Collectanea Mathematica (electronic version): http://www.mat.ub.es/CM

Collect. Math. **52**, 3 (2001), 295–319 © 2001 Universitat de Barcelona

Un pas vers la connexité du schéma de Hilbert : les courbes de Koszul sont dans la composante des extrémales

DANIEL PERRIN

Département de Mathématiques, Bât. 425, Université Paris-Sud F-91405 Orsay Cedex, France E-mail: daniel.perrin@math.u-psud.fr

Received June 1, 2001. Revised July 6, 2001

Abstract

The purpose of this paper is to study the connectedness of the Hilbert scheme $H_{d,g}$ of degree d and genus g curves (locally Cohen-Macaulay) in \mathbb{P}^3 . Thanks to the method of triads (cf. [12]), we show that a large class of curves (the curves whose Rao-module is Koszul, i.e. a complete intersection) are in the connected component of extremal curves. This generalizes widely several recent results.

Introduction

Cet article concerne la classification des courbes gauches, c'est-à-dire l'étude du schéma de Hilbert $H_{d,g}$ des courbes (localement Cohen-Macaulay et équidimensionnelles, ou encore sans point isolé ni immergé), de degré d et genre arithmétique g, de \mathbb{P}^3 (espace projectif de dimension 3 sur un corps k algébriquement clos).

L'objectif de cet article est double : faire le point sur la connexité de $H_{d,g}$ en montrant que de très nombreuses courbes sont dans la composante des courbes extrémales, et, à cette occasion, montrer l'efficacité de l'outil "triade" introduit dans [12], pour construire des familles de courbes gauches.

a) Sur la connexité de $H_{d,g}$

L'intérêt pour le problème de la connexité de $H_{d,g}$ est, à notre connaissance, assez récent. Bien entendu on sait depuis l'article [8] de R. Hartshorne que le schéma de Hilbert des courbes de degré d et genre g est connexe, mais les courbes dont il s'agit sont tous les sous-schémas de dimension 1, y compris ceux qui contiennent des points isolés et/ou immergés (et la preuve du théorème utilise de manière essentielle

Keywords: Space curves, Hilbert scheme, Rao module, Koszul module, triads. *MSC2000:* 14H50

ces points). La question de la connexité du schéma de Hilbert des "vraies" courbes est considérablement plus difficile. D'ailleurs, dans un premier temps (vers 1994-95), M. Martin-Deschamps et l'auteur avaient cru prouver que $H_{d,g}$ n'était "presque jamais" connexe (cf. [16]). Le premier exemple non banal de schéma de Hilbert connexe a été celui de $H_{4,0}$, mis au jour en juin 1995 par R. Hartshorne, M. Martin-Deschamps et l'auteur. Depuis, un certain nombre de résultats, allant tous dans le sens de la connexité de $H_{d,g}$, ont été obtenus, de sorte que la question naturelle que l'on peut se poser aujourd'hui est celle de la connexité de $H_{d,g}$ pour tous les couples (d, g).

Pour préciser la question on dispose dans $H_{d,g}$ d'une composante irréductible toujours présente qui est celle des courbes extrémales (c'est-à-dire les courbes dont la fonction de Rao est maximum, cf. [14, 15]) et la question est de savoir si la composante connexe $\mathcal{E}_{d,g}$ des courbes extrémales est le schéma de Hilbert tout entier. Cela revient à joindre cette composante irréductible aux autres au moyen de suites finies de familles plates de courbes, que l'on peut supposer paramétrées par des anneaux de valuation discrète. Bien entendu, on sait qu'il peut y avoir dans le schéma de Hilbert une profusion de composantes irréductibles (cf. [3] ou [4]), de sorte que le problème est très complexe.

Les résultats obtenus à ce jour sur cette question l'ont été par trois types de méthodes :

- La méthode "des équations" qui consiste à exhiber les familles de courbes directement en en explicitant des équations. Cette méthode a été utilisée notamment par Hartshorne (pour montrer la connexité de $H_{4,0}$), par Nollet (pour montrer la connexité de $H_{d,q}$ dans le cas d = 3, cf. [17]) et par Schlesinger (cf. [20]).
- La méthode "des petits dessins" qui consiste, pour l'essentiel, à déformer des réunions de courbes. Cette méthode, très géométrique, est due à R. Hartshorne, cf. [9], qui l'utilise pour montrer notamment que l'on trouve dans la composante connexe $\mathcal{E}_{d,g}$ les courbes ACM, les courbes de la classe de biliaison de deux droites disjointes et les courbes lisses dans le cas $d \ge g + 3$.
- La méthode "des triades" introduite par R. Hartshorne, M. Martin-Deschamps et l'auteur. Cette méthode, qui a permis de découvrir le cas de $H_{4,0}$, a notamment été employée par S. Aït-Amrane (cf. [1]) pour montrer la connexité du schéma de Hilbert des courbes de degré d et genre (d-3)(d-4)/2.

Jusqu'à présent, la plupart des résultats obtenus par la méthode des triades (le cas (4, 0) notamment, mais aussi certains des résultats de [1], cf. [18]), pouvaient s'obtenir aussi par les autres méthodes. L'objectif de cet article est de montrer l'efficacité de la méthode des triades, au moins dans le cas de modules de Rao assez simples, en montrant la présence d'une classe importante de courbes dans la composante $\mathcal{E}_{d,g}$, à savoir les courbes de Koszul, dont l'approche par les autres méthodes ne semble pas évidente.

b) Les résultats

On note R l'anneau de polynômes k[X, Y, Z, T]. Rappelons qu'un module de Koszul est un module du type $R(n)/(f_1, f_2, f_3, f_4)$ où la suite (f_1, f_2, f_3, f_4) est une suite régulière de polynômes homogènes de degrés $n_1 \leq n_2 \leq n_3 \leq n_4$ et où n est un

entier. Un module de Koszul est dit extrémal si on a $n_1 = n_2 = 1$. On appelle courbe de Koszul une courbe dont le module de Rao

$$M_C = \bigoplus_{n \in \mathbb{Z}} H^1 \mathcal{J}_C(n)$$

est un module de Koszul. Une courbe extrémale est une courbe pseudo-extrémale minimale dans sa classe de biliaison. Les courbes de Koszul ont été très étudiées dans la dernière décennie (cf. [13, 14, 15], [19], etc.)

Le théorème principal établi dans cet article est alors le suivant (il généralise considérablement les résultats de [9], [20], [1]) :

Théorème A

Soit C une courbe de Koszul de degré d et genre g. Alors C est dans la composante connexe $\mathcal{E}_{d,g}$ des courbes extrémales de $H_{d,g}$.

La stratégie employée pour prouver ce théorème consiste à augmenter peu à peu le module de Rao jusqu'à obtenir un module extrémal. Cela revient à montrer le lemme suivant :

Lemme B

Soit C_{ξ} une courbe de Koszul générique non extrémale. Il existe une spécialisation C_0 de C_{ξ} qui est une courbe de Koszul dont le module de Rao est strictement plus grand que celui de C_{ξ} .

Le mot générique signifie ici que C_{ξ} est générique dans le schéma $H_{\gamma,\rho}$ à cohomologie constante (cf. [13]) qui la contient. Quand on a une telle spécialisation on a, par semi-continuité, une inégalité sur les fonctions de Rao : $\rho_0(n) = h^1 \mathcal{J}_{C_0}(n) \ge$ $\rho_{\xi}(n) = h^1 \mathcal{J}_{C_{\xi}}(n)$ pour tout n. Nous dirons que le module de Rao M_0 est strictement plus grand que M_{ξ} si l'une de ces inégalités est stricte.

Ce lemme (ou le Lemme C qui en est une variante, cf. §1 ci-dessous) est le point crucial de ce travail. Il est démontré en construisant des triades convenablement choisies.

c) Perspectives sur la connexité

Le travail que nous avons effectué sur les courbes de Koszul est un nouvel élément en faveur de la connexité du schéma de Hilbert. Il est probable qu'il va permettre de prouver d'autres résultats, par exemple le fait que les courbes de "petits" modules de Rao (i.e. des modules de largeur ≤ 2) sont dans la composante des extrémales.

Dans la perspective d'une preuve de la connexité de $H_{d,g}$, la question naturelle qui se pose est la suivante, qui généralise directement le Lemme B ci-dessus :

Question. Soit C_{ξ} une courbe de $H_{d,g}$, générique dans son schéma à cohomologie constante $H_{\gamma,\rho}$ et non extrémale. Existe-t'il toujours une spécialisation C_0 de C_{ξ} dont le module de Rao soit strictement plus grand que celui de C_{ξ} ?

Bien entendu, une réponse positive à cette question impliquerait la connexité de $H_{d,g}$ puisqu'on pourrait ainsi passer, par une suite de spécialisations, de n'importe quelle courbe générique à une courbe extrémale. Malheureusement, il semble bien que, dans $H_{4,-3}$, les courbes réunions de 4 droites disjointes tracées sur une quadrique ne se spécialisent pas (cf. [6]). On peut cependant montrer que $H_{4,-3}$ est connexe. En particulier, on peut joindre les droites sur une quadrique aux courbes extrémales en commençant par généraliser les droites en quatre droites générales (qui ne sont pas sur une quadrique) puis en spécialisant celles-ci. Bref, la question de la connexité reste bel et bien ouverte, mais elle nécessite sans doute d'utiliser une alternance de spécialisations et de généralisations.

0. Préliminaires

a) Généralités

Dans tout ce qui suit k désigne un corps algébriquement clos, R l'anneau des polynômes R = k[X, Y, Z, T]; A est un anneau de valuation discrète d'uniformisante a, de corps résiduel k, de corps des fractions K. On pose $R_A = A[X, Y, Z, T]$. Pour un faisceau \mathcal{F} sur \mathbb{P}^3_k on pose $H^i_*\mathcal{F} = \bigoplus_{n \in \mathbb{Z}} H^i(\mathbb{P}^3_k, \mathcal{F}(n))$.

Notation : Les *R*-modules (ou les R_A -modules) libres gradués $\bigoplus_{i=1}^r R(-n_i)^{\alpha_i}$ seront notés symboliquement $n_1^{\alpha_1}, \ldots, n_r^{\alpha_r}$, le chiffre 0 étant souligné pour éviter la confusion avec le module nul (cf. [12] §5). Ainsi, la suite $R(-2)^6 \to R(-1)^4 \to R$ devient $2^6 \to 1^4 \to 0$.

Rappelons qu'on appelle faisceau dissocié sur \mathbb{P}^3_k ou \mathbb{P}^3_A une somme directe finie de faisceaux inversibles. Pour un tel faisceau $\mathcal{P} = \bigoplus_{n \in \mathbb{Z}} \mathcal{O}_{\mathbb{P}}(-n)^{p(n)}$ (resp. pour un module libre $P = \bigoplus_{n \in \mathbb{Z}} R(-n)^{p(n)}$) la fonction p est appelée fonction caractéristique de \mathcal{P} (resp. de P). Si M est un R-module muni d'une résolution libre :

$$0 \to L_n \to L_{n-1} \to \cdots \to L_1 \to L_0 \to M \to 0,$$

on appelle "résolution numérique" de M la somme alternée des fonctions caractéristiques $p_0 - p_1 + \cdots + (-1)^n p_n$. Cette fonction n'est autre que la différence quatrième de la fonction de Hilbert de M.

On renvoie le lecteur à [13] pour les généralités sur les courbes, les modules de Rao et la liaison, notamment les résolutions de type N et E, ainsi que sur les modules de Koszul et leurs courbes minimales. Rappelons seulement que si M est un module de Koszul de paramètres $n_1 \leq n_2 \leq n_3 \leq n_4$, sa courbe minimale a pour résolution de type N:

$$0 \to R(-n_1 - n_2) \oplus R(-\mu) \to [R(-n_1) \oplus R(-n_2) \oplus R(-n_3) \oplus R(-n_4) \xrightarrow{\sigma} R] \to I_C(h) \to 0$$

298

Ce travail n'aurait pu être mené à bien sans l'utilisation intensive du logiciel Macaulay. Que ses concepteurs soient ici chaleureusement remerciés.

où l'on a posé $\mu = Max (n_1 + n_4, n_2 + n_3)$ et $h = \mu - n_3 - n_4$ et où l'intérieur du crochet désigne le noyau de σ . On écrit donc symboliquement cette résolution

$$n_1 + n_2, \mu \rightarrow [n_1, n_2, n_3, n_4 \rightarrow \underline{0}] \rightarrow I_C(h).$$

On appelle courbe de Koszul toute courbe dont le module est, à décalage près, un module de Koszul.

On renvoie encore le lecteur à [13] pour la définition des schémas $H_{\gamma,\rho}$ à cohomologie constante et tout ce qui concerne le morphisme de "l'étape intermédiaire" $\Phi: H_{\gamma,\rho} \to E_{\rho}$ qui associe à une courbe son module de Rao.

On renvoie le lecteur à [14] et [15] pour les généralités sur les courbes extrémales : ce sont les courbes minimales associées aux modules de Koszul extrémaux, i.e. les modules de paramètres 1, 1, k, k+l, avec $k \ge 1$ et $l \ge 0$. Elles ont pour degré et genre

$$d = l + 2,$$
 $g = \frac{(d-2)(d-3)}{2} - k.$

Il y a de telles courbes dans le schéma de Hilbert $H_{d,g}$ dès que l'on a $g < \frac{(d-2)(d-3)}{2}$.(¹) Elles ont la propriété d'avoir leur fonction de Rao $\rho_C(n) = h^1 \mathcal{J}_C(n)$ maximum parmi les courbes de leur schéma de Hilbert $H_{d,g}$. Les courbes extrémales forment une composante irréductible de $H_{d,g}$. La composante connexe de $H_{d,g}$ qui les contient est notée $\mathcal{E}_{d,g}$.

b) Familles de courbes

Pour tout ce qui concerne familles de courbes et triades le lecteur est invité à consulter [10, 11, 12].

Nous supposons toujours que A est un anneau de valuation discrète. Une famille de courbes C sur A est un sous-schéma fermé de \mathbb{P}^3_A , plat sur A, et dont les fibres C_0 (resp. C_{ξ}) au point spécial (resp. générique) sont des courbes au sens de l'introduction.

On note $\mathcal{J}_{\mathcal{C}}, \mathcal{J}_{C_0}, \mathcal{J}_{C_{\xi}}$ les faisceaux d'idéaux qui définissent \mathcal{C}, C_0 et C_{ξ} . On a donc $\mathcal{J}_{C_0} = \mathcal{J}_{\mathcal{C}} \otimes_A k$ et $\mathcal{J}_{C_{\xi}} = \mathcal{J}_{\mathcal{C}} \otimes_A K$. On note $I_{\mathcal{C}} = H^0_* \mathcal{J}_{\mathcal{C}}, I_{C_0} = H^0_* \mathcal{J}_{C_0}$ et $I_{C_{\xi}} = H^0_* \mathcal{J}_{C_{\xi}}$ les idéaux saturés correspondants. Le module $I_{\mathcal{C}}$ est sans torsion, donc plat sur A. Comme K est plat sur A on a $I_{C_{\xi}} = I_{\mathcal{C}} \otimes_A K$ mais on a seulement une flèche $I_{\mathcal{C}} \otimes_A k \longrightarrow I_{C_0}$ injective mais non surjective en général. On pose $I_0 = I_{\mathcal{C}} \otimes_A k$.

Enfin on pose $B_{\mathcal{C}} = H^2_* \mathcal{J}_{\mathcal{C}}$, $B_{C_0} = H^2_* \mathcal{J}_{C_0}$, $B_{C_{\xi}} = H^2_* \mathcal{J}_{C_{\xi}}$. On a, par platitude, $B_{\mathcal{C}} \otimes_A K = B_{C_{\xi}}$ et il est connu (cf. [7] III 12) qu'on a $B_{\mathcal{C}} \otimes_A k \simeq B_{C_0}$. Le module $B_{\mathcal{C}}$ n'est pas, en général, plat sur A. On note $(B_{\mathcal{C}})_{\tau}$ son sous-module de torsion et on pose $B'_{\mathcal{C}} = B_{\mathcal{C}}/(B_{\mathcal{C}})_{\tau}$. Cette fois, $B'_{\mathcal{C}}$ est plat sur A.

c) Triades

À toute famille de courbes C sur A on associe une triade L_{\cdot} , essentiellement unique. Il s'agit d'un complexe $L_{\cdot} = (L_1 \xrightarrow{d_1} L_0 \xrightarrow{d_0} L_{-1})$ où les L_i sont des R_A -modules libres gradués et les d_i des homomorphismes de degré 0, avec certaines conditions de finitude

⁽¹⁾ Pour $g = \frac{(d-2)(d-3)}{2}$ le schéma de Hilbert est formé de courbes ACM et il est irréductible. La seule autre valeur possible du genre est $\frac{(d-1)(d-2)}{2}$ qui correspond aux courbes planes.

(cf. [12] 1.10, 1.13, 1.28). Ce complexe décrit la variation du module de Rao dans la famille : avec les notations ci-dessus, M_{C_0} (resp. $M_{C_{\xi}}$) est l'homologie au milieu du complexe $L_{\bullet} \otimes_A k$ (resp. $L_{\bullet} \otimes_A K$), cf. [12] 3.6.

On appelle respectivement $N = \text{Ker } d_1$, $H = \text{Ker } d_0/\text{Im } d_1$ et $C = \text{Coker } d_0$ le noyau, le cœur et le conoyau de la triade L_{\cdot} et on note \mathcal{N} le faisceau (localement libre) associé à N_{\cdot} Le faisceau \mathcal{N} est un faisceau "triadique" (cf. [12] 2.3) c'est-à-dire qu'il s'insère dans une suite exacte :

$$0 \to \mathcal{N} \to \mathcal{L}_1 \to \mathcal{L}_0 \to \mathcal{L}_{-1} \to 0$$

où les \mathcal{L}_i sont les faisceaux associés aux modules libres L_i donc sont dissociés. On a une résolution "de type N" (généralisée) de \mathcal{C} :

$$0 \to \mathcal{Q} \to \mathcal{N} \to \mathcal{J}_{\mathcal{C}} \to 0$$

où \mathcal{Q} est un faisceau dissocié sur $\mathcal{O}_{\mathbb{P}_A}$. On en déduit qu'on a $H = H^1_* \mathcal{J}_C$, $C = H^2_* \mathcal{N}$ et ce module est de torsion sur A.

d) Quelques suites exactes

On suppose qu'on a une famille de courbes C et sa triade associée L_{\cdot} et on reprend les notations précédentes.

Le lemme suivant et son corollaire s'obtiennent en déroulant la suite de cohomologie associée à la suite exacte de multiplication par a (cf. par exemple [1] Lemmes 3.3 et 3.4) :

$$0 \to \mathcal{J}_{\mathcal{C}} \xrightarrow{a} \mathcal{J}_{\mathcal{C}} \to \mathcal{J}_{C_0} \to 0.$$

Lemme 0.1

Avec les notations ci-dessus on a la suite exacte :

$$0 \longrightarrow I_{\mathcal{C}} \xrightarrow{.a} I_{\mathcal{C}} \longrightarrow I_{C_0} \longrightarrow H \xrightarrow{.a} H \longrightarrow M_{C_0} \longrightarrow B_{\mathcal{C}} \xrightarrow{.a} B_{\mathcal{C}} \longrightarrow B_{C_0} \longrightarrow 0$$

où le symbole .a désigne la multiplication par a.

Corollaire 0.2

On a les suites exactes suivantes :

$$0 \longrightarrow I_0 \longrightarrow I_{C_0} \longrightarrow \operatorname{Tor}_1^A(H,k) \longrightarrow 0,$$
$$0 \longrightarrow H \otimes_A k \longrightarrow M_{C_0} \longrightarrow \operatorname{Tor}_1^A(C,k) \longrightarrow 0$$
$$0 \longrightarrow C \otimes_A k \longrightarrow B_{C_0} \longrightarrow B'_C \otimes_A k \longrightarrow 0.$$

e) Spécialité de C_{ξ} , calcul du degré et du genre de \mathcal{C}

On reprend les notations du paragraphe c). À partir de la résolution de type N de C, en utilisant la platitude de K sur A, on obtient une résolution de type N de C_{ξ} :

300

$$0 \to \mathcal{Q} \otimes_A K \to \mathcal{N} \otimes_A K \to \mathcal{J}_{C_{\mathcal{E}}} \to 0.$$

Il s'agit cette fois d'une "vraie" résolution de type N, vérifiant $H^2_*(\mathcal{N} \otimes_A K) = 0$ (cela vient du fait que le conoyau C est de torsion sur A). Cette résolution fournit la spécialité $h^2 \mathcal{J}_{C_{\varepsilon}}(n)$ grâce aux suites exactes :

$$0 \to H^2_* \mathcal{J}_{C_{\xi}} \to H^3_* \mathcal{Q} \otimes_A K \to H^3_* \mathcal{N} \otimes_A K \to H^3_* \mathcal{O}_{\mathbb{P}_K} \to 0,$$
$$0 \to H^3_* \mathcal{N} \otimes_A K \to H^3_* \mathcal{L}_1 \otimes_A K \to H^3_* \mathcal{L}_0 \otimes_A K \to H^3_* \mathcal{L}_{-1} \otimes_A K \to 0.$$

Précisément, cf. [13] II, la spécialité de C_{ξ} est liée à sa résolution numérique par la formule :

$$\partial^4 h^2 \mathcal{J}_{C_{\xi}}(n) = q(n) - l_1(n) + l_0(n) - l_{-1}(n) + \binom{-n-1}{-1},$$

où ∂ désigne l'opérateur de différentiation (défini par $\partial(f(n) = f(n) - f(n-1))$, cf. [13] I.1), où q et les l_i sont les fonctions caractéristiques de Q et des \mathcal{L}_i et où le coefficient binômial n'est autre que le symbole de Kronecker $\delta_{n,0}$. La formule s'obtient en appliquant quatre fois l'opération ∂ et en tenant compte des formules :

$$\partial^4 \binom{n-k+3}{3} = \binom{n-k-1}{-1} = \delta_{n,k} \quad \text{et} \quad \partial^4 \binom{-n+k-1}{3} = \binom{-n+k-1}{-1} = \delta_{n,k}$$

où $\delta_{n,k}$ est le symbole de Kronecker.

Cette résolution de type N de C_{ξ} permet notamment de calculer le degré et le genre de la famille de courbes C.

f) La spécialité de C_0

On conserve les notations précédentes. On suppose que la courbe spéciale C_0 de la famille C admet la résolution de type N suivante :

$$0 \to P \to [F_1 \to F_0] \to I_{C_0} \to 0.$$

On note $0 \to P_4 \to P_3 \to P_2 \to P_1 \to P_0 \to C \otimes_A k \to 0$ une résolution libre minimale du *R*-module $C \otimes_A k$. Le résultat suivant précise la spécialité de C_0 :

Proposition 0.3

Avec les notations précédentes, si on note respectivement p_i, l_i, f_i, q, p les fonctions caractéristiques des modules P_i, L_i, F_i, Q, P , on a la relation suivante :

$$p_0 - p_1 + p_2 - p_3 + p_4 - l_{-1} + l_0 - l_1 + q = f_0 - f_1 + p.$$

Démonstration. On pose $N_0 = \text{Ker}(F_1 \to F_0)$. On a les trois suites exactes :

(1)
$$0 \longrightarrow C \otimes_A k \longrightarrow B_{C_0} \longrightarrow B'_{\mathcal{C}} \otimes_A k \longrightarrow 0, \\ 0 \rightarrow B_{C_0} \rightarrow H^3_* \mathcal{P} \rightarrow H^3_* \mathcal{N}_0 \rightarrow H^3_* \mathcal{O}_{\mathbb{P}} \rightarrow 0, \\ 0 \rightarrow B'_{\mathcal{C}} \rightarrow H^3_* \mathcal{Q} \rightarrow H^3_* \mathcal{N} \rightarrow H^3_* \mathcal{O}_{\mathbb{P}_A} \rightarrow 0,$$

et aussi

$$0 \to H^3_* \mathcal{N}_0 \to H^3_* \mathcal{F}_1 \to H^3_* \mathcal{F}_0 \to 0,$$

$$0 \to H^3_* \mathcal{N} \to H^3_* \mathcal{L}_1 \to H^3_* \mathcal{L}_0 \to H^3_* \mathcal{L}_{-1} \to 0.$$

Comme $H^3_*\mathcal{O}_{\mathbb{P}_A}$ et $H^3_*\mathcal{L}_{-1}$ sont plats sur A, on peut tensoriser les suites correspondantes par k. On écrit l'égalité des dimensions des termes de degré n dans la suite (1). Les termes en H^3 sont de la forme

$$\sum_{k\in\mathbb{Z}}f(k)\binom{-n+k-1}{3}$$

où f est l'une des fonctions ci-dessus. On obtient la relation annoncée par différentiation comme précédemment. \Box

Remarque 0.4. Lorsque la courbe spéciale C_0 de la famille C n'est pas minimale, elle est obtenue à partir de la courbe minimale $C_{0,0}$ de sa classe de biliaison par des biliaisons $(\sigma_1, k_1), \dots, (\sigma_r, k_r)$ et on peut même supposer tous les k_i égaux à 1 (cf. [13] III 2.10). La formule ci-dessus permet alors de calculer les degrés σ_i , cf. par exemple 2.a.ii) ci-dessous.

En effet, si on suppose que $C_{0,0}$ admet une résolution de type N de la forme ci-dessous :

$$0 \to P \to [F_1 \to F_0] \to I_{C_{0,0}}(h) \to 0$$

on sait (cf. [13] III 4) que C_0 admet la résolution de type N suivante :

$$0 \to P \oplus S' \to [F_1 \oplus S \to F_0] \to I_{C_0}(h') \to 0$$

avec $S = R(-s_1) \oplus \cdots \oplus R(-s_r)$, $S' = R(-s_1 - k_1) \oplus \cdots \oplus R(-s_r - k_r)$ (où l'on a posé $s_i = \sigma_i - h - k_1 - \cdots - k_i$) et $h' = h + k_1 + \cdots + k_r$. Si on suppose tous les k_i égaux à 1 et si on pose $S = \bigoplus R(-n)^{s(n)}$ on en déduit la formule :

$$\partial s = f_0 - f_1 + p - p_0 + p_1 - p_2 + p_3 - p_4 + l_{-1} - l_0 + l_1 - q_1$$

et la fonction s se calcule par la formule d'intégration

$$s(n) = \sum_{k \leq n} \partial s(k).$$

g) Fonction q

On a vu qu'à toute famille de courbes est associée une triade. Inversement, si la triade L_{\bullet} est donnée, il y a une infinité de familles de courbes dont la triade est L_{\bullet} à décalage près. Parmi ces familles, il y en a une, notée C, meilleure que les autres, au sens où son degré est minimal. On l'obtient par la procédure suivante. On considère le noyau de la triade $N = \text{Ker } d_1$. Il existe une fonction $q : \mathbb{Z} \to \mathbb{N}$, à support fini, telle que, si on pose $Q = \bigoplus_{n \in \mathbb{Z}} R_A(-n)^{q(n)}$, on ait une suite exacte : $0 \to Q \to N \to I_C(h) \to 0$, c'est-à-dire une résolution de type N de C. Si on note $\mathcal{L}_i, \mathcal{N}, \mathcal{Q}$ les faisceaux associés à L_i, N, Q on a rang $Q = \text{rang } \mathcal{N} - 1 = \text{rang } \mathcal{L}_1 - \text{rang } \mathcal{L}_0 + \text{rang } \mathcal{L}_{-1} - 1$.

302

Nous rappelons brièvement ici le calcul de la fonction q. Pour toutes précisions voir [11] 3.1 et [12] 3.11.

Rappelons d'abord que, pour $q: \mathbb{Z} \to \mathbb{Z}$ nulle pour $n \ll 0$, on pose

$$q^{\sharp}(n) = \sum_{k \le n} q(k).$$

On considère une présentation $L_2 \to N$ avec L_2 libre gradué sur R_A . On en déduit un homomorphisme de degré $0, s: L_2 \to L_1$.

On pose $L_2 = \bigoplus_{k \in \mathbb{Z}} R_A(-k)^{l_2(k)}$ et $L_{2,\leq n} = \bigoplus_{k \leq n} R_A(-k)^{l_2(k)}$ et on appelle s_n la restriction de s à $L_{2,\leq n}$ et $s_{n,t}$ sa valeur au point fermé de $T = \operatorname{Spec} A$ (i.e. pour a = 0). Le résultat suivant explicite le calcul de la fonction q (cf. [11] 1.15 et 3.1) :

Théorème 0.5

La fonction q se calcule comme suit :

pour $n \leq b_0$ on a $q^{\sharp}(n) = \alpha_n = \beta_n$, pour $n > b_0$ on a $q^{\sharp}(n) = \inf(\alpha_n - 1, \beta_n)$,

où les invariants, α_n, β_n, b_0 sont donnés par les formules suivantes :

1) On a $\alpha_n = \operatorname{rang} s_{n,t}$, de sorte que α_n est le plus grand entier α tel que $s_{n,t}$ ait un α -mineur non nul.

2) L'entier β_n est le plus grand entier β tel que les β -mineurs de $s_{n,t}$ soient sans facteur commun dans R.

- 3) Un entier $n \text{ est} \leq b_0$ (partie dite "obligatoire") si et seulement si il vérifie :
 - a) $\alpha_n = \beta_n$,
 - b) le sous-R-module F de $L_{1,t}$ engendré par les colonnes de la matrice $s_{n,t}$ est libre de rang α_n .

h) Composants

Nous utiliserons dans ce qui suit le vocabulaire des composants introduit dans [2].

On appelle composants les composantes irréductibles des schémas $H_{\gamma,\rho}$. (²) Un composant X est dit sous-adhérent à un composant Y si on a $X \cap \overline{Y} \neq \emptyset$ (ici \overline{Y} est l'adhérence de Y dans $H_{\gamma,\rho}$).

Dans le cas des courbes de Koszul, la situation est assez simple :

Proposition 0.6

Soit $H_{\gamma,\rho} \subset H_{d,g}$ un sous-schéma à cohomologie constante. On suppose que $H_{\gamma,\rho}$ contient une courbe de Koszul C de module de Rao M. Soit X l'ensemble des courbes de Koszul de $H_{\gamma,\rho}$. Alors l'adhérence \overline{X} de X dans $H_{\gamma,\rho}$ est une composante irréductible de $H_{\gamma,\rho}$ (donc un composant de $H_{d,g}$, on parlera d'un composant de type Koszul). En particulier si une composante connexe de $H_{d,g}$ contient C elle contient toutes les courbes de Koszul de même cohomologie que C.

 $^(^2)$ ce sont en quelque sorte les composants élémentaires du schéma de Hilbert.

Démonstration. On note d'abord que la donnée de la fonction de Rao ρ détermine le type (n_1, n_2, n_3, n_4) du module M (cf. [15] 0.4). On note ensuite que la famille K_{ρ} des modules de Koszul de fonction ρ est irréductible et ouverte dans la famille E_{ρ} de tous les modules de fonction ρ (cf. [15] 2.1). Comme la flèche de l'étape intermédiaire Φ : $H_{\gamma,\rho} \to E_{\rho}$ est lisse et irréductible (cf. [13] VII 1.1 et 1.5), il en résulte que $X = \Phi^{-1}(K_{\rho})$ est ouverte dans $H_{\gamma,\rho}$ et irréductible, donc que son adhérence est bien une composante irréductible. \Box

1. Stratégie de démonstration

Notons, avant toute chose, que si on a une famille de courbes paramétrée par un anneau local intègre, la courbe générique et la courbe spéciale de la famille sont dans la même composante connexe du schéma de Hilbert.

a) Principe de la preuve du Lemme B

Nous aurons besoin du lemme suivant :

Lemme 1.1

Soit C une famille de courbes paramétrée par un anneau local intègre A. Soit C_0 la courbe spéciale et C_{ξ} la courbe générique de C. Soit s un entier tel que $h^0 \mathcal{J}_{C_{\xi}}(s) \neq 0$. Alors, il existe une biliaison élémentaire triviale (s, +1) qui transforme C en une famille C'.

Démonstration. Cela résulte de [10] 1.6. \Box

Le Lemme B résulte du Lemme C :

Lemme C

Soient (n_1, n_2, n_3, n_4) des entiers avec $1 \le n_1 \le n_2 \le n_3 \le n_4$.

1) Si on a $n_2 \geq 2$, il existe une famille de courbes C, paramétrée par un anneau de valuation discrète, telle que la courbe générique C_{ξ} de la famille soit la courbe minimale d'un module de Koszul M_{ξ} de paramètres (n_1, n_2, n_3, n_4) et la courbe spéciale une courbe de Koszul de module M_0 strictement plus grand que M_{ξ} .

2) Si on a $n_1 = n_2 = 1$ il existe, pour tout entier $s \ge 2$, une famille de courbes C, paramétrée par un anneau de valuation discrète, telle que la courbe C_{ξ} soit obtenue à partir de la courbe minimale d'un module de Koszul M_{ξ} de paramètres (n_1, n_2, n_3, n_4) par une biliaison $s, \pm 1$ et telle que la courbe spéciale soit une courbe de Koszul de module M_0 strictement plus grand que M_{ξ} . Le Lemme B se réduit facilement au Lemme C. Soit X un composant de type Koszul de paramètres (n_1, n_2, n_3, n_4) (cf. 0.6), non formé de courbes extrémales. Il suffit de montrer qu'il existe une courbe de X qui admet une spécialisation qui est encore de Koszul, mais avec un module strictement plus grand. Soit X_0 le composant des courbes de Koszul minimales de type (n_1, n_2, n_3, n_4) . À déformation près, une courbe de X s'obtient à partir d'une courbe de X_0 par une suite de biliaisons élémentaires triviales $(s_i, 1), i = 1, \dots, r$ (c'est la propriété de Lazarsfeld-Rao, cf. par exemple [13] IV 5.1). Il y a deux cas :

- 1) Les courbes de X_0 ne sont pas extrémales. On construit grâce au Lemme C une famille \mathcal{C} dont la courbe générique C_{ξ} est dans X_0 et dont la courbe spéciale C_0 est une courbe de Koszul de module strictement plus grand. En utilisant le Lemme 1.1 on obtient une famille \mathcal{C}' avec C'_{ξ} dans X et C'_0 de module de Rao strictement plus grand.
- 2) Les courbes de X_0 sont extrémales. On considère le composant X_1 obtenu à partir de X_0 par une biliaison $(s_1, +1)$. Par le Lemme C on a une famille qui joint une courbe de X_1 à une courbe de Koszul de module strictement plus grand et on conclut comme dans le premier cas en appliquant encore 1.1.
- b) Réduction au Lemme B

Supposons le Lemme B établi et montrons le Théorème A en raisonnant par l'absurde. Soit $C \in H_{d,g}$ une courbe de Koszul qui ne soit pas dans la composante connexe des courbes extrémales $\mathcal{E}_{d,g}$ et dont le module de Rao M_C soit maximal pour cette condition. Soit X le composant des courbes de Koszul de même cohomologie que C (cf. 0.6) et C_{ξ} la courbe générique de X. En vertu du Lemme B, C_{ξ} admet une spécialisation C_0 qui est une courbe de Koszul de module strictement plus grand que M. Vu l'hypothèse de maximalité faite sur M_C , la courbe C_0 est dans $\mathcal{E}_{d,g}$ donc aussi C_{ξ} et C: contradiction.

2. Preuve du Lemme C : les cas particuliers

Dans ce paragraphe nous montrons le Lemme C lorsque n_2 est ≤ 2 .

a) Le cas des pseudo-extrémales

Nous montrons ici le Lemme C dans le cas où C_{ξ} est pseudo-extrémale, c'est-à-dire lorsque son module de Rao est extrémal, donc vérifie $n_1 = n_2 = 1$. Dans ce cas on peut préciser le Lemme C sous la forme suivante :

Lemme 2.1

Soient d, g, s des entiers avec $g < \frac{(d-2)(d-3)}{2}$ et $s \ge 2$. Il existe une famille de courbes C dont le point générique est une courbe C_{ξ} obtenue par une biliaison (s, +1) à partir d'une courbe extrémale de degré d et genre g et dont le point spécial est une courbe pseudo-extrémale de module strictement plus grand que $M_{C_{\xi}}$.

Démonstration. Nous donnons une preuve de ce lemme via les triades. Ce lemme (joint au Lemme 1.1) implique que les courbes pseudo-extrémales sont dans la composante connexe des extrémales. Ce fait est prouvé par la méthode des petits dessins dans [9] 3.2 (dans le cas $s \leq d$) et par la méthode des équations dans [20] 2.5 (dans le cas s > d).

Rappelons (cf. [15]) que le module de Rao d'une courbe $C_{0,\xi}$ extrémale (d,g) est un module de Koszul de paramètres

$$1, 1, k, k+l$$
 avec $l = d-2 \ge 0$ et $k = \frac{(d-2)(d-3)}{2} - g > 0$

Avec ces notations, la résolution de type N de $C_{0,\xi}$ est la suivante (cf. [13] III 4.3) :

$$3 - k, l + 2 \rightarrow [(2 - k)^2, 1, l + 1 \rightarrow 1 - k] \rightarrow I_{C_{0,\xi}}$$

et on en déduit celle de la courbe C_{ξ} obtenue à partir de $C_{0,\xi}$ par une biliaison (s, +1):

(1)
$$4-k, l+3, s+1 \to [(3-k)^2, 2, l+2, s \to 2-k] \to I_{C_{\xi}}.$$

La courbe C_{ξ} est de degré l + 2 + s et de genre

$$\frac{l(l+1)}{2} - k + 2 + \frac{s(s-3)}{2}$$

Nous distinguons nous aussi les cas $s \leq d$ et s > d.

i) Le cas s > d

Nous montrons que C_{ξ} admet une spécialisation C_0 , dont le module est extrémal de paramètres 1, 1, k, k + s - 2, avec s - 2 > l. Pour cela nous construisons une triade modulaire, c'est-à-dire une triade dans laquelle l'homomorphisme d_0 est nul, ou encore une triade définie par un R_A -module, cf. [12] 4.1.

Soit *n* un entier vérifiant n > k + l. Considérons la triade modulaire définie par le R_A -module $M_A = R_A/(X, Y, Z^k, aT^{k+l}, T^n)$. On a une présentation de M_A :

$$2, k+1^2, k+l+1^2, n, n+1^2, 2k+l, n+k \xrightarrow{s} 1^2, k, k+l, n \xrightarrow{d_1} 0 \to M_A \to 0$$

avec la matrice s ci-dessous :

$$s = \begin{pmatrix} Y & Z^k & 0 & aT^{k+l} & 0 & 0 & T^n & 0 & 0 & 0 \\ -X & 0 & Z^k & 0 & aT^{k+l} & 0 & 0 & T^n & 0 & 0 \\ 0 & -X & -Y & 0 & 0 & 0 & 0 & aT^{k+l} & T^n \\ 0 & 0 & 0 & -X & -Y & T^{n-k-l} & 0 & 0 & -Z^k & 0 \\ 0 & 0 & 0 & 0 & 0 & -a & -X & -Y & 0 & -Z^k \end{pmatrix}.$$

La triade se réduit ici à la flèche $d_1 = (X, Y, Z^k, aT^{k+l}, T^n) : L_1 \to L_0.$

Le calcul de la fonction q est facile avec [11] rappelé en 0.5 ci-dessus. Nous le détaillons ici pour le lecteur qui ne serait pas familier avec ce type de calcul. On considère la matrice \overline{s} obtenue en faisant a = 0 dans s et on doit calculer les mineurs des sous-matrices $\overline{s}_{\leq n}$ formées des colonnes de degrés $\leq n$ de \overline{s} .

Il faut, *a priori*, distinguer plusieurs cas selon les valeurs des paramètres, mais tous mènent au même résultat.

Supposons k > 1. On a $\alpha_2 = \beta_2 = 1$ et le sous-module engendré par la colonne de degré 2 est libre, de sorte qu'on a $b_0 \ge 2$: la colonne 2 est "obligatoire" et on a $q(2) = \alpha_2 = \beta_2 = 1$. On a ensuite $\alpha_{k+1} = \beta_{k+1} = 2$ (le rang de $\overline{s}_{\le k+1}$, c'est-à-dire les 3 premières colonnes de \overline{s} , est 2 et les 2-mineurs de $\overline{s}_{\le k+1}$ n'ont pas de facteur commun). Comme il y a trois colonnes et que le rang n'est que 2 on n'est plus "dans l'obligatoire" et on a donc $q^{\sharp}(k+1) = \inf(\alpha_{k+1} - 1, \beta_{k+1}) = 1$, donc q(k+1) = 0. Dans le cas k = 1 on a k + 1 = 2 et $q^{\sharp}(k+1) = 1$, donc la même conclusion.

On a ensuite $\alpha_{k+l+1} = \beta_{k+l+1} = 3$ donc $q^{\sharp}(k+l+1) = 2$ et q(k+l+1) = 1. Enfin, quelles que soient les positions relatives des paramètres on voit que l'invariant α n'atteint la valeur 4 qu'en n+1. On a donc $q^{\sharp}(n+1) = 3$ et q(n+1) = 1.

Les valeurs non nulles de q sont donc en 2, k + l + 1, n + 1. On obtient ainsi une famille de courbes C, à spécialité constante puisque la triade est modulaire, qui admet la résolution de type N suivante :

$$2, k+l+1, n+1 \to [1, 1, k, k+l, n \to \underline{0}] \to \mathcal{J}_{\mathcal{C}}(h) \to 0.$$

Il en résulte que le décalage h est égal à 2 - k et on a donc la résolution :

$$4 - k, l + 3, n - k + 3 \rightarrow [3 - k^2, 2, l + 2, n - k + 2 \rightarrow 2 - k] \rightarrow \mathcal{J}_{\mathcal{C}} \rightarrow 0.$$

Appliquons ce qui précède en prenant n = k + s - 2. On a bien n > k + l car s est > d. La courbe générique de la famille \mathcal{C} a pour module de Rao $M_{\xi} = M_A \otimes_A K = R(2-k)/X, Y, Z^k, T^{k+l})$, tandis que la courbe spéciale C_0 a pour module de Rao $M_0 = M_A \otimes_A k = R(2-k)/(X, Y, Z^k, T^n)$, de sorte que M_0 est strictement plus grand que M_{ξ} . En regardant la résolution de $\mathcal{J}_{\mathcal{C}}$ sous deux angles on voit que C_{ξ} est obtenue à partir de la courbe minimale de sa classe par une biliaison (s, +1), tandis que C_0 est obtenue à partir de la courbe minimale $C_{0,0}$ de sa classe par une biliaison (l + 2, +1). On a donc prouvé 2.1 dans ce cas. \Box

Remarque 2.2. On peut généraliser la triade modulaire ci-dessus en posant

$$d_1 = (X^{n_1}, Y^{n_2}, Z^{n_3}, aT^{n_4}, T^{n'_4})$$

avec $n_4 < n'_4$. Dans certains cas, cette triade permet de montrer la partie *a*) du Lemme C (i.e. le cas $n_2 > 1$). On vérifie facilement, en effet, que l'on obtient une famille minimale de courbes C dont la courbe générique C_{ξ} est minimale pourvu que les deux conditions suivantes soient réalisées : $n_2 + n_3 > n_1 + n_4$ et $n_2 \ge 2n_1$. Dans les autres cas, la famille minimale C n'est pas au niveau de la courbe minimale de M_{ξ} et ne permet donc pas de prouver le Lemme C. Les premiers exemples où cette méthode est en défaut sont les modules de paramètres (1, 2, 2, 3) (courbes de degré 4 et de genre

-3: on a $n_2 + n_3 = n_1 + n_4$) et les modules de paramètres (2, 3, 3, 3) (courbes de degré 15 et de genre 13 : on a $n_2 < 2n_1$).

ii) Le cas $s \leq d$

La situation est un peu plus difficile dans ce cas car la triade à mettre en œuvre n'est plus modulaire.

On dispose toujours de trois entiers k, l, s avec $k > 0, l \ge 0$, avec cette fois $2 \le s \le l+2$. On définit $d_0: L_0 \to L_{-1}$ en prenant

$$L_{-1} = \underline{0}, \quad L_0 = \underline{0}, 1^2, l+3-s, k+l \text{ et } d_0 = (a, X, Y, Z^{l+3-s}, T^{k+l}).$$

Le conoyau de la triade que nous allons construire sera donc un module de Koszul extrémal.

Appelons $e; e_1, \dots, e_4$ les vecteurs de base de L_0 et notons P_1, \dots, P_4 les polynômes X, Y, Z^{l+3-s}, T^{k+l} . On a une résolution libre du R_A -module $C = \operatorname{Coker} d_0$ (donnée par le complexe de Koszul) :

$$\cdots \to L'_2 \xrightarrow{\delta_2} L'_1 \xrightarrow{\delta_1} L_0 \xrightarrow{d_0} L_{-1} \to C \to 0,$$

dans laquelle Ker $d_0 = \text{Im } \delta_1$ est engendré par les vecteurs $\epsilon_i = P_i e - a e_i$ pour $i = 1, \dots, 4$ et les vecteurs $\epsilon_{i,j} = P_j e_i - P_i e_j$ pour $1 \le i < j \le 4$. La flèche δ_2 fournit les relations entre ces vecteurs qui sont de deux types :

$$(\eta_{i,j}) \qquad a\epsilon_{i,j} + P_j\epsilon_i - P_i\epsilon_j = 0, \quad \text{pour } 1 \le i < j \le 4,$$

$$(\eta_{i,j,k}) \qquad P_k \epsilon_{i,j} + P_i \epsilon_{j,k} - P_j \epsilon_{i,k} = 0, \quad \text{pour } 1 \le i < j < k \le 4.$$

On définit alors $d_1 : L_1 \to L_0$, où L_1 est libre de rang 10, en donnant les images des vecteurs de base de L_1 : ce sont les ϵ_i sauf ϵ_3 , les $\epsilon_{i,j}$ sauf $\epsilon_{2,4}$, $\epsilon'_3 = aZ^k\epsilon_3$ et $\epsilon'_4 = \epsilon_{2,4} - Z^{k+s-2}\epsilon_3$. Voici la matrice d_1 , en posant p = l + 3 - s, n = k + s - 2:

$$d_{1} = \begin{pmatrix} X & Y & T^{k+l} & 0 & 0 & 0 & 0 & 0 & aZ^{k+p} & -Z^{n+p} \\ -a & 0 & 0 & Y & Z^{p} & T^{k+l} & 0 & 0 & 0 & 0 \\ 0 & -a & 0 & -X & 0 & 0 & Z^{p} & 0 & 0 & T^{k+l} \\ 0 & 0 & 0 & 0 & -X & 0 & -Y & T^{k+l} & -a^{2}Z^{k} & aZ^{n} \\ 0 & 0 & -a & 0 & 0 & -X & 0 & -Z^{p} & 0 & -Y \end{pmatrix}.$$

On obtient ainsi une triade $L_{\cdot} = (L_1 \xrightarrow{d_1} L_0 \xrightarrow{d_0} L_{-1})$. Les degrés des vecteurs de base de L_1 , dans l'ordre ci-dessus, sont les suivants :

$$1, 1, k+l, 2, l+4-s, k+l+1, l+4-s, k+2l+3-s, k+l+3-s, k+l+1, l+4-s, k+2l+3-s, k+l+1, l+4-s, k+2l+3-s, k+l+1, l+4-s, k+2l+3-s, k+3-s, k+3-s, k+3-s, k+3-s, k+3-s, k+3$$

Calculons le module M_{ξ} c'est-à-dire l'homologie du complexe L_{\cdot} au point générique de A, donc en supposant a inversible, ou encore en localisant A en son corps des fractions

K. On note $d_{0,\xi}$ et $d_{1,\xi}$ les homomorphismes localisés. Comme K est plat sur A, le noyau de $d_{0,\xi}$ est l'image de $\delta_{1,\xi}$ et il faut donc calculer $M_{\xi} = \operatorname{Im} \delta_{1,\xi}/\operatorname{Im} d_{1,\xi}$. Vu la définition de d_1 , il est clair que le module M_{ξ} est engendré par l'image $\overline{\epsilon}_3$ de ϵ_3 . Les relations, outre la relation $Z^k \overline{\epsilon}_3 = 0$ qui provient de d_1 , sont issues des relations $(\eta_{i,j})$ et $(\eta_{i,j,k})$ ci-dessus. Les relations de type $(\eta_{i,j})$ donnent $X\overline{\epsilon}_3 = Y\overline{\epsilon}_3 = T^{k+l}\overline{\epsilon}_3 = 0$. On a aussi $\overline{\epsilon}_{2,4} = Z^{k+s-2}\overline{\epsilon}_3$, mais on vérifie que les relations de type $(\eta_{i,j,k})$ faisant intervenir $\epsilon_{2,4}$ ne donnent pas de relation supplémentaire. Il en résulte que le module M_{ξ} est le module de Koszul $R/(X, Y, Z^k, T^{k+l})$.

Calculons maintenant l'homologie au point spécial du complexe L_{\star} , c'est-à-dire le module $M_0 = \text{Ker } \overline{d_0}/\text{Im } \overline{d_1}$ obtenu en faisant a = 0.

Il est clair que Ker \overline{d}_0 est engendré par le vecteur e et les vecteurs $\epsilon_{i,j}$. Vu la forme de d_1 , le module M_0 est donc engendré par \overline{e} . On a les relations $X\overline{e} = Y\overline{e} = T^{k+l}\overline{e} = 0$ provenant de d_1 . Par ailleurs, on a $\overline{\epsilon}_{2,4} = Z^{k+s-2}\overline{e}$ et la relation $(\eta_{i,j,k})$ pour (i, j, k) = (2, 3, 4) donne $Z^{k+2l+4-s}\overline{e} = 0$. Le module M_0 est donc le module de Koszul $R/(X, Y, Z^{k+2l+4-s}, T^{k+l})$, strictement plus grand que M_{ξ} .

Nous calculons maintenant un début de résolution de Ker d_1 . Le calcul se fait à l'aide des bases de Gröbner et du théorème de Schreyer. On obtient la matrice $S: L_2 \rightarrow L_1$ ci-dessous dont l'image est Ker d_1 . On a posé p = l+3-s, n = k+s-2, r = k+l. Les degrés des colonnes de S sont, dans l'ordre, 2, l+5-s, k+l+4-s, k+l+4-s, k+l+1, k+l+1, k+l+2, k+2l+4-s, k+2l+4-s, k+2l+5-s, 2k+2l+3-s, 2k+3l+4-s.

(^y	7	0	aZ^{k+p}	0	T^{r}	0	Z^{n+p}	0	0	0	0	0
	X	0	0	aZ^{k+p}	0	T^r	0	0	Z^pT^r	Z^{n+2p}	0	0
C)	0	0	0	-X	-Y	0	0	$-YZ^p$	0	$-aZ^{p+k}$	$-Z^{n+2p}$
a	$a Z^p = 0$	0	0	0	T^{r}	0	0	0	0	0		
C) –	-Y	$a^2 Z^k$	0	0	0	aZ^n	T^r	0	0	0	0
C)	0	0	0	a	0	-Y	$-Z^p$	0	0	0	0
C)	X	0	$a^2 Z^k$	0	0	0	0	aT^r	$aZ^{n+p} - YT^r$	0	T^{2r}
C)	0	0	0	0	0	0	X	aY	$-Y^2$	$a^2 Z^k$	$aZ^{n+p} + YT^r$
C)	0	-X	-Y	0	Z^{n-k}	0	0	0	0	T^r	0
)	0	0	0	0	a	X	0	0	YZ^p	0	$-Z^pT^r$

Pour calculer la fonction q on étudie la matrice \overline{S} obtenue en faisant a = 0 dans S. On écrit les degrés dans l'ordre : $2 < l+5-s \le k+l+4-s \le k+2l+4-s \le 2k+2l+3-s \le 2k+3l+4-s \le 2k+2l+4-s \le 2k+3l+4-s$.

Passons au calcul de la fonction q. Soit \mathcal{N} le faisceau associé à Ker d_1 . Il est clair que \mathcal{N} est localement libre de rang 6, de sorte que le faisceau dissocié \mathcal{Q} de fonction caractéristique q cherché doit être de rang 5. On commence par noter qu'on a $\alpha_{k+2l+4-s} = 6$ (il y a un 6-mineur égal à X^6 dans la sous-matrice obtenue en enlevant

les trois dernières colonnes) et $\beta_{k+2l+4-s} = 5$. On a donc $q^{\sharp}(k+2l+4-s) = 5$. Cela signifie que la fonction q est en degrés $\leq k+2l+4-s$.

Il faut ensuite distinguer des cas selon les valeurs des paramètres. Dans le cas "générique" : k > 1, s > 3, l + 2 > s les degrés sont strictement dans l'ordre cidessus. On a successivement $\alpha_2 = \beta_2 = 1, \alpha_{l+5-s} = \beta_{l+5-s} = 2$ et $l + 5 - s \le b_0$, donc q(2) = q(l + 5 - s) = 1 (on est dans la zone "obligatoire"), puis $\alpha_{k+l+4-s} = \beta_{k+l+4-s} = 3$ donc $q(k+l+4-s) = 0, \alpha_{k+l+1} = \beta_{k+l+1} = 4,$ donc $q(k+l+1) = 1, \alpha_{k+l+2} = \beta_{k+l+2} = 5,$ donc q(k+l+2) = 1. En résumé, la fonction q vaut 1 en les entiers suivants : 2, l + 5 - s, k + l + 1, k + l + 2, k + 2l + 4 - s.

On vérifie que ce résultat est encore valable si on a les inégalités larges $k \ge 1$, $s \ge 3$ et $l + 2 \ge s$, puis qu'il vaut aussi dans le cas s = 2. On a donc, dans tous les cas, la même résolution numérique de type N de la famille minimale C associée à la triade (que nous donnons ci-dessous après avoir "simplifié" les termes redondants de la résolution) :

$$l+5-s, k+2l+4-s, k+l+2 \rightarrow [l+4-s^2, k+l+3-s, k+2l+3-s, k+l+1 \rightarrow l+3-s]$$

Le décalage est égal à k + l + 1 - s et après avoir appliqué ce décalage il reste une résolution identique à (1). La courbe générique C_{ξ} , de module de Rao M_{ξ} , est donc obtenue à partir de la courbe minimale par une biliaison s, +1.

Nous calculons maintenant la résolution numérique de type N de la courbe spéciale C_0 par la procédure explicitée en 0.3. Cette résolution s'obtient en faisant la différence entre la résolution numérique de $C \otimes_A k$ (qui est un module de Koszul de paramètres 1, 1, l+3-s, k+l) et celle de la triade. Comme les modules C et M_0 ont même origine, il en est de même des modules libres P_0 , L_{-1} et F_0 et, quitte à décaler les fonctions caractéristiques, on peut normaliser ces modules en mettant cette origine en 0. Après simplification de tous les termes redondants, il reste :

$$2, k+2l+5-s, k+l+1 \to [1, 1, k+2l+4-s, k+l, k+l+3-s \to \underline{0}] \to \mathcal{J}_{C_0}(h').$$

On reconnaît (cf. 0.4) la résolution d'une courbe C_0 obtenue à partir de la courbe minimale du module de Rao M_0 de paramètres 1, 1, k + 2l + 4 - s, k + l par une biliaison (2, s - 2). Ceci achève de montrer 2.1.

b) Le cas $n_2 = 2$

Soient k, l, m, n quatre entiers > 0, avec n > m. On pose r = l + m. On considère l'homomorphisme $d_0 : L_0 \to L_{-1}$, avec $L_{-1} = \underline{0}$ et $L_0 = \underline{0}, k, l, r, m$, de matrice $d_0 = (a, X^k, Y^l, Z^r, T^m)$. Comme dans le cas précédent, le conoyau de la triade est un module de Koszul, mais plus nécessairement extrémal. Appelons $e; e_1, \dots, e_4$ les vecteurs de base de L_0 et notons P_1, \dots, P_4 les polynômes X^k, Y^l, Z^r, T^m . Le noyau de d_0 est engendré par les vecteurs $\epsilon_i = P_i e - ae_i$ pour $i = 1, \dots, 4$ et les vecteurs $\epsilon_{i,j} = P_j e_i - P_i e_j$ pour $1 \le i < j \le 4$. On définit alors $d_1 : L_1 \to L_0$, où L_1 est libre de rang 9, en donnant les images des vecteurs de base de L_1 : ce sont les ϵ_i sauf ϵ_3 et ϵ_4 les $\epsilon_{i,j}$ sauf $\epsilon_{2,4}$, plus $\epsilon'_4 = T^{n-m} \epsilon_4$ et $\epsilon'_3 = \epsilon_{2,4} + \epsilon_3$. La matrice de d_1 est donc la suivante :

$\int X^k$	Y^l	Z^r	T^n	0	0	0	0	0
-a	0	0	0	Y^l	Z^r	T^m	0	0
0	-a	T^m	0	$-X^k$	0	0	Z^r	0
0	0	-a	0	0	$-X^k$	0	$-Y^l$	T^m
0	0	$-Y^l$	$-aT^{n-m}$	0	0	$-X^k$	0	$-Z^r$

Les degrés de L_1 sont, dans l'ordre ci-dessus : k, l, r, n, k+l, k+r, k+m, l+r, m+r.

Les degrée de $L_1 = (L_1 \xrightarrow{d_1} L_0 \xrightarrow{d_0} L_{-1})$ est une triade et les calculs relatifs à cette triade sont analogues à ceux effectués au paragraphe précédent. Le lecteur vérifiera les faits suivants.

En premier lieu, le module M_{ξ} au point générique est, à décalage près, le module $R/(X^k, Y^{2l}, Z^r + T^m Y^l, T^{n-m})$, donc un module de Koszul de paramètres k, 2l, l + m, n - m tandis que le module M_0 au point spécial est $R/(X^k, Y^l, Z^{2r}, T^n)$ qui est strictement plus grand que M_{ξ} .

Ensuite, si on se donne quatre entiers $n_1 \leq n_2 = 2 \leq n_3 \leq n_4$, et si on pose $k = n_1, l = 1, m = n_3 - 1$ et $n = n_3 + n_4 - 1$ (de sorte qu'on a $k \leq 2$ et $n \geq 2m+1$), le module M_{ξ} de la triade précédente est un module de Koszul de paramètres n_1, n_2, n_3, n_4 . On vérifie que la fonction q associée à la triade vaut 1 en les entiers suivants : k + 1, k + m + 1, k + m + 2, k + n, sauf dans le cas k = 1, n = 2m + 1 où elle vaut 1 en 2, m+2, m+3, 2m+3. Dans tous les cas on constate que la courbe générique de la famille minimale est la courbe minimale C_{ξ} , de degré d_{ξ} , associée au module M_{ξ} , tandis que la courbe spéciale C_0 , de degré d_0 , est obtenue à partir de la courbe minimale associée à M_0 par une ou plusieurs biliaisons. Précisément, en utilisant l'algorithme de calcul de C_0 donné en 0.3 et 0.4, on obtient les résultats suivants :

- pour k = 2 et $n \ge 2m + 3$, $d_{\xi} = 2n 4m + 6$, $d_0 = n 2m + 1$, deux biliaisons : (3,+1) et (n - 2m + 2, +1),
- pour k = 2 et n = 2m + 2, $d_{\xi} = 10$, $d_0 = 6$, une biliaison (4, +1),
- pour k = 2 et n = 2m + 1, $d_{\xi} = 8$, $d_0 = 4$, une biliaison (4, +1),
- pour $k = 1, n \ge 2m + 2, d_{\xi} = n 2m + 2, d_0 = n 2m$, une biliaison (2, +1),
- enfin, pour k = 1, n = 2m + 1, $d_{\xi} = 6$, $d_0 = 3$, une biliaison (3, +1).

Cela achève de prouver le Lemme C dans le cas $n_2 = 2$. \Box

Remarque 2.3. En fait, la triade précédente donne toujours une famille convenable quelles que soient les valeurs de k, l, m, n. Cela permet de montrer le Lemme C pour les modules de Koszul tels que l'un des n_i soit pair. Le premier exemple qui met à la fois en défaut ces triades dont le conoyau est lui-même un Koszul et les triades modulaires évoquées en 2.2 est le cas d'un module M_{ξ} de paramètres 3, 3, 3, 3. Dans ce cas la courbe C_{ξ} est de degré 18 et genre 19 (c'est la réunion de deux intersections complètes 3×3) et on peut montrer que pour toute famille joignant cette courbe à une

courbe de Koszul de module strictement plus grand, le conoyau de la triade associée n'est pas un module de Koszul.

3. Preuve du Lemme C : le cas général

Dans ce paragraphe nous montrons le Lemme C dans le cas général. Nous construisons donc une famille de courbes C paramétrée par un anneau de valuation discrète, dont la courbe générique et la courbe spéciale sont des courbes de Koszul, de modules distincts, la générique C_{ξ} étant, de plus, une courbe minimale. Nous obtenons comme courbes C_{ξ} toutes les courbes de Koszul minimales correspondant à des modules de paramètres $n_1 \leq n_2 \leq n_3 \leq n_4$ avec $n_2 \geq 3$. Les calculs se font toujours à l'aide des bases de Gröbner, mais ils sont nettement plus compliqués que dans les cas précédents et le lecteur est averti que certaines vérifications, faciles mais fastidieuses, ne seront pas détaillées. L'utilisation du logiciel Macaulay est un excellent moyen de tester les phénomènes sur des cas particuliers.

On se donne quatre entiers k, l, m, n avec $k, l \ge 1, m \ge 2, n \ge k+2$. On pose p = k(m-1) + n - 1.

a) L'homomorphisme d_0

On considère deux R_A -modules gradués libres L_0 et L_{-1} et un homomorphisme $d_0: L_0 \to L_{-1}$, de degré 0. Le module L_{-1} est de rang k, avec une base ξ_1, \dots, ξ_k , le module L_0 est de rang 3k + 3 avec une base e_0, \dots, e_k ; e'_0, \dots, e'_k ; e''_1, \dots, e''_k ; e. Avec la convention que $\xi_i = 0$ pour $i \leq 0$ et i > k, l'homomorphisme d_0 est défini comme suit :

 $d_0(e_i) = T^{m-1}\xi_i - a\,\xi_{i+1}, \text{ sauf pour } i = 1 \text{ où l'on a } d_0(e_1) = T^{n+m-1}\xi_1 - a\,\xi_2;$ $d_0(e'_i) = Z^m\xi_i - X\,\xi_{i+1}, \text{ sauf pour i=1 où l'on a } d_0(e'_1) = Z^mT^n\xi_1 - X\,\xi_2;$ $d_0(e''_i) = Y^l\xi_i, \quad d_0(e) = Z^p\xi_1.$

Autrement dit, d_0 est donné par la matrice $k \times (3k+3)$ suivante :

Nous normaliserons les degrés en posant deg $\xi_1 = 0$. On a alors deg $\xi_i = n + (i-1)(m-1)$ pour $i = 2, \dots, k$, deg $e_0 = 0$, deg $e_i = n + i(m-1)$ pour $i = 1, \dots, k$, deg $e'_0 = 1$,

 $\deg e'_i = n + i(m-1) + 1 \text{ pour } i = 1, \dots, k, \deg e''_1 = l, \deg e''_i = n + (i-1)(m-1) + l$ pour $i = 2, \dots, k$ et enfin, $\deg e = p = k(m-1) + n - 1$.

On pose $C = \operatorname{Coker} d_0$. Contrairement à ce qui se passait dans les cas précédents, C n'est pas un module de Koszul.

b) Calcul de la résolution de C, premier pas

On calcule une résolution libre graduée du module C à l'aide des bases de Gröbner. Cette résolution est de la forme suivante :

$$\cdots L_2' \xrightarrow{\delta_2} L_1' \xrightarrow{\delta_1} L_0 \xrightarrow{d_0} L_{-1} \to C \to 0.$$

Voici les images des vecteurs de base de L'_1 par δ_1 (on garde la convention selon laquelle on remplace par 0 un vecteur dont l'indice n'existe pas) :

- relations faisant intervenir $e, \ \epsilon = Z^p e_0 + ae, \ \epsilon' = Z^p e'_0 + Xe, \ \epsilon'' = Z^p e''_1 Y^l e$ et $\epsilon''' = T^n e Z^{p-m} e'_1 XZ^{p-2m} e'_2 \dots X^{k-1}Z^{p-km} e'_k.$
- relations entre e_i et e''_i : ϵ'_i = Y^le_i T^{m-1}e''_i + ae''_{i+1} pour i = 0, ..., k, avec un cas particulier pour i = 1 : ϵ'₁ = Y^le₁ T^{n+m-1}e''₁ + ae''₂ (et la traduction de la convention : ϵ'₀ = Y^le₀ + ae''₁, et ϵ'_k = Y^le_k T^{m-1}e''_k).
 relations entre e'_i et e''_i : ϵ_i = Y^le'_i Z^me''_i + Xe''_{i+1} pour i = 0,..., k avec un
- relations entre e'_i et e''_i : $\epsilon_i = Y^l e'_i Z^m e''_i + X e''_{i+1}$ pour $i = 0, \dots, k$ avec un cas particulier pour i = 1: $\epsilon_1 = Y^l e'_1 Z^m T^n e''_1 + X e''_2$ (et la traduction de la convention : $\epsilon_0 = Y^l e'_0 + X e''_1$, $\epsilon_k = Y^l e'_k Z^m e''_k$).
- relations entre e_i et e'_i , k+2 relations $\epsilon''_0 = Xe_0 ae'_0$, $\epsilon''_{0,1} = Xe_1 ae'_1 + T^{n+m-1}e'_0 Z^m T^n e_0$, $\epsilon''_{i-1,i} = Xe_i ae'_i Z^m e_{i-1} + T^{m-1}e'_{i-1}$ pour $i = 2, \dots, k$ et $\epsilon''_k = Z^m e_k T^{m-1}e'_k$.
- Enfin il reste k + 2 relations E_0, \dots, E_{k+1} :

$$\begin{split} E_0 &= T^{n+k(m-1)} e_0 + \sum_{i=1}^k a^i T^{(k-i)(m-1)} e_i, \\ E_s &= Z^{(s-1)m} \, T^{n+(k-s+1)(m-1)} e_0' + \sum_{i=1}^{s-1} X^i Z^{(s-i-1)m} T^{(k-s+1)(m-1)} e_i' \\ &\quad + \sum_{j=s}^k X^s a^{j-s} T^{(k-j)(m-1)} e_j \end{split}$$

pour $s = 1, \dots, k + 1$.

On note que L'_1 est de rang 4k + 10, avec les degrés suivants : $\deg \epsilon = p$, $\deg \epsilon' = p + 1$, $\deg \epsilon'' = p + l$, $\deg \epsilon''' = p + n$, $\deg \epsilon'_0 = l$, $\deg \epsilon'_i = n + i(m - 1) + l$ pour $i = 1, \dots, k$, $\deg \epsilon_0 = l + 1$, $\deg \epsilon_i = n + i(m - 1) + l + 1$ pour $i = 1, \dots, k$, $\deg \epsilon''_0 = 1$, $\deg \epsilon''_{i-1,i} = n + i(m - 1) + 1$ pour $i = 1, \dots, k$, $\deg \epsilon''_k = n + k(m - 1) + m$, $\deg E_i = n + k(m - 1) + i$ pour $i = 0, \dots, k + 1$. En particulier, on note qu'on a $\deg E_0 = \deg \epsilon'$ et $\deg E_{k+1} = \deg \epsilon + k + 2$.

c) L'homomorphisme d_1

On définit maintenant $d_1 : L_1 \to L_0$ où L_1 est libre de rang 3k + 8 en donnant les images des vecteurs de base de L_1 : ce sont ϵ'', ϵ''' , les $\epsilon_i, i = 0, \dots, k$, les ϵ'_i ,

 $i = 0, \dots, k, \epsilon_0'', \epsilon_k''$, les $\epsilon_{i-1,i}'', i = 1, \dots, k$, ainsi que $-\epsilon' + E_0$ et $-P\epsilon + E_{k+1}$, où P désigne un polynôme homogène de degré k+2 en Z et T, par exemple $P = Z^{k+2} + T^{k+2}$.

Les degrés de L_1 sont ceux de L'_1 , à l'exception du degré de ϵ et de ceux des E_i , $i = 0, \dots, k$.

On obtient ainsi un complexe $L_{\bullet}: L_1 \xrightarrow{d_1} L_0 \xrightarrow{d_0} L_{-1}$.

d) Calcul de la résolution de C, deuxième pas

Nous passons maintenant à δ_2 , en donnant seulement celles des relations qui nous seront utiles. Vu la forme de d_1 on étudie plus particulièrement les relations faisant intervenir ϵ, ϵ' et les E_i et on écrit ces relations en notant par le terme générique η les combinaisons linéaires des vecteurs de type $\epsilon_i, \epsilon'_i, \epsilon''_i, \epsilon''_{i-1,i}, \epsilon''$ et ϵ''' de Im d_1 . On a, avec cette convention, des relations de la forme suivante :

 $\begin{aligned} X\epsilon - a\epsilon' + \eta &= 0, \ Y^{l}\epsilon + \eta = 0, \ Y^{l}\epsilon' + \eta = 0, \ Y^{l}E_{i} + \eta &= 0, \ \text{pour } i = 0, \cdots, k + 1, \\ T^{n}\epsilon' - Z^{n-k-1}E_{k+1} + \eta &= 0, \ T^{n}\epsilon - Z^{n-k-1}E_{k} + \eta &= 0, \ XE_{i} - aE_{i+1} + \eta &= 0 \ \text{et} \\ Z^{m}E_{i} - T^{m-1}E_{i+1} &= 0 \ \text{pour } i = 0, \cdots, k. \end{aligned}$

e) Calcul de M_{ξ}

On calcule l'homologie du complexe L, au point générique de A, c'est-à-dire en supposant a inversible, ou encore en localisant A en son corps des fractions K. On note $d_{0,\xi}$ et $d_{1,\xi}$ les homomorphismes localisés. Comme K est plat sur A, le noyau de $d_{0,\xi}$ est l'image de $\delta_{1,\xi}$ et il faut donc calculer $M_{\xi} = \text{Im } \delta_{1,\xi}/\text{Im } d_{1,\xi}$. Le module M_{ξ} est engendré par les images de ϵ , ϵ' et des E_i , $i = 0, \dots, k + 1$. Comme les vecteurs $\epsilon_i, \epsilon'_i, \epsilon''_{i-1,i}, \epsilon''$ et ϵ''' (c'est-à-dire les vecteurs de type η au sens ci-dessus) sont tous dans Im d_1 , on a les relations $X\epsilon - a\epsilon' = 0$, $E_0 = \epsilon'$ et $XE_i = aE_{i+1}, i = 0, \dots, k$, ce qui, puisque a est inversible, montre que M_{ξ} est engendré par ϵ . Précisément, en prenant a = 1 pour simplifier l'écriture, on a $\epsilon' = E_0 = X\epsilon$, $E_1 = X^2\epsilon, \dots, E_{k+1} = X^{k+2}\epsilon$. Il reste à préciser les relations vérifiées par ϵ . Elles proviennent soit des vecteurs présents dans Im d_1 , soit des relations données par δ_2 que l'on écrit encore en prenant a = 1 pour simplifier : on a ainsi $Y^l \epsilon = 0$, $E_{k+1} = X^{k+2}\epsilon = P\epsilon$, donc $(X^{k+2} - P)\epsilon = 0$, $(T^n - X^{k+1}Z^{n-k-1})\epsilon = 0$ et $(XZ^m - X^2T^{m-1})\epsilon = 0$. On vérifie que si l'on prend par exemple $P = Z^{k+2} + T^{k+2}$ on obtient pour M_{ξ} un module de Koszul de paramètres l, k+2, m+1, n.

f) Calcul de la résolution de $C \otimes_A k$

On note avec des barres les modules, les vecteurs et les homomorphismes obtenus par réduction modulo (a). On a ainsi $\overline{d_0} = \overline{L_0} \to \overline{L_{-1}}$ et la matrice de $\overline{d_0}$ est obtenue en faisant a = 0 dans celle de d_0 . Le noyau de $\overline{d_0}$ contient le sous-module libre $R\overline{e_0}$ de $\overline{L_0}$ et, outre ce vecteur, il est engendré par les réductions modulo a des vecteurs de Ker d_0 , i.e. les vecteurs suivants : $\overline{\epsilon_i}$, pour $i = 0, \dots, k, \overline{\epsilon'_i}$, pour $i = 1, \dots, k, \overline{\epsilon''_{i-1,i}}$ pour $i = 1, \dots, k, \overline{\epsilon''_k}, \overline{\epsilon'}, \overline{\epsilon''}, \overline{\epsilon'''}$ et $\overline{E_{k+1}}$ (3k + 6 vecteurs).

Parmi les relations entre les vecteurs de Ker $\overline{d_0}$, notons seulement celles qui font intervenir $\overline{\epsilon'}$ et $\overline{E_{k+1}}$ (modulo les autres vecteurs, désignés par la lettre générique η) : $T^n \overline{\epsilon'} - Z^{n-k-1} \overline{E_{k+1}} + \eta = 0, Y^l \overline{\epsilon'} + \eta = 0, Y^l \overline{E_{k+1}} + \eta = 0, T^{m-1} \overline{E_{k+1}} + \eta = 0.$ Pour le calcul de la courbe spéciale C_0 , nous aurons besoin de connaître les rangs et les degrés des modules de syzygies d'ordres plus élevés intervenant dans la résolution de $C \otimes_A k$:

$$0 \to \overline{P}_4 \to \overline{P}_3 \to \overline{P}_2 \to \overline{P}_1 \to \overline{P}_0 \to C \otimes_A k \to 0.$$

On a rang $\overline{P}_0 = k$, rang $\overline{P}_1 = 3k + 2$, rang $\overline{P}_2 = 3k + 6$, rang $\overline{P}_3 = k + 6$, rang $\overline{P}_4 = 2$ et les degrés sont les suivants :

- pour $\overline{P}_0, 0, n + (i-1)(m-1), i = 2, \dots, k$,
- pour \overline{P}_1 , 1, l, p, puis n + i(m-1), $i = 1, \dots, k$, n + i(m-1) + 1, pour $i = 1, \dots, k$, n + (i-1)(m-1) + l pour $i = 2, \dots, k$,
- pour \overline{P}_2 , l+1, n+k(m-1)+m, p+1, p+l, p+n, n+km+1, puis
- n + i(m-1) + l + 1, pour $i = 1, \dots, k$, n + i(m-1) + l, pour $i = 1, \dots, k$, n + i(m-1) + 1, pour $i = 1, \dots, k$,
- pour \overline{P}_3 , n+i(m-1)+l+m, pour $i = 0, \dots, k$, puis p+l+1, p+n+1, p+n+l, km+n+l+1, n+(k+1)m
- et enfin, pour \overline{P}_4 , p+l+n+1 et (k+1)m+l+n.

g) Calcul de M_0

Nous calculons maintenant l'homologie au point spécial du complexe L_{\cdot} , c'est-àdire le module $M_0 = \operatorname{Ker} \overline{d_0}/\operatorname{Im} \overline{d_1}$. Vu le calcul de $\operatorname{Ker} \overline{d_0}$ effectué ci-dessus, il est clair que M_0 est engendré par $\overline{e_0}, \overline{\epsilon'}$ et $\overline{E_{k+1}}$. Comme $\epsilon' - E_0$ est dans $\operatorname{Im} d_1$, et comme on a $\overline{E_0} = T^{n+k(m-1)}\overline{e_0}$ on voit que $\overline{\epsilon'}$ est dans le sous-module engendré par $\overline{e_0}$. Il en est de même de $\overline{E_{k+1}}$ à cause de la présence de $P\epsilon - E_{k+1}$ dans $\operatorname{Im} d_1$. le module M_0 est donc engendré par $\overline{e_0}$ et il reste à préciser les relations. La présence dans $\operatorname{Im} d_1$ des vecteurs ϵ''_0 et ϵ'_0 donne aussitôt $X\overline{e_0} = Y^l\overline{e_0} = 0$. Les autres relations viennent des relations vues ci-dessus : $T^n\overline{\epsilon'} - Z^{n-k-1}\overline{E_{k+1}} + \eta = 0$ donne la relation $(Z^{p+n-k-1}P - T^{2n+k(m-1)})\overline{e_0} = 0$, tandis que $T^{m-1}\overline{E_{k+1}} + \eta = 0$ donne la relation $Z^pT^{m-1}P\overline{e_0} = 0$. Si on prend $P = Z^{k+2} + T^{k+2}$, le module M_0 est un module de Koszul de paramètres 1, l, (k+1)m + n, 2n + k(m-1).

h) Premier bilan

On vérifie que le complexe L est une triade majeure. Il s'agit de voir (cf. [12] 1.10) que le module $N = \text{Ker } d_1$ est de type fini sur R_A et les modules $H = \text{Ker } d_0/\text{Im } d_1$ et $C = \text{Coker } d_0$ sont de type fini sur A. Le cas de N est trivial. Pour C cela résulte du fait que les vecteurs ξ_i sont annulés par des puissances de chacune des indéterminées X, Y, Z, T. On note que C est de torsion sur A, de sorte que L est une triade élémentaire (cf. [12] 1.32).

Le module H est un R_A -module gradué de type fini. Soit H_{τ} son sous-module de A-torsion. C'est un R_A -module annulé par une puissance de a. Le quotient H/H_{τ} est un R_A -module de type fini sans torsion. Il est donc libre sur A et on a $H \simeq H_{\tau} \oplus (H/H_{\tau})$ comme A-module. On a $(H/H_{\tau}) \otimes_A K = M_{\xi}$ (homologie de L, au point générique) et comme ce module est de type fini sur $K, H/H_{\tau}$ est de type fini sur A. Par ailleurs, on a, au point spécial, $H_{\tau} \otimes_A k \subset H \otimes_A k \subset M_0$, donc $H_{\tau} \otimes_A k$ est de type fini sur k. Comme H_{τ} est annulé par une puissance de a, il en résulte que H_{τ} est de type fini sur A par Nakayama.

Ainsi, la triade L_{\cdot} joint les deux modules de Koszul de paramètres l, k+2, m+1, net 1, l, (k+1)m+n, 2n+k(m-1). Nous allons maintenant calculer la famille minimale de courbes associée à cette triade et montrer que la courbe générique de cette famille est une courbe minimale du module M_{ξ} .

i) Calcul du noyau de d_1

Le calcul du noyau de d_1 est plus compliqué. Nous ferons l'hypothèse que les degrés de M_{ξ} sont rangés dans l'ordre croissant : $l \leq k + 2 \leq m + 1 \leq n$ de sorte que M_{ξ} est un module de Koszul de paramètres $n_1 = l, n_2 = k + 2, n_3 = m + 1, n_4 = n$. Cette hypothèse suffit à traiter tous les cas dont nous avons besoin.

Nous donnons seulement ici les premiers vecteurs de Ker d_1 qui vont être suffisants pour calculer la fonction q associée à la triade. On calcule pour cela le début d'une résolution de Ker d_1 , c'est-à-dire une flèche $s : L_2 \to L_1$, avec L_2 libre, telle que Ker $d_1 = \text{Im } s$. Voilà les relations de plus bas degrés :

$$\begin{split} R_{0} &= -X\epsilon'_{0} + a\epsilon_{0} + Y^{l}\epsilon''_{0} \quad (\text{degré } l+1), \\ R_{0,1} &= Z^{m}T^{n}\epsilon'_{0} - T^{n+m-1}\epsilon_{0} - X\epsilon'_{1} + a\epsilon_{1} + Y^{l}\epsilon''_{0,1} \quad (\text{degré } n+m+l), \\ R_{i-1,i} &= X\epsilon'_{i} - a\epsilon_{i} - Z^{m}\epsilon'_{i-1} + T^{m-1}\epsilon_{i-1} - Y^{l}\epsilon''_{i-1,i}, \\ \text{pour } i &= 2, \cdots, k \quad (\text{degré } n+i(m-1)+l+1), \\ R_{k} &= Z^{m}\epsilon'_{k} - T^{m-1}\epsilon_{k} + Y^{l}\epsilon''_{k}, \quad \text{degré } n+k(m-1)+m+l. \end{split}$$

Il y a aussi une relation de degré n + k(m-1) + l:

$$R = T^{p+1}\epsilon'_0 - Z^p\epsilon_0 + \sum_{i=1}^k a^i T^{(k-i)(m-1)}\epsilon'_i - Y^l(E_0 - \epsilon') + X\epsilon''.$$

Il y a enfin trois relations $S_{1,2}$, $S_{1,4}$ et $S_{2,3}$, de degrés respectifs $p+l+k+2 = p+n_1+n_2$, $p+l+n = p+n_1+n_4$ et $p+k+m+3 = p+n_2+n_3$:

$$\begin{split} S_{1,2} &= \sum_{i=1}^{k} X^{i} Z^{(k-i)m} \epsilon_{i} + Z^{km} T^{n} \epsilon_{0} + aP \epsilon^{\prime \prime} - Z^{p} P \epsilon_{0}^{\prime} - Y^{l} (E_{k+1} - P \epsilon), \\ S_{1,4} &= \sum_{i=1}^{k} X^{i-1} Z^{p-im} \epsilon_{i} - T^{n} \epsilon^{\prime \prime} + Y^{l} \epsilon^{\prime \prime \prime}, \\ S_{2,3} &= \left(-aX Z^{m} + X^{2} T^{m-1} \right) \left(E_{k+1} - P \epsilon \right) + \left(a^{2} P Z^{m} - aX P T^{m-1} \right) (E_{0} - \epsilon^{\prime}) \\ &+ \left(-a^{k+2} P + X^{k+2} \right) \epsilon_{k}^{\prime \prime} + \sum_{i=1}^{k} \left(a^{i+1} P T^{(m-1)(k-i+1)} - X^{i+1} Z^{m(k-i+1)} \right) \epsilon_{i-1,i}^{\prime \prime} \\ &+ \left(-aP (Z^{m+p} - T^{m+p}) + XP Z^{p} T^{m-1} - X Z^{(k+1)m} T^{n} \right) \epsilon_{0}^{\prime \prime}. \end{split}$$

j) Calcul de la famille minimale

On renvoie le lecteur au Théorème 0.5 pour la méthode de calcul de la fonction q associée à la triade. En désignant par la lettre minuscule le degré de la relation correspondante on a l'ordre ci-dessous pour les degrés :

$$r_0 < r_{0,1} < r_{1,2} < \dots < r_{k-2,k-1} \le r < r_{k-1,k} < s_{1,2} \le r_k \le \begin{cases} s_{1,4} \\ s_{2,3} \end{cases}$$

Les k + 2 premiers degrés (de r_0 à $r_{k-1,k}$) correspondent à la partie obligatoire de la fonction q. En effet, ces k + 2 colonnes, après y avoir fait a = 0, contiennent toutes les polynômes X et Y^l situés sur 2k + 4 lignes distinctes. Si on a $s_{1,2} < r_k$ la colonne de degré $s_{1,2}$ est aussi dans l'obligatoire. Si on a $s_{1,2} = r_k := t$, on voit que l'on a $\alpha_t = k + 4$ et $\beta_t = k + 3$ d'où $q^{\sharp}(t) = k + 3$ donc le degré $s_{1,2}$ est présent aussi dans la fonction q. Enfin, si u désigne le maximum de $s_{2,3}$ et $s_{1,4}$ on a $\alpha_u = k + 5$ et $\beta_u = k + 4$ d'où $q^{\sharp}(u) = k + 4$ et q(u) = 1.

En définitive, les degrés intervenant dans fonction q sont les suivants : l + 1, n + i(m-1) + l + 1, pour $i = 1, \dots, k, n + k(m-1) + l, p + l + k + 2, p + \mu$ où $\mu = Max (l + n, k + m + 3)$.

k) Conclusion

En vertu de [11] on a obtenu une famille \mathcal{C} de courbes associée à la triade L. dont la résolution de type N est la suivante $0 \to Q \to [L_1 \xrightarrow{d_1} L_0 \xrightarrow{d_0} L_{-1}] \to I_{\mathcal{C}} \to 0$ où Q est un R_A -module libre de fonction caractéristique q.

Si l'on "simplifie" dans cette résolution les termes qui sont communs à deux des modules il reste la résolution suivante :

$$p + l + k + 2, p + \mu \rightarrow [p + l, p + k + 2, p + m + 1, p + n \rightarrow p]$$

et on reconnaît, à décalage près, la résolution de la courbe minimale du module de Koszul M_{ξ} . La famille \mathcal{C} est dans le schéma de Hilbert de cette courbe et elle joint une courbe de type C_{ξ} à une courbe dont le module est M_0 à décalage près. La courbe C_{ξ} est de degré $d_{\xi} = l(l+k+n-m+1)$ si $n+l \ge k+m+3$, de degré (k+2)(k+l+m-n+3) sinon.

On peut préciser le décalage de la courbe C_0 et les biliaisons qui font passer de la courbe minimale $C_{0,0}$ associée à M_0 à C_0 . Pour cela on reprend les notations de 0.3 et 0.4. On note $\chi(a_1, \dots, a_n)$ la fonction caractéristique du module $R(-a_1) \oplus \dots \oplus R(-a_n)$. Après simplifications, on trouve pour la fonction ∂s :

$$\partial s = \chi(k(m-1) + l + m + n, k(m-1) + l + 2n - 1, k(m-1) + n - 1 + \mu') - \chi((k+1)m + l + n, k(m-1) + 2n + l, k(m-1) + n - 1 + \mu)$$

avec $\mu = \text{Max}(l+n, k+m+3)$ et $\mu' = \text{Max}(n+2, k+l+m-1)$. On en déduit la fonction *s* et les degrés σ_i des biliaisons par les formules de 0.4. Attention, il faut éventuellement opérer des simplifications entre les s_i et les $s_i + 1$ pour trouver des résolutions minimales, cf. [5].

Pour trouver effectivement les degrés σ_i il faut distinguer des cas selon les valeurs des paramètres. Si, par exemple, on a $l \ge 2$ et n assez grand $(n \ge k + l + m - 1)$ on trouve que C_0 est obtenue à partir de la courbe minimale $C_{0,0}$ du module M_0 (qui est de degré $d_0 = l + n - k - m + 1$) par deux biliaisons, la première de hauteur k sur une surface de degré (k + 1)m + l + n - k, la seconde de hauteur l - 1 sur une surface de degré k(m - 1) + 2n + 1. On vérifie qu'on a bien $d_{\xi} = d_0 + ((k + 1)m + l + n - k) + (k(m - 1) + 2n + 1)$. \Box

Remarque 3.1. Dans le cas k = 1 (par exemple pour le cas 3,3,3,3 évoqué en 2.3) le conoyau C de la triade construite ci-dessus est monogène, isomorphe à $R_A/(a, X, Y^l, Z^{n+m-2}, T^{n+m-1}, Z^m T^n)$. Dans le cas général, on peut construire une triade à conoyau monogène en posant

$$d_0 = (a, X, Y^l, Z^p, T^{p+1}, Z^m T^{p+2-m}, Z^{2m} T^{p+3-2m}, \cdots, Z^{km} T^{p+k+1-km})$$

avec p = k(m-1) + n - 1 (le dernier exposant p + k + 1 - km est donc n). En effet, il est facile, avec cette flèche, de construire une flèche d_1 , de telle sorte que les modules M_0 et M_{ξ} soient des modules de Koszul de paramètres identiques à ceux construits ci-dessus. On constate cependant qu'en général la famille minimale de courbes associée à cette triade n'est pas convenable (la courbe générique n'est pas la courbe minimale du module M_{ξ} mais une courbe obtenue par des biliaisons), et cela, quel que soit le choix de la flèche d_1 . Il y a à cela une raison incontournable. En effet, si C est le conoyau de d_0 , il résulte du corollaire 0.2 que l'on doit avoir une injection de $C \otimes_A k$ dans le module $B_{C_0} = H^2_* \mathcal{J}_{C_0}$ de la courbe spéciale C_0 d'une éventuelle famille. Si P_4 est le dernier module de syzygies de $C \otimes_A k$ et si C_0 admet la résolution de type Nsuivante :

$$0 \to P \to [F_1 \to F_0] \to I_{C_0} \to 0,$$

cela impose que P_4 soit facteur direct de P. Or, on peut montrer en général, à l'aide des résultats de [5], qu'il n'existe pas de courbe C_0 , de module de Rao M_0 , dont le degré et le genre sont ceux de la courbe minimale de M_{ξ} et dont le module P majore P_4 . C'est le cas, par exemple, pour k = 3, l = 2, m = 5, n = 9. On a alors $P_4 = 29, 30, 31, 32$ et on voit que le 29 ne peut pas correspondre à un facteur direct de P.

C'est l'échec de cette tentative qui nous a conduit à construire une triade avec un conoyau non monogène. Celui proposé ci-dessus a été obtenu en modifiant le précédent de façon à rendre "le plus monogène possible" le module dual $(C \otimes_A k)^*$, module dont la résolution commence par le module dual de P_4 . Autrement dit, faute de disposer d'une courbe C_0 avec P assez grand on a diminué P_4 . En contrepartie on a dû augmenter P_0 et perdre le fait que $C \otimes_A k$ soit monogène.

Références

- 1. S. Aït-Amrane, Sur le schéma de Hilbert des courbes gauches de degré d et genre g = d, (d-3)(d-4)/2, Ann. Inst. Fourier (Grenoble) **50** (2000), 1671–1707.
- S. Aït-Amrane et D. Perrin, Un contre-exemple sur les familles de courbes gauches, *Comm. Algebra* 28 (2000), 6003–6015.
- 3. Ph. Ellia, A. Hirschowitz, et E. Mezzetti, On the number of irreducible components of the Hilbert scheme of smooth space curves, *Internat. J. Math.* **3** (1992), 799–807.
- 4. S. Ginouillac, Sur le nombre de composantes du schéma de Hilbert des courbes ACM de \mathbb{P}^3_k , C.R. Acad. Sci. Paris Sér. I, Math. **329** (1999), 857–862.
- 5. S. Ginouillac et D. Perrin, Résolutions minimales des courbes de \mathbb{P}^3 , (preprint).
- 6. S. Ginouillac et D. Perrin, Un composant de $H_{4,-3}$ qui n'admet pas de spécialisation, (preprint).
- 7. R. Hartshorne, Algebraic geometry, Graduate texts in Mathematics 52, Springer Verlag, 1977.
- 8. R. Hartshorne, Connectedness of the Hilbert scheme, *Inst. Hautes Études Sci. Publ. Math.* **29** (1966), 5–48.
- 9. R. Hartshorne, On the connectedness of the Hilbert scheme of curves in P³, *Comm. Algebra* 28 (2000), 6059–6077.
- R. Hartshorne, M. Martin-Deschamps, et D. Perrin, Un théorème de Rao pour les familles de courbes gauches, J. Pure Appl. Algebra 155 (2001), 53–76.
- R. Hartshorne, M. Martin-Deschamps, et D. Perrin, Construction de familles minimales de courbes gauches, *Pacific J. Math.* 194 (2000), 97–116.
- R. Hartshorne, M. Martin-Deschamps, et D. Perrin, Triades et familles de courbes gauches, *Math. Ann.* 315 (1999), 397–468.
- M. Martin-Deschamps et D. Perrin, Sur la classification des courbes gauches, Astérisque 184-185, 1990.
- M. Martin-Deschamps et D. Perrin, Sur les bornes du module de Rao, C.R. Acad. Sci. Paris Sér. I Math. 137 (1993), 1159–1162.
- M. Martin-Deschamps et D. Perrin, Le schéma de Hilbert des courbes gauches localement Cohen-Macaulay n'est (presque) jamais réduit, Ann. Sci. École Norm. Sup. (4) 29 (1996), 757–785.
- M. Martin-Deschamps et D. Perrin, Le schéma de Hilbert des courbes gauches localement Cohen-Macaulay n'est (presque) jamais connexe ni réduit, *Rapport de recherche du LMENS*, 94–14, 1994.
- 17. S. Nollet, The Hilbert schemes of degree three curves, Ann. Sci. École Norm. Sup. (4) **30** (1997), 367–384.
- 18. S. Nollet, A remark on connectedness in Hilbert schemes, Comm. Algebra 28 (2000), 5745–5747.
- T. Péteul, Courbes associées aux modules de Koszul, Ph.D. thesis, Université de Versailles Saint-Quentin, 1999.
- 20. E. Schlesinger, Footnote to a paper by Hartshorne, Comm. Algebra 28 (2000), 6079–6083.