves may be obtained
by ascending Gorenstein biliaison on some other surface.

Example 3.9: For our last example, we will study ACM (20, 26) curves in P
4. Note

that all the curves in the earlier part of this section, plus all the ACM curves lying on
rational ACM surfaces in P

4, which were proved to be glicci in [16, §8], lie on cubic
hypersurfaces in P

4. So by analogy with our findings for points in P
3 in §2 above,

we might expect that all ACM curves contained in cubic hypersurfaces in P
4 would

be glicci. This also suggests that in looking for counterexamples to ACM ⇒ glicci
(Question 1.3), we should look at curves not contained in a cubic hypersurface.

The first example of an ACM curve in P
4 not contained in a cubic hypersurface will

have h-vector 1, 3, 6, 10 (cf. proof of 3.1). It has degree 20 and genus 26. For existence
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of such curves, we let C be the determinantal curve defined by the 4 × 4 minors of a
4 × 6 matrix of general linear forms. A general such curve will be smooth, ACM, of
degree 20 and genus 26. The family of such determinantal curves has dimension ≤ 69,
by [16, 10.3].

The method of [17, 3.7] shows that C is linearly equivalent to H +K on an ACM
surface S in P

4, of degree 10 and sectional genus 11, defined by the 4 × 4 minors of a
4×5 matrix of general linear forms, where H denotes the hyperplane section of S, and
K denotes the canonical class of S. Furthermore, a similar argument using [17, 3.1]
shows that the curve C0 defined by the 3 × 3 minors of a 3 × 5 matrix of linear forms
will be linearly equivalent to K on S. This latter curve C0 also appears in the divisor
class 2H0 +K0 on the surface S0 defined by 3 × 3 minors of a 3 × 4 matrix of linear
forms. (I am grateful to J. Migliore for pointing out the paper [17] and explaining to
me how to obtain these linear equivalences.)

Now S0 is just the Bordiga surface, and C0 is an ACM (10, 6) curve, discussed
earlier. By the linear equivalence C0 ∼ 2H0 +K0 on S0 we recognize that C0 is in the
class (5; 110), which we called D1 in (3.8) above. These are isomorphic to plane curves
of degree 5 and thus are not general in the moduli of curves of genus 6.

Since C0 can be obtained by ascending Gorenstein biliaison from a line, and since
C ∼ C0 + H = K + H as the ACM surface S, we conclude that the determinantal
(20, 26) curve C can also be obtained by ascending Gorenstein biliaison from a line.

Next, I claim that the only way to obtain an ACM (20, 26) curve D in P
4 by

ascending Gorenstein biliaison is from an ACM (10, 6) curve C1 on an ACM surface
S1 of degree 10 and sectional genus 11, as D ∼ C1 + H on S1. Indeed, suppose
that D ∼ C1 + H on some ACM surface S1. Then C1 is an ACM curve of type
(d1, g1) in P

4, while H is an ACM curve of type (d2, g2) in P
3. From this we get

(20, 26) = (d1 + d2, g1 + g2 + d1 − 1). For each d1 (resp. d2) we know the minimum
possible genus of an ACM curve in P

4 (resp. P
3)—cf. 3.1. Looking at these, we find

that g1 + g2 + d1 − 1 > 26 in all cases except (d1, g1) = (10, 6) and (d2, g2) = (10, 11).
Thus any (20, 26) curve D that can be obtained by ascending Gorenstein biliaison must
lie on a surface S1 of degree 10 and sectional genus 11.

Now we look at the dimensions of some families of (20, 26) curves. By [16, 10.3],
the family of determinantal curves C as above has dimension ≤ 69. On the other
hand, each component of the Hilbert scheme of (20, 26) curves in P

4 has dimension
≥ 5d + 1 − g = 75. So we see immediately that a general element of an irreducible
component of H20,26 cannot be determinantal. However, there may be other (20, 26)
curves C ′ on S, not determinantal themselves, but linearly equivalent to C, obtainable
by ascending Gorenstein biliaison on S.

So let us find the dimension of the complete linear system |C| on S. From the
exact sequence

O → OS → OS(C) → OC(C) → 0

we see that dimS |C| = h0(OC(C)) = C2+1−g+h1(OC(C)). We also have a resolution
of OS

0 → OP4(−5)4 → OP4(−4)5 → OS → 0



Some examples of Gorenstein liaison in codimension three 37

coming from its matrix representation. From this we find h2(OS) = 4 and pa(S) = 4.
On the surface S we have H2 = degS = 10. From the adjunction formula for H, which
is a (10, 11) curve, we find H ·K = 10. And from the formula [14, p. 434] for surfaces
in P

4, we find K2 = 5. Now C = H +K, so we get C2 = 35. Also, since C = H +K,
from the Kodaira Vanishing Theorem we have H1(OS(C)) = H2(OS(C)) = 0. Thus
h1(OC(C)) ∼= h2(OS) = 4. So we find

dimS |C| = 35 + 1 − 26 + 4 = 14.

The family of ACM surface S has dimension 60 (for example by the formula of
Ellingsrud [10]), so we find that the family of (20, 26) curves in P

4 that can be linearly
equivalent to C on such a surface S has dimension ≤ 74. In particular, a general curve
in an irreducible component of H20,26 does not arise in this way.

There may also be other linear equivalence classes of (20, 26) curves on S of larger
dimension. Indeed, this is what does happen with the (10, 6) curves studied in (3.8)
above: the curves linearly equivalent to the determinantal curves were all of type D1

on the Bordiga surface, and these curves are not general in the moduli of genus 6
curves, while a general genus 6 curve appears as an ACM curve in a different linear
system D2 on the Bordiga surface. So we must see if something analogous happens
with the (20, 26) curves.

First, we look on a general ACM surface S of degree 10 and sectional genus 11.
According to a theorem of Lopez [19, III.4.2], Pic S = Z ⊕ Z generated by H and
K. We look for divisors mH + nK with degree 20 and genus 26. There are only two
possibilities: C = H +K or C ′ = 4H − 2K. In the latter case we compute C ′2 = 20.
Therefore, by Clifford’s theorem, h0(OC′(C ′)) − 1 ≤ 10, so dimS |C ′| ≤ 11. Thus the
family of such curves C ′ in P

4 has dimension ≤ 71. So we see that a general ACM
(20, 26) curve in P

4 cannot lie on a general ACM surface S of degree 10 and sectional
genus 11.

Now let us estimate the dimension of a family of smooth (20, 26) curves D, general
in an irreducible component of H20,26 containing the determinantal curves C above,
and lying on a non-general ACM surface X of degree 10 and sectional genus 11. We
will make use of the Clifford index of a curve.

Recall that the gonality of a curve C is the least d for which there exists a linear
system g1d on the curve. The Clifford index of the curve is the minimum of d − 2r,
taken over all linear systems grd with r ≥ 1 and 0 < d ≤ g − 1. For most curves, the
Clifford index is equal to gon(C)−2, computed by a g1d. Curves for which this is not so
are Clifford exceptional curves, and have been studied by Martens [20] and Eisenbud
et al. [9].

If C is the determinantal (20, 26) curve studied above, then C ∼ H +K on the
surface S. The hyperplane section H is a (10, 11) curve in P

3, obtained as C0 +H0 on
a nonsingular quartic surface in P

3. Here C0 is a nonhyperelliptic (6, 3) curve having
gonality 3; H0 is a plane quartic curve, also having gonality 3. Hence, by [15], H has
gonality ≥ 6. (In fact the gonality is equal to 6 because H must have a 4-secant.)
The curve K on S is the determinantal (10, 6) curve discussed above, isomorphic to
a plane quintic curve, with gonality 4. So applying [15] again, we find the gonality
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of C is ≥ 10. It follows from the study of Clifford exceptional curves in [20] and [9]
that C is not exceptional, so we conclude Cliff C ≥ 8. (On the other hand, the linear
system |K| on S cuts out a g315 on C, so Cliff C ≤ 9. I suspect Cliff C = 9, but don’t
know how to prove that.) Since we are considering a curve D that is general in an
irreducible component of H20,26 containing C, we may assume also that Cliff D ≥ 8.

Now we consider a smooth (20, 26) curve D with Cliff D ≥ 8, contained in a
smooth ACM surface of degree 10 and sectional genus 11 in P

4, and we want to
estimate the dimension of the linear system |D| on S. As above, we find

dimS |D| = D2 + 1 − g + h1(OD(D)).

Since D is a (20, 26) curve, the adjunction formula gives

D2 +D ·K = 50.

Let us denote D ·K by b. Then D2 = 50 − b. On the other hand, let us consider the
linear system |D · K| on D. It has dimension a − 1, where a = h0(OD(K)). Since
KD = (D +K) ·D, we also have h1(OD(D)) = a. The linear system |D ·K| thus has
dimension a− 1 and degree b. Our hypothesis Cliff D ≥ 8 thus implies b− 2a+ 2 ≥ 8,
or b ≥ 2a+ 6.

Now we can compute

dimS |D| = D2 + 1 − g + h1(OD(D))

= 50 − b+ 1 − 26 + a

= 25 + a− b.

Since b ≥ 2a+ 6, we find
dimS |D| ≤ 19 − a.

Now from the exact sequence

0 → OX(K −D) → OX(K) → OD(K) → 0,

we find a = h0(OD(K)) ≥ h0(OX(K)) = h2(OX) = 4. Thus

dimS |D| ≤ 15.

On the other hand, our surface S is not general, so it moves in a family of dimension
at most 59, so the dimension of the family of curves that arise in this way is at most
74.

In conclusion, we see that there exists an irreducible component of the Hilbert
scheme H20,26 of smooth (20, 26) curves in P

4 (namely one containing the determi-
nantal curves) whose general member is an ACM curve that does not lie on an ACM
surface S of degree 10 and sectional genus 11, and so cannot be obtained by ascending
Gorenstein biliaison from a line. We propose this curve as a possible candidate for a
counterexample to ACM ⇒ glicci (Question 1.3).
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4. Curves in P
4 with Rao module k

Let M be the set of all locally CM curves in P
4 with Rao module k (i.e., of dimension

one in one degree only). One knows that the Rao module must occur in a nonnegative
degree [22, 1.3.11(b)], and that there are curves with Rao module k in degree 0 (e.g.,
two skew lines). So we denote by Mh the set of curves with Rao module k in degree
h, and note that M = ∪h≥0Mh.

Let L ⊆ M be the subset of those curves in the G-liaison class of two skew lines,
and let Lh = L∩Mh. Then L = ∪h≥0Lh, and the curves in L0 are the minimal curves
defined in §1 above.

In this section we will study the curves in M, with a view to elucidating Questions
1.4 and 1.5 above.

Proposition 4.1

a) M0 contains curves of every degree d ≥ 2.

b) For each d ≥ 2, the set of curves in M0 of degree d forms an irreducible family,

whose general member is the disjoint union C = C ′ ∪ L of a plane curve C ′ of degree

d− 1 and a line L, not meeting the plane of C ′.
c) Every curve in M0 is in the G-liaison class of two skew lines, i.e. L0 = M0.

Proof. a) The case of two skew lines in P
3 is well-known [21, Example 6.2, p. 34]. For

d ≥ 3, let C = C ′ ∪ L as described in b). Clearly h0(OC) = 2, so h1(IC) = 1. On the
other hand, since C ′ and L are contained in disjoint sublinear spaces of P

4, it is clear
that H0(OP4(n)) → H0(OC(n)) is surjective for n ≥ 1, so C ∈ M0.

b) I claim any degree 2 curve C in P
4 with M = k lies in P

3. If the curve is
reduced, it is two lines, hence in a P

3. If it is not reduced, then it is a double structure
on a line L, and we have an exact sequence

0 → L → OC → OL → 0

where L is an invertible sheaf on L. Then there is a surjective map u : IL/I2
L → L → 0,

and L ∼= OL(a) for some a. Since IL/I2
L

∼= OL(−1)3, the map u is given by three
sections of OL(a+ 1). If a = −1, we get a double line in a plane. If a = 0, there is a
linear form x killed by u, so C lies in the P

3 defined by x = 0. If a > 0, then the exact
sequence

H0(OL(−1))3 → H0(OL(a)) → H1(IC) → 0

shows the Rao module is bigger than k.
Thus a curve of degree 2 with M = k lies in a P

3, so these form an irreducible
family whose general member is two skew lines.

So now let d ≥ 3. Then C cannot be contained in P
3, because of the Lazarsfeld–

Rao property for curves in P
3, so h0(OC) = 2, because of the Rao module, and

h0(OC(1)) = 5. Let A = H0
∗ (OC). This is a graded S-algebra, where S =

k[x0, x1, x2, x3, x4], and in particular A0 is a 2-dimensional k-algebra. We consider
two cases.
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Case 1. A0 is reduced, hence isomorphic to k × k as a k-algebra. Then A0

contains two orthogonal idempotents e′, e′′, such that e′ + e′′ = 1, e′2 = e′, e′′2 = e′′,
and e′e′′ = 0. Hence C is the disjoint union of two curves C ′, C ′′, defined by the
vanishing of e′, e′′, respectively. Let H ′, H ′′ be the linear spans of the curves C ′, C ′′.
Then h0(OC(1)) = h0(OH′(1)) + h0(OH′′(1)) = 5. So one of these, say H ′, is a plane,
and the other, H ′′ is a line L. Thus C ′ is a plane curve in H ′, and C = C ′ ∪ L as
required. Note that H ′, H ′′ do not meet since h0(OP4(1)) = h0(OH′(1))+h0(OH′′(1)).

Case 2. A0 is non-reduced, in which case it is isomorphic to the ring k[ε]/(ε2).
Let f ∈ A0 be a nonzero element with f2 = 0. Now A1

∼= S1 is the k-vector space
generated by x0, x1, x2, x3, x4. Multiplication by f on A1 is a nilpotent linear map
with f2 = 0. Furthermore, since C is locally CM, the kernel of f acting on A1 must
have dimension ≤ 3. Otherwise f would be supported at a point. So f has rank ≥ 2.
Now from the structure of nilpotent transformations it follows (after a linear change of
coordinates) that fx0 = x2, fx1 = x3, fx2 = fx3 = fx4 = 0. Hence we can identify
the S-algebra A as

A ∼= S[f ]/
(
(f2, fx0 − x2, fx1 − x3, fx2, fx3, fx4) + IC

)

where IC ⊆ S is the homogeneous ideal of C.
Now let H ′ be the plane x2 = x3 = 0, and let C ′ be the curve obtained from

C ∩H by removing its embedded points, if any. Then there is an exact sequence

0 → L → OC → OC′ → 0.

Since C ′ is a plane curve, h0(OC′) = 1, and so h0(L) = 1. Furthermore note that the
image of f in OC′ is annihilated by x0, x1, x2, x3, x4, hence is 0. So f generates h0(L).
Now f is annihilated by x2, x3, x4, so it has support on the line L : x2 = x3 = x4 = 0.
Thus L is an OL-module, it is torsion-free since C is locally CM, and contains the
submodule OL generated by f . Hence L ∼= OL, generated by f .

Now it is clear that C consists of the plane curve C ′ of degree d − 1, containing
the line L, plus a multiplicity two structure on L with pa = −1. This is the limit of
a flat deformation of the disjoint unions C ′ ∪ L described above, as the skew line L
approaches a line in the curve C ′.

So the curves in M0 of any degree d ≥ 2 form an irreducible family.
c) Let C ∈ M0 have degree d. The case d = 2 in P

3 is well-known, so we may
assume d ≥ 3. First consider the disjoint union C = C ′∪L as in b). Take a hyperplane
P

3 containing L and meeting the plane H ′ of C ′ in a line L′, skew to L, and not a
component of C ′. Let Q be a nonsingular quadric surface in that P

3 containing L and
L′. Then S = H ′ ∪ Q is an ACM surface of degree 3 in P

4. Note that its negative
canonical divisor −K consists of a conic in H ′ plus a divisor of bidegree (1, 2) on Q,
meeting L′ in the same two points as the conic, where (1, 0) is the class of L. (Here we
leave some details to the reader.) Now given C, there is an AG divisor X in the linear
system (d − 3)H −K on S containing C [22, 4.2.8]. The linked curve D is a divisor
of bidegree (d− 3, d− 1) on Q, which is in the biliaison class of two skew lines on Q.
Thus C is in L0.
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In the special case where C is a plane curve C ′ containing a line L, plus a double
structure on L as above, we use exactly the same construction, except that now the
hyperplane P

3 meets H ′ in L, and the quadric surface Q contains the double structure
on L. The same liaison works, using the theory of generalized divisors [13]. �

Remark 4.2. The fact that L0 is not a single irreducible family was observed by Migliore
[22, 5.4.8], who gave the example of a curve of degree 3 in L0. His student Lesperance
[18] has independently proved 3.1a), c) in the case of reduced curves. Lesperance has
also shown [18, 4.5] that for other Rao modules, the set of minimal curves of given
degree need not be irreducible. Thus (4.1b) is special to the case of Rao moduleM = k.

Example 4.3: Let C be a smooth curve of degree 5 and genus 0 in P
4, not contained

in any P
3. It is the projection of the rational normal curve Γ in P

5 from a point not
lying on any secant line of Γ. A little elementary geometry shows that C has a unique
trisecant E. If C meets E in three distinct points, then the three points of intersection
of C and E determine a unique isomorphism (of abstract P

1’s) from C to E fixing
those three points. Let S be the surface formed as the closure of the set of lines joining
corresponding points of C and E. Then S is a rational cubic scroll in P

4.
On S, our rational quintic C has divisor class (4; 3). The linear system C −H =

(2; 2) contains a disjoint union of two rulings of the surface S. Hence C is obtained by
one elementary G-biliaison from two skew lines. In particular, C ∈ L1.

If E is a degenerate trisecant, i.e., a tangent line meeting the curve again, or an
inflectional tangent, we can still show C ∈ L1 as follows. The smooth (5, 0) curves in
P

4 form an irreducible family, so C is a specialization of the general type described
above. Hence C must lie on a cubic surface in P

4. It cannot lie on a reducible surface,
since C is not in P

3. The only other irreducible cubic surface is the cone over a twisted
cubic curve, and that surface contains no smooth (5, 0) curves. Hence C is on a smooth
rational cubic scroll, and the previous argument applies.

Example 4.4: We consider smooth curves of type (6, 1) (degree 6 and genus 1) in P
4,

not contained in any P
3. Then h1(IC(1)) = 1 and h0(IC(2)) ≥ 3.

Case 1. If three quadric hypersurfaces containing C intersect in a surface, then
that surface must be a cubic rational scroll S (reason: the degree of S must be ≤ 3;
C is not contained in a plane or a quadric surface, and there is no (6, 1) curve on the
cone over a twisted cubic curve). In this case C = (3; 0) on S and C −H = (1;−1),
which contains the disjoint union of a conic and a line. Thus C is in L1 and is obtained
by a single elementary G-biliaison from a curve of degree 3 in L0. This curve C has
infinitely many trisecants, formed by the rulings of S.

Case 2. Three quadric hypersurfaces containing C will intersect in a complete
intersection curve X of degree 8 and genus 5. The residual intersection D will be a
curve of degree 2. D cannot be a plane curve, because then it would meet C in 5
points, and projection from the plane of D would be a birational map of C to a line,
which is impossible. Hence D is two skew lines or a nonplanar double structure on
a line. By reason of the genus of X, D will be either two trisecants of C or a single
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trisecant. Note also that these are all the trisecants of C, because any trisecant of C
must be contained in each quadric hypersurface containing C, hence in X.

Case 2a. An example of a (6, 1) curve with two trisecants can be obtained on a
Del Pezzo surface, as a divisor of type (3; 13, 02). In this case C − H = (0; 03,−12),
which is a disjoint union of two lines, so C is in L1 and is obtained by one elementary
G-biliaison from the minimal curve of degree 2 in L0. This curve C has two trisecants,
the lines F45 = (1; 03, 12) and G = (2; 15).

Case 2b. An example of a (6, 1) curve with one trisecant can be obtained as
follows. We project the Veronese surface V in P

5 from a point in a plane containing a
conic of V , so as to obtain a quartic surface S in P

4 with a double line L. A general
cubic curve in P

2 gives a (6, 1) curve in V meeting the conic in three points that
project to distinct points of the line L in S. Thus the image C ⊆ S of this curve will
be a smooth (6, 1) curve having L as a trisecant. Now the surface S is smooth except
for a double line and two pinch points, hence locally CM . Its general hyperplane
section is an integral curve in P

3 of degree 4, arithmetic genus 1, with one node. This
is a complete intersection in P

3, hence S is a complete intersection of two quadric
hypersurfaces in P

4 [22, 1.3.3], so it must contain every trisecant of C. But S contains
no lines except L, so C has a unique trisecant. Since C is linked to a double structure
on L, C is in the CI-liaison class of two skew lines, so C is in L1. Note that C −H is
not effective on S, so C cannot be obtained by an elementary Gorenstein biliaison on
S. However, it seems likely that C also lies on a normal singular Del Pezzo surface on
which it can be obtained by an elementary Gorenstein biliaison from two skew lines.

Thus we see that any smooth nondegenerate (6, 1) curve in P
4 is in L1. The

family of all such curves in P
4 is irreducible [7]. The general type with two trisecants

(Case 2a) is obtained by an elementary Gorenstein biliaison from a curve of degree 2
in L0, while the special type (Case 1) with infinitely many trisecants is obtained by
Gorenstein biliaison from a curve of degree 3 in L0.

Example 4.5: We consider nonsingular degree 7 genus 2 curves in P
4, not contained

in any P
3. The family H7,2 of all of these curves is irreducible, by Ein [7]. We see

h1(IC(1)) = 1, and there exist such curves with Rao module k on a Del Pezzo surface
(see below), so by semicontinuity, the general such curve has Rao module k, i.e., it is
in M1.

Next, note that h0(IC(2)) ≥ 2. If h0(IC(2)) > 2, then the intersection of three
quadric surfaces would either be a curve of degree 8, and then C would be linked
to a line, hence ACM, which is impossible; or it would be a surface of degree 3, but
there are no (7, 2) curves on surfaces of degree 3 in P

4. Hence h0(IC(2)) = 2, and
h1(IC(2)) = 0, so by Castelnuovo–Mumford regularity, C ∈ M1. Thus all curves of
H7,2 are in M1.

Now look on a Del Pezzo surface S, and let C = (4; 2, 13, 0). Then C is a smooth
(7, 2) curve, and C −H = (1; 1, 03,−1) is a disjoint union of a conic and a line. Thus
C ∈ L1, and C is obtained by an elementary Gorenstein biliaison from a curve of
degree 3 in L0. Note that C has exactly four mutually skew trisecants, namely the
lines F25, F35, F45, and G on S.
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If C is any smooth (7, 2) curve, we have seen that h0(IC(2)) = 2. Let S be the
complete intersection surface F2 · F ′

2 of two quadric surfaces containing C. Then S
is uniquely determined by C. It is a surface of degree 4, with sectional genus 1, but
it may be singular. However, it must be irreducible, and hence has at most a line of
singular points. Therefore C is an almost Cartier divisor on S, and we can apply the
theory of generalized divisors. There is an exact sequence

0 → OS → L(C) → ωC(1) → 0

[13, 2.1], making use of the fact that ωS = OS(−1). Twisting by −1, and taking
cohomology, we obtain

0 → H0(OS(−1)) → H0(L(C −H)) → H0(ωC) → H1(OS(−1)),

where H denotes the hyperplane class on S. The two outside groups are 0, and H0(ωC)
has dimension 2, so H0(L(C −H)) �= 0. This shows that C −H is effective on S. It
is a divisor of degree 3, and must be in L0, so we see that any C in M1 is in L1, and
is obtained by an elementary Gorenstein biliaison from a curve of degree 3 in L0.

For an example of a special (7, 2) curve, let S0 = P
1 × P

1. Let Γ be a line of
bidegree (1, 0), and fix an involution σ on Γ. Take ϑ to be the linear system of those
curves of bidegree (1, 2) on S0 meeting Γ in a pair of the involution σ. Then ϑ maps
S0 to a surface S of degree 4 in P

4 with a double line L0 (the image of Γ). If C0 is a
general curve of bidegree (2, 3) on S0, then the image C of C0 in S is a smooth (7, 2)
curve meeting L0 in three points. It has four trisecants, namely the double line L0 and
the three rulings (images of (0, 1) curves in S0) that meet L0 at the points where C
meets L0. This curve is different from the general ones described above, because three
of the trisecants meet the fourth one. Because of the general result above, C must
arise by an elementary Gorenstein biliaison on S, but in this case the curve of degree
3 in L0 will be a nonreduced curve containing a double structure on the line L0.

Next we look at a general Castelnuovo surface S′. On this surface, there are three
different kinds of smooth (7, 2) curves, distinguished by their self-intersections, namely

C1 = (4; 2, 15, 02) C2
1 = 7

C2 = (5; 24, 13, 0) C2
2 = 6

C3 = (5; 14, 24) C2
3 = 5.

Of these C1 is obtained by an elementary Gorenstein biliaison on S′ from two skew
lines, while C2 −H and C3 −H are not effective. Since we have seen above that every
smooth (7, 2) curve arises by elementary Gorenstein biliaisons from a degree 3 curve
in L0, this gives examples of curves that may be obtained by two different routes by
elementary Gorenstein biliaisons from curves of two different degrees in L0.

In fact, I claim that every general (7, 2) curve arises also as a curve of type C1

on a smooth Castelnuovo surface. To prove this in detail is rather long, so I will just
give a sketch. Start with a smooth (7, 2) curve C on a smooth Del Pezzo surface S,
say C = (4; 2, 13, 0) as before. Choose a twisted cubic curve D and a conic Γ so that



44 Hartshorne

C + D + Γ = 3H. (For example D = (3; 14, 2) and Γ = (2; 0, 14).) Let Π be the
plane containing Γ. Then the two quadric hypersurfaces containing C meet Π in Γ,
so a linear combination of them contains Π. So we may assume S = F2 · F ′

2 where F2

contains Π. By construction, there are cubic hypersurfaces F3 containing C +D + Γ.
Such an F3 will meet Π in Γ plus a line. Adjusting F3 by a linear form times F ′

2, we
may assume that F3 contains Π. Now F2 · F3 = Π ∪ S′, where S′ is an ACM surface
of degree 5, hence a Castelnuovo surface. Now one can verify that C on S′ is a curve
with self-intersection 7, like C1 above, and that C1 −H is effective and represented by
a curve of degree 2 in L0.

In conclusion, we see that every smooth (7, 2) curve is in L1, and can be obtained
by elementary Gorenstein biliaison from L0, in general by two different routes. This
is in contrast to the (6, 1) case above, where the curves are divided into two types,
distinguished by which component of L0 they arise from.

Example 4.6: We consider smooth (10, 6) curves in P
4 (cf. Example 3.8 above).

By Riemann–Roch applied to OC(1) we see that an ACM (10, 6) curve is nonspe-
cial. Also we see that OC(1) is special if and only if OC(1) is a canonical divisor, and
this is equivalent to h1(IC(1)) = 1. The (10, 6) curves in P

4 with OC(1) special are all
projections of the canonical curves of genus 6 in P

5. Since these form an irreducible
family, we see that their projections, the canonical (10, 6) curves in P

4, form an irre-
ducible family, and they all have h1(IC(1)) = 1. A general such curve has Rao module
k in degree 1, i.e., it is in M1. To see this, by semicontinuity, it is sufficient to exhibit
one such. Let C = (7; 29, 0) on a general Bordiga surface. This curve is the image
of a plane septic curve with 9 double points, embedded in P

4 by the linear system of
quartics passing through the double points (and one further point). These are adjoint
curves to C and so cut out the canonical linear series. Hence C is a canonical curve.
Now C −H = (3; 19,−1) is the disjoint union of a plane cubic curve and a line, which
is a degree 4 curve in L0. Hence C ∈ L1 is obtained by an elementary Gorenstein
biliaison from L0.

Now let us consider (10, 6) curves in M2, i.e., with Rao module k in degree
2. Examples of such can be found on a general Castelnuovo surface S, for example
C1 = (6; 3, 2, 16) and C2 = (6; 24, 14). Note that the curves C1 are trigonal, while
the curves C2 can have general moduli. Both types can be obtained by Gorenstein
biliaison on S, since C1 − H = (2; 12, 06) and C2 − H = (2; 0, 13, 04) are both (5, 0)
curves, hence in L1.

An examination of curves of minimal genus in L1 and ACM curves of minimal
genus in P

3 shows that the only way to obtain a (10, 6) curve in M2 by Gorenstein
biliaison is from a (5, 0) curve in L1 on a surface of degree 5 and sectional genus 2 in
P

4, like the Castelnuovo surfaces.
Another example of a (10, 6) curve in M2 is obtained by the curve C formed by

the intersection of a smooth quintic elliptic scroll V with a hypersurface F of degree
2. If we take F to be a smooth quadric hypersurface, then by Klein’s theorem [14,
II.Ex. 6.5d] it contains no surfaces of odd degree, so C cannot be obtained by ascending
Gorenstein biliaison from a curve in L1.
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However one can show that C is in the G-liaison class of two skew lines by the
following method, suggested by the referee. First note that two general cubic hyper-
surfaces F3, F

′
3 containing V will link V to a Veronese surface W in P

4. Thus C is
linked by the complete intersection F2 ∩ F3 ∩ F ′

3 to a curve C ′ ⊆W , which is W ∩ F2.
The curve C ′ is an (8, 3) curve, obtained from a plane curve of degree 4 by the 2-uple
embedding of P

2 and projection to P
4.

Now W is not an ACM surface, but if we take a hyperplane section Γ = W ∩ P
3,

then Γ is a (4, 0) curve in P
3. It is contained in a unique nonsingular quadric surface

Q ⊆ P
3, and the union W ∪Q, meeting along Γ, will be an ACM surface of degree 6

in P
4. We regard C ′ ⊆ W as a curve on the surface W ∪ Q. Now one can show (I

leave some details to the reader) that 2H −K−C ′ on the surface W ∪Q (where H,K
denote the hyperplane section and canonical divisor) is a curve D ∪ Γ′, where Γ′ is a
(4, 0) curve in P

3, and D is a conic, not in P
3, meeting Γ′ in two points. Since 2H −K

is an arithmetically Gorenstein curve on W ∪Q, we have thus linked C to C ′ and then
to D ∪ Γ′.

For the last step, we take a quadric surface Q′ containing D and meeting the
quadric Q (which contains Γ′) in a conic. Then Q ∪ Q′ is a complete intersection
quartic surface in P

4, and on Q ∪Q′, D ∪ Γ′ −H is 2 skew lines.
Thus C is an example of a curve with Rao module k, that cannot be obtained by

ascending Gorenstein biliaison from a minimal curve, and yet is in the G-liaison class
of 2 skew lines.

Example 4.7: For our last example, we consider smooth (11, 7) curves in M2. To
construct such curves on a general Bordiga surface S, take C = (6; 23, 17). This is an
(11, 7) curve, and C −H = (2; 13, 07) is a smooth (5, 0) curve on S. Since (5, 0) ∈ L1

by (4.3) above, we see that C ∈ L2, and is obtained from a minimal curve by two
elementary Gorenstein biliaisons.

Next, I claim the only way to obtain an (11, 7) curve in L2 by two elementary
G-biliaisons is the one just described. Indeed, the curves of minimal genus in L1 of
degrees 4 to 7 are (4, 0), (5, 0), (6, 1), (7, 2). The minimal genus of ACM curves in P

3 of
complementary degree are (7, 5), (6, 3), (5, 2), (4, 1), which will give rise respectively to
curves (11, 8), (11, 7), (11, 8), (11, 9) in L2. So an (11, 7) curve obtained by elementary
G-biliaisons must be on the Bordiga surface or its specialization.

Since h0(OC(1)) = 5, we see that OC(1) is nonspecial, so we can compute the
dimension of the Hilbert scheme of (11, 7) curves in P

4 (which is irreducible by Ein
[7]), by the usual formula 5d+ 1 − g. Thus the Hilbert scheme has dimension 49.

Now let us count the curves obtained by the construction above. The Bordiga
surface moves in a family of dimension 36 (use, for example, the formula of Ellingsrud
[10]). To find the dimension of the linear system |C| on S, we use the exact sequence

0 → OS → OS(C) → OC(C) → 0.

Thus dimS |C| = h0(OC(C)). For the curve C of type (6; 23, 17) mentioned above,
we find C2 = 17, so the divisor C2 is nonspecial on C, and by Riemann–Roch,
h0(OC(C)) = C2 + 1 − g = 11. Thus the dimension of the family of all curves of
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this type on Bordiga surfaces is ≤ 11 + 36 = 47. In particular, these curves are not
general among all (11, 7) curves.

But we wish to show more, namely that a general (11, 7) curve does not lie on
a Bordiga surface. So suppose now that C is any (11, 7) curve on a Bordiga surface.
I claim C2 ≤ 17. Indeed, we have 2g − 2 = C2 + C.K. On the Bordiga surface let
C = (a; b1, . . . , b10). The canonical divisor K can be written K = (1; 010) − H. So
2g − 2 = C2 + a − d, and C2 = 2g − 2 + d − a = 23 − a. But in order to get a curve
of genus 7, we must have a ≥ 6. Thus C2 ≤ 17. Then the same argument as above
shows that h0(OC(C)) ≤ 11, and we get the same dimension count, unless OC(C) is a
special divisor. But in that case C2 ≤ 12, and by Clifford’s theorem h0(OC(C)) ≤ 7.
Thus a general (11, 7) curve does not lie on a Bordiga surface.

Next, observe that for any (11, 7) curve in P
4, h0(OC(2)) = 16, so necessarily

h1(IC(2)) ≥ 1. Since we have constructed curves C with h1(IC(2)) = 1 and the other
h1(IC(n)) = 0 for n �= 2, we conclude by semicontinuity that the general (11, 7) curve
in P

4 has Rao module k in degree 2, i.e., it lies in M2. Since the general such curve
does not lie on a Bordiga surface, by the above remarks, it cannot be obtained by
ascending Gorenstein biliaisons from L0.

It is conceivable that the general (11, 7) curve is linked by some ascending and
descending G-liaisons to two skew lines, but this seems unlikely, so we propose the
general (11, 7) curve in P

4 as a possible curve with Rao module k, not in the G-liaison
class of two skew lines.

5. Conclusion

The examples presented in this paper would lead me to expect that for ACM schemes
of codimension ≥ 3, some may be obtained by elementary Gorenstein biliaisons from
a scheme of degree one; a broader class may be obtained by ascending and descending
G-liaisons from a scheme of degree one; but that a general ACM scheme of high degree
may not be in the G-liaison class of a complete intersection. Example 3.9 shows that
at least one of the Questions 1.3a, 1.3b has no for an answer. Namely, for the general
ACM (20, 26) curve in P

4, we must have either

a) it is ACM and not glicci, or
b) it is glicci, but cannot be obtained by ascending Gorenstein biliaisons from a curve.

For curves in P
n, n ≥ 4, with a given Rao module M , I would expect that the

minimal curves form an infinite union of irreducible families; some curves in the family
may be obtained by a sequence of ascending elementary Gorenstein biliaisons from a
minimal curve; a larger class may be obtained by ascending and descending Gorenstein
liaisons from a minimal curve; but that a general curve of high degree and genus with
Rao module M is not in the G-liaison class of a minimal curve. Example 4.6 gives an
example of a smooth (10, 6) curve with Rao module k, that is in the Gorenstein liaison
class of a minimal curve, but cannot be obtained by ascending Gorenstein biliaison
from a minimal curve. Example 4.7 shows that either Question 1.4 has no for an
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answer, or the deformation is necessary in Question 1.5b. Indeed, for the general
(11, 7) curve in P

4 we must have either

a) it has Rao module k, but is not in the G-liaison class of two skew lines, or
b) it is in the liaison class of two skew lines, but cannot be obtained from a minimal

curve by ascending Gorenstein biliaisons.

Based on this evidence, I would expect a no answer to Questions 1.3, 1.4, 1.5b.
I have no idea about Question 1.2 since in this paper I used only strict Gorenstein
liaisons and biliaisons. Also the question of even or odd liaison has not been addressed
here, since it is irrelevant for ACM schemes and curves with Rao module k. This is a
question that merits further study.
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