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Abstract

In this paper the theory of wavelets on the integers is developed. For this, one needs
to first find analogs of translations and dyadic dilations which appear in the classical
theory. Translations in �2(Z) are defined in the obvious way, taking advantage of
the additive group structure of the integers. Dyadic dilations, on the other hand, pose
a greater problem. In the classical theory of wavelets on the real line, translation
T and dyadic dilation D obey the “commutativity” relation DT 2 = TD. We
choose to define dyadic dilations on the integers in terms of this functional equation.
All such dyadic dilations are characterized and the corresponding multiresolution
structures they generate are introduced and examined. The main results of this
paper focus on connecting multiresolution structures and wavelets on the integers
with their counterparts on the line and include the fact that every wavelet on the
integers is an MRA wavelet.

1. Introduction

The goal of this paper is to develop the theory of wavelets in �2(Z). First of all, the
notion of a dyadic dilation on square-summable sequences is defined and these dyadic
dilations (there are infinitely many of them) are characterized. In the process, several
very important properties of discrete dyadic dilations will be derived. Following this,
we will define discrete wavelets. Many of the initial results can be found in [1]; these
results will be extended in this paper and new results on MRA-type structures on
the integers will be presented. These results will show that MRAs on �2(Z) arise
very naturally from the choice of dyadic dilation and in many cases are connected to
traditional MRAs on the real line via an isometry. One conclusion of this comparison
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will be that all discrete wavelets are discrete MRA wavelets. After all of this has been
accomplished, there will be some discussion of other results in the theory which may
be of interest. This work is the result of a senior honors project done at Washington
University in St. Louis under the supervision and guidance of Guido L. Weiss and
Edward N. Wilson.

2. Dilations

Let τ be the translation operator on �2(Z) ((τ f)k := fk−1). This operator is unitary:

τ−1 = τ∗. (1)

Furthermore, if we let ∆ = {∆j}j∈Z be the sequence with entries

∆j := δj,0 ∀j ∈ Z, (2)

a basis of �2(Z) is given by all the translates of ∆; i.e., {τk∆}k∈Z is a complete
orthonormal system.

For functions in L2(R), the meaning of dyadic dilation is clear: f(·) �→
√

2f(2·).
Let D denote the map which takes f to its dyadic dilation. If we now fix t ∈ R and
let Tt be the map which sends f(·) �→ f(· − t), we observe that

TtD(f) =
√

2f(2(· − t))
=

√
2f(2 · −2t) = DT 2

t (f).

This commutativity (DT 2
t = TtD) is the key property of the dyadic dilation on L2(R)

which we would like dyadic dilation operators on �2(Z) to possess as well. However,
for reasons which will hopefully become clear as we progress, it is advantageous to
reverse the commutativity relationship (technically making our operators contraction
operators rather than dilation operators).

Definition 1. A linear operator ρ on �2(Z) will be called a dyadic dilation operator
if and only if

ρτ = τ2ρ (3)

||ρf || = ||f || ∀f ∈ �2(Z) (4)

Observe that property (4) ensures that every dyadic dilation operator is an isometry
into �2(Z) but does not guarantee that a dyadic dilation is unitary. To obtain an idea
of what these dyadic dilation operators do, we will present two simple examples. The
first example takes a sequence to its upsampled counterpart:

ρu
(
{. . . , f−2, f−1, f0, f1, f2, . . .}

)
:=

{
. . . , 0, f−2, 0, f−1, 0, f0, 0, f1, 0, f2, 0, . . .

}
.

Clearly this function preserves the norm of f , and it is also true that it has the desired
commutativity with τ . Both upsampling and downsampling play crucial roles in the
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discrete wavelet transform and other discrete wavelet algorithms. See [4] for more
details. Observe that ρu is not invertible.

Another example is the “Haar” dyadic dilation:

ρHaar

(
{. . . , f−1, f0, f1, . . .}

)
:=

{
. . . ,

f−2√
2
,
f−1√

2
,
f−1√

2
,
f0√
2
,
f0√
2
,
f1√
2
,
f1√
2
, . . .

}
.

Suppose we define a map Φ from �2(Z) to the class of functions F ⊂ L2(R) which are
constant on (k, k + 1] for all k ∈ Z by

(Φf)(x) = f�x�,

where x� is the greatest integer less than x. Clearly Φ is invertible and an isometry.
Via Φ we may “pull back” the standard dyadic dilation operator on L2(R) (or rather
its inverse):

Φ−1D−1Φ takes f �→ 1√
2
Φ−1

[
(Φf)

(x
2
)]
.

This map is simply the Haar dilation ρHaar. We call it the Haar dilation because it
arises naturally (as we will see later) from the Haar wavelet. For the time being, simply
observe that any function in F is easily expressed in terms of dilations and translations
of the Haar wavelet.

These are by no means the only possible dyadic dilation operators (Theorem 1
near the end of this section characterizes all dyadic dilations). They do however, seem
to indicate that a dyadic dilation is, in some sense, a way to “stretch-out” a sequence
into one of “twice the length.”

The first important property of ρ is that it preserves the inner product of two
sequences:

Proposition 1

〈ρf, ρg〉 = 〈f, g〉 ∀f, g ∈ �2(Z).

Proof. This follows immediately from polarization:

〈f, g〉 =
1
4

3∑
j=0

ij
∥∥f + ijg

∥∥2
.

As ρ preserves norms, it must also preserve inner products. �

Using the above proposition, we can begin to understand how ρ must behave on
the sequence level.

Proposition 2

The following equation is true for all f ∈ �2(Z):〈
ρf, τk∆

〉
=

∑
l∈Z

〈
f, τ l∆

〉 〈
ρ∆, τk−2l∆

〉
. (5)
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Proof. Let f ∈ �2(Z).

〈
ρf, τk∆

〉
=

〈
ρ

(∑
l∈Z

〈
f, τ l∆

〉
τ l∆

)
, τk∆

〉
=

∑
l∈Z

〈
f, τ l∆

〉 〈
ρτ l∆, τk∆

〉
.

We need only observe that
〈
ρτ l∆, τk∆

〉
=

〈
τ2lρ∆, τk∆

〉
=

〈
ρ∆, τk−2l∆

〉
and we

obtain the desired conclusion. �

Notice that (ρf)k =
〈
ρf, τk∆

〉
. Therefore, with respect to the basis {τk∆}k∈Z,

the matrix form of ρ = (ρk,l)k,l∈Z has entries ρk,l =
〈
ρ∆, τk−2l∆

〉
. For the matrix

(ρk,l), then, all entries with a fixed value of k−2l are equal. Also as one would expect,
the columns of this matrix form an orthonormal system, demonstrated by the following
proposition:

Proposition 3

The sequence rk =
〈
ρ∆, τk∆

〉
satisfies

∑
k∈Z

rk−2lrk−2l′ = δl,l′ . (6)

Proof. As observed in the proof of (5), (ρ∆)k =
〈
ρ∆, τk∆

〉
= rk. Therefore ρ∆ =∑

k∈Z
rkτ

k∆ and hence τ2lρ∆ =
∑

k∈Z
rkτ

k+2l∆ =
∑

k∈Z
rk−2lτ

k∆

δl,l′ =
〈
τ l∆, τ l

′
∆

〉
=

〈
ρτ l∆, ρτ l

′
∆

〉
=

〈
τ2lρ∆, τ2l′ρ∆

〉
.

This last inner product is equal to
∑

k∈Z
rk−2lrk−2l′ as desired. �

These properties of ρ, i.e., that ρτ = τ2ρ and equation (6), characterize all dyadic
dilations. Their sufficiency is shown by the following proposition.

Proposition 4

Suppose a sequence {rk}k∈Z satisfies (6). Then the operator defined by

ρf :=
∑
l∈Z

〈
f, τ l∆

〉 (∑
k∈Z

rkτ
k+2l∆

)
(7)

is a (dyadic) dilation operator.
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Proof. First of all, the sum
∑

k∈Z
rkτ

k+2l∆ exists and has norm 1 since∣∣∣∣∣
∣∣∣∣∣∑
k∈Z

rkτ
k+2l∆

∣∣∣∣∣
∣∣∣∣∣
2

=
∑
k∈Z

rk−2lrk−2l = 1.

Condition (6) not only implies that the sum converges, but that, as a function of l
produces an orthonormal system:〈∑

k∈Z

rkτ
k+2l∆ ,

∑
k∈Z

rkτ
k+2l′∆

〉
=

∑
k∈Z

rk−2lrk−2l′ = δl,l′ .

Thus, as the sequence
〈
f, τ j∆

〉
is square-summable, the sum over l in (7) also con-

verges.
Now let us show that ρ satisfies (3):

ρτ f =
∑
l∈Z

〈
τ f, τ l∆

〉 (∑
k∈Z

rkτ
k+2l∆

)
=

∑
l∈Z

〈
f, τ l−1∆

〉 (∑
k∈Z

rkτ
k+2l∆

)

=
∑
l∈Z

〈
f, τ l∆

〉 (∑
k∈Z

rkτ
k+2(l+1)∆

)
=

∑
l∈Z

〈
f, τ l∆

〉
τ2

(∑
k∈Z

rkτ
k+2l∆

)

=τ2

(∑
l∈Z

〈
f, τ l∆

〉 (∑
k∈Z

rkτ
k+2l∆

))
= τ2ρf.

Next we check that ρ preserves the norm of f as required by (4). As{∑
k∈Z

rkτ
k+2l∆

}
l∈Z

is an orthonormal system, we have that

||ρf ||2 =

∣∣∣∣∣
∣∣∣∣∣∑
l∈Z

〈
f, τ l∆

〉 (∑
k∈Z

rkτ
k+2l∆

)∣∣∣∣∣
∣∣∣∣∣
2

=
∑
l∈Z

〈
f, τ l∆

〉
〈f, τ l∆〉 = ||f ||2.

Therefore, ρ is a (dyadic) dilation operator by definition. �
While these sequential properties of dyadic dilations are interesting and useful, we

have found that many of the proofs that lay ahead are much easier to understand in the
language of Fourier transforms. To begin with, let us consider a function m ∈ L2(T)
whose Fourier coefficients are the elements of the sequence (rk) defined in Proposition 3:

m(ξ) :=
∑
k∈Z

rke
ikξ, (8)

where the convergence of the sum is taken in the L2([0, 2π))-norm. We will denote the
Fourier transform of a general sequence (fk)k∈Z ∈ �2(Z) by f∨, that is,

f∨(ξ) =
∑
k∈Z

fke
ikξ.

Proposition 5
For any f ∈ �2(Z),

(ρf)∨(ξ) = m(ξ)f∨(2ξ) a.e. (9)
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Proof. We saw earlier that {rk−2l}l∈Z is an orthonormal system in �2(Z). But

(r·−2l)∨(ξ) =
∑
k∈Z

rk−2le
ikξ

=
∑
k∈Z

rke
i(k+2l)ξ

= e2ilξ
∑
k∈Z

rke
ikξ

= e2ilξm(ξ),

so {e2ilξm(ξ)}l∈Z is an orthonormal system in L2(T). In particular,

g(ξ) :=
∑
l∈Z

m(ξ)fle2ilξ

is a convergent series in the L2-norm. Let

SN (ξ) =
N∑

l=−N

m(ξ)fle2ilξ

and similarly take

RN (ξ) =
∑
|l|>N

m(ξ)fle2ilξ.

We may then conclude

1
2π

∫ 2π

0

|m(ξ)f∨(2ξ) − g(ξ)| dξ

=
1
2π

∫ 2π

0

|m(ξ)f∨(2ξ) − SN (ξ) −RN (ξ)| dξ

≤ 1
2π

∫ 2π

0

|m(ξ)f∨(2ξ) − SN (ξ)| dξ +
1
2π

∫ 2π

0

|RN (ξ)| dξ

≤ ||m||
∣∣∣∣∣
∣∣∣∣∣f∨(2·) −

N∑
l=−N

fle
2il·

∣∣∣∣∣
∣∣∣∣∣ + ||1||||RN ||,

where the last line follows from the Cauchy-Schwartz inequality. It is clear, how-
ever, that both terms on the r.h.s. go to zero as N → ∞, so we must have that
the original integral is zero, which can happen only if the integrand is zero almost
everywhere. In particular, we can conclude that m(ξ)f∨(2ξ) ∈ L2(T) and, even more,∑

l∈Z
m(ξ)fle2ilξ = m(ξ)f∨(2ξ) in the L2-norm. All that remains to be shown is that

this sum is, in fact, equal to (ρf)∨. As both ρ and the Fourier transform operator are
continuous, we may appeal to sequential continuity and conclude that
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(ρf)∨ =

(
ρ

(∑
l∈Z

flτ
l∆

))∨

=
∑
l∈Z

fl(ρτ l∆)∨

=
∑
l∈Z

fl(τ2lρ∆)∨

=
∑
l∈Z

fle
2il·m.

This allows us to conclude that (ρf)∨(ξ) = m(ξ)f(2ξ) for almost every ξ ∈ [0, 2π). �

Proposition 6

Given any f∨ ∈ L2(T), m · f∨ ∈ L2(T) as well.

Proof. If it so happens that f∨(ξ) = g∨(2ξ) for some g∨ ∈ L2(T), we conclude that
(ρg)∨ = m · f∨ from the previous proposition, during which we showed that this
function is square-integrable. But for arbitrary f∨, we have

f∨(·) =
1
2

[f(·) + f(· + π)] +
1
2

[f(·) − f(· + π)] .

The first term on the right-hand side is in fact π periodic, and the second is also π
periodic if it is multiplied by ei· (which will not change the fact that it is square-
integrable). Thus,

f∨ = (f1)∨(2·) + e−i·(f2)∨(2·), so m · f∨ = (ρf1)∨ + e−i·(ρf2)∨

is square-integrable as well. �

As ρ is an isometry, it must have an adjoint operator ρ∗ which is a left inverse to
ρ and vanishes on the orthogonal complement of the image of ρ. For any sequence f ,
then, we will have ||ρ∗f || ≤ ||f ||. It is also easy to show that (ρ∗f)l =

∑
k∈Z

fkrk−2l,
but we are not interested in this formula as much as we are in how ρ∗ behaves in
Fourier transform space.

Proposition 7

For any f ∈ �2(Z), given a dyadic dilation ρ, its adjoint ρ∗ satisfies

(ρ∗f)∨(ξ) =
1
2

[
f∨

(
ξ

2

)
m

(
ξ

2

)
+ f∨

(
ξ

2
+ π

)
m

(x
2

+ π
)]

a.e. (10)

where, as before, m(ξ) = ∆∨(ξ).
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Proof. Let f, g be square-summable sequences.

(ρ∗f, g) = (f, ρg)

= (f∨, (ρg)∨)L2(T)

=
1
2π

∫ 2π

0

f∨(ξ)m(ξ)g∨(2ξ) dξ

=
1
4π

∫ 4π

0

f∨
(
ξ

2

)
m

(
ξ

2

)
g∨(ξ) dξ

=
1
4π

∫ 2π

0

[
f∨

(
ξ

2

)
m

(
ξ

2

)
+ f∨

(
ξ

2
+ π

)
m

(x
2

+ π
)]
g∨(ξ) dξ.

From the previous proposition, it is clear that the term in brackets is square-integrable,
and it’s also 2π-periodic. Thus, it is the Fourier transform of some square-summable
sequence h. But by this calculation we can conclude that (ρ∗f, g) − (h, g) = 0 for any
sequence g. Thus, we can take g = ρ∗f −h and conclude that ||ρ∗f −h||2 = 0 which is
only true when h = ρ∗f . But the Fourier transform of h is exactly the function given
in (10). �

We are now positioned to characterize dyadic dilations once again, this time, in
terms of Fourier transforms.

Theorem 1

A continuous linear operator ρ on �2(Z) is a dyadic dilation if and only if ρτ = τ2ρ

and m = (ρ∆)∨ satisfies

1
2

[
|m(ξ)|2 + |m(ξ + π)|2

]
= 1 a.e. (11)

Furthermore, for every m ∈ L2(T) with this property, there is a unique dyadic dilation

ρ with (ρ∆)∨ = m.

Proof. First we show that for any dyadic dilation, (11) is satisfied. This, however, is
straightforward as

1 = (∆)∨(ξ)

= (ρ∗ρ∆)∨(ξ)

=
1
2

[
(ρ∆)∨

(
ξ

2

)
m

(
ξ

2

)
+ (ρ∆)∨

(
ξ

2
+ π

)
m

(
ξ

2
+ π

)]

=
1
2

[
m

(
ξ

2

)
m

(
ξ

2

)
+m

(
ξ

2
+ π

)
m

(
ξ

2
+ π

)]
.

So we replace ξ/2 with ξ and we conclude that [|m(ξ)|2 + |m(ξ + π)|2]/2 = 1 almost
everywhere as desired.
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Next we show that ρ with ρτ = τ2ρ and m = (ρ∆)∨ satisfying (11) is actually a
dyadic dilation. All we need to show is that ρ is an isometry. Notice that

{
e2il·m

}
l∈Z

is an orthonormal system in L2(T):

1
2π

∫ 2π

0

(
e2ilξm(ξ)

)
(e2il′ξm(ξ))dξ =

1
2π

∫ 2π

0

e2i(l−l′)ξ|m(ξ)|2dξ

=
1
2π

∫ 2π

0

e2i(l−l′)(ξ+π)|m(ξ + π)|2dξ .

Averaging the last two lines, we conclude that

1
2π

∫ 2π

0

(
e2ilξm(ξ)

)
(e2il′ξm(ξ))dξ =

1
2π

∫ 2π

0

e2i(l−l′)ξ 1
2

[
|m(ξ)|2 + |m(ξ + π)|2

]
dξ

=
1
2π

∫ 2π

0

e2i(l−l′)ξdξ

= δl,l′ .

As before, (ρτ l∆)∨ = (τ2lρ∆)∨ = e2il·m so we conclude (ρf)∨ =
∑

l∈Z
fle

2il·m.
Clearly by this formula ||ρf || = ||f ||, so ρ is a dyadic dilation.

Finally, if ρ∆ = ρ′∆ for some ρ, ρ′ dyadic dilations, we will have by (9) that
ρ = ρ′. �

Stepping back for a moment, we see that the problem of finding a dyadic dilation
ρ is the same as the problem of finding a 2π-periodic function m which satisfies (11).
Up to normalization, such functions have been extensively studied (as every MRA has
an associated low-pass filter for which |m0(ξ)|2 + |m0(ξ + π)|2 = 1 almost everywhere;
see [2]). To give an idea of the many different types of dyadic dilations there may be,
we present the following theorem, which says that in the case of m a trigonometric
polynomial, we are free to choose half of its Fourier coefficients provided that they
satisfy a given inequality. (For example, our chosen coefficients cj necessarily must
have

∑
|cj |2 ≤ 1, but this is not sufficient. On the other hand,

∑
|cj | < 1 is sufficient

but not necessary).

Theorem 2

Let cj be a finitely supported sequence. There exists a sequence {rk}k∈Z which

is finitely supported, satisfies (6) and has r2k = ck for all k if and only if |c∨(ξ)| =
|
∑

k∈Z
cke

ikξ| ≤ 1 for all real ξ.

Proof. We prove the reverse direction first. Given any finitely supported sequence ak
(not necessarily satisfying the constraint given in the statement of the theorem), let
us define the following polynomial:

p(z) :=
∑
j∈Z

zj

(∑
k∈Z

akak−j

)
.
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Elementary algebra tells us that

p(z) =

(∑
k∈Z

akz
k

) (∑
k∈Z

akz
−k

)
.

When we take the sum p(z)+p(−z), all terms in odd powers of z vanish. If, in addition,
the ak satisfy (6), we see that the coefficient of z2j in p(z) + p(−z) will equal 2δj,0,
which means that p(z) + p(−z) = 2. Knowing the factored form of p, we can conclude( ∑

k∈2Z

akz
k

) ( ∑
k∈2Z

akz
−k

)
+

( ∑
k∈2Z+1

akz
k

) ( ∑
k∈2Z+1

akz
−k

)
= 1.

This further reduces to(∑
k∈Z

a2kz
2k

) (∑
k∈Z

a2kz
−2k

)
+

(∑
k∈Z

a2k+1z
2k

) (∑
k∈Z

a2k+1z
−2k

)
= 1 (12)

because a factor of z cancels with a factor of z−1 in the sum over odd k. The goal,
then, is to specify ak for even k and use (12) as an equation to solve for ak when k is
odd. In particular, we look for a2k+1 such that the following equation is satisfied for
all complex w:

p0(w) := 1 −
(∑

k∈Z

ckw
k

) (∑
k∈Z

ckw
−k

)

=

(∑
k∈Z

a2k+1w
k

) (∑
k∈Z

a2k+1w
−k

)
,

where the ck are the complex numbers described in the statement of the theorem
(we assume that ck = 0 if it is not explicitly given). Notice that, on the unit circle,
w−1 = w, so the polynomial p0 takes on real values there, and we have

p0(eiθ) = 1 −
∣∣∣∣∣∑
k∈Z

cke
ikθ

∣∣∣∣∣
2

.

Suppose p0(eiθ) = 0 for some θ (we will not consider the case p0 identically zero, as this
is easily shown to give rise to a dyadic dilation when we take rk = 0 for odd k). As,
by choice of the cj , p0 is non-negative on the unit circle, eiθ must be a local minimum
of p0 (on the circle). This, however, can only be the case if the first non-vanishing
derivative of p0 (p′0, p

′′
0 , . . .) is an even order. Therefore, any roots of p0 with modulus

1 have even multiplicity. Suppose that p0 has a root whose modulus is strictly less than
1. As p0(1/z) = p0(z), it must also have a corresponding root of magnitude greater
than 1. (The reverse is true if p0 has a root outside the unit disk). Therefore, we can
define a (monic) polynomial b whose roots are precisely those roots of p0 which (i) have
magnitude is strictly less than one, or (ii) have magnitude 1, but in this case we take the
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multiplicity of the roots to be exactly half the corresponding multiplicity for p0. Thus,
the polynomial b(w)b(1/w) has precisely the same roots and the same multiplicities as
p0, and so differ only by a multiplicative constant λ2. For any w on the unit circle
which is not a root of p0, we must have λ2 = b(w)b(1/w)/p0(w) = |b(w)|2/p0(w). As
p0(w) is real and positive, λ2 is positive as well, so we may assume that λ itself is real
and positive. The end result is that we have found bk’s (the coefficients of b) so that(∑

k∈Z

ckw
k

) (∑
k∈Z

ckw
−k

)
+

(∑
k∈Z

λbkw
k

) (∑
k∈Z

λbkw
−k

)
= 1.

Therefore, if we let r2k = ck and r2k+1 = λbk, we can follow our initial algebra
backwards and arrive at the conclusion that the sequence rj must satisfy (6), and, by
our construction, rk is finitely supported.

For the converse, note that, if the ck can be “interlaced” with another sequence
so that the result satisfies (6), then p0 is necessarily non-negative on the unit circle.
Thus, if |

∑
k∈Z

cke
ikξ| > 1 for any ξ, we have a contradiction. �

Note that our method to “fill in” the sequence rk could have produced a different
sequence if we had chosen different roots in the definition of b. (All we really needed
was to make sure that the roots of b did not include both w and w−1). In other words,
we stress that even though such a sequence rj exists, it is not, in general, unique.

3. Wavelets in �2(Z)

We now define what we mean by a wavelet.

Definition 2. A sequence ψ ∈ �2(Z) is called a wavelet (with respect to the dyadic
dilation ρ) if and only if {ρjτ2kψ}j,k∈Z,j≥0 is an orthonormal basis of �2(Z).

To agree with usual wavelet conventions, we take translations first followed by
dilations. Note that one could instead consider systems generated by dilating first
and then translating. Such investigations on the real line lead to so-called quasi-affine
systems [3]. We will not consider this case here.

It may seem curious that we have taken only translations by multiples of two in
the definition of a wavelet. The developments of the following sections will lead us to
the conclusion that this is the “natural” definition to use, and so, in some sense, the
precise reasons must remain a mystery for the time being. We can, however, explain
why the obvious choice (taking all translations) cannot be the best one.

Suppose s is a sequence (say with norm one), which is orthogonal to any of its
(non-trivial) translates: 〈

s, τ js
〉

= δj,0.
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As (τ js)∨(ξ) = eijξs∨(ξ), we have that

δj,0 =
〈
s, τ js

〉
=

1
2π

∫ 2π

0

s∨(ξ)s∨(ξ)e−ijξ dξ

=
1
2π

∫ 2π

0

|s∨(ξ)|2e−ijξ dξ,

therefore, s∨(ξ) is almost everywhere unimodular. We will use this fact to show that
the collection of the translates of s must, in fact, be a basis of �2(Z). Let f be a
square-summable sequence. Then

〈
f, τ js

〉
=

1
2π

∫ 2π

0

f∨(ξ)s∨(ξ)e−ijξ dξ

=
1
2π

∫ 2π

0

(
f∨(ξ)s∨(ξ)

)
e−ijξ dξ,

which is the j-th Fourier coefficient of f∨(ξ)s∨(ξ). Therefore, if we denote the projec-
tion off onto the closure of the span of {τ js}j∈Z by Psf , we have

||Psf ||2 =
∑
j∈Z

|
〈
f, τ js

〉
|2

=
∑
j∈Z

∣∣∣∣ 1
2π

∫ 2π

0

(
f∨(ξ)s∨(ξ)

)
e−ijξ dξ

∣∣∣∣2
= ||f∨(ξ)s∨(ξ)||2L2(T).

But multiplying a periodic function by a unimodular function does not change its
norm:

1
2π

∫ 2π

0

f∨(ξ)s∨(ξ)f∨(ξ)s∨(ξ) dξ =
1
2π

∫ 2π

0

f∨(ξ)f∨(ξ) dξ. (13)

Therefore, ||Psf || = ||f∨||L2(T) = ||f ||�2(Z), so the projection Ps must be the identity
and the closure of the span of the translates of s must be �2(Z). We have shown the
following:

Lemma 1

Suppose s ∈ �2(Z) is a norm one sequence which is orthogonal to all of its (non-

trivial) translates. Then {τ js}j∈Z is an orthonormal basis of �2(Z).

With this lemma, we can derive the following result:

Theorem 3

For any given dyadic dilation ρ, there does not exist ψ ∈ �2(Z) such that

{ρjτkψ | j, k ∈ Z, j ≥ 0}

is an orthonormal system.
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Proof. Let ρ be a dyadic dilation and suppose that our conclusion is false for some
non-zero ψ (normalized). In particular, ψ is orthogonal to its translates, so by the
lemma, {τkψ}k∈Z is an o.n.b. of �2(Z). As ρψ is orthogonal to every translate of ψ, it
must therefore be the zero sequence, and as ρ is injective, we must conclude that ψ is
the zero sequence. But this is clearly a contradiction. �

Our chosen definition of a discrete wavelet, as shown by the theorem, is, then, the
most natural choice from which we may be able to construct something analogous to
a wavelet basis in L2(R). We will revisit this idea after we have developed the notion
of a discrete MRA.

4. Decomposition of �2(Z)

We can now use our operators ρ and ρ∗ to decompose our space in a manner which is
very “wavelet-like.”

Theorem 4
Let V−k, for k ∈ N be the image of �2(Z) under the operator ρk, and let U−k be

the null space of ρ∗k. Then for any k ∈ N, l2(Z) = V−k ⊕ U−k.

Proof. We may express any sequence g in the following way: g = ρkρ∗kg+(g−ρkρ∗kg).
The first term in the sum is clearly a vector in V−k and the term in parentheses must
be in U−k, for

ρ∗k(g − ρkρ∗kg) = ρ∗kg − ρ∗kg = 0.
We must therefore have that �2(Z) = V−k + U−k. Suppose that g has an alternate
decomposition, i.e., for a ∈ V−k and b ∈ U−k, g = a + b. We must then have that
ρ∗kg = ρ∗ka by definition of U−k, so that ρkρ∗kg = ρkρ∗ka. Since a ∈ V−k, a = ρkc for
some third sequence c, so that ρkρ∗ka = ρk(ρ∗kρk)c = ρkc = a. Therefore a = ρkρ∗kg
and b = g − ρkρ∗kg. �

As suggested by the name, we will eventually see that the spaces Vk satisfy prop-
erties very similar to an MRA. Before we do this, though, we continue by decomposing
the Uk.

Theorem 5
With V−k and U−k as defined above, let W−k be the image of U−1 under the

operator ρk−1. Then for all k ∈ N, U−k =W−k ⊕ U−k+1.

Proof. Let g be a sequence in U−k. Again we may say g = ρk−1(ρ∗)k−1
g + (g −

ρk−1(ρ∗)k−1
g). In this case, ρk−1(ρ∗)k−1

g ∈W−k since ρ∗((ρ∗)k−1g) = 0, and

(ρ∗)k−1(
g − ρk−1(ρ∗)k−1

g
)

= (ρ∗)k−1
g − (ρ∗)k−1

g = 0,

so (g−ρk−1(ρ∗)k−1 ∈ U−k+1. Suppose now that a ∈W−k, b ∈ U−k+1 satisfy g = a+b.
Then (ρ∗)k−1

g = (ρ∗)k−1
a (since this operation annihilates b). Again, since a = ρk−1c

for some c, we find that (ρ∗)k−1
g = c and ρk−1(ρ∗)k−1

g = ρk−1c = a, which in turn
shows that b = (g − ρk−1(ρ∗)k−1), so our factors are unique. �

Corollary 1
For any negative integer k, l2(Z) = Vk ⊕W−1 ⊕ · · · ⊕Wk.
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Proof. This is a straightforward induction argument. �

Proposition 8

For any k ∈ N, V−k and U−k are orthogonal subspaces.

Proof. Let ρkf ∈ V−k and g ∈ U−k. Then

〈
ρkf, g

〉
=

〈
f, ρ∗kg

〉
= 〈f, 0〉 = 0. �

Proposition 9

For any k ∈ N, W−k and U−k+1 are orthogonal subspaces.

Proof. Suppose ρk−1f ∈W−k and g ∈ U−k+1.〈
ρk−1f, g

〉
=

〈
f, (ρ∗)k−1

g
〉

= 〈f, 0〉 = 0. �

Corollary 2

For any j, k < 0, j �= k, Wj and Wk are orthogonal subspaces.

Proof. Without loss of generality, take k > j. Then Wk is a subspace of Uj+1, and
hence is orthogonal to Wj . �

Proposition 10

For every k ∈ N, V−k is closed.

Proof. Suppose {ρkfj}, j ∈ N is a convergent sequence of sequences in �2(Z) with limit
sequence f .

||ρkρ∗kf − ρkfj || = ||ρkρ∗kf − ρk(ρ∗kρk)fj ||
= ||ρk(ρ∗kf − ρ∗kρkfj)||
= ||ρ∗kf − ρ∗kρkfj ||
≤ ||f − ρkfj || → 0.

Thus, we have that ρkfj → ρkρ∗kf . Since the limit is unique, f = ρkρ∗kf , which
implies that f ∈ V−k, so V−k is closed. �

Proposition 11

For every k ∈ N, W−k is closed.
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Proof. Let {ρk−1fj}, j ∈ N be a convergent sequence (of elements in �2(Z)) with limit
f such that ρ∗fj = 0 for all j.

||ρk−1(ρ∗)k−1
f − ρk−1fj || = ||ρk−1(ρ∗)k−1

f − ρk−1(ρ∗)k−1
ρk−1fj ||

= ||(ρ∗)k−1
f − (ρ∗)k−1

ρk−1fj ||
≤ ||f − ρk−1fj || → 0.

As before, we can conclude that f = ρk−1(ρ∗)k−1
f , since the sequence converges to a

unique limit. In addition,

ρ∗((ρ∗)k−1
f) = ρ∗kf

= ρ∗k
(

lim
j→∞

ρk−1fj

)
= lim

j→∞
ρ∗kρk−1fj

= 0.

Therefore (ρ∗)k−1
f is in the null space of ρ∗ so f = ρk−1((ρ∗)k−1

f) is in W−k. There-
fore W−k is closed. �

Putting all of these rapid-fire propositions together, we have a very nice decom-
position of �2(Z):

Corollary 3

For every k ∈ Z, k < 0, l2(Z) = Vk ⊕W−1 ⊕ · · · ⊕Wk. Each summand is closed

and orthogonal to every other summand, and Wj = ρ−j+1(W−1) for j < −1.

Proof. Only two parts of this result are left to show. First, Wj must be orthogonal
to Vk for j ≥ k since it is a subspace of Uk which is orthogonal to Vk. Second,
Wj = ρ−j+1(W−1) for j < −1. This, however, is clear from their definition. �

5. The Discrete MRA

Let us define, for convention, that V0 = �2(Z).

Theorem 6

The collection of closed subspaces {Vj}, as defined in the previous section, satisfies,

for j = . . . ,−1, 0:

Vj ⊂ Vj+1 (14)

ρf ∈ Vj ⇔ f ∈ Vj+1 (15)
0⋃

j=−∞
Vj = �2(Z) (16)

∃ ϕ ∈ V0 such that {τkϕ | k ∈ Z} is an orthonormal basis for V0. (17)
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Proof. [Vj ⊂ Vj+1] As Vj = ρ−j+1(V0), Vj = ρ−j(ρV0) ⊂ ρ−j(V0) = Vj+1.
[ρf ∈ Vj ⇒ f ∈ Vj+1] Suppose ρf = ρ−j+1g for some g (this is true if and only if
ρf ∈ Vj). Then f = ρ∗ρ−j+1g = ρ−jg, which is clearly in Vj .
[ρf ∈ Vj ⇐ f ∈ Vj+1] Suppose f = ρ−jg for some g. Then ρf = ρ−j+1g, and so is in
Vj .
[
⋃0

j=−∞ Vj = �2(Z)] This is trivial because we already have containment and V0 =
�2(Z).
Similarly, the “scaling function” is trivial– take ϕ = ∆, where ∆ is an element of the
standard basis. �

Suppose, conversely, that some collection of closed subspaces {Vj} satisfies (14)
- (17). The containment property (14) implies that the union of the sets Vj must be V0.
But, by (16), this means that V0 = �2(Z). Finally, (15) implies that Vj = ρ−j(V0) =
ρ−j(�2(Z)). This is exactly how we constructed our particular Vj ’s. Therefore we can
conclude:

Corollary 4

Given a dyadic dilation ρ, there exists a unique collection of subspaces {Vj},
j ∈ Z < 0, which satisfy (14) - (17).

The conclusions of Theorem 6 seem so similar to the definition of an MRA on
L2(R), that it seems natural to “finish out” the comparison and make the following
definition:

Definition 3. A Collection of closed subspaces {Vj}, together with a dyadic dilation
ρ will be called a discrete MRA if and only if it satisfies (14) - (17) and the additional
condition

0⋂
j=−∞

Vj = {0}. (18)

As before, there can be at most one collection of Vj ’s which produces a discrete MRA
relative to a fixed dyadic dilation ρ.

Unfortunately, condition (18) is not always satisfied for a general dilation ρ and
{V−j := ρj(�2(Z))}. Consider the earlier example of the up-sampling dilation ρds. The
adjoint, ρ∗u, does exactly the opposite, down-sampling,

ρ∗u
(
{. . . , f−1, f0, f1, . . .}

)
=

{
. . . , f−2, f0, f2, . . .

}
. (19)

Notice, though, that the sequence ∆ ∈ Vj ∀j ≥ 0. Thus (18) is not true in this case.
We can, however, show that (18) is equivalent to the condition that ||ρ∗jf || → 0 as
j → ∞ for all sequences f .

To establish the desired conclusion, we need to construct a new operator P ac-
cording to the following formula:

Pf :=
∞∑
j=0

ρj
(
(ρ∗)jf − ρ(ρ∗)j+1f

)
. (20)



Wavelets on the integers 273

Each term in (20) is orthogonal to every other because

ρj
(
(ρ∗)jf − ρ(ρ∗)j+1f

)
∈Wj+1.

In addition,

N∑
j=0

∣∣|ρj((ρ∗)jf − ρ(ρ∗)j+1f
)∣∣|2 =

∥∥∥∥ N∑
j=0

ρj((ρ∗)jf − ρ(ρ∗)j+1f)
∥∥∥∥2

= ||f − ρN+1(ρ∗)N+1f ||2

≤
(
||f || + ||ρN+1(ρ∗)N+1f ||

)2

≤ 4||f ||2,

so the sum (20) converges. As the sum actually telescopes, we can conclude that

lim
j→∞

(ρjρ∗jf) = f − Pf, (21)

and hence, for fixed j′,

ρj
′
ρ∗j

′
(f − Pf) = ρj

′
ρ∗j

′
(

lim
j→∞

(ρjρ∗jf)
)

= lim
j→∞

ρj
′
ρ∗j

′ (
ρjρ∗jf

)
= lim

j→∞
(ρjρ∗jf) = f − Pf.

(We used the fact that for j > j′, ρ∗j
′
ρj = ρj−j′). We can hence conclude that P is a

projection operator,

0 = lim
j→∞

(
ρjρ∗j(f − Pf)

)
− (f − Pf) = P (f − Pf). (22)

Our plan is to show that the null space of P is precisely the intersection of the Vj ’s,
and then investigate the conditions in which P has a trivial null space.

Proposition 12

The null space of P is exactly ∩jVj .

Proof. Suppose g ∈ V−j ∀j ≥ 0. Then, for each j, there exists a sequence gj such
that g = ρjgj , which implies that

ρjρ∗jg = ρjρ∗jρjgj
= ρjgj = g.

Therefore g = limj→∞ ρjρ∗
jg = g − Pg, so Pg = 0, and we have that ∩jVj ⊂ null P .

Suppose instead that g is any sequence for which Pg = 0. Then for each j, g =
g − Pg = ρjρ∗j(g − Pg) = ρjρ∗jg, so g must also be in V−j for all j, and hence in the
intersection as well. �
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Corollary 5

The subspaces {Vj} generated by the dilation operator ρ form a discrete MRA

(with respect to ρ) if and only if

lim
j→∞

||ρ∗jf || = 0 ∀f ∈ �2(Z). (23)

Proof. Condition (18) is true if and only if P has trivial null space which can occur if
and only if P is the identity operator. But P is the identity if and only if ||f −Pf || =
0 ∀f . Finally, we have that

||f − Pf || =
∣∣∣∣∣∣∣∣ lim
j→∞

ρjρ∗jf

∣∣∣∣∣∣∣∣
= lim

j→∞
||ρjρ∗jf ||

= lim
j→∞

||ρ∗jf ||,

so our hypothesis is established. �

If ρ or ρ∗ have any eigenvectors, these eigenvectors must be in ∩Vj . The next step
is to show that any f ∈ ∩Vj is itself an eigenvector of ρ, and that the eigenspace of ρ
is at most dimension 1.

Lemma 2

Suppose f, g ∈ L2(T) have the property that, for any non-negative integer j, there

exist functions sj , fj , gj in L2(T) such that

f(x) = sj(x)fj(x) a.e. (24)

g(x) = sj(x)gj(x) a.e. (25)

fj

(
x+

2π
2j

)
= fj(x) a.e. (26)

gj

(
x+

2π
2j

)
= gj(x) a.e. (27)

Then f and g are linearly dependent, i.e., there exist cf , cg ∈ C not both zero such

that cff + cgg = 0 almost everywhere.

Proof. First of all, assume neither ||f || nor ||g|| is zero, in which case the conclusion is
obviously true. As the set of x ∈ R where (24) - (27) fail to be true for a particular j
is a set of measure zero, the set where these equations fail to be true for any particular
j is also a set of measure zero. Thus, on some set E containing almost every x ∈ R

equations (24) - (27) hold for every x and every j. In particular, the set

E′ = E ∩
⋂

j≥0,k∈Z

(
E − 2πk

2j
)
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is a set of full measure (as it is the countable intersection of sets of full measure) and
has the additional property that x ∈ E′ ⇒ x+ 2π

2j ∈ E′ for all non-negative integers j.
To see this last property, fix a non-negative j and let x ∈ E′. Consider any integer k
and any non-negative integer j0. Clearly

2πk
2j0

− 2π
2j

=
2π(2jk − 2j0)

2j+j0
, and x ∈ E − 2π(2jk − 2j0)

2j+j0

by definition of E′, so x+ 2π
2j ∈ E− 2πk

2j0 for any j0, k. Thus x+ 2π
2j ∈ E′. The translation

invariance of E′ will considerably simplify the rest of the argument.
We now define a new sequence of functions hj :

hj(x) =


∣∣∣ fj(x)
gj(x)

∣∣∣ gj(x) �= 0

−1 gj(x) = 0.
(28)

Each hj is measurable, so

h(x) = lim inf
j→∞

min
{
hj(x), 2

||f ||
||g||

}
exists and is itself measurable. Let x ∈ E′ and fix a non-negative integer j. If h(x) =
−1, then for infinitely many N > j we have gN (x) = gN (x+ 2π

2j ) = 0, so h(x+ 2π
2j ) =

−1 = h(x). If h(x) �= −1 then gN (x) �= 0 for all sufficiently large N , and as fN (x) =
fN (x+ 2π

2j ) and gN (x) = gN (x+ 2π
2j ) for any x ∈ E′ and any N > j, we again conclude

that h(x) = h(x+ 2π
2j ). Therefore, for almost every x ∈ R, h(x) = h(x+ 2π

2j ) for all non-
negative integers j. In particular, then, h is 2π-periodic and bounded, so h ∈ L2(T).
This being the case, the fact that h has arbitrarily short period means that h must be
almost everywhere equal to some constant c. This constant c cannot equal −1 as this
would imply that g = 0 almost everywhere, contrary to assumption. Likewise c cannot
equal 2||f ||/||g||, since, one can see that this would imply that ||f || ≥ 2||f ||||g||/||g||.
Thus, lim inf |fj(x)/gj(x)| = c for almost every x ∈ R. By a similar construction, one
can easily see that lim inf �{fj(x)/gj(x)} and lim inf �{−ifj(x)/gj(x)} exist almost
everywhere and are each almost everywhere constant, from which it easily follows that
f = cgg almost everywhere for some cg ∈ C, so the hypothesis is true. �

Theorem 7

Given a dyadic dilation ρ and defining the spaces Vj ⊂ �2(Z) as before, we conclude

that f ∈
⋂

j Vj if and only if f is an eigenvector of ρ, and this space is at most one

dimensional.

Proof. Given f ∈
⋂

j Vj , we have seen that ρjρ∗jf = f for all non-negative integers j.
In terms of the Fourier transform of f ,

f∨(ξ) = (ρ∗jf)∨(2jξ)
j−1∏
l=0

m(2lξ)
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for all non-negative j and almost every ξ ∈ [0, 2π). But we also have

(ρf)∨(ξ) = (ρ∗jf)∨(2j+1ξ) m(2jξ)
j−1∏
l=0

m(2lξ) a.e.

again for all non-negative integers j (take the product to be 1 by convention if j = 0) .
Thus, if we let sj(ξ) =

∏j−1
l=0 m(2lξ) and likewise take fj(ξ) =

(
ρ∗jf

)∨
(2jξ) and gj =

(ρ∗jf)∨(2j+1ξ) m(2jξ) (sj = (ρj∆)∨, so it is square-integrable; fj and gj are clearly
square-integrable), we may conclude from the lemma that f∨ and (ρf)∨ are linearly
dependent, so f and ρf must also be linearly dependent. Moreover, as ||f || = ||ρf ||,
we conclude that ρf = λf for some complex number λ of magnitude 1. Thus, every
sequence in

⋂
j Vj is an eigenvector of ρ. The converse, however, is immediate, so we

see that the eigenvectors of ρ are in fact, all the vectors in
⋂

j Vj . Moreover, suppose
f and g are any two non-zero eigenvectors of ρ. Then we have

f∨(ξ) =

(
j−1∏
l=0

m(2lξ)

)
λ−j
f f

∨(2jξ) a.e.

g∨(ξ) =

(
j−1∏
l=0

m(2lξ)

)
λ−j
g g

∨(2jξ) a.e.

Again we may apply the lemma and conclude that f∨ and g∨ are linearly dependent,
thus f and g are linearly dependent as well. We can therefore conclude that the span
of the eigenvectors of ρ is at most one-dimensional over C for any dyadic dilation ρ. �

Lemma 3

If f is any sequence in �2(Z) which is an eigenvector of a dyadic dilation ρ, then

the Fourier transform of f is a bounded function.

Proof. Suppose ρ has a non-zero eigenvector f , otherwise we’re done. This means
that by (21), Pf = 0. As P is continuous and f is non-zero, there must be some
finitely supported sequence g in a neighborhood of f for which Pg �= g (otherwise we
could take a limit and conclude that Pf = f �= 0). Combining (21) and the previous
theorem, we conclude that

lim
j→∞

ρjρ∗jg = g − Pg = cf

for some non-zero constant c since g−Pg �= 0 and P (g−Pg) = 0, meaning that g−Pg
is in

⋂
Vj . As f is an eigenvector of both ρ and ρ∗ (and the product of its eigenvalues

is 1), we conclude that g = cf + h, where

lim
j→∞

||ρ∗jh|| = lim
j→∞

||ρjρ∗jh||

= || lim
j→∞

ρjρ∗j(g − cf)||

= ||cf − cf || = 0.
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Thus, if ρf = λf , λjρ∗jg = cf + λjρ∗jh → cf as j → ∞. As g is finitely supported,
its Fourier transform is a trigonometric polynomial and is a bounded function. But∣∣∣∣(ρ∗jg)∨

(ξ)
∣∣∣∣

=
1
2

∣∣∣∣(ρ∗j−1g
)∨

(ξ/2)m(ξ/2) +
(
ρ∗j−1g

)∨
(ξ/2 + π)m(ξ/2 + π)

∣∣∣∣
≤

[
|m( 1

2ξ)|2 + |m( 1
2ξ + π)|2

2
|
(
ρ∗j−1g

)∨
( 1
2ξ)|2 + |

(
ρ∗j−1g

)∨
( 1
2ξ + π)|2

2

]1/2

by the Cauchy-Schwartz inequality. But the first fraction on the right-hand side is
one, and the second is bounded by the maximum of |(ρ∗j−1g)∨|. Since |g∨(ξ)| < M for
some M , we conclude by induction that |(ρ∗jg)∨(ξ)| < M . Thus |λj(ρ∗jg)∨(ξ)| < M
almost everywhere for all non-negative j. But this implies that cf∨, which is the L2

limit of λj(ρ∗jg)∨, must be bounded as well. �

Theorem 8

If ρ fails to generate an MRA, i.e., if
⋂
Vj is a one-dimensional subspace of �2(Z),

then m = (ρ∆)∨ is unimodular. Equivalently, if m is not unimodular, then ρ generates

an MRA.

Proof. Suppose that ρ possesses a non-zero eigenvector f ; by the previous theorem,
this is equivalent to our hypothesis. Then

|f∨(ξ)| = |m(ξ)f∨(2ξ)|

as the eigenvalue must have modulus one. We conclude that

1
2

[
|f∨(ξ)|2 + |f∨(ξ + π)|2

]
=

1
2

[
|m(ξ)|2|f∨(2ξ)|2 + |m(ξ + π)|2|f∨(2ξ + 2π)|2

]
= |f∨(2ξ)|2.

By the lemma, |f∨(ξ)| is a bounded function, so |f∨(ξ)|4 is also bounded. Therefore
it is integrable and g(ξ) = |f∨(ξ)|2 ∈ L2(T). The function g satisfies the equation
g(ξ) + g(ξ + π) = 2g(2ξ). If we take the inner product of both sides with e2ikξ,
we find that the Fourier coefficients of g, denoted by gk, satisfy g2k + g2k = 2gk, or
g2k = gk. Since g ∈ L2(T), this can only be true if gk = 0 for k �= 0, i.e., if g is almost
everywhere constant. Thus, |f∨(ξ)| must be almost everywhere constant as well and
|f∨(ξ)| = |λ||m(ξ)||f∨(2ξ)| implies (as |λ| = 1) that |m(ξ)| = 1 almost everywhere. �

In the case of MRAs on the real line, one can prove that
⋂

j Vj = {0} is in fact a
consequence of the other properties of an MRA (see [2] for a proof). Though we have
already seen that this is not the case for discrete wavelets, it is interesting that one is
still able to make the next best possible conclusion.
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In [1], the issue of deciding when a dilation generates an MRA is addressed by a
theorem which shows that any ρ which can be extended to an operator on all bounded
sequences, which sends the constant sequence to itself, and which has a C∞ Fourier
transform generates an MRA. These conditions insure that all dilations are “non-
trivial” (i.e., dilations whose filters are not identically 1 in magnitude); finitely sup-
ported coefficients rk as in (6) do, in fact, generate an MRA. They are, however, not
necessary, as we have just seen.

So far we have been fairly silent about “discrete wavelets,” which was the original
focus of this project. Thankfully, though, we have developed almost all the machinery
needed to say something meaningful on this subject. In particular, we will show that, if
ρ is a dilation operator which generates a discrete MRA, there is an element ψ ∈W−1

which is a discrete wavelet.

6. The Discrete MRA wavelet

The goal of this section is to demonstrate that, associated with every discrete MRA
which is generated by dyadic dilation ρ, there is a discrete wavelet in W−1. First, we
state precisely what we mean by a discrete MRA wavelet.

Definition 4. A discrete wavelet ψ relative to the dyadic dilation ρ is called an MRA
wavelet if and only if {τ2kψ | k ∈ Z} is an orthonormal basis of W−1.
Unlike wavelets on the real line, every discrete wavelet is an MRA wavelet as shown
by the following theorem.

Theorem 9
Let ψ ∈ �2(Z) be a discrete wavelet with respect to the dyadic dilation ρ. Then

ψ is an MRA wavelet.

Proof. By definition, {ρjτ2kψ}j,k∈Z,j≥0 is an orthonormal basis of �2(Z). We can thus
conclude: 〈

ρ∗ψ, ρjτ2kψ
〉

=
〈
ψ, ρj+1τ2kψ

〉
= 0 j ≥ 0.

Therefore we must have ρ∗ψ = 0, meaning that, defining Wj and Vj as before (the
“standard” MRA associated with ρ), we have ψ ∈W−1. As τρ∗ψ = ρ∗τ2ψ, we get that
τ2kψ ∈ W−1∀k ∈ Z. By hypothesis they are an orthonormal system. Now suppose
f ∈W−1. It follows that 〈

f, ρjτ2kψ
〉

=
〈
ρ∗f, ρj−1τ2kψ

〉
= 0

for j ≥ 0. If
〈
f, τ2kψ

〉
= 0 ∀k ∈ Z, then f = 0 by virtue of the fact that

{ρjτ2kψ}j,k∈Z,j≥0 is an o.n.b. of �2(Z) and
〈
f, ρjτ2kψ

〉
= 0 for all j and k. Thus

{τ2kψ}k∈Z is an o.n.b. of W−1 and so ψ must be a discrete MRA wavelet. �

Theorem 10
Suppose ψ ∈ �2(Z) is a wavelet relative to ρ1 and ρ2, both dyadic dilations. Then

there is a unitary map µ : �2(Z) → �2(Z) which commutes with translation such that
ρ2 = ρ1µ.
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Proof. Observe that ψ is a wavelet relative to ρ1 and ρ2 if and only if the null space
of ρ∗1 is equal to the null space of ρ∗2. For any f ∈ �2(Z), we have

ρ2f = ρ1ρ∗1ρ2f + (ρ2f − ρ1ρ∗1ρ2f)

where the term in parentheses is in the null space of ρ∗1, which in this case is equal to
the null space of ρ∗2. Thus, applying ρ∗2 to both sides,

f = ρ∗2ρ2f = ρ∗2ρ1ρ
∗
1ρ2f.

Similarly, we can show
f = ρ∗1ρ2ρ

∗
2ρ1f.

Thus the operator µ = ρ∗1ρ2 is invertible. It is also easy to check that µ commutes
with translations. Also, as µµ∗f = µ∗µf = f , µ must be unitary.

Finally, we claim that ρ1µ = ρ2.

||ρ1µf − ρ2f ||2 = 〈ρ1µf − ρ2f, ρ2f〉 + 〈ρ1µf − ρ2f, ρ1µf〉 .

The first inner product is zero since 〈ρ1µf − ρ2f, ρ2f〉 = 〈ρ∗2ρ1µf − f, f〉 = 〈0, f〉.
Thus,

||ρ1µf − ρ2f ||2 = 〈ρ1µf, ρ1µf〉 − 〈ρ2f, ρ1µf〉 = 〈f, f〉 − 〈f, f〉 = 0.

Therefore we may conclude that ρ2 = ρ1µ. �

Thus far, the results are quite interesting: every wavelet is an MRA wavelet, and
up to the obvious equivalence suggested by the previous theorem, the dilation making
ψ a wavelet is unique. Now let us actually construct a wavelet given a discrete MRA.
We are going to define a conjugate linear operator F as follows:

(Ff)j := (−1)1−jf1−j ∀j ∈ Z. (29)

By conjugate linear, we mean that F (αf + βg) = αFf + βFg, which is clear from the
definition. Some other immediate consequence are

F 2f = −f (30)

〈Ff, Fg〉 = 〈f, g〉 = 〈g, f〉 (31)

〈Ff, g〉 = −〈Fg, f〉 (32)

where the last equality is taken by substituting g = −F 2g into (31). We will now
proceed to show some more properties of F which are less apparent from the definition.

Proposition 13

τ−1F = −Fτ . (33)
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Proof. For any sequence f ,

(Fτ f)j = (−1)1−j(τ f)1−j

= (−1)1−jf1−j−1

= −
(
(−1)−jf−j

)
= −(Ff)j+1 = −(τ−1Ff)j . �

Proposition 14

For all k ∈ Z: 〈
Ff, τ2kf

〉
= 0. (34)

Proof. 〈
Ff, τ2kf

〉
=

∑
l∈Z

(Ff)l(τ2kf)l

=
∑
l∈Z

(−1)1−lf1−lfl−2k

=
∑
l∈Z

(−1)lflf1−l−2k

=
∑
l∈Z

(−1)l−2kfl−2kf1−l = −
〈
Ff, τ2kf

〉
,

where in the last two lines we change the summation variable (l→ 1−l and l→ l+2k).
Since the inner product remains unchanged when multiplied by −1, it must be zero. �
The usefulness of F comes from the next theorem, which says, as we shall see later,
that for any dyadic dilation ρ, F is a bijection between V1 and W1. First, we need the
following, rather unusual, property of F .

Proposition 15

For any dyadic dilation ρ and any sequence f (in �2(Z)),(
ρρ∗ − Fρρ∗F

)
f = f. (35)

Proof. As we have done in the last few propositions, we will show that the two sides are
equal when evaluated at any integer n. As in earlier sections, we make the definition
rk := (ρ∆, τk∆).

((ρρ∗ − Fρρ∗F )f)n =
∑
l∈Z

(ρ∗f)lrn−2l − (−1)1−n
∑
l∈Z

(ρ∗Ff)lr1−n−2l

=
∑
l∈Z

[(∑
k∈Z

fkrk−2l

)
rn−2l − (−1)1−n

(∑
k∈Z

(Ff)krk−2l

)
r1−n−2l

]
=

∑
l∈Z

∑
k∈Z

[
fkrk−2lrn−2l − (−1)1−n(−1)kfkr1−k−2lr1−n−2l

]
=

∑
k∈Z

fk
∑
l∈Z

[
rk−2lrn−2l + (−1)n(−1)kr1−k−2lr1−n−2l

]
. (36)
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We know it is safe to change the order of summation because, as r and f are square-
summable, their product is absolutely summable.

Suppose n + k = 2m for some integer m. We can then change our variable of
summation in (36) only in the second term inside the sum over l, by taking l→ l−m,
in which case the sum over l becomes∑

l∈Z

[
rk−2lrn−2l + r1−k−2(l−m)r1−n−2(l−m)

]
=

∑
l∈Z

[rk−2lrn−2l + rn+1−2lrk+1−2l]

=
∑
l∈Z

rk−lrn−l,

since the first half of the sum and the second half differed only by 2l in the first and
2l+ 1 in the second. Since n and k differ by an even number, (6) tells us that the sum
over l in (36) must equal δn,k.

Suppose instead that n + k = 2m + 1 for some integer m. Performing the same
trick we just used, the sum over l becomes:∑

l∈Z

[
rk−2lrn−2l − r1−k−2(l−m)r1−n−2(l−m)

]
=

∑
l∈Z

[rk−2lrn−2l − rn−2lrk−2l]

= 0.

Therefore
((ρρ∗ − Fρρ∗F )f)n =

∑
k∈Z

fkδk,n = fn. �

Corollary 6

F is a bijection from V−1 to W−1.

Proof. Take g ∈ V−1. We have already seen that ρρ∗g = g, so by the proposition, we
must have Fρρ∗Fg = 0. Since F and ρ are both 1−1, we must have ρ∗Fg = 0, meaning
that F maps V−1 into W−1. Similarly, take g now in W−1. Now the proposition tells
us that g = −Fρρ∗Fg so we may conclude that Fg = ρρ∗Fg, meaning that Fg ∈ V−1

by definition. Therefore, F is a bijection as described. �

Theorem 11

For any dilation operator ρ, with V−j and W−j as generated by ρ, {ρjτk∆}k∈Z is
an orthonormal basis for V−j and {ρj−1Fρτk∆}k∈Z is an orthonormal basis for W−j .

Proof. [V−j ] As ρ preserves inner products, and {τk∆}k∈Z is an o.n.b. of V0,
{ρjτk∆}k∈Z is a basis of ρjV0 = V−j .

[W−j ] F is a bijection which (up to conjugation) preserves inner products. We
know in particular that F (V−1) =W−1, so {Fρτk∆}k∈Z must be an orthonormal basis
of W−1. But for j > 1, W−j = ρj−1W−1, so we must have that {ρj−1Fρτk∆}k∈Z is
an o.n.b. of W−j . �

Corollary 7

If ρ is a dyadic dilation which generates a discrete MRA, then there exists ψ = Fρϕ
which is a discrete orthonormal wavelet.
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Proof. We already know that the dilates of the (2k)-translates of ψ generate
⊕

jWj

(ρjτ2kFρϕ = −ρjFτ−2kρϕ = −ρjFρτ−kϕ. Collected over k, these sequences form a
basis of W−j+1 by the above corollary). Since ρ generates a discrete MRA, we know
that this space is equal to �2(Z). �

7. Connections to MRA wavelets in L2(R)

Let ψ ∈ L2(R) be an MRA wavelet, and let ϕ be an associated scaling function with
low-pass filter m0 ∈ L2(T). As we have seen earlier, m0 (when multiplied by

√
2)

generates a dyadic dilation on �2(Z) in a very natural way, via the Fourier transform.
Even more, we have an isometry mapping �2(Z) into V0 ⊂ L2(R):

f �→
∑
k∈Z

fkϕ(ξ − k). (37)

Let us call this map Φ. As we are working with a real MRA, we have the two-scale
equation

1
2
ϕ
(ξ

2

)
=

∑
k∈Z

αkϕ(ξ + k), (38)

where
m0(ξ) =

∑
k∈Z

αke
ikξ. (39)

To be explicit, the dyadic dilation on �2(Z) we choose has the property that (ρ∆)k =
α−k; the α−k is accounted for by the fact that we chose to translate in one direction in
the definition of Φ while the two-scale equation is typically written with translations
in the opposite direction.

The first and most obvious property of Φ is that it respects translation by integers:

(Φτ lf)(ξ) =
∑
k∈Z

fk−lϕ(ξ − k) =
∑
k∈Z

fkϕ(ξ − k − l) = (Φf)(ξ − l).

If we consider the dyadic dilation of Φf , where in R this has an unambiguous meaning,
we see that

1
2
(Φf)

(ξ
2

)
=

1
2

∑
k∈Z

fkϕ
(ξ

2
− k

)
=

∑
k∈Z

fk
1
2
ϕ
(ξ − 2k

2

)
=

∑
k∈Z

fk
∑
k′∈Z

αk′ϕ(ξ − 2k + k′)

=
∑
k∈Z

fk
∑
k′∈Z

αk′+2kϕ(ξ + k′)

=
∑
k′∈Z

∑
k∈Z

fkα−(k′−2k)ϕ(ξ − k′). (40)
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We needn’t worry about interchanging the order of summation in the last line as we
can exploit the properties of the isometry and approximate f by a finitely supported
sequence, showing that the error goes to zero as our finite approximation goes to f .
Notice that (40) is precisely 1√

2
Φ(ρf). We can therefore conclude that

1√
2
(Φf)

(ξ
2

)
= [Φ(ρf)] (ξ). (41)

Thus Φ respects dyadic dilation, and hence, the MRA structure, i.e., the discrete MRA
generated by ρ is mapped via Φ into our MRA on R in such a way that

f ∈ Vj (the discrete MRA) ⇔ Φf ∈ Vj (the real MRA),

and
f ∈Wj (the discrete MRA) ⇔ Φf ∈Wj (the real MRA).

Therefore, we can take 1√
2
ψ( ξ2 ) ∈ W−1 (remember that ψ is our real MRA wavelet),

whose translates and dilates span V0 in the limit, and construct for ourselves a discrete
o.n. wavelet, namely, Φ−1 1√

2
ψ( ·

2 ).
Let us go back and explicitly show the correspondence just described above. First

of all, we will need to adjust notation slightly to avoid confusion. When referring to
the real MRA, we will use the standard notation. In the case of the discrete MRA
generated by ρ (which is in turn generated by m0), we will place a tilde over all the
familiar symbols (ϕ̃ , ψ̃, Ṽj , W̃j , etc.).

First of all, we introduce the adjoint of Φ. As Φ∗ is a left inverse of Φ, and Φ is a
surjective map into V0 (up to a.e.) we see that we must have

[Φ∗y(·)]l = 〈y, ϕ(· − l)〉

by the orthonormality of the translates of ϕ. Moreover, as the translates of ϕ taken
together span V0, we must have that Φ∗ is also a right inverse of Φ (again, up to a.e.).
Using these facts, we now show that Φ respects the MRA structures in L2(R) and
�2(Z).

Proposition 16

For any f ∈ �2(Z),
f ∈ Ṽj ⇔ Φf ∈ Vj .

Proof. Suppose f ∈ Ṽj , j ≤ 0. By definition, f = ρ−jg for some second sequence g.
Thus

(Φf)(ξ) =
1

√
2
−j

(Φg)
( ξ

2−j

)
= 2j/2(Φg)(2jξ).

As the image of Φ is contained in V0, Φf ∈ Vj . For the converse, let us denote dyadic
dilation on R by D, i.e.

Dy(·) =
1√
2
y
( ·

2

)
.
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We have shown that DΦ = Φρ. Therefore Φ∗DΦ = ρ and so Φ∗D∗Φ = ρ∗. Suppose
Φf ∈ Vj , j ≤ 0. This means that (D∗)−jΦf ∈ V0, so Φ∗(D∗)−jΦf = (ρ∗)−jf ∈ Ṽ0.
But Φ∗ = Φ−1 (in the L2-norm) so

ρ−j(ρ∗)−jf = Φ∗(D)−jΦΦ∗(D∗)−jΦf
= Φ∗(D)−j(D∗)−jΦf
= Φ∗Φf = f.

Therefore f ∈ Ṽj . �

Corollary 8
For any f ∈ �2(Z),

f ∈ W̃j ⇔ Φf ∈Wj .

Proof. In both the discrete MRA and the real MRA, the wavelet subspace Wj (or W̃j)
is the orthogonal complement to Vj (Ṽj) in Vj+1 (Ṽj+1). Since Φ is injective, surjective
(up to a.e.), an isometry, and respects the Vj , we can use this characterization of Wj

(W̃j) to see immediately that the conclusion must be true. �
One other important detail–we have yet to show that ρ, the dyadic dilation on �2(Z)
actually generates an MRA. Since m0 is a low-pass filter for a scaling function ϕ, m0

cannot be constant, so we are clear. But we needn’t even use this fact to prove that ρ
generates an MRA.

Corollary 9
Given an MRA with low-pass filter m0, the subspaces Ṽj generated by dyadic

dilation ρ on �2(Z) (which is in turn generated by m0) form a discrete MRA, i.e.,⋂
Ṽj = {0}.

Proof. Let f ∈
⋂
Ṽj . We must then have Φf ∈

⋂
Vj . As the Vj form a (real) MRA,

this intersection is trivial, thus f = 0 as Φ is injective. �
As mentioned earlier, ΦΦ∗[y(·)] = y (up to a.e.), so if ψ is a wavelet associated with

a given (real) MRA, then so is ΦΦ∗ψ. In particular, {ψj,k(ξ) = 2j/2ψ(2jξ − k)}j,k∈Z

is an o.n.b. of L2(R), and {ψj,k}j<0,k∈Z is an o.n.b. of V0. The goal is to show that
{Φ∗ψj,k}j<0,k∈Z is an o.n.b. of Ṽ0 = �2(Z). To this end, it is sufficient to show that
{Φ∗ψ−1,k}k∈Z is an o.n.b. of W̃−1. Clearly this is an o.n. system as Φ is an isometry.
If it does not span W̃−1, we can find an f in this subspace which is orthogonal to
Φ∗ψ−1,k for every k, which means that Φf is in W−1 and orthogonal to ψ−1,k, for
every k, meaning that Φf is almost everywhere zero and f = 0. Thus Φ∗ψ−1,k is an
o.n.b. of W̃−1, and, hence, its dyadic dilates span �2(Z). But

Φ∗(ψ−1,k(·)
)

= Φ∗(ψ−1,0(· − 2k)
)

= τ2kΦ∗ψ−1,0,

so Φ∗ψ−1,0 is a discrete o.n. wavelet by definition (here we see where the 2k arises as
well). We can therefore conclude:

Theorem 12
Let ψ be an MRA wavelet with scaling function ϕ and low-pass filter m0. Then

the sequence Φ∗ψ−1,0 = ( 〈ψ−1,0, ϕ(· − l)〉 )l∈Z is an o.n. wavelet in �2(Z) with respect
to the dyadic dilation ρ generated by m0.
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8. Rational Dilations

We now consider the more general problem of “rational dilations” on �2(Z), i.e., those
linear operators ρ for which

τNρ = ρτM

and
||ρf || = ||f || ∀f ∈ �2(Z).

These operators will correspond to N/M -dilations (more appropriately, contractions)
in much the same way that the dyadic dilations on �2(Z) correspond to dyadic dilations
on L2(R). Describing them as rational dilations, though, is slightly misleading–in our
case a 6/4-dilation is not necessarily a 3/2-dilation. One could always demand that
N and M be relatively prime, but we do not do so here because this extra hypothesis
plays no role in the necessary proofs.

The first observation to make is that we may decompose �2(Z) into Vj and Wj

subspaces as before, since the results of Section 4 rely only on the fact that ρ is an
isometry of �2(Z) to the range of ρ. Let us define a family of projection operators on
�2(Z) and their corresponding operators on L2(T).

Definition 5. Given a positive integer n and a non-negative integer k less than n,
the linear operator Pn

k on �2(Z) is defined as

(Pn
k f)i =

{
fi (k − i) ∈ nZ

0 otherwise.

It is easy to check that Pn
k is a projection operator and that, for a fixed n, the col-

lection {Pn
k }k=0,...,n−1 is a commuting family of orthogonal projection operators with∑n−1

k=0 P
n
k equal to the identity operator. Another fact that is easily verified is that,

on L2(T), the operators take the form:

(Pn
k f)

∨(ξ) =
eikξ

n

n−1∑
l=0

e−2πikl/nf∨
(
ξ +

2πl
n

)
.

Back to the rational dilations. Let us define

m0, . . . ,mM−1 ∈ L2(T) as mk(ξ) = (ρτk∆)∨(ξ).

It is immediate from our definition that for any

l ∈ Z, (ρτMl+k∆)∨(ξ) = (τNlρτk∆)∨(ξ)

and this we conclude is equal to

eiNlξmk(ξ) = e−ikNξ/Mei(Ml+k)N/Mξmk(ξ)
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almost everywhere. By arguments similar to the one showing that (ρf)∨(·) =
m(·)f∨(2·) for dyadic dilations, we conclude that

(ρPM
k f)

∨(ξ) = mk(ξ)(PM
k f)

∨
(
N

M
ξ

)
a.e.

Therefore, by our previous observation that the sum of the Pn
k ’s is the identity,

(ρf)∨(ξ) =
M−1∑
k=0

mk(ξ)e−ikN/Mξ(PM
k f)

∨
(
N

M
ξ

)
a.e. (42)

Next we will derive the corresponding formula for ρ∗.

〈g, ρf〉 =
1
2π

∫ 2π

0

g∨(ξ)
M−1∑
k=0

mk(ξ)eikN/Mξ(PM
k f)∨

(
N

M
ξ

)
dξ

=
1
2π

M−1∑
k=0

∫ 2π

0

g∨(ξ)mk(ξ)eikN/Mξ(PM
k f)∨

(
N

M
ξ

)
dξ. (43)

We now employ two additional properties of the Pn
k (From now on, the symbol Pn

k

will refer both operators on �2(Z) and the corresponding operators on L2(T) when no
confusion will arise). First of all, if g ∈ L2(T) it is easy to check that

∫ 2π

0
g(ξ) dξ =∫ 2π

0
(Pn

0 g)(ξ) dξ as a result of the periodicity of g. The other fact, easily verified, is
that f, g ∈ L2(T), and if f has period 2π

n , then (Pn
0 fg)(ξ) = f(ξ)(Pn

0 g)(ξ). If we notice
that eik

N
M ξ(PM

k f)∨
(
N
M ξ

)
has period 2π

N , we may apply both these properties to (43)
and obtain

〈g, ρf〉 =
1
2π

M−1∑
k=0

∫ 2π

0

(PN
0 g

∨mk)(ξ)eikN/Mξ(PM
k f)∨

(
N

M
ξ

)
dξ

=
1
2π

M−1∑
k=0

∫ 2π

0

(PN
0 g

∨mk)
(M
N
ξ
)
eikξ(PM

k f)∨ (ξ) dξ

=
1
2π

M−1∑
k=0

∫ 2π

0

(PN
0 g

∨mk)
(M
N
ξ
)
eikξ(PM

−kf
∨
) (ξ) dξ

=
1
2π

M−1∑
k=0

∫ 2π

0

(PN
0 g

∨mk)
(M
N
ξ
)
(PM

0 e
ikξf

∨
) (ξ) dξ

=
1
2π

M−1∑
k=0

∫ 2π

0

(
PM

0 (PN
0 g

∨mk)
(M
N
ξ
)
eikξf

∨
)

(ξ) dξ

=
1
2π

M−1∑
k=0

∫ 2π

0

(PN
0 g

∨mk)
(M
N
ξ
)
eikξf

∨
(ξ) dξ.

As in the case of the dyadic dilation, this last integral permits us to conclude that

(ρ∗g)∨(ξ) =
M−1∑
k=0

eikξ(PN
0 g

∨mk)
(M
N
ξ
)
a.e. (44)
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We may now use this formula for ρ∗ to find necessary (and sufficient) conditions on the
mk. Let g = ρτ l∆, where l is non-negative and less than M . Then we can conclude
that

eilξ =
M−1∑
k=0

eikξ(PN
0 mlmk)

(M
N
ξ) a.e.

If we now take any non-negative integer l′ which is less than M we conclude that

δl,l′ = (PM
0 e

i(l−l′)ξ)(ξ)

=

(
PM

0

M−1∑
k=0

ei(k−l′)ξ(PN
0 mlmk)

(M
N
ξ
))

(ξ)

=
M−1∑
k=0

(PN
0 mlmk)

(M
N
ξ
)
(PM

0 e
i(k−l′)ξ)(ξ)

=
M−1∑
k=0

(PN
0 mlmk)

(M
N
ξ
)
δk,l′

= (PN
0 mlml′)

(M
N
ξ
)
a.e.

The end result of all this calculation is that we can conclude

(PN
0 mlml′)(ξ) = δl,l′ a.e. (45)

Not only is this condition necessary, but given mk’s satisfying it, we may define an
operator ρ according to the formula (42) which satisfies our definition of an N/M -
dilation.

Corollary 10

If M > N , then no such dilations exist.

Proof. Notice that on a pointwise level, PN
0 mlml′ is an inner product on C

N . Thus,
if M > N , (45) would imply that for almost every fixed ξ, the collection of M vectors
given by vl = (ml(ξ), . . . ,ml(ξ + 2π(N − 1)/N)) would form an orthonormal system,
which is impossible. �

Corollary 11

If M < N , then ρ is not surjective. In particular, W−1 is non-trivial.

Proof. If this were not the case, then ρ∗ would be an M/N -dilation, which cannot
exist. �

The proof of these corollaries rests on the fact that PN
0 fg is an inner product

on C
N when interpreted in a pointwise sense. The problem of finding wavelets, then,

reduces to completing the orthonormal system represented by (45). For the remainder
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of this section, we will assume that there exist mM , . . . ,mN−1 such that, for any
non-negative l, l′ both less than N(

PN
0 mlml′

)
(ξ) = δl,l′ a.e.

This condition implies that 〈ml,ml′〉L2(T) = δl,l′ by earlier remarks. In particular, if
ψ0, . . . , ψN−M−1 are sequences such that (ψj)∨ = mM+j , we are forced to conclude
that ψj ∈W−1 and, even more, that τNkψj ∈W−1 for k ∈ Z and all appropriate j.

Suppose f ∈ W−1. Exploiting the inner-product formula in relation to our pro-
jection operators,

f∨ =
N−1∑
k=0

mkP
N
0

(
f∨mk

)
.

By the formula for the adjoint operator ρ∗ and orthogonality,

0 =
M−1∑
k=0

eikξPN
0 (f∨mk)

(M
N
ξ
)
.

We can take this equation and apply PM
l to both sides, where l is a non-negative

integer less than M ; the result is that

0 =
M−1∑
k=0

PM
l

(
eikξPN

0 (fmk)
(M
N
ξ
))

= eilξPN
0 (f∨ml)

(M
N
ξ
)
.

The ultimate result of these calculations is that PN
0 (f∨ml)(ξ) = 0 for l = 0, . . . ,M−1,

so we may conclude that, for f ∈W−1,

f∨ =
N−1∑
k=M

mkP
N
0

(
f∨mk

)
.

But for a given k, PN
0 (f∨mk) is a 2π/N -periodic function, so as noted earlier,

mkP
N
0 (f∨mk) is a function in the span of {eiNl·mk = (τNlψk−M )∨}l∈Z. Thus, we

conclude that
{τNlψk}l∈Z,k=0,···,N−M−1

is an o.n.b. of W−1, so the ψk are our wavelets.
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