
Collect. Math. 52, 3 (2001), 231–256

c© 2001 Universitat de Barcelona

On the refinements of a polyhedral subdivision

Francisco Santos∗
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Abstract

Let π:P→Q be an affine projection map between two polytopesP and Q. Billera and
Sturmfels introduced in 1992 the concept of polyhedral subdivisions of Q induced
by π (or π-induced) and the fiber polytope of the projection: a polytope Σ(P,π) of
dimension dim(P )−dim(Q) whose faces are in correspondence with the coherent
π-induced subdivisions (or π-coherent subdivisions).

In this paper we investigate the structure of the poset of π-induced refine-
ments of a π-induced subdivision. In particular, we define the refinement polytope
associated to any π-induced subdivision S, which is a generalization of the fiber
polytope and shares most of its properties.

As applications of the theory we prove that if a point configuration has non-
regular subdivisions then it has non-regular triangulations and we provide simple
proofs of the existence of non-regular subdivisions for many particular point con-
figurations.

Introduction

In 1992, Billera and Sturmfels [6] introduced the concept of polyhedral subdivisions of
Q induced by an affine projection map π : P → Q between two polytopes (or π-induced)
and the fiber polytope of the projection: a polytope Σ(P, π) of dimension dim(P ) −
dim(Q) whose faces are in correspondence with the coherent π-induced subdivisions (or
π-coherent subdivisions). See also [26, Chapter 9]. This was a natural generalization
and a clarification of the theory of secondary polytopes developed by Gelfand, Kapranov
and Zelevinsky [8, 14].
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There is a certain amount of recent literature concerning this theory (see [2, 3, 4,
5, 6, 7, 10, 12, 13, 15, 19, 20, 21] and the survey article [22]), mainly in connection
with the so-called Baues problem, stated by Billera, Kapranov and Sturmfels [7], which
asked whether the refinement poset of all proper π-induced subdivisions of a polytope
projection is homotopy equivalent to a sphere. Although a negative example was found
by Rambau and Ziegler [21] the particular and important cases of P being a simplex
or a cube remain open.

Here we show that the theory of fiber polytopes generalizes nicely to the study
of lower ideals of the poset of π-induced subdivisions, i.e., to the study of π-induced
refinements of a given π-induced subdivision S. In particular, for any π-induced sub-
division S of Q one can define a certain π-refinement polytope Σ(S, π) (Theorem 1.3)
with the following properties:

(a) If S is the trivial subdivision, then Σ(S, π) equals the fiber polytope Σ(P, π)
(Theorem 1.3, part 3).

(b) The faces of Σ(S, π) correspond to certain π-induced refinements of S which we
call π-coherent refinements of S (Theorem 2.4, parts 2 and 4) and which include
all the π-coherent subdivisions which refine S.

(c) If S is a π-coherent subdivision then Σ(S, π) equals the face of the fiber polytope
corresponding to S (Theorem 1.3, parts 2 and 4).

(d) If S′ refines S then Σ(S′, π) is strictly contained in Σ(S, π) (Theorem 2.4, parts 1
and 3 and Corollary 2.5).

It is important to stress that the refinement polytope considered here is not the
same as the generalized secondary polytope of the subdivision S, considered in [1,
Section 2.12] and [24, Section 4.2]. That polytope has properties (a) and (b) above,
but neither (c) nor (d). See more details in Remark 2.7.

With the aid of this theory we are able to prove several nice properties of the poset
Ω(S, π) of π-induced refinements of a π-induced subdivision S, such as the following
ones:

• The poset is “atomic”, meaning by this that any subdivision S is the least common
upper bound of its tight refinements (Proposition 2.3; a π-induced subdivision is
called tight if it has no proper π-induced refinements, i.e., if it is an atom in the
poset).

• A subdivision S is π-coherent if and only if all of its tight refinements are π-
coherent (Theorem 2.8). In particular, if a polytope projection produces non-
coherent subdivisions, then it produces non-coherent tight subdivisions (Corol-
lary 2.9). This allows us to give simple proofs of the existence of non-regular
subdivisions for several particular point configurations (Section 3, Examples 3.2).

• If the refinement polytope Σ(S, π) has dimension 1, then the poset of proper π-
induced refinements of S is isomorphic to the poset of proper faces of a cube of a
certain dimension (Theorem 4.3).

• In particular, the elements of height 1 in the poset have exactly two proper re-
finements, which are both tight (Corollary 4.5). This suggests the definition of a
π-flip between two tight π-induced subdivisions (Definition 4.7). If P is a simplex,
if P is a cube or if dim(Q) = 1 this definition coincides respectively (at least in
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non-degenerate cases) with the standard notions of bistellar flip between trian-
gulations of a point configuration, cube-flip between cubical tilings of a zonotope
and polygon move between monotone paths in a polytope (Section 5).

The structure of the paper is as follows: Section 1 is a review of the concepts
and previous results in the theory of fiber polytopes and π-induced subdivisions, and
ends with the definition of the π-refinement polytope. Section 2 contains the main
results on π-refinement polytopes and π-coherent refinements. Section 3 applies the
theory to existence of non-regular triangulations. Section 4 analyzes the case where
the π-refinement polytope is 1-dimensional and Section 5 is devoted to the concept
of π-flip and its relation to bistellar flips, cube flips and polygon moves in the cases
mentioned above. Several examples and open questions are included throughout the
paper.

1. Refinement polytopes

Subdivisions of a point configuration

By a point configuration A in R
d we mean a finite labelled subset of R

d. We admit
A to have repeated points, which are distinguished by their labels. The following
formalization of polyhedral subdivisions of A comes from [14, Section 7.2]. Equivalent
ones can be found in [3, 6, 8, 15, 22, 26]. We will call faces of A the subsets where affine
functionals take their maximum. A and ∅ are considered faces. Given two subsets B1

and B2 of A we say that they intersect properly if the following two conditions hold:

• conv(B1)∩conv(B2) is a face F of both polytopes conv(B1) and conv(B2) (possibly
empty).

• F ∩B1 = F ∩B2.

A subset of A is said to be full-dimensional if it affinely spans A and simplicial if
it is affinely independent. Following [8] and [14] we define:

Definition 1.1. A (polyhedral) subdivision of A is a collection S of full-dimensional
subsets of A which intersect pairwise properly and cover conv(A) in the sense that
∪B∈Sconv(B) = conv(A). The elements of S are called cells of the subdivision.

The set of subdivisions of A is partially ordered by the refinement relation

S1 ≤ S2 : ⇐⇒ ∀B1 ∈ S1, ∃B2 ∈ S2, B1 ⊂ B2.

The poset of subdivisions of A has a unique maximal element which is the trivial or
improper subdivision {A}. The maximal proper elements are called coarse subdivisions
and the minimal elements are the subdivisions all of whose faces are simplicial, which
are called triangulations of A.
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Baues posets and π-induced subdivisions

Let P ⊂ R
p be a polytope and π : R

p → R
q be an affine projection map. We denote

by vert(P ) the set of vertices of P . Let A = π(vert(P )), with each point in A labelled
by the vertex of P of which it is considered to be the image (A may have repeated
points). A subdivision S of A is said to be it π-induced if each of its cells equals π(B)
for some face B of the point configuration vert(P ).

Observe that, since π is a bijection between vert(P ) and A, the subdivision S

completely describes which faces of vert(P ) project to cells of S, even if different
geometric faces of the polytope P have the same image under π. We will use the
following notation: if S is a π-induced subdivision of A and B is a cell of S, PB will
denote the face of the polytope P for which π(vert(PB)) = B and PS will denote the
union of all such faces, for the different cells in S.

We will call Baues poset of the polytope projection π : P → π(P ) the poset of
all π-induced subdivisions of A (excluding the trivial one {A}) partially ordered by
refinement. We will denote it Ω(P, π). Its minimal elements are called tight π-induced
subdivisions. A π-induced subdivision S is tight if and only if PS has pure dimension
equal to the dimension of π(P ). Equivalently, if for every face F of P contained in PS

one has dim(F ) = dim(π(F )). Faces with this property will be called tight faces of P .
Observe that the refinement ordering in Ω(P, π) coincides with the inclusion ordering
in the set {PS : S is a π-induced subdivision}.

The generalized Baues problem posed by Billera, Kapranov and Sturmfels [7]
asked whether Ω(P, π) is always homotopy equivalent to a sphere of dimension
dim(P )−dim(π(P )). In general the answer is negative, as an example of Rambau and
Ziegler [21] showed. The parameters in this example are dim(P ) = 5, dim(π(P )) = 2
and #vert(P ) = 10. However, the cases of P being a simplex or a hypercube Id are
specially interesting and still open. In the simplex case Ω(P, π) is the poset of all
the subdivisions of A = π(vert(P )). In the cube case it is the poset of all zonotopal
tilings of the zonotope π(Id) and it is isomorphic to the extension space of the oriented
matroid dual to the one realized by the generators of the zonotope (this isomorphism
is the Bohne-Dress theorem on zonotopal tilings, see [26]). Positive answers are known
for the following cases:

• dim(π(P )) = 1 [7] or dim(P ) − dim(π(P )) ≤ 2 [21].
• P is a simplex and either dim(π(P )) = 2 [13] or dim(P ) − dim(π(P )) = 3 [4].
• P is a cube and either dim(π(P )) = 2 or dim(P ) − dim(π(P )) = 3 [21].
• P is a cyclic polytope and π the projection which forgets some of the coordinates

(in particular, A is the vertex set of another cyclic polytope) [20, 3].

The cube case is actually equivalent to a special case of the simplex case. Indeed,
the poset of zonotopal tilings of a zonotope of dimension d with n generators equals
the poset of all subdivisions of a certain Lawrence polytope of dimension n+d−1 with
2n vertices (see [15] and [23, Section 4]). It is also equivalent to the extension space
conjecture of oriented matroid theory. More generally, the case of P being a product
of simplices (in which Ω(A, π) is the poset of mixed subdivisions of a Minkowski sum
of point configurations) would follow from the case of P being a simplex, via the use
of the Cayley trick [15]. We will come back to this in Section 5.
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Fiber polytopes and π-coherent subdivisions

Every non-zero linear functional w ∈ (Rp)∗ defines a π-induced subdivision as follows:
the map π factors into a map (π,w) : R

p → R
q × R and the map ρ : R

q × R → R
q

which forgets the last coordinate. Let A be the point configuration (π,w)(vert(P )) in
R

q × R. A face of A is called upper if its outer normal cone contains a vector with
last coordinate strictly positive. The collection of upper facets of A projects onto
a subdivision Sw of A. The subdivision is π-induced, since every face of A is the
projection of the vertex set of a face of P . We call Sw the π-coherent subdivision of
A for the functional w. A subdivision of A is called π-coherent if it is the π-coherent
subdivision for some functional.

The following is a different description of the π-induced subdivision Sw associated
to a linear functional w: for any generic point x ∈ conv(A) = π(P ) let (π−1(x))w be
the face of the fiber π−1(x) ⊂ P on which w takes its maximum and let Fx,w be the
smallest face of P which contains (π−1(x))w. Then, Sw = {π(vert(Fx,w)) : x ∈ conv(A)
and x is generic}.

Given a π-coherent subdivision S of A, the collection of all functionals w for which
S = Sw is a relatively open polyhedral convex cone. The collection of all these cones for
varying S is a polyhedral fan which covers (Rp)∗. In fact, it is the normal fan of a certain
polytope of dimension dim(P ) − dim(π(P )) called the fiber polytope of the projection
π, as proved in [6]. We will denote this polytope Σ(P, π) and its precise definition is
as follows: Let Γ(P, π) denote the set of all piecewise linear sections s : π(P ) → P for
the projection π. For each such section, the average 1

vol(π(P ))

∫
π(P )

s(x)dx is a point in
the fiber π−1(O) ⊂ R

p of π over the centroid O of π(P ). Let

Σ(P, π) :=

{
1

vol(π(P ))

∫
π(P )

s(x)dx : s ∈ Γ(P, π)

}
.

Theorem 1.2 ([6])

Σ(P, π) is a polytope of dimension dim(P )−dim(π(P )). Its faces are in one-to-one

correspondence with the π-coherent subdivisions of A = π(vert(P )).

If the polytope P is a simplex, the π-coherent subdivisions of A are simply called
coherent [14] or regular [8, 17]. The fiber polytope is called the secondary polytope of
the point configuration A.

Refinement polytopes

The following statement makes more explicit the bijection between π-coherent subdi-
visions of A and faces of Σ(P, π):
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Theorem 1.3

Let S be a π-induced subdivision for a certain polytope projection π : P → π(P ).
Let Γ(S, π) be the subset of Γ(P, π) consisting of sections with image in PS . Let

Σ(S, π) :=

{
1

vol(π(P ))

∫
π(P )

s(x)dx : s ∈ Γ(S, π)

}
.

Then,

1. Σ(S, π) is the Minkowski average of the fiber polytopes of the different cells in S.
More precisely

Σ(S, π) =
1

vol(π(P ))

∑
B∈S

vol(conv(B))Σ(PB , π)

2. If S is the π-coherent subdivision of A for a functional w, then Σ(S, π) is the face
of Σ(P, π) which maximizes w.

3. Σ(S, π) = Σ(P, π) if and only if S is the trivial subdivision {A}.
4. Σ(S, π) is a face of Σ(A, π) if and only if S is a π-coherent subdivision.

Proof. Decomposing the integral
∫
π(P )

s(x)dx via the subdivision S, for each section
s ∈ Γ(S, π), gives the formula in part 1.

For part 2, if S is π-coherent for a functional w ∈ (Rp)∗, then for each cell B ∈ S,
the maximum value of w(

∫
conv(B)

s(x)dx) is taken on and only on the sections s(x)
with image contained in PB . This proves the statement, and also the following claim
which will be used for part 4: if S′ is a subdivision with Σ(S′, π) ⊂ Σ(S, π) and S is
π-coherent, then PS′ ⊂ PS and, hence, S′ refines S.

Part 1 trivially shows that Σ({A}, π) = Σ(P, π). In order to prove part 3, suppose
that S is not the trivial subdivision. Let B be any cell in S and x be a point in the
relative interior of B. Let PB be the face of P corresponding to B. The fact that S
is not trivial implies that PB ∩ π−1(x) is a proper face of the fiber π−1(x). Let w be
a functional whose maximum over π−1(x) is not taken in any point of PB ∩ π−1(x).
Let Sw be the π-coherent subdivision for w. By the proof of part 2, the value of the
functional w over S(P, π) cannot be maximized in any point of Σ(S, π). In particular,
Σ(S, π) �= Σ(P, π).

The “if” in part 4 is implied by part 2 of the statement. For the “only-if”, suppose
that Σ(S, π) is a face of Σ(P, π). Let w be a functional whose maximum over Σ(P, π)
is taken precisely in the face Σ(S, π). By part 2, Σ(S, π) = Σ(Sw, π), where Sw is the
π-coherent subdivision of A for w. The last claim in the proof of part 2 implies that S
refines Sw. Since S is assumed not to be π-coherent, it is a proper refinement of Sw.

Σ(Sw, π) is the Minkowski average of the fiber polytopes Σ(PB , π) for the cells
B ∈ Sw. Σ(S, π) is, by part 3 applied to the different cells of Sw, a Minkowski sum of
polytopes strictly contained in them. Thus, Σ(S, π) is strictly contained in Σ(Sw, π),
which is a contradiction. �

Definition 1.4. Let S be a π-induced subdivision for a polytope projection P →
π(P ). The polytope Σ(S, π) of Theorem 1.3 will be called the π-refinement polytope
of the subdivision S.
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Remark 1.5. The projection π : PS → π(P ) induces a map B : π(P ) → 2R
p

which
associates to every point x ∈ π(P ) the restricted fiber π−1(x) ∩ PS . This map is an
example of what Billera and Sturmfels [6] call a polytope bundle and it is piecewise
linear. The π-refinement polytope Σ(P, π) is the Minkowski integral of the polytope
bundle. In particular, Theorem 1.3 and Proposition 1.2 in [6] imply, respectively, parts
1 and 2 of the previous theorem.

Remark 1.6. If S is a tight π-induced subdivision then Γ(S, π) has only one element
and, in particular, the refinement polytope Σ(S, π) is a single point. This point equals

vS :=
∑

B∈S vol(conv(B))OB

vol(π(P ))
,

where OB denotes the centroid of the face PB of P .
Suppose, moreover, that P is a simplex with vertex set {e1, . . . , ep+1} and let

ai = π(ei), so that π-induced subdivisions coincide with the polyhedral subdivisions
of the point configuration A := {a1, . . . , ap+1}. Then, the centroid OB of each face
can be rewritten as the average of its q + 1 vertices and the formula above takes the
following form

vS =

∑p+1
i=1

(∑
ai∈B∈S vol(conv(B))

)
ei

(d + 1)vol(π(P ))
.

In other words, the i-th affine coordinate of the vertex vS ∈ R
p equals, up to a

normalization constant, the volume of the star of ai in S. This is the standard way to
express the vertex of the secondary polytope associated to a regular triangulation of
A [8, 14].

2. π-coherent refinements of a π-induced subdivision

We are interested in the poset of π-induced subdivisions of A which refine a given one
S. We will see that this poset behaves in many respects as Ω(P, π) and in particular
that the faces of the above defined π-refinement polytope Σ(S, π) are in correspondence
with some π-induced refinements of S. As it happened with Theorem 1.3 some of our
results can be proved from more general results concerning polytope bundles as in
Section 1 of [6]. We will not discuss this in detail.

Throughout this section we fix π : R
p → R

q to be a linear projection map, P a
polytope in R

p and A = π(vert(P )).
For each π-induced subdivision S of A we will call the poset of all refinements of

S which are π-induced the π-refinement poset of S. We denote it Ω(S, π). In other
words, Ω(S, π) is the lower ideal of S in the poset Ω(P, π).

For any linear functional w ∈ (Rp)∗ and any cell B of a subdivision S it makes
sense to consider the π-coherent subdivision Bw of B for the functional w.

Definition 2.1. Let S be a π-induced subdivision of A. We call the subdivision
Ref(S, π, w) := ∪B∈SBw the π-refinement of S for the functional w. (That Ref(S, π, w)
is indeed a subdivision of A is proved in the next theorem).

A subdivision of A is called a π-coherent refinement of S if it can be obtained
from S in this way.
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Theorem 2.2

1. Ref(S, π, w) is a π-induced subdivision of A and refines S.

2. If the π-coherent subdivision of A for a certain functional w refines S, then it

equals Ref(S, π, w).
3. If S is itself π-coherent for a functional w0, then for any w ∈ R

p∗ there is a

sufficiently small positive ε ∈ R such that Ref(S, π, w) is the π-coherent subdivision

of A for the functional w0 + εw.

Proof. 1. Since each Bw is a refinement of the cell B of S, the cells in Sw cover A.
For the same reason, two cells in the same Bw intersect properly. Let τ ∈ Bw and
τ ′ ∈ B′

w be cells in the refinements of B and B′, for different cells B and B′ in S.
Then F = B ∩ B′ is a common face of B and B′ and both τ ∩ F and τ ′ ∩ F are cells
in the π-coherent subdivision of F induced by w. Thus, τ ∩ τ ′ is a common face of τ
and τ ′, and Sw is a subdivision. It is obvious that Sw refines S. Also, Sw is π-induced
since the cells in each Bw are projections of faces of the corresponding PB , which is
itself a face of P .

2. Let S′ be the π-coherent subdivision of A for w. Suppose that S′ refines S.
This implies that for every cell B ∈ S the subset S′

B of S′ consisting of cells contained
in B is a subdivision of B. On the other hand, since S′ is π-coherent for w, the subset
S′
B in question must be the π-coherent subdivision of B for w. Hence, S′ contains all

the cells of Ref(S, π, w). Since two different subdivisions of A cannot be contained in
one another, we conclude that S′ = Ref(S, π, w).

3. Since the normal fan of Σ(P, π) decomposes the line {w0 + εw : ε ∈ R} into a
finite collection of segments, there exists a small positive real ε such that the polytope
(π,w0 + λw)(P ) has the same combinatorial type and the same upper envelope for
every λ ∈ (0, ε]. We assume ε to have this property.

It is clear that in these conditions the face lattice of (π,w0+εw)(P ) is a refinement
of the face lattice of (π,w0)(P ). We want to see now that the upper envelope of
(π,w0 + εw)(P ) is a refinement of the upper envelope of (π,w0)(P ). Let F be an
upper facet of (π,w0 + εw)(P ) and let F0 be a facet of (π,w0)(P ) containing F . Since
the exterior normal to F has positive last coordinate, the exterior normal to F0 has non-
negative last coordinate. The exterior normal to F0 cannot have zero last coordinate,
because this would imply that π(F0) (and hence π(F )) is not full-dimensional. Thus,
F0 is an upper facet.

The above proves that the π-coherent subdivision of A produced by w0 + εw is a
refinement of S. Part 2 of the statement gives the rest. �

The following observations are straightforward:

• The π-coherent refinements of a π-coherent subdivision S are exactly the π-
coherent subdivisions which refine S (this is a consequence of part 2 of the previous
result). In particular, the π-coherent refinements of the trivial subdivision {A}
are exactly the π-coherent subdivisions of A.

• The π-coherent refinements of a subdivision which is not π-coherent may or may
not be π-coherent. A trivial example of this is that a non-coherent subdivision is
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a π-coherent refinement of itself, for the functional w = 0. For a non-trivial one,
see Example 2.6(b).

• Reciprocally, not all the π-induced subdivisions which refine a π-coherent one are
π-coherent. The trivial subdivision gives a trivial example. For a non-trivial one,
see Example 2.6(a).

The second part of the following result can be rephrased as “the Baues poset
Ω(P, π) is atomic”, although the word atomic is usually reserved to lattices.

Proposition 2.3

Let π : P → π(P ) be a polytope projection. Let S be a π-induced subdivision.

Let d be the dimension of π(P ).

1. Let F be a face of P of dimension greater than d. If every tight d-face of F is

contained in PS then F itself is contained in PS .

2. Let S′ be a π-induced subdivision. If every tight refinement of S′ refines S then

S′ refines S.

Proof. 1. Let x be a generic point in π(F ). Being generic implies that every vertex of
π−1(x) ∩ F is contained in the relative interior of a d-face of F and that this d-face is
tight. Hence, π−1(x) ∩ F is contained in PS . Since this holds for any generic point x,
F is contained in PS .

2. Let F be a face of P contained in PS′
. Let F ′ be a tight d-face of F . We will

prove that F ′ ⊂ PS , which implies by part 1 that F ⊂ PS . Hence S′P ⊂ SP and this
implies that S′ refines S.

Let w be a vector in the (relatively open) normal cone of the face F ′ of F . Then
F ′ is a maximal face in PRef(S′,π,w) and it is in PS′′

for any tight refinement S′′ of
Ref(S′, π, w). By hypothesis, PS′′ ⊂ PS . �

Theorem 2.4

Let S be a π-induced subdivision for a certain polytope projection π : P → π(P ).
Let S′ be a π-induced refinement of S. Then,

1. Σ(S′, π) ⊂ Σ(S, π).
2. If S′ is the π-coherent refinement of S for a functional w, then Σ(S′, π) is the face

of Σ(S, π) which maximizes w.

3. Σ(S, π) = Σ(S′, π) if and only if S = S′.

4. Σ(S′, π) is a face of Σ(S, π) if and only if S′ is a π-coherent refinement of S.

Proof. Part 1 is trivial since S′ ≤ S implies that Γ(S′, π) ⊂ Γ(S, π). In other words,
if a polytope bundle is contained in a second one, the Minkowski integral of the first
one is contained in that of the second.

For parts 2, 3 and 4 the proofs of the analogue statements in Theorem 1.3 are
equally valid here, with minor changes. �
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Corollary 2.5

Let S be a π-induced subdivision for a certain polytope projection π : P → π(P ).
Then:

1. The map S′ �→ Σ(S′, π) is an isomorphism between the poset of π-coherent refine-

ments of S and the poset of non-empty faces of the polytope Σ(S, π). Moreover,

the normal cone of the face Σ(S′, π) of Σ(S, π) equals the collection of vectors w

such that S′ = Ref(S, π, w).
2. In particular, the vertices of Σ(S, π) are the points {vT : T is a tight refinement

of S}.

Example 2.6: Let π be the projection from a 5-simplex to the point configuration
A = {(4, 0, 0), (0, 4, 0), (0, 0, 4), (2, 1 + ε, 1 − ε), (1 − ε, 2, 1 + ε), (1 + ε, 1 − ε, 2)}, where
ε is a sufficiently small real number, possibly zero. This is the smallest example of a
configuration with non-coherent subdivisions [8, 14, 22, 26]. If ε = 0, then A consists of
the vertices of two homothetic triangles one inside another. If ε �= 0, then the interior
triangle is slightly rotated, but the Baues poset is independent of this rotation.

Let the points in A be labelled 1, . . . , 6 in the order we have written them. Con-
sider the subdivison S = {456, 1245, 2356, 1346}, consisting of the central triangle
surrounded by three quadrilaterals. The refinements of S are obtained by indepen-
dently introducing one of the two diagonals in some or all of the quadrilaterals. Hence,
Ω(S, π) is isomorphic to the face poset of a 3-cube.

(a) If ε = 0, then S is coherent. Its corresponding face in the secondary polytope
Σ({A}, π) is a hexagon. The two non-regular triangulations (and some other
refinements of S) are not π-coherent refinements.

(b) If ε �= 0, then S is not coherent. In the secondary polytope, the former hexagonal
facet is now “inflated” to three quadrilateral facets, corresponding to three refine-
ments of S. The refinement polytope of S must contain these three facets and,
hence, it is three dimensional. On the other hand, its face poset is a subposet of
Ω(S, π), which is already the face poset of a 3-dimensional polytope. Hence, all
the refinements of S are π-coherent, although some of them are not coherent.

Remark 2.7. Suppose that P is a simplex and let S be a subdivision of a point
configuration A = π(P ). A refinement S′ of S is called regular decomposition of S

in [1, Section 2.12] and coherent refinement of S in [24, Section 4.2] if it satisfies the
following conditions:

(i) For each cell B ∈ S there is a lifting function wB defined on B such that S′

restricted to conv(B) equals BwB
and

(i) The lifting functions can be chosen in such a way that for every B,B′ ∈ S, the
function wB − wB′ defined on B ∩B′ is an affine function.

Our definition of π-coherent refinement is stronger than this, since we require
wB = wB′ on B ∩B′. (This is called strongly coherent refinement in [24]).

This weaker notion of coherent refinement gives rise to different “refinement poly-
topes”, called generalized secondary polytopes in [1] and [24]. As an example, in the
subdivision S of Example 2.6 all the refinements of S are coherent in this wider sense
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and hence the generalized secondary polytope is combinatorially a 3-cube regardless
of the value of ε. The generalized secondary polytopes are specially interesting in
connection to the toric schemes associated to subdivisions of a point configuration.

Theorem 2.8

Let S be a π-induced subdivision. Then, the following conditions are equivalent:

1. S is π-coherent.

2. All π-coherent refinements of S are π-coherent subdivisions.

3. All π-coherent refinements of S which are tight are π-coherent subdivisions.

Proof. For the implication 1 ⇒ 2, suppose that S is π-coherent, so that Σ(S, π) is a
face of Σ(P, π). If S′ is a π-coherent refinement of S then Σ(S′, π) is a face of Σ(S, π)
and, thus, of Σ(P, π) (we have used parts 2 of Theorem 1.3 and of Theorem 2.4). By
part 4 of Theorem 1.3, S′ is π-coherent.

The implication 2 ⇒ 3 is trivial. Let us prove 3 ⇒ 1. We will use induction on the
number of proper refinements of S. Thus, we can assume that the implication 3 ⇒ 1
holds for every proper refinement of S.

Let S1, . . . , Sk be the maximal proper π-coherent refinements of S, which are in
bijection with the facets of the π-refinement polytope Σ(S, π). By inductive hypothesis,
S1, . . . , Sk are π-coherent subdivisions.

Let w1, . . . , wk ∈ R
p∗ be linear functionals so that Si is the π-coherent refinement

of S for wi (i = 1, . . . , k). In particular, wi restricted to the affine span of Σ(S, π)
represents the exterior normal of the i-th facet of Σ(S, π). Scaling the wi with positive
constants we can assume that the functional w :=

∑k
i=1 wi is constant on Σ(S, π) and,

hence, that the π-coherent refinement of S for the functional w is S itself.
By part 2 of Theorem 1.3, Si is the π-coherent subdivision of the projection

π : P → π(P ) for the functional wi (i = 1, . . . , k). We claim that this implies that S

is the π-coherent subdivision for the functional w. In fact, let us call Sw this latter
π-coherent subdivision. Since the π-coherent subdivision for wi refines S for every i,
Sw refines S too (here we are just using that on each fiber π−1(x)∩P the normal cone
to the face which projects to a cell of S is convex).

Hence, by part 2 of Theorem 2.2, Sw is the π-coherent refinement of S for the
functional w. Since w is constant on Σ(S, π), Σ(Sw, π) = Σ(S, π) and, by part 3 of
Theorem 2.4, S = Sw. �

Corollary 2.9

Let P → π(P ) be a polytope projection. The following statements are equivalent:

1. Every π-induced subdivision is π-coherent.

2. Every tight π-induced subdivision is π-coherent.

3. (The order complex of) Ω(P, π) is homeomorphic to a sphere of dimension

dim(P ) − dim(π(P )).
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Proof. That condition 1 implies both 2 and 3 is trivial. The implication from 2 to 1 is
a direct consequence of Theorem 2.8.

For the implication from 3 to 1, observe that the subposet of Ω(P, π) consisting of
π-coherent subdivisions is the poset of proper faces of the polytope Σ(P, π), which is
homeomorphic to a sphere of dimension dim(P )−dim(π(P )). The implication follows
from the fact that a sphere cannot be a proper subset of a sphere of the same dimension
(see e.g. [18, p.217, Exercise 6.9]). �

Definition 2.10. We will call height of a π-induced subdivision S the maximum of
the lengths of all the refinement chains of π-induced subdivisions having S as maximal
element (so that tight π-induced subdivisions have height zero and the height of every
other π-induced subdivision equals one plus the maximum height of its proper π-
induced refinements).

Corollary 2.11

If S is a non-trivial π-induced subdivision with height greater or equal than the

dimension of the fiber polytope, then there exists a tight π-induced but not π-coherent

subdivision which refines S. �

Question 2.12 Is the converse of Corollary 2.11 also true? In other words, does there
exist a polytope projection π which has non-coherent subdivisions but in which all
proper π-induced subdivisions have height strictly lower than the dimension of the
fiber polytope? We do not know any such example.

Example 2.13: Suppose that T is a π-induced subdivision which refines another π-
induced subdivision S and that height(S)−height(T ) > 1. Does this imply that there
is another π-induced subdivision S′ in between S and T? The answer is no, as the
following example shows.

Let A be the point configuration consisting of the twelve vertices of a regular
icosahedron together with its centroid. Let π be the natural projection from a 12-
simplex onto A, so that every subdivision of A is π-induced. Let S be the trivial
subdivision, which has height at least 13− 3− 1 = 9 (in fact, at least 10 as we will see
in Example 3.2.2).

The twenty facets of the icosahedron can be divided into six adjacent pairs and
eight single triangles in such a way that each pair is adjacent to four single triangles
and each single triangle to three pairs. (Once a pair is formed there is a unique way
to form the other ones). Let T be the subdivision of A obtained coning the centroid
to each single triangle and to each pair, so that the cells of T are eight tetrahedra
and six triangular bipyramids. T has height equal to six, since each bipyramid can be
refined independently and has height 1. However, it is easy to check that T is a coarse
subdivision of A.
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3. Non-regular triangulations

In this section we will assume that P is a simplex, and let A = π(vert(P )). Every
polyhedral subdivision of A is π-induced and Ω(P, π) is simply denoted Ω(A). The
π-coherent subdivisions in this case are usually called regular. The fiber polytope Σ(A)
associated with the projection from a simplex is the secondary polytope of A [8, 14]
and has dimension #A− dim(A) − 1.

Corollary 2.9 says that A has non-regular subdivisions if and only if it has non-
regular triangulations. This is interesting since the triangulations of A are easier to
enumerate than the subdivisions. For example, in [2] the authors, after computing
all the triangulations of the cyclic polytopes C(7, 3), C(8, 3) and C(8, 4) and checking
that they are regular prove that all the subdivisions are regular too by somewhat
sophisticated arguments (see Lemma 4.6 in [2]). Our result saves this part of the work.

In the following we will produce simple proofs of existence of non-regular trian-
gulations for some particular point configurations.

Lemma 3.1

Let S be a subdivision of a point configuration A. Let B1, . . . , Bk be the list of

cells of S which are not simplices. Let hi be the dimension of the secondary polytope

of Bi. Suppose further that the facets of each Bi are simplices, except perhaps for

those contained in the boundary of conv(A). Then, S has height at least h1 + · · ·+hk.

Proof. The conditions on the facets of the Bi’s imply that the common face of any
pair of them is a simplex. Thus, the refinements of S are obtained refining the Bi’s
independently. In particular, Ω(S, π) equals the direct product of the Baues posets of
each of the Bi’s, and each of these has height at least hi. �

Example 3.2: The following point configurations have non-regular triangulations:

1. The six vertices of two parallel triangles in the plane, one inside another.

Let T1 denote the outer triangle and T2 the inner one. Let ai, bi and ci de-
note the vertices of Ti. Then, the subdivision S = {{a1a2b1b2}, {a1a2c1c2},
{b1b2c1c2}, {a2b2c2}} satisfies the conditions of Lemma 3.1. and has height 3,
the dimension of the secondary polytope. This is the same configuration and
subdivision as in Example 2.6.

2. The vertices of any 3-polytope with more vertices than facets, together with an
interior point of it.

Let Q be any 3-polytope with more vertices than facets and let a be a point in its
interior. Consider the subdivision S obtained coning a to the facets of Q, which
satisfies the conditions of Lemma 3.1. Calling V , E and F the numbers of vertices,
edges and facets of Q, the height of S is easily seen to be at least 2E − 3F , which
equals 2V − F − 4 by Euler’s formula. By our hypothesis, this number is at least
V − 3, the dimension of the secondary polytope.
Observe that every simple 3-polytope other than the tetrahedron is a valid Q for
this example. Also, that essentially the same proof applies if Q is any polytope
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obtained by a small perturbation of a 3-polytope with more vertices than facets
or if Q is an icosahedron. For the icosahedron, divide its boundary into ten
pairs of two adjacent triangles and cone these pairs to the interior point. This
produces a subdivision of height 10 while the secondary polytope has dimension
13−4 = 9. Example 2.13 also implies that this point configuration has non-regular
triangulations.

3. The configuration consisting of the centroids of the 15 non-empty faces of a 3-
dimensional simplex.

Consider the 3-simplex subdivided into four combinatorial 3-cubes, each of them
being the star of a vertex in the first barycentric subdivision of the 3-simplex.
In each of the four 3-cubes so obtained we cut the inner corner (incident to the
centroid of the 3-simplex). This produces a subdivision S of the 3-simplex into
four 3-simplices and four 3-polytopes with seven vertices and all but the three
external facets simplicial. This subdivision satisfies the conditions of Lemma 3.1
and has height at least 4 × (7 − 3 − 1) = 12, which is greater than the dimension
15 − 3 − 1 = 11 of the secondary polytope.

4. The vertices of a 4-cube.

Let a be a particular vertex of the 4-cube. The vertex figure of the 4-cube at a is
precisely a 3-simplex divided into four combinatorial 3-cubes as in the previous ex-
ample. Thus, the 4-cube can be subdivided into four cones over 3-cubes with apex
at a. Cutting vertices in these four 3-cubes as we did in the previous configuration
produces a subdivision of the 4-cube with eight cells, four of which are 4-simplices
and the other four have eight vertices. This subdivision satisfies the conditions of
Lemma 3.1. Again, this subdivision has height at least 4× (8−4−1) = 12, which
is bigger than 16 − 4 − 1 = 11.

5. The 3-dimensional configuration in R
4 consisting of the 12 points ei − ej (i, j =

1, 2, 3, 4; i �= j) together with the origin.

A different (affinely equivalent) description of the point configuration in question
is that it consists of the centroid and the 12 vertices of a cuboctahedron, where a
cuboctahedron is the convex hull of the mid-points of the edges of a regular 3-cube.
After removing two square pyramids with base at two opposite square facets and
apex at the centroid of the cuboctahedron, the rest of the cuboctahedron can be
subdivided into four (non-regular) octahedra. This gives a subdivision satisfying
the conditions of Lemma 3.1 and of height 2 + 2 + 2 + 2 + 1 + 1 (2 for each of
the four octahedra and 1 for each of the 2 square pyramids), which is bigger than
12 − 3 − 1.

6. The vertices of the product ∆3 × ∆3 of two 3-dimensional simplices.

Let us embed ∆3 × ∆3 in R
4 × R

4 having as vertices the 16 points (ei, ej), i, j =
1, . . . , 4. Let A be this set of vertices. The projection Π : R

4 × R
4 �→ R

4 defined
by (x1, x2, x3, x4, y1, y2, y3, y4) �→ (x1 −y1, x2−y2, x3 −y3, x4−y4) sends A to the
point configuration A0 of the previous example, identifying the four vertices (ei, ei)
at the origin O of R

4. The fact that dim(A) − dim(A0) = 3 = dim({(ei, ei) : i =
1, . . . , 4})−dim({O}) implies that if B∪{O} is a subset of A0 with k elements and
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dimension l, then B ∪ {(ei, ei) : i = 1, . . . , 4} is a subset of A with k + 3 elements
and dimension l + 3 (we are slightly abusing notation, identifying A \ {(ei, ei) :
i = 1, . . . , 4} with A0 \ {O} by the projection Π). Hence, the lifted cell in A is
full-dimensional or simplicial if and only if the cell in A0 had those properties.
Moreover, if two such cells in A0 intersect properly then the corresponding lifted
cells intersect properly too.
In particular, the subdivision S0 of A0 described in the previous example, consist-
ing of 4 octahedra and 2 square pyramids, lifts to a family S of 6 full-dimensional
cells in A which intersect properly. We want to show that S is a subdivision
satisfying the conditions of Lemma 3.1. If this is so, then it is clear that it has
height 2 + 2 + 2 + 2 + 1 + 1 = 10, which is more than the dimension (9) of the
secondary polytope of ∆3 × ∆3.

• S0 can be refined to a triangulation T0 with 20 simplices, all of them incident
to O. For this, refine the square pyramids arbitrarily and refine the octahedra
using the diagonal containing O. This triangulation T0 lifts to a collection T

of 20 full-dimensional simplices which intersect properly in A. Since ∆3 ×∆3

is a lattice polytope of normalized volume 20, T is a triangulation of A. Since
each simplex of T is contained in a cell of S, S is a subdivision of A.

• The interior common facets between cells of S are obtained lifting the interior
common facets between cells of S0, all of which are incident to O and are
simplices. This implies that they are also simplices in S.

Remark 3.3. For most of the point configurations in the above list non-regular tri-
angulations were previously known (see [10] for the 4-cube and the product of two
tetrahedra and [12] for the cuboctahedron). However, the proof presented here is
probably the simplest existing one. In particular, our proof relies only on the combi-
natorics and not the geometry of the point configuration, where by “combinatorics”
we mean the oriented matroid M(A) of affine dependencies between the points of A.
This is interesting since the Baues poset of A (and in particular whether or not A has
any non-regular triangulations) depends only on the oriented matroid M(A), while
the regularity of a specific triangulation depends also on the geometry.

In particular, observe that if the example 1 is slightly perturbed so that the
two triangles become non-parallel, our proof still implies that the configuration has
non-regular triangulations, while any “geometric” proof would have to be adapted to
the perturbed case; the configuration moves from having two different non-regular
triangulations to having only one.

Remark 3.4. Since the property of having only regular triangulations for a point
configuration A depends only on its oriented matroid M(A), a natural question is
whether this property is minor closed, i.e., closed under the oriented matroid operations
of deletion and contraction.

It is easy to check that the property is closed under deletion: if T is a non-regular
triangulation of A\{p} then the triangulation T ′ of A obtained joining to p the facets
of T which are visible from T is non-regular.

However, the property is not closed under contraction: let A ⊂ R
3 be the point

configuration a1 = (2, 0, 0), a2 = (0, 2, 0), a3 = (0, 0, 2), a4 = (1, 0, 0), a5 = (0, 1, 0),
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a6 = (0, 0, 1), and a7 = (−1,−1,−1). The contraction A/a7 is (affinely equivalent to)
the planar point configuration that we have discussed in Example 3.2.1.In particular,
A/a7 has non-regular triangulations. On the other hand, A has only regular triangu-
lations. Indeed, the following two assertions are easy to check. Observe that A/a7 has
five symmetry classes of triangulations, four of them regular:

• Each regular triangulation of A/a7 is the link of the point a7 in a unique trian-
gulation T ′ of A. This triangulation is regular, by Lemma 2.2 in [11] where it is
proved that every regular triangulation of A/a is the link of the point a in at least
one regular triangulation of A.

• The two non-regular triangulations of A/a7 are not links of a7 in triangulations
of A. In other words, the truncated triangular pyramid conv(a1, a2, a3, a4, a5, a6)
cannot be triangulated so that the triangulation of its boundary agrees with the
non-regular triangulations of A/a7.

This shows that although the arguments in Examples 3.2.4 and 3.2.6. are based
in a contraction technique, the contraction alone is not enough.

Question 3.5 We can further ask whether the property of not having non-regular
triangulations can be characterized by a finite list of excluded minors. Since the
property is not closed under contraction, we ask this for each fixed dimension.

The answer is yes if d ≥ 3 for point configurations A in general position, meaning
by this that any dim(A) + 1 points are independent, as a combination of the following
two results:

1. The following higher dimensional generalization of Erdös-Szekeres Theorem [9,
Proposition 9.4.7]: for any fixed dimension d and any integer n there is an integer
N such that any point configuration in R

d containing at least N points in general
position contains as a minor the oriented matroid of a cyclic polytope C(n, d).

2. The existence of non-regular triangulations of any cyclic polytope C(n, d) with
d ≥ 3 and n ≥ d + 6 [2].

These two results imply that any point configuration in d ≥ 3 with enough points
in general position has non-regular triangulations. This is clearly not true in d = 2,
since the vertex set of any n-gon has only regular triangulations. For d = 2 we conjec-
ture that any 2-dimensional point configuration which has non-regular triangulations
contains either an 8-element or a 6-element subconfiguration which has non-regular
triangulations.

4. The Baues poset for almost-fine subdivisions. Flips

Definition 4.1. Let S be a π-induced subdivision for a polytope projection π : P →
π(P ). We will call rank of S the dimension of the π-refinement polytope Σ(S, π).

It is clear from Theorem 2.2 that the height of any π-induced subdivision is greater
or equal than its rank. Also, that a π-induced subdivision has rank 0 if and only if
it has height 0 (and if and only if it is tight). In this section we will be interested in
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the π-refinement posets of subdivisions of rank 1. Let us first see how to compute the
rank of a subdivision:

Proposition 4.2

Let S be a π-induced subdivision of a polytope projection π : P → π(P ). For each

B ∈ S, let LB be the linear subspace parallel to a fiber π−1(x)∩ PB of the projection

π : PB → conv(B) for any x in the relative interior of conv(B) and let

LS :=
∑
B∈S

LB .

Then, LS is the linear subspace parallel to Σ(S, π). In particular, the rank of S equals

dim(LS).

Proof. If S is the trivial subdivision, this is a well known fact (the affine span of the
fiber polytope equals the fiber over the centroid of π(P )). For a non-trivial S, the
statement follows from the decomposition of the π-refinement polytope Σ(S, π) as a
Minkowski sum of the fiber polytopes of the cells B ∈ S (Theorem 1.3.1). �

Theorem 4.3

Let S be a π-induced subdivision of rank 1. Then the poset Ω(S, π) of π-induced

refinements of S is isomorphic to the poset of proper non-empty faces of a cube of

dimension height(S). In particular, it is homeomorphic to a sphere of dimension

height(S) − 1.

Proof. Throughout this proof let |S| represent the polyhedral complex induced by a
polyhedral subdivision S. |S| is a collection of polytopes which covers π(P ) and which
is closed under taking faces. Its maximal elements are the convex hulls of the cells
in S.

By Proposition 4.2 the fiber π−1(x)∩PS of every point x ∈ π(P ) is either a point
or a segment parallel to Σ(S, π). Let U denote the subset of π(P ) consisting of points
whose fiber is a segment.

• Claim 1: U is open in π(P ). Proof: Let C be the union of the (closed) cells of
|S| which do not intersect U . C is clearly closed and disjoint from U . Moreover,
the relative interior of every cell F of |S| is contained in either C or U , depending
on whether F is the projection of a face of P of the same dimension or of one
dimension more. Hence, U and C are complements of each other and U is open.

Let us globally choose a positive and negative direction in the fibers of the points
in U . Every refinement S′ of S is characterized by the map φS′ : U → {−, 0,+} which
to a point x ∈ U associates the sign − or + if π−1(x)∩ PS′

is the negative or positive
end of the segment π−1(x) ∩ PS (respectively) or 0 if π−1(x) ∩ PS′

= π−1(x) ∩ PS .

• Claim 2: φS′ is continuous in U for every π-induced refinement S′ of S. Proof:
Let us call U0, U+ and U− the inverse images by φS′ of 0, + and −. U0 is open
in π(P ) (and hence in U) by Claim 1 applied to the subdivision S′. That U+ and
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U− are open in π(P ) (and hence in U) can be proved with the same argument:
if x is a point in U+ then the relative interior of any face of |S| containing x is
contained in U+ (and the same for U−).

Saying that φS′ : U → {−, 0,+} is continuous is equivalent to saying that it
is constant on each connected component of U . Moreover, the following converse of
Claim 2 is trivial: any locally constant map φ : U → {−, 0,+} represents a π-induced
refinement of S. Thus, the set of π-induced refinements of S is in bijection with the set
of maps from {U1, . . . , Uk} to {+, 0,−}, where U1, . . . , Uk are the connected compo-
nents of U (which are clearly a finite number). This set of maps is in natural bijection
with the faces of a cube of dimension k, and this bijection induces a poset isomorphism
between Ω(S, π) and the poset of proper non-empty faces of the k-dimensional cube.
The rest of the statement is trivial. �

It is interesting to observe that the proof above is valid also if S has local rank equal
to 1, meaning by this that for any B ∈ S, LB has dimension 0 or 1 (or, equivalently,
dim(PB) ≥ dim(B)+1). This occurs in Example 2.13. The only change needed in the
proof is that the choice of a positive and negative direction for each fiber is local, i.e.,
made independently in each connected component of U .

Question 4.4 In what other cases is it possible to prove that the poset Ω(S, π) is
homeomorphic or at least homotopy equivalent to a sphere? It would be interesting to
prove it for the cases dim(A) = 1 or rank(S) = 2. It might be that the existing proofs
when S is the trivial subdivision [7, 21] can be adapted here.

Corollary 4.5

Let S be a π-induced subdivision. Then, S has height 1 if and only if it has exactly

two proper refinements. In this case the two refinements are tight.

Proof. If S has height 0 then it has no proper refinements. If S has height at least
2, then it has rank at least 1 and at least three proper refinements: at least two tight
ones (vertices of Σ(S, π)) and at least one non-tight one, in a chain of length at least
two.

Finally, if S has height 1, then it has rank 1 because height(S) ≥ rank(S) and
rank 0 would imply height 0. In this case, the previous result says that Ω(S, π) is the
poset of faces of a segment. �
Example 4.6: We will see in Section 5 that if P is a simplex or a cube (more generally,
any product of simplices) then rank 1 implies height 1. This is not true in general.
For example, the natural projection between the cyclic polytopes C(6, 4) and C(6, 2)
has π-induced subdivisions of rank 1 and height 2 (in a certain coordinatization), as
shown in [2, Section 6].

It is even easy to construct subdivisions of rank 1 and arbitrarily large height:
Let P0 be the regular prism over an n-gon for an even n, i.e., the 3-polytope with the
following 2n vertices:

ak =
(

cos
(2πk

n

)
, sin

(2πk
n

)
, 1

)
and bk =

(
cos

(2πk
n

)
, sin

(2πk
n

)
,−1

)
,
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for k = 0, . . . , n−1. Let P be the slightly non-regular antiprism obtained truncating P0,
whose vertices are the ai’s and the mid-points of consecutive bi’s. Let ci = (bi+bi+1)/2
be such a mid-point for each i = 0, . . . , n− 1, where it is understood that bn = b0. Let
π be the projection (x, y, z) �→ x which maps P to the segment [−1, 1]. Let S be the
subdivision consisting of the cells {π(ai), π(ci), π(ai+1)}, for i = 0, . . . , n

2 − 1. Then, S
has rank 1 (LS is a vertical segment) and height n/2.

Definition 4.7. Let S1 and S2 be two tight π-induced subdivisions. We will say that
they differ by a π-flip if they are the two proper refinements of a certain π-induced
subdivision of height 1. We will call it π-flips the π-induced subdivisions of height 1.

We will call graph of tight π-induced subdivisions the graph whose vertices are
the tight π-induced subdivisions and whose edges are the π-flips connecting them.
We denote it G(P, π). For any π-induced subdivision S, we will denote G(S, π) the
subgraph of G(P, π) induced by the tight refinements of S.

If S0 is a π-flip and S1 and S2 are its two tight refinements, then any π-induced
subdivision coarser than S1 and S2 is coarser than S0 as well, by part 2 of Proposi-
tion 2.3. This implies that G(S, π) is homeomorphic to the subgraph of the 1-skeleton
of Ω(S, π) induced by subdivisions of height at most 1. The following result is analogue
to Lemma 8 in [22].

Proposition 4.8

Let π : P → π(P ) be a polytope projection. Let S be a π-induced subdivision.

The following conditions are equivalent:

1. The graph G(S′, π) is connected for every π-induced refinement S′ of S.

2. The refinement poset Ω(S′, π) is connected for every π-induced refinement S′ of

S.

Proof. (1) ⇒ (2) For any particular subdivision S′, if the graph G(S′, π) is connected
then all the tight π-induced subdivisions are connected in Ω(S′, π) by π-flips. Any
non-tight subdivision can be refined to a tight one.

(2) ⇒ (1) We want to show that if S0, . . . , Sk is a path in Ω(S′, π) connecting
two tight refinements S0 and Sk of S then there is a path connecting S0 and Sk and
using only subdivisions of height 0 or 1 (i.e., tight subdivisions or flips). Let h be the
maximum height of a subdivision in the path S0, . . . , Sk. We will use induction on h.

Any subdivision Si of height h in the path is between two subdivisions Si−1 and
Si+1 of height lower than h which refine Si. By part (2) applied to Si, there is a path
connecting Si−1 and Si+1 in Ω(Si, π) and this path consists of subdivisions of height
less than h. Replacing each subdivision of height h for such a path we obtain a path
from S0 to Sk with subdivisions of height less than h. �
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5. Special cases

Here we study flips in the particular cases of P being a simplex, P being a cube and
dim(π(P )) = 1. In these three cases π-flips are equal (at least in generic situations) to
geometric bistellar flips, cube-flips and polygon moves, respectively.

Triangulations and geometric bistellar flips

We consider here the case where P is a simplex. An interesting feature of this case is
that the bad behaviour exhibited in Example 4.6 cannot occur:

Proposition 5.1

Let π : P → π(P ) be a polytope projection. If P is a simplex then any π-induced

subdivision S of rank 1 has height 1.

Proof. Let C be the intersection of all the faces of the simplex P which contain a
segment parallel to the 1-dimensional vector space LS . Since P is a simplex, C is a
face of P and contains a segment parallel to LS . For each B ∈ S, LB is either trivial
or equals LS , and the latter happens if and only if PB contains C.

Observe that dim(C) = dim(π(C)) + 1 and, hence, the projection C → π(C)
induces two non-trivial subdivisions of π(C), which correspond to two refinements of
S. Conversely, any refinement of a non-tight cell B of S induces a π-induced subdivision
of the projection C → π(C). Clearly, in a refinement of S all the non-tight cells are
refined inducing the same π-induced subdivision of the projection π : C → π(C).

Hence, the proper refinements of S are in bijection with the subdivisions induced
by the projection π : C → π(C). This means that S has two proper refinements and,
by Corollary 4.5, it has height 1. �

The following is the standard definition of geometric bistellar flip in a triangula-
tion, see [14, Chapter 7] or [8, 12, 22]. We intend to show that this notion coincides
with our notion of π-flip.

Let A be a point configuration. Using the terminology of matroid theory, we call
a minimal affinely dependent subset of A a circuit (see [9] or [26] for details). The
unique (up to a scalar factor) dependence equation in a circuit divides its elements
into two parts Z = Z+ ∪ Z− containing respectively the elements with positive and
negative coefficient in the equation. These two parts are sometimes referred to as the
Radon partition of Z and the pair (Z+, Z−) is called an oriented circuit. A circuit Z

can be triangulated in exactly two ways:

T+(Z) :=
{
conv(Z − {p}) : p ∈ Z+

}
T−(Z) =

{
conv(Z − {p}) : p ∈ Z−

}
.

Definition 5.2. Let T be a triangulation of A (i.e., a tight π-induced subdivision for
the canonical projection π which sends the vertices of a simplex P to the elements of
A) and (Z+, Z−) ⊂ A an oriented circuit of A. Suppose that the following conditions
are satisfied:
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1. The triangulation T+(Z) is a subcomplex of T .
2. All the maximum-rank simplices of T+(Z) have the same link L in T . In particular,

T+(Z) ∗L is a subcomplex of T . Here and in what follows we denote by A ∗B the
join of two simplicial complexes A and B, i.e., the simplicial complex {a ∪ b : a ∈
A, b ∈ B}.
In these conditions we can obtain a new triangulation T ′ of A by replacing the

subcomplex T+(Z) ∗ L of T with the complex T−(Z) ∗ L. This operation of changing
the triangulation is called a geometric bistellar flip (or a flip, for short) supported on
the circuit (Z+, Z−). We say that T and T ′ are geometric bistellar neighbors. We call
the flip of type (k, l) if Z+ and Z− have k and l elements respectively.

Proposition 5.3

Let π : P → π(P ) be a polytope projection where P is a simplex and let A =
π(vert(P )). Then, two triangulations T and T ′ of A differ by a bistellar flip if and

only if they differ by a π-flip.

Proof. Suppose first that T and T ′ differ by a bistellar flip. Using the notation of
Definition 5.2, we have that S := T \(T+(Z)∗L)∪(Z∗L) = T ′\(T−(Z)∗L)∪(Z∗L) is a
subdivision of A refined by both T and T ′. Let us see that it has no other refinements.
Any non-simplicial cell in S is of the form Z ∗ σ for an affinely independent set σ. Its
only two refinements are T+(Z)∗σ and T−(Z)∗σ. Moreover, if a non-simplicial cell of
S is refined using T+(Z) then any other non-simplicial cell is refined in the same way
(and the same happens for T−(Z)). Hence, T and T ′ are the only two refinements of
S and S has height 1 by Corollary 4.5.

Reciprocally, suppose that S is a height 1 subdivision and that T and T ′ are
its proper refinements. We want to prove that T and T ′ satisfy the conditions of
Definition 5.2. Let B any non-simplicial cell of S. Since LB has dimension 1, PB is
a simplex of dimension d + 1, hence B has d + 2 elements and it contains a unique
circuit Z. Moreover, this circuit Z is independent of the choice of B. In fact, let
C be the minimal face of P containing a segment parallel to LS , as in the proof of
Proposition 5.1. We saw there that dim(C) − dim(π(C)) = 1 and that C is contained
in PB for any non-simplicial cell B of S. In particular, π(vert(C)) contains the circuit
Z contained in any non-simplicial cell B.

As a conclusion, the non-simplicial part of S has the form Z ∗ L where L is a
simplicial subcomplex of S, T and T ′. Hence, T and T ′ differ by a bistellar flip on the
circuit Z. �

Mixed subdivisions. The Cayley Trick

Let P1 ⊂ R
p1 , . . . , Pr ⊂ R

pr be a finite family of polytopes. Let

ΠM : P1 × · · · × Pr → ΠM (P1 × · · · × Pr)
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be a projection of the product of these polytopes. If Oi denotes the origin in R
pi we

can decompose ΠM into the projections

πi : Pi → πi(Pi)

x �→ ΠM

(
O1, . . . , Oi−1, x,Oi+1, . . . , Or

)
.

We have that
ΠM (P1 × · · · × Pr) = M

(
π1(P1), . . . , πr(Pr)

)
where M denotes the Minkowski sum of polytopes.

On the other hand, we call Cayley embedding of π1(P1), . . . , πr(Pr) the following
point configuration in R

r−1 × R
d. Let e1, . . . , er be a fixed affine basis in R

r−1 and
µi : R

d → R
r−1 × R

d be the affine inclusion given by µi(x) = (ei, x). Then we define

C
(
π1(P1), . . . , πr(Pr)

)
:= conv (∪r

i=1µi(πi(Pi))) .

The Cayley embedding of polytopes from complementary affine subspaces equals
the join product of them. (For our purposes the join product P1 ∗ · · · ∗ Pr of several
polytopes with Pi ⊂ R

pi can be defined to be their Cayley embedding C(P1, . . . , Pr) ⊂
R

r−1 × R
p1 × · · · × R

pr .) We have the following natural projection.

ΠC :P1 ∗ . . . ∗ Pr → C(π1(P1), . . . , πr(Pr)),

(ei, pi) �→
(
ei, πi(pi)

)
.

The Cayley trick is a natural bijection between the subdivisions induced by the
projections ΠM and ΠC . The bijection is easier to state and understand looking at the
family PS of faces of P associated to a subdivision induced by a projection π : P →
π(P ).

Theorem 5.4 ([15])
Let

ΠM : P1 × · · · × Pr → M
(
π1(P1), . . . , πr(Pr)

)
and

ΠC : P1 ∗ · · · ∗ Pr → C
(
π1(P1), . . . , πr(Pr)

)
be two polytope projections in the conditions above.

1. If S is a ΠM -induced subdivision then every maximal face in (P1 × · · · × Pr)S is

of the form F1 × · · · × Fr for certain faces Fi of each Pi and moreover the family

of faces {
F1 ∗ · · · ∗ Fr : F1 × · · · × Fr ∈ (P1 × · · · × Pr)S

}
equals (P1 ∗ · · · ∗ Pr)S

′
for a certain ΠC-induced subdivision S′.

2. Conversely, if S is a ΠC-induced subdivision then every maximal face in (P1 ∗ · · · ∗
Pr)S is of the form F1 ∗ · · · ∗ Fr for certain faces Fi of each Pi and moreover the

family of faces {
F1 × · · · × Fr : F1 ∗ · · · ∗ Fr ∈ (P1 ∗ · · · ∗ Pr)S

}
equals (P1 × · · · × Pr)S

′
for a certain ΠM -induced subdivision S′.
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Suppose now that each Pi is a simplex. Then the join product P1 ∗ · · · ∗ Pr is
also a simplex and, in particular, every ΠC-induced subdivision of rank 1 has height 1.
Since the Baues posets of the projections ΠM and ΠC are isomorphic by Theorem 5.4
it is natural to expect that also every ΠM -induced subdivision of rank 1 has height 1.
This follows from the following result, based on [25, Theorem 5.1].

Proposition 5.5

Suppose that P1, . . . , Pr are simplices. Let

ΠM : P1 × · · · × Pr → M
(
π1(P1), . . . , πr(Pr)

)
and

ΠC : P1 ∗ · · · ∗ Pr → C
(
π1(P1), . . . , πr(Pr)

)
be two polytope projections in the conditions above. Let S be a ΠM -induced subdivi-

sion and S′ a ΠC-induced subdivision which correspond to each other as in Theorem

5.4. Then the polytopes Σ(S,ΠM ) and Σ(S′,ΠC) are normally equivalent. In partic-

ular, they have the same dimension.

Before going into the proof, let us recall that two polytopes are said to be normally
equivalent [6] or strongly isomorphic [25] if they lie in the same affine space and they
have the same normal fan. The polytopes Σ(S,ΠM ) and Σ(S′,ΠC) of the previous
statement can be considered to lie in the same affine space since the fibers of the
projections ΠM and ΠC are both canonically isomorphic to the products of the fibers
of the projections πi.

Proof. If S and S′ are the trivial subdivisions then the statement is just Theorem 5.1
in [25]. For arbitrary subdivisions, recall that Σ(S,ΠM ) equals the Minkowski sum of
the fiber polytopes Σ(B,ΠM ) for the different cells B ∈ S (and the same for S′). Since
each Σ(B,ΠM ) is normally equivalent to the corresponding Σ(B′,ΠC) and since the
normal fan of a Minkowski sum equals the common refinement of the normal fans of
the summands, the result holds.

Remark: In the statement of [25, Theorem 5.1] the parameter r (number of poly-
topes Pi) equals the parameter d (dimension of the ambient space of the projections
πi(Pi)). However, this assumption is not used in the proof and it is posed because the
case d = r is interesting for the context of that paper. Even more, the same proof
works also without the assumption that the polytopes Pi are simplices. �

Zonotopal tilings and cubical flips

Here we assume that P is a cube, i.e., a product of segments. This is a particular case
of the previous one so, in particular, it will be still true that rank 1 implies height 1,
by Proposition 5.5.

If P is a cube of some dimension r, then its projection π(P ) is the Minkowski sum
of r segments, i.e., a zonotope. The π-induced subdivisions coincide with the zonotopal
tilings of π(P ). The tight ones are the cubical tilings, i.e., the subdivisions of π(P )
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all of which cells are cubes. The natural notion of elementary change between cubical
tilings is that of a cube-flip (see [22]) which is usually defined as follows: Let S be a
cubical tiling of a zonotope π(P ) and let d = dim(π(P )). Suppose that there is an
interior vertex v of S which is incident to exactly d + 1 cells. Then these cells form a
convex zonotope of dimension d with d + 1 generators, which has exactly two cubical
tilings. One of them is contained in S. Switching to the other one produces a new
cubical tiling S′ of π(P ), and S and S′ are said to differ by a cube-flip. For example,
cube-flips in dimension 2 correspond to switching between the two decompositions of
a hexagon into three parallelograms and in dimension 3 to switching between the two
dissections of a rhombic dodecahedron into four combinatorial 3-cubes.

Let us say that a π-flip S for a polytope projection π : P → π(P ) is non-degenerate
if there is only one non-tight cell in S and all of its facets are tight.

Proposition 5.6

Let P → π(P ) be a polytope projection where P is a cube. Then, two cubical

tilings differ by a cube-flip if and only if they differ by a non-degenerate π-flip.

Proof. The ‘only-if’ is trivial: the d + 1 cubes in which a cube-flip is made are a
subdivision of a non-tight cell all of whose facets are tight. For the ‘if’, let S be the
π-flip between T and T ′. Let B be its unique non-tight cell. It has dim(LB) = 1,
since S has rank 1, and hence, PB is a (d + 1)-cube. Because of non-degeneracy, the
projection π : PB → B has (d + 1) upper facets and (d + 1) lower facets, i.e., B has
two cubical tilings both with d + 1 cells, as in the definition of a cube-flip. �

The question arises of what “degenerate cube-flips” look like. Suppose that a
cubical tiling T of π(P ) contains one of the two cubical tilings of a zonotope Z of
dimension k with k+1 minimally dependent generators. What are the conditions nec-
essary for the switch at the zonotope Z to be possible? As in the case of triangulations,
the condition is related to the links, with the following definition:

Definition 5.7. Let Z be a zonotope of dimension d generated by the segments
a1, . . . , ar. For any subset B ⊂ {a1, . . . , ar} we will denote ZB the Minkowski sum of
its elements. Let S be a zonotopal tiling of Z. Let ZB be a Minkowski sum of a subset
B of {a1, . . . , ar}. We call zonotopal link of B in S the set

linkS(B) :=
{
W : ZB + ZW is a cell of S

}
.

Let k ≤ d be an integer and let B1, . . . , Bk+1 be different independent subsets of
{a1, . . . , ar} of cardinality k. If

1. ∪k+1
i=1 Bi has k + 1 elements (i.e., if

∑k+1
i=1 Bi is a zonotope generated by k + 1

elements of {a1, . . . , ar}) and
2. All the Bi have the same zonotopal link L in S,

then removing from S all the cells Bi + W , i = 1, . . . , k + 1 and W ∈ L and inserting
the cells B′

i + W , where B′
1, . . . , B

′
k+1 is the other cubical tiling of

∑k+1
i=1 Bi one gets

a new zonotopal tiling S′. We say that S and S′ differ by a zonotopal flip.
With this definition it is easy to prove that:
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Proposition 5.8

Let π : P → π(P ) be the projection from a cube P to a zonotope π(P ). Two

cubical tilings S1 and S2 of π(P ) differ by a π-flip if and only if they differ by a

zonotopal flip. The π-flip is non-degenerate (i.e, the zonotopal flip is a cube flip) if

and only if the parameter k of Definition 5.7 equals the dimension of π(P ).

Monotone paths and polygon flips

Here we suppose that dim(π(P )) = 1. There is a unique (up to a constant) linear
functional f on P which is constant on each fiber of the projection π. The π-induced
subdivisions are the cellular strings on the polytope P with respect to f and the tight
ones are the monotone paths in the direction of f (see [7]). The standard notion of
elementary move between two monotone paths is that of a polygon move (see [22]): two
monotone paths differ by a polygon move if they are different only in the boundary of a
2-face of P . As it happened in the case of zonotopal tilings, polygon moves correspond
exactly to non-degenerate π-flips, but there are also some “degenerate polygon moves”
which consist essentially in simultaneously moving through a family of 2-faces of P

all of which have an edge parallel to a common direction. For example, let P be the
octahedron {(x, y, z) ∈ R

3 : |x|+|y|+|z| ≤ 1} and let π : (x, y, z) �→ z be the projection
to a vertical segment. There are four monotone paths, all of them π-coherent, but no
non-degenerate polygon flip at all. Any π-flip involves two different 2-faces of P .

In this case π-induced subdivisions of rank 1 may have height greater than 1, as
Example 4.6 shows.
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sional determinants, Birkhäuser Boston, Inc., Boston, 1994.

15. B. Huber, J. Rambau, and F. Santos, The Cayley trick, lifting subdivisions and the Bohne-Dress
theorem on zonotopal tilings, J. Eur. Math. Soc. (JEMS) 2 (2000), 179–198.

16. M.M. Kapranov, B. Sturmfels, and A.V. Zelevinsky, Quotients of toric varieties, Math. Ann. 290
(1991), 643–655.

17. C.W. Lee, Regular triangulations of convex polytopes, in Applied geometry and discrete mathema-
tics, Amer. Math. Soc., Providence, R.I., (1991), 443–456.

18. W.S. Massey, A basic course in algebraic topology, Springer-Verlag, New York, 1991.
19. J. Rambau, Triangulations of cyclic polytopes and higher Bruhat orders, Mathematika 44 (1997),

162–194.
20. J. Rambau and F. Santos, The generalized Baues problem for cyclic polytopes I, in Combinatorics

of polytopes, European J. Combin. 21 (2000), 65–83.
21. J. Rambau and G.M. Ziegler, Projections of polytopes and the generalized Baues conjecture, Discrete

Comput. Geom. 16 (1996), 215–237.
22. V. Reiner, The generalized Baues problem, in New perspectives in algebraic combinatorics, Math.

Sci. Res. Inst. Publ. 38 (1999), 293–336.
23. F. Santos, Triangulations of oriented matroids, Mem. Amer. Math. Soc., in press.
24. F. Santos, A point set whose space of triangulations is disconnected, J. Amer. Math. Soc. 13 (2000),

611–637.
25. B. Sturmfels, On the Newton polytope of the resultant, J. Algebraic Combin. 3 (1994), 207–236.
26. G.M. Ziegler, Lectures on polytopes, Springer-Verlag, New York, 1995.


