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Abstract

A function ϕ: Nk
0 → R is a moment (multi-)sequence if and only if the linear

form L on the polynomial algebra R[x1, . . . , xk] defined by L(xn1
1 . . . xnk

k ) =
ϕ(n1, . . . , nk) is nonnegative on every polynomial p such that for some odd
natural number m the polynomial p(xm

1 , . . . , xm
k ) is a sum of squares of real

polynomials.

1. Introduction

On abelian groups, functions that admit a disintegration as an integral of characters are
characterized by positive definiteness, by the discrete version of the Bochner-Weil The-
orem. The same is true on the semigroup (N0,+), by Hamburger’s Theorem. In con-
trast, in either the multidimensional moment problem (associated with the semigroup
N

k
0) or the complex moment problem (associated with N

2
0 with ‘switching’ involution),

positive definiteness is not sufficient. These moment problems can be generalized to
arbitrary abelian involution semigroups. The original aim of this piece of research was
to show how an arbitrary ∗-semigroup S that is adapted and C-separative (as defined
below) can be embedded in a larger semigroup Q such that moment functions on S

are characterized by being ‘positive definite with respect to Q’ as defined below. In
the end, we had to assume that S is of ‘class M’ as defined in the body of the pa-
per. This is a condition that is stronger than adaptedness, but weaker than assuming
that S has an identity. The notion of positive definiteness with respect to a larger
semigroup was introduced by Stochel and Szafraniec [18] though they did not use the
term. Our main result implies that a function ϕ: Nk

0 → R is a k-dimensional mo-
ment sequence if and only if the linear form L on the polynomial algebra R[x1, . . . , xk]
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defined by L(xn1
1 . . . xnk

k ) = ϕ(n1, . . . , nk) is nonnegative on every polynomial p such
that for some odd integer m the polynomial p(xm

1 , . . . , xm
k ) is a sum of squares of real

polynomials.
Suppose (S, ·, ∗) is an abelian (i.e., commutative) semigroup equipped with an

involution, that is, a mapping s �→ s∗:S → S such that (s∗)∗ = s and (st)∗ = t∗s∗ for
all s, t ∈ S. Such a structure will be called a ∗-semigroup, even abbreviated ‘semigroup’
when we apply an adjective which makes sense only for ∗-semigroups. For subsets A

and B of S, define AB = { st | s ∈ A, t ∈ B }. A function ϕ:SS → C is positive
definite if

∑n
j,k=1 cjckϕ(s∗ksj) ≥ 0 for all n ∈ N, s1, . . . , sn ∈ S, and c1, . . . , cn ∈ C.

Let P(S) be the set of all such functions. A character on S is a function σ:S → C, not
identically zero, such that σ(s∗) = σ(s) and σ(st) = σ(s)σ(t) for all s, t ∈ S. Denote
by S∗ the set of all such functions. For a measure µ on S∗, we define

Lµ(s) =
∫
S∗

σ(s) dµ(σ), s ∈ SS

whenever all the integrals exist (which is the case if and only if for each s ∈ S the
function σ �→ σ(s):S∗ → C is in L2(µ)). A function ϕ:SS → C is a moment function if
ϕ = Lµ for some measure µ on S∗, and a moment function ϕ is determinate if there is
only one such µ among measures defined on the least σ-ring of subsets of S∗ rendering
σ �→ σ(s) measurable for each s ∈ S. (Halmos calls a function f measurable with
respect to a σ-ring A if f−1(B) ∈ A for each Borel set in C \ {0}. The condition is
equivalent to the condition that the set A = {x | f(x) �= 0 } is in A and the function
f |A is measurable with respect to the σ-field consisting of those members of A which
are contained in A. We prefer the σ-ring to the σ-field because we want uniqueness of
µ (given ϕ) to be as likely as possible. Note, however, that if S has an identity 1 (as it
does in the last Corollary in the paper) then the σ-ring is a σ-field since the function
σ �→ σ(1) ≡ 1 is measurable.) Denote by H(S) the set of all moment functions, and
by HD(S) the subset of determinate ones. We have H(S) ⊂ P(S) since

n∑
j,k=1

cjckLµ(s∗ksj) =
∫
S∗

∣∣∣∣ n∑
j=1

cjσ(sj)
∣∣∣∣2 dµ(σ) ≥ 0.

The ∗-semigroup S is semiperfect if H(S) = P(S), and perfect if we even have HD(S) =
P(S).

For a study of moment functions on semigroups, we refer to Berg, Christensen,
and Ressel [3], especially Chapter 6. For more recent developments, see the review by
Berg [1].

Abelian groups with the inverse involution (s∗ = s−1) are perfect by the discrete
version of the Bochner-Weil Theorem. More generally, a ∗-semigroup S is perfect if it
is ∗-divisible in the sense that for each s ∈ S there exist t ∈ S and m,n ∈ N0 such that
m + n ≥ 2 and s = tmt∗n ([11], [12]). It has been discovered recently that the last
equation can be replaced by s∗s = s∗tmt∗n.

The semigroup (N0,+) with its unique involution, the identity, is semiperfect by
Hamburger’s Theorem [13] but is not perfect since there exist indeterminate moment
sequences, such as the example n �→ (4n + 3)! given by Stieltjes [17].
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For k ≥ 2, the semigroup (Nk
0 ,+) is not semiperfect for any of its invo-

lutions. For the identical involution, see Berg, Christensen, and Jensen [2] or
Schmüdgen [16]; for other involutions, see the example of N

2
0 with the involu-

tion (m,n)∗ = (n,m) in [3], Chapter 6, and note that an arbitrary involution
on N

k
0 is given by the product of certain transpositions of pairwise disjoint pairs

of elements of the standard basis of N
k
0 . (I.e., after a permutation of the set

{1, . . . , k}, if necessary, there is some k′ such that 2k′ ≤ k and (n1, n2, . . . , nk)∗ =
(n2, n1, n4, n3, . . . , n2k′ , n2k′−1, n2k′+1, n2k′+2, . . . , nk).)

Haviland [14] characterized k-dimensional moment sequences as those functions
ϕ: Nk

0 → R such that the linear form L on the polynomial algebra R[x1, . . . , xk] defined
by L(xn1

1 . . . xnk

k ) = ϕ(n1, . . . , nk) is nonnegative on all nonnegative polynomials. For
k = 1 the condition reduces to positive definiteness since a nonnegative polynomial in
one variable is a sum of (two) squares of real polynomials. For k ≥ 2 such a reduction is
impossible since, as shown already by Hilbert [15], there are nonnegative polynomials
that are not sums of squares of real polynomials.

We next discuss the extension of Haviland’s criterion to arbitrary ∗-semigroups.
The concepts introduced will be useful later on. For a ∗-semigroup S, let C[S] be
the semigroup ring, that is, the space of finitely supported complex-valued func-
tions on S considered with the multiplication ∗ (convolution) defined by a ∗ b(u) =∑

s,t∈S:st=u a(s)b(t) for a, b ∈ C[S] and u ∈ S and the involution ˜ defined by
ã(s) = a(s∗) for a ∈ C[S] and s ∈ S. Then C[S] is a commutative complex ∗-algebra.
The set of elements of the form δs (s ∈ S) where δs(t) = δ(s, t) (the Kronecker delta)
is a linear basis of C[S] and a ∗-subsemigroup of the multiplicative ∗-semigroup of
C[S] isomorphic to S itself. For every ∗-subsemigroup T of S, identify C[T ] with
the set of those elements of C[S] that vanish off T . Then C[T ] is a ∗-subalgebra of
C[S]. The spaces C[SS] and C

SS are in duality under the bilinear form 〈·, ·〉 defined
by 〈a, ϕ〉 =

∑
s a(s)ϕ(s) for a ∈ C[SS] and ϕ ∈ C

SS . We consider C[SS] with the
finest locally convex topology, and C

SS with the topology of pointwise convergence.
Each topology is compatible with the duality, cf. [3], Chapter 1. For every subset A of
C[SS], define a closed convex cone A⊥ in C

SS as the set of those ϕ ∈ C
SS such that

〈a, ϕ〉 ≥ 0 for all a ∈ A. Similarly with the two spaces interchanged. Let Σ(S) be the
convex cone in C[SS] generated by elements of the form ã ∗ a with a ∈ C[S]. Then
clearly

P(S) = Σ(S)⊥. (1)

Moment functions are harder to characterize. Indeed, let Ω0
S be the set of all positive

multiples of characters on S and let ΩS be the closure of Ω0
S in C

S \ {0}. By [8],
equation (2), we have

ΩS \ Ω0
S ⊂ H(S) \ H(S),

so if ΩS �= Ω0
S then the convex cone H(S) is not closed and therefore impossible to

characterize as A⊥ for some set A. Call S adapted if ΩS = Ω0
S . As shown in [10], S is

adapted if and only if for each s ∈ S there is some n ∈ N such that (s∗s)n ∈
2n+1︷ ︸︸ ︷
S . . . S.
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Since the equivalence is unpublished, in the present paper we take the last condition
as the definition of adaptedness. If S is adapted then

H(S) = (S∗)⊥⊥. (2)

We shall not make any use of this fact, which is shown in [10]. Note, however, that
if S has an identity then it is [6], Proposition 3, item (ii). For finitely generated ∗-
semigroups with identity such that S∗ separates points, (2) is in [3], Section 6.1. Now
Haviland’s result is (2) applied to S = N

k
0 .

If T is a ∗-subsemigroup of S, say that ϕ:TT → C is positive definite with respect
to S if

ϕ ∈
(
Σ(S) ∩ C[TT ]

)⊥
.

In more plain terms, ϕ is positive definite with respect to S if and only if

n∑
k=1

〈ãk ∗ ak, ϕ〉 ≥ 0

whenever a1, . . . , an ∈ C[S] are such that
∑n

k=1 ãk ∗ ak is supported by TT . In even
plainer terms, ϕ is positive definite with respect to S if and only if

n∑
k=1

m∑
i,j=1

ck,ick,jϕ(s∗jsi) ≥ 0

for all m,n ∈ N, si ∈ S, and ck,i ∈ C (i = 1, . . . ,m, k = 1, . . . , n) such that

n∑
k=1

∑
i,j:s∗

j
si=u

ck,ick,j = 0 if u /∈ TT .

For a fourth way of stating the condition, see the paper by Stochel and Szafraniec [18].
Say that T is an extending subsemigroup of S if every function on TT which is positive
definite with respect to S extends to a positive definite function on S.

For every subset X of a set that carries an involution, denote by Xh the set of those
elements of X that are hermitian in the sense of being invariant under the involution.
Stochel and Szafraniec [18] showed that if Sh ⊂ T then

C[SS]h ⊂ C[TT ]h + Σ(S) (3)

and that if this latter inclusion holds then T is an extending subsemigroup of S.
We shall need the fact that a different set of conditions is sufficient for (3) to

hold. Call a ∗-semigroup S C-separative if S∗ separates points in S. If the problem
of characterizing moment functions on C-separative semigroups can be solved then
one has solved the same problem without C-separativity. Indeed, let χ be the quotient
mapping of S onto its greatest C-separative ∗-homomorphic image, that is, the quotient
∗-semigroup S/∼ where ∼ is the congruence in S defined by the condition that s ∼ t

if and only if σ(s) = σ(t) for all σ ∈ S∗. Then a function ϕ:SS → C is a moment
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function if and only if, firstly, ϕ factors via χ, i.e., ϕ = Φ ◦ χ for some function Φ
on χ(S)χ(S), and secondly, Φ is a moment function. Thus, it suffices to consider C-
separative semigroups. (This is said with the reservation that in order to determine
whether ϕ factors via χ one needs to be able to decide, given s, t ∈ S, whether s ∼ t.)

For every subset V of SS, denote by E(V ) the set of those v ∈ V such that if
s, t ∈ S, s∗s, t∗t ∈ V , and t∗s = v then s = t. For every subset U of SS, denote by
C(U) the union of all finite subsets V of SS such that E(V ) ⊂ U . The letters E and
C should remind the reader of extreme points and convex hull. The analogy should
not be overemphasized. For example, if S is (N2

0,+) with the identical involution and
if U = {(0, 0), (4, 2), (2, 4)} then the point v = (2, 2), which is the midpoint of the
triangle with corners in U , is not in C(U). In fact, if we define V = U ∪ {v} then
v ∈ E(V ) although v is not an extreme point of V in any reasonable sense. For a list
of elementary properties of the mappings E and C, see [7], Theorem 2. In particular,
C is a closure operation, i.e., if U and V are subsets of SS then U ⊂ C(U), if U ⊂ V

then C(U) ⊂ C(V ), and finally C
(
C(U)

)
= C(U).

We shall show that if S is C-separative and if T is a ∗-subsemigroup of S such that
SS = C(TT ) then T is an extending subsemigroup of S. The condition SS = C(TT )
is satisfied if Sh ⊂ T since for an arbitrary ∗-semigroup S one has SS ⊂ C({ s∗s | s ∈
S }) ⊂ C

(
(SS)h

)
, cf. [7], Theorem 2, where item 9 has a natural ∗-analogue.

Our main aim is to characterize moment functions. Given an adapted C-separative
semigroup S, we shall construct a perfect semigroup Q containing S such that every
moment function on SS extends to a moment function on Q. For semigroups with
identity, the prescription is simple. Indeed, let N be any subsemigroup of the multi-
plicative semigroup of odd natural numbers such that 1 ∈ N and N �= {1}. For n ∈ N

define fn:S → C
S∗

by
fn(s)(σ) = σ(s)|σ(s)|1/n−1

with the convention 0|0|1/n−1 = 0. Then the set

R =
⋃
n∈N

fn(S)

is a ∗-semigroup when considered with pointwise multiplication and pointwise complex
conjugation, and the mapping f1 is an embedding of S into R. If S has an identity,
just take Q = R, suppressing the embedding f1. In this case, S turns out to be an
extending subsemigroup of Q, so a function on SS is a moment function if and only if
it is positive definite with respect to Q. The assumption that S have an identity can
be replaced by the assumption that for each s ∈ S there is some e ∈ S (not required
to satisfy e2 = e) such that s = es.

In the general case, for every subset U of R define the convex hull of U in R to
be the set of those r ∈ R such that there exist n ∈ N and u1, . . . , un ∈ U such that
|r|n+1 = |ru1 . . . un|. Now let Q be the convex hull of S in R. In this case, for reasons
of proof technique we shall have to assume that N is the set of all odd natural numbers.
Then Q is perfect, and every moment function on S extends to a moment function on
Q. Unfortunately, in the case that S has no identity we have not been able to show
that S is an extending subsemigroup of Q.
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At the end of the paper, we shall indicate the form taken by our main result in
case S = N

k
0 with the identical involution.

2. A sufficient condition for a subsemigroup to be extending

The purpose of the present section is to prove the following result.

Theorem 1

If S is a C-separative semigroup and T is a ∗-subsemigroup of S such that SS =
C(TT ) then T is an extending subsemigroup of S.

Proof. If we prove (3) then it follows that T is extending. So suppose a ∈ C[SS]h;
we have to show a ∈ C[TT ]h + Σ(S). Since a is hermitian then the restriction of a

to any set of the form {u, u∗} with u ∈ SS is again hermitian. Since a is the sum
of finitely many such restrictions, it suffices to consider one of these. Thus we may
assume that a is supported by {u, u∗} for some u ∈ SS. Then a = λδu +λδu∗ for some
λ ∈ C. Since u ∈ SS then we can choose s, t ∈ S such that u = t∗s. The element
b = (λδs∗ +δt∗)∗(λδs+δt) is in Σ(S) and is equal to |λ|2δs∗s+δt∗t+a. If we show that
a − b is in the right-hand side of (3) then we are done. This can be done by showing
that −δt∗t is in the right-hand side of (3) since the case of the other term is similar
(the right-hand side of (3) being a convex cone).

Since t∗t ∈ SS = C(TT ) then by the definition of C there is a finite subset V of
SS such that t∗t ∈ V and E(V ) ⊂ TT . Let W be the set of those elements of V which
can be written in the form v∗v with v ∈ S. For every subset A of SS, let P (A) be the
set of those c ∈ C[SS], supported by A, such that c(x) ≥ 0 for all x and

∑
x c(x) = 1.

It should cause no confusion if we call elements of P (A) ‘probability measures’. Let A
be the set of those subsets A of W such that for each x ∈ W there is some c ∈ P (A)
such that c− δx ∈ Σ(S).

It suffices to show that there is some A ∈ A such that A ⊂ E(V ). Indeed, choose
such an A. Since t∗t ∈ W then there is some c ∈ P (A) such that c−δt∗t ∈ Σ(S). Then
we can write −δt∗t = (−c) + (c − δt∗t) ∈ C[TT ]h + Σ(S) where we used the fact that
c is supported by the set A ⊂ E(V ) ⊂ TT , which consists of hermitian elements, and
that c is real-valued, hence hermitian.

We first note that W itself is in A since, given any x ∈ W , as the desired c we
can use c = δx. Thus A �= ∅.

Since the finite set W has only finitely many subsets then we can choose A ∈ A
minimal with respect to the inclusion ordering. If A ⊂ E(V ) then we are done.
Suppose A �⊂ E(V ); we shall derive a contradiction. Choose v ∈ A \ E(V ) and define
B = A \ {v}. We shall show that B ∈ A, contradicting the minimality of A.

Suppose x ∈ W ; we have to show that there is some c ∈ P (B) such that c− δx ∈
Σ(S). Since A ∈ A then there is some d ∈ P (A) such that

d− δx ∈ Σ(S). (4)
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Since d is supported by the set A = B ∪ {v} then we can write

d = e + αδv (5)

where e is nonnegative-valued and supported by B and where α ≥ 0.
Since v /∈ E(V ) then there exist p, q ∈ S such that p∗p, q∗q ∈ V , q∗p = v, and

p �= q. Now

1
2
(
δp∗p + δq∗q

)
− δv =

1
2
(
δp∗ − δq∗

)
∗

(
δp − δq

)
∈ Σ(S). (6)

If p∗p and q∗q are not both equal to v then this shows that there is some f ∈ P (W )
such that

f �= δv and f − δv ∈ Σ(S). (7)

But p∗p and q∗q cannot be both equal to v. Indeed, suppose they are. Since v is
hermitian then v = q∗p = p∗q. Thus p∗p = q∗p = p∗q = q∗q. Applying to these
identities an arbitrary σ ∈ S∗, we obtain |σ(p)|2 = σ(q)σ(p) = σ(p)σ(q) = |σ(q)|2. It
is trivial to verify that if z and w are complex numbers such that |z|2 = wz = zw = |w|2
then z = w. Thus σ(p) = σ(q). This being so for all σ ∈ S∗, since S is C-separative it
follows that p = q, a contradiction. Thus we have (7).

For each y in the support of f , since A ∈ A we can find gy ∈ P (A) such that
gy − δy ∈ Σ(S). Now the element g =

∑
y f(y)gy is in P (A) and satisfies

g − f ∈ Σ(S). (8)

Since g is supported by the set A = B ∪ {v} then we can write

g = h + βδv (9)

where h is nonnegative-valued and supported by B and where β ≥ 0.
Since g is a probability measure then β ≤ 1. Suppose β = 1. Again since g is a

probability measure then h = 0, so g = δv. Now (7) and (8) say that f − g and g − f

are both in Σ(S). If σ ∈ S∗ then we have 〈f − g, σ〉 + 〈g − f, σ〉 = 0. The terms are
nonnegative since a character is, in particular, a positive definite function, cf. (1). Thus
〈f − g, σ〉 = 0. Since S is C-separative then the mapping k �→ (〈k, σ〉)σ∈S∗ : C[SS] →
C

S∗
is one-to-one, cf. [3], Section 6.1. Thus we can infer f = g. That is, f = δv,

contradicting (7). This proves β < 1.
Adding (7) and (8) and using (9), we get

h− (1 − β)δv ∈ Σ(S). (10)

Since g is a probability measure then (9) shows that the total mass of h is just 1 − β.
Thus, multiplying (10) by (1 − β)−1 we find some k ∈ P (B) such that k − δv ∈ Σ(S).
Multiplying by α and adding (4), we obtain c − δx ∈ Σ(S) where c = e + αk, cf. (5).
Now (5) shows that the total mass of e is just 1 − α. Thus c ∈ P (B). This completes
the proof. �
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3. An enveloping perfect semigroup

Throughout this section, S denotes a ∗-semigroup. We shall later make further as-
sumptions that will then hold throughout the rest of the section. Define R as in the
Introduction. It was shown in [4] that R is a ∗-semigroup. More precisely, this was
shown only in case N is the set of all odd natural numbers. For the general case, note
that it was shown in [4] that fn(S) is ∗-stable and fm(S)fn(S) ⊂ fmn(S). It was also
shown in [4] that R is ∗-divisible, hence perfect. It was shown in [4] and [5] that the
characters on R are just the functions r �→ r(σ) with σ ∈ S∗. It was shown in [5]
that if S has an identity then those measures on S∗ whose L-transforms are defined as
functions on R are the same as those whose L-transforms are defined as functions on S.
We need a similar result in the case that S is only assumed to be adapted. An adapted
semigroup need not have an identity, hence the need to introduce the semigroup Q.
The problem can be illustrated with the semigroup S = (]1,∞[ ,+), which is adapted.
In this case, R = ]0,∞[, and it is easy to define a moment function on S that does not
extend to a moment function on R.

Now assume that S is C-separative, and suppress the embedding f1. Then the
mapping fn (n ∈ N) is given by fn(s) = s|s|1/n−1 for s ∈ S. Define Q as in the
Introduction.

Theorem 2

The set Q is a ∗-subsemigroup of R containing S.

Proof. Clearly Q is ∗-stable. To see that Q is stable under multiplication, suppose
q, r ∈ Q; we have to show qr ∈ Q. Choose j ∈ N and s1, . . . , sj ∈ S such that
|q|j+1 = |qs1 . . . sj |. Choose k ∈ N and t1, . . . , tk ∈ S such that |r|k+1 = |rt1 . . . tk|.
With n = jk, we may assume that j = k = n. (Replace the j-tuple (s1, . . . , sj) by
an n-tuple in which each si is repeated k times.) With ui = siti we have |qr|n+1 =
|qru1 . . . un|, proving qr ∈ Q. Thus Q is a ∗-subsemigroup of R. To see that it
contains S, suppose s ∈ S; we have to show s ∈ Q. With n = 1 and s1 = s we have
|s|n+1 = |s|2 = |ss1| = |ss1 . . . sn|, proving s ∈ Q. �

An ideal of a ∗-semigroup X is a nonempty ∗-stable subset H of X such that
XH ⊂ H. In particular, HH ⊂ H, so H is a semigroup.

A ∗-semigroup H is quasi-perfect if for each ϕ ∈ P(H) there is a unique measure
µ on H∗ (on the σ-ring mentioned in the Introduction) such that ϕ(h) = Lµ(h) for
h ∈ HHH. Every perfect semigroup is quasi-perfect. Every ideal of a quasi-perfect
semigroup is quasi-perfect. For both facts, see [12].

Theorem 3

The semigroup Q is an ideal of R, hence quasi-perfect.
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Proof. Since Q is a ∗-semigroup then it is, in particular, a nonempty ∗-stable set.
Thus we only have to show RQ ⊂ Q. Suppose r ∈ R and q ∈ Q; we have to show
rq ∈ Q. Since r ∈ R then there exist n ∈ N and s ∈ S such that r = s|s|1/n−1.
Hence |r| = |s|1/n. Since q ∈ Q then there exist k ∈ N and s1, . . . , sk ∈ S such that
|q|k+1 = |qs1 . . . sk|. By induction it follows that |q|nk+1 = |q(s1 . . . sk)n|. Now

|rq|nk+1 = |r|nk+1|q|nk+1 = |r| |s|k|q(s1 . . . sk)n| = |rqt1 . . . tnk|

where ti = ssi and tmk+i = si for m = 1, . . . , n − 1 and i = 1, . . . , k. Thus rq ∈ Q.
This completes the proof. �

A ∗-semigroup H is flat if every positive definite function on H which vanishes on
HHH vanishes identically. A ∗-semigroup is perfect if and only if it is quasi-perfect
and flat [9].

Now assume that S is adapted. Because of problems with number theory, we also
now assume that N is the set of all odd natural numbers (though we have no indication
that such an assumption should be necessary for the truth of the next result).

Theorem 4

The semigroup Q is flat, hence perfect.

Proof. Suppose ϕ is a positive definite function on Q that vanishes on QQQ; we have
to show that ϕ vanishes identically. For u ∈ QQ we can choose s, t ∈ Q such that
u = t∗s. By the Cauchy-Schwarz inequality, |ϕ(u)|2 ≤ ϕ(s∗s)ϕ(t∗t). Thus it suffices to
show ϕ(q∗q) = 0 for q ∈ Q. Since q ∈ Q then there exist k ∈ N and s1, . . . , sk ∈ S such
that |q|k+1 = |qs1 . . . sk|. For each i, since S is adapted there is some n ∈ N such that

(s∗i si)
n ∈

2n+1︷ ︸︸ ︷
S . . . S, that is, (s∗i si)

n = ti,1 . . . ti,2n+1 for some ti,j ∈ S (j = 1, . . . , 2n+ 1).
This condition for some n obviously implies the corresponding condition for all greater
n. Thus we may assume that we have the same n for all i, and we still are at liberty
to take any greater n. Now

|q|2nk+1 = |q(s1 . . . sk)2n| = |qt1,1 . . . t1,2n+1 . . . tk,1 . . . tk,2n+1|.

Writing m = 2nk + 1, we have an odd integer m such that 2nk < m ≤ (2n + 1)k.
Collecting some of the factors ti,j into one, if necessary, we find u1, . . . , um ∈ S such
that |q|2nk+1 = |qu1 . . . um|. Since q ∈ R then there exist p ∈ N and v ∈ S such
that q = v|v|1/p−1. Now define w = (v∗v)nk ∈ S and r = w|w|1/mp−1 ∈ R. Then
|r| = |w|1/mp = |v|2nk/mp. But |q| = |v|1/p, so |r| = |q|2nk/m. Now

|q| |r|m = |q|2nk+1 = |qu1 . . . um| = |q| |u1 . . . um|.

Since the functions q and r have the same support, it follows that |r|m+1 = |ru1 . . . um|.
Hence r ∈ Q. We now define an infinite sequence (ri)∞i=0 in Q, informally by ri = r|q/r|i
for even i and ri = (q/r)|q/r|i−1 for odd i. Since the function r need not be invertible,
the formal definition supplements the informal one by stating that these functions
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vanish off the support of r (which is the same as the support of q). Then ri ∈ Q for
all i ∈ N0. To see this, since we have already established that r ∈ Q, and since Q is an
ideal of R, then it suffices to verify that the element q/r, which we formally define by

(q/r)(σ) =

{
q(σ)/r(σ) if r(σ) �= 0

(
or equivalently, q(σ) �= 0

)
0 otherwise,

is in R. Since q = v|v|1/p−1 and r = w|w|1/mp−1 where w = (v∗v)nk then

q/r = v|v|1/p−2nk/mp−1 = v|v|1/mp−1.

But (recalling that we now assume that N is the set of all odd natural numbers) this
shows the desired fact. Thus all the ri are in Q.

The rest of the proof is now easy. Indeed, for i = 1, 2, . . . the element |ri|2 is equal
to r∗i−1ri+1 or its adjoint according as i is even or odd, so by the Cauchy-Schwarz
inequality, ϕ(|ri|2)2 ≤ ϕ(|ri−1|2ϕ(|ri+1|2). By induction it follows that if ϕ(|ri|2)
vanishes for some i then it vanishes for all positive i and in particular for i = 1, that is,
ϕ(|q|2) = 0, as desired. Thus it suffices to show that ϕ(|ri|2) vanishes for some i. Since
ϕ vanishes on QQQ by hypothesis then it suffices to show that |ri|2 ∈ QQQ for some i.
A short computation shows |ri|2 = (v∗v)(2nk+i)/mp, so if we take i = 2p+ 2nk(2p− 1)
then we have |ri|2 = (v∗v)2 ∈ SSSS ⊂ SSS ⊂ QQQ, as desired. This completes the
proof. �

Theorem 5

Every moment function on S extends to a moment function on Q and so is positive

definite with respect to Q.

Proof. Suppose ϕ is a moment function on S; we have to show that ϕ extends to a
moment function on Q. Choose a measure µ on S∗ such that ϕ = Lµ. For σ ∈ S∗

the function q �→ q(σ) is a character on Q. Thus, if we can define a function Φ on
QQ by Φ(q) =

∫
q dµ then Φ is an extension as desired. We only have to verify that

if q ∈ Q then q ∈ L2(µ). Since q ∈ Q then we can choose n ∈ N and s1, . . . , sn such
that |q|n+1 = |qs1 . . . sn|. Hence, on the support of q we have |q| = n

√
|s1 . . . sn|, so the

desired fact follows by Hölder’s inequality.
Since Φ is a moment function then it is positive definite. For a ∈ Σ(Q) ∩ C[SS]

we have 〈ϕ, a〉 = 〈Φ, a〉 ≥ 0. Thus ϕ is positive definite with respect to Q. �

4. The main result

Only two Lemmas are needed before we can prove our main result. We continue with
some of the assumptions from the preceding section, viz., S is a C-separative semigroup,
N is a subsemigroup of the multiplicative semigroup of odd natural numbers such that
1 ∈ N and N �= {1}, and Q is defined as in the Introduction. We do not assume that
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S is adapted since we shall introduce a stronger assumption. We assume that S is of
class M, that is, for each s ∈ S there exist e ∈ S and n ∈ N such that

(s∗s)n = e(s∗s)n. (11)

It follows that s = es. Indeed, since S is C-separative then we only have to verify
σ(s) = σ(es) for σ ∈ S∗. Since σ(es) = σ(e)σ(s) then this is trivial if σ(s) = 0. Thus
we may assume σ(s) �= 0. We then have to show σ(e) = 1. But this follows by applying
σ to (11) and dividing by the nonzero number |σ(s)|2n. Similarly, s∗ = es∗.

Note that even if S were not assumed to be C-separative, (11) would show (s∗s)n ∈
2n+1︷ ︸︸ ︷
S . . . S, proving that S is adapted.

Lemma 1

Q = R.

Proof. Suppose r ∈ R; we have to show r ∈ Q. Since r ∈ R then we can choose s ∈ S

and n ∈ N such that r = s|s|1/n−1. Since S is of class M then there is some e ∈ S

such that s = es and s∗ = es∗. With s1 = · · · = sn−1 = e and sn = s we now have
|r|n+1 = |r| |r|n = |r| |s| = |rs1 . . . sn|, showing r ∈ Q. �

Lemma 2

The semigroup S is an extending subsemigroup of Q.

Proof. Since S is C-separative then it suffices to show QQ = C(SS). One inclusion
being trivial, we only have to show QQ ⊂ C(SS). For u ∈ QQ we can choose s, t ∈ Q

such that u = t∗s. By the ∗-analogue of [7], Theorem 2, item 9, we have t∗s ∈
C({s∗s, t∗t}). Hence, if we show that all elements of QQ of the form q∗q for some
q ∈ Q are in C(SS) then it follows that the latter set contains QQ. (Indeed, from
{s∗s, t∗t} ⊂ { q∗q | q ∈ Q } we can infer C({s∗s, t∗t}) ⊂ C({ q∗q | q ∈ Q } since C is
a closure operation. By the same token, from { q∗q | q ∈ Q } ⊂ C(SS) we can infer
C({ q∗q | q ∈ Q }) ⊂ C(C(SS)) = C(SS).)

So suppose q ∈ Q; we have to show q∗q ∈ C(SS). Since q ∈ R then we can choose
s ∈ S and n ∈ N such that q = s|s|1/n−1. Since S is of class M then there is some
e ∈ S such that s = es and s∗ = es∗. Hence, if we define q0 = q∗0 = e then the laws of
powers continue to hold when zeroth powers are included, except that it is not certain
that q0+0 = q0q0, an identity that we shall not need. Now define

V =
{

(q∗q)k | k = 0, . . . , n
}
.

We claim that if 1 ≤ k ≤ n − 1 then (q∗q)k /∈ E(V ). To see that this is so, define
x = qk−1 and y = qkq∗. Then x∗x = (q∗q)k−1 ∈ V , y∗y = (q∗q)k+1 ∈ V , and
y∗x = (q∗kq)(qk−1) = (q∗q)k. To conclude that (q∗q)k /∈ E(V ), we now need only
verify that x �= y. There is an exceptional case that will be treated at the end of
the proof. Suppose x = y, that is, qk−1 = qkq∗. It follows that on the support of q
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the function q∗q is equal to 1. This is the exceptional case that will be treated later.
Disregarding it for the present, since E(V ) ⊂ V (by the definition of E) then we have
shown E(V ) ⊂ {(q∗q)0, (q∗q)n} = {e∗e, s∗s} ⊂ SS, and since V is a finite set then by
the definition of C it follows that V ⊂ C(SS). Since in particular q∗q = (q∗q)1 ∈ V

then it follows that q∗q ∈ C(SS), as desired.
We can now complete the proof by considering the exceptional case, which is the

case that the function q∗q is the identity on the support of q (which is the same as the
support of s). But then

q∗q = q∗q(q∗q)n−1 = (q∗q)n = s∗s ∈ SS ⊂ C(SS)

since C is a closure operation. This completes the proof. �

Theorem 6

A function ϕ:SS → C is a moment function if and only if it is positive definite

with respect to Q.

Proof. We have already seen that every moment function on S is positive definite with
respect to Q. Conversely, suppose ϕ is positive definite with respect to Q. Since S is
an extending subsemigroup of Q then ϕ extends to a positive definite function on Q,
say Φ. Now Q is perfect. In the preceding section, this was shown only in the case
that N is the set of all odd natural numbers. Note, however, that we now have Q = R

and that it was remarked earlier that it follows from published results that R is perfect
for arbitrary N . Since Φ is positive definite and since Q is perfect then Φ is a moment
function. Thus Φ = Lν for some measure ν on Q∗. We have not identified Q∗. We
conjecture that it is just the set of functions of the form q �→ q(σ) with σ ∈ S∗, but this
will not be needed. Indeed, denoting by µ the image measure of ν under the mapping
6 �→ 6|S:Q∗ → S∗, it is trivial to verify that ϕ = Lµ. So ϕ is a moment function. This
completes the proof. �

5. Application to the multidimensional moment problem

The purpose of the present section is to deduce the following result.

Corollary 1

For k ∈ N, a function ϕ: Nk
0 → R is a moment sequence if and only if the linear form

L on R[x1, . . . , xk] defined by L(xn1
1 . . . xnk

k ) = ϕ(n1, . . . , nk) is nonnegative on every

polynomial p such that for some odd natural number m the polynomial p(xm
1 , . . . , xm

k )
is a sum of squares of real polynomials.



Characterization of moment multisequences by a variation of positive definiteness 217

Proof. We are indebted to the anonymous referee for the suggestion to prove the
easy part independently. Suppose ϕ is a moment sequence, that is, there is a positive
measure µ on R

k, with moments of all orders, such that

ϕ(n1, . . . , nk) =
∫

Rk

xn1
1 . . . xnk

k dµ(x1, . . . , xk)

for all (n1, . . . , nk) ∈ N
k
0 . Then L is given by L(p) =

∫
Rk p dµ for each polynomial p.

Suppose p is a real polynomial in k variables such that for some odd natural number m
the polynomial p(xm

1 , . . . , xm
k ) is a sum of squares of real polynomials. In particular, the

latter polynomial is nonnegative on R
k. But the mapping (x1, . . . , xk) �→ (xm

1 , . . . , xm
k )

is a bijection of R
k onto itself, the inverse being (x1, . . . , xk) �→ (x1/m

1 , . . . , x
1/m
k ) which

is well-defined since m is odd. Thus p ≥ 0 everywhere, so L(p) =
∫
p dµ ≥ 0.

Let S be the semigroup (Nk
0 ,+) considered with the identical involution. Then

ϕ is a moment sequence if and only if it is a moment function on S. With N equal
to the set of all odd natural numbers, the semigroup Q defined as in the Introduction
can be identified with {n/m | n ∈ S, m ∈ N }. Now ϕ is a moment function if and
only if it is positive definite with respect to Q. We can identify C[Q] with the algebra
of ‘polynomials with fractional exponents’, i.e., linear combinations of the ‘fractional
monomials’ xn1/m

1 . . . x
nk/m
k where (n1, . . . , nk) ∈ S and m ∈ N . Since Q carries the

identical involution then C[Q]h = R[Q]. Saying that ϕ is positive definite with respect
to Q is equivalent to saying that L is nonnegative on every polynomial p which is a sum
of squares of (real) fractional polynomials. But this condition on p is equivalent to the
condition that for some m ∈ N the polynomial p(xm

1 , . . . , xm
k ) is a sum of squares of

ordinary polynomials. This is because each of the fractional polynomials whose squares
enter into the sum is a linear combination of fractional monomials x

n1/m
′

1 . . . x
nk/m

′

1 .
Taking m to be a common multiple of the finitely many m′ involved, we get the desired
fact. �
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13. H.L. Hamburger, Über eine erweiterung des stieljesschen momentenproblemes, Math. Ann. 81

(1920), 235–319; 82 (1921), 120–164, 168–187.
14. E.K. Haviland, On the momentum problem for distributions in more than one dimension, Amer. J.

Math. 57 (1935), 562–568; 58 (1936), 164–168.
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16. K. Schmüdgen, An example of a positive polynomial which is not a sum squares of polynomials.

A positive, but not strongly positive functional, Math. Nachr. 88 (1979), 385–390.
17. T.J. Stieltjes, Recherches sur les fractions continues, Ann. Fac. Sci. Toulouse Math. (6) 8 (1894),

1–22; 9 (1895), 1–47.
18. J. Stochel and F.H. Szafraniec, The complex moment problem and subnormality: a polar decompo-

sition approach, J. Funct. Anal. 159 (1998), 432–491.


