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Abstract

Variants of Khintchine’s inequality with coefficients depending on the vector di-
mension are proved. Equality is attained for different types of extremal vectors.
The Schur convexity of certain attached functions and direct estimates in terms of
the Haagerup type of functions are also used.

1. Introduction

Denote by (rn)n≥1 the sequence of Rademacher functions, defined by

rn(t) = sign(sin 2nπt), t ∈ [0, 1], n = 1, 2, ...

Recall that the classical Khintchine inequality states that for any p > 0 there exist
constants Ap, Bp > 0 such that

Ap

√√√√ n∑
i=1

x2i ≤
∥∥∥∥∥

n∑
i=1

xiri

∥∥∥∥∥
Lp

=

(∫ 1

0

∣∣∣∣∣
n∑

i=1

xiri(t)

∣∣∣∣∣
p

dt

)1/p

≤ Bp

√√√√ n∑
i=1

x2i ,

for n ∈ N and arbitrary x1, ..., xn ∈ R, where ‖ · ‖Lp is the norm in Lp(0, 1). The
problem to find the best possible constants appearing in the above inequalities has a
long history; see, for instance, the survey paper [5] and the attached bibliography.

Supposing now that
∑n

i=1 x
2
i = 1, it is easy to see that for some p > 0, the

vector x = (x1, ..., xn) ∈ R
n with xi = 1/

√
n, i = 1, ..., n, is in a certain sense
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extremal. Another extreme case is when x1 = 1, x2 = ... = xn = 0. For p > 0 and
n ∈ N fixed it is also of interest to maximize the difference

Sp(x) =

∥∥∥∥∥
n∑

i=1

xiri

∥∥∥∥∥
p

Lp

−
∥∥∥∥∥ 1√
n

n∑
i=1

ri

∥∥∥∥∥
p

Lp

‖x‖p2,

where x = (x1, ..., xn) ∈ R
n and ‖·‖q is the norm in �nq , q ∈ [1,∞]. Then it is desirable

to obtain an inequality of the form Sp(x) ≤ Cp(x), where Cp(x) is a “simple” function
and such that equality holds for extremal vectors x = e1 = (1, 0, ..., 0) and / or
x = (1/

√
n, ..., 1/

√
n). Such a result was recently obtained by T. Figiel, P. Hitczenko,

W.B. Johnson, G. Schechtman, J. Zinn [1] in the case p ∈ (2, 3), (and in a more
general case of Khintchine inequalities for a class of Orlicz functions). In particular
one obtains [1, Theorem 4.2] that

(1)

∥∥∥∥∥
n∑

i=1

xiri

∥∥∥∥∥
p

Lp

−
∥∥∥∥∥ 1√
n

n∑
i=1

ri

∥∥∥∥∥
p

Lp

‖x‖p2 ≤ ‖x‖pp − n1−p/2‖x‖p2,

p ∈ (2, 3), with equality for x = (1/
√
n, ..., 1/

√
n).

On the other hand, in order to obtain estimates for the projection constants of
symmetric n-dimensional spaces, H. König, C. Schütt and N. Tomczak-Jaegermann [4]
have used the following inequalities

−Φ(1)‖x‖∞ ≤
∥∥∥∥∥

n∑
i=1

xiri

∥∥∥∥∥
L1

− lim
n→∞

∥∥∥∥∥ 1√
n

n∑
i=1

ri

∥∥∥∥∥
L1

‖x‖2(2)

=

∥∥∥∥∥
n∑

i=1

xiri

∥∥∥∥∥
L1

−
√

2
π
‖x‖2 ≤

(
1 −

√
2
π

)
‖x‖∞,

where

Φ(b) :=
2
π

∫ ∞

π/2

cos t cos(bt)
t2

dt, b ≥ 0.

These inequalities are obtained by entirely different methods and equality in the second
inequality is attained for x = e1 = (1, 0, ..., 0).

In this paper we obtain inequalities of type (1) (in the particular case p = 1 ) with
equality for vectors of the form x = (1/

√
n, ..., 1/

√
n). Reverse inequalities are also

considered. On the other hand an improved form of (2), with bounds depending on n,
is given, i.e. we get

(3)

∥∥∥∥∥
n∑

i=1

xiri

∥∥∥∥∥
L1

≤
∥∥∥∥∥ 1√
n

n∑
i=1

ri

∥∥∥∥∥
L1

‖x‖2 +


1 −

∥∥∥∥∥ 1√
n

n∑
i=1

ri

∥∥∥∥∥
L1


 ‖x‖∞.

Equality in (3) is attained for x = e1 and (2) can be obtained from (3) as a limit case.
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2. Variants of Khintchine’s inequality and Schur convexity

Let x = (x1, ..., xn) be a vector in R
n and let x∗1, ..., x

∗
n be the components of x

in decreasing order, x∗1 ≥ ... ≥ x∗n. For x, y ∈ R
n we write x ≺ y if

∑k
i=1 x

∗
i ≤∑k

i=1 y
∗
i , k = 1, ..., n− 1 and

∑n
i=1 xi =

∑n
i=1 yi. A function ϕ : D ⊆ R

n → R is said
to be Schur convex on D if ϕ(x) ≤ ϕ(y) whenever x, y ∈ D and x ≺ y, see [6]. Let
us denote by D the subset of R

3 given by D = {(x, y, a) : x ≥ y ≥ 0, a ≥ 0} and by
f : D → R+ the function

f(x, y, a) = |x+ y + a| + |x− y + a| + |x+ y − a| + |x− y − a|, (x, y, a) ∈ D.
In order to prove some variants of Khintchine’s inequality we need

Lemma 2.1
The functions gi : D → R+, i = 1, 2, 3 defined by

g1(x, y, a) = f(x, y, a) − 2y, (x, y, a) ∈ D,
g2(x, y, a) = f(x, y, z) − 2x− 2y, (x, y, a) ∈ D,
g3(x, y, a) = −f(x, y, z) + 4x, (x, y, a) ∈ D,

satisfy the property: for all x, y, x1, y1, a > 0, with x ≥ x1 ≥ y1 ≥ y, and x21 + y21 =
x2 + y2 we have gi(x, y, a) ≥ gi(x1, y1, a), i = 1, 2, 3.

Proof. We consider only the case i = 1. The other cases can be treated with similar
arguments. It is sufficient to prove that the function g∗1 : [0, π/4] → R+, given by
g∗1(t) = g1(r cos t, r sin t, a), t ∈ [0, π/4] is decreasing for any fixed r, a > 0. From the
homogeneity of g1 we may assume that r = 1. We have
g∗1(t) = 2 cos t− 2 sin t+ 2a+ | cos t+ sin t− a| + | cos t− sin t− a|, t ∈ [0, π/4],

a > 0. If cos t − sin t ≥ a, then g∗1(t) = 4 cos t − 2 sin t, which is decreasing on
[0, arccos(

√
2a/2) − π/4], for a < 1. If cos t − sin t < a and cos t + sin t ≥ a, then

g∗1(t) = 2 cos t+2a, is also a decreasing function on any subinterval of [0, π/4]. Finally,
if cos t + sin t < a, then g∗1(t) = 4a − 2 sin t is a decreasing function. The continuity
of g∗1 ensures that g∗1 is decreasing on [0, π/4] for any a ≥ 0. �

For a vector x = (x1, ..., xn) ∈ R
n, n ≥ 2, let x#1 , ..., x

#
n be the sequence of

absolute values of the components of x in increasing order, 0 ≤ x#1 ≤ ... ≤ x#n . Then
there exists a natural number k ∈ [1, n − 1] such that x#k ≤ (1/

√
n)‖x‖2 ≤ x#k+1.

With this notation we can state the main result of this section:

Theorem 2.2
For any n ∈ N, n ≥ 2 and x = (x1, ..., xn) ∈ R

n we have∥∥∥∥∥
n∑

i=1

xiri

∥∥∥∥∥
L1

≥
∥∥∥∥∥ 1√
n

n∑
i=1

ri

∥∥∥∥∥
L1

‖x‖2 +
1
2

(
x#1 + ...+ x#k − k√

n
‖x‖2

)
;(4)

∥∥∥∥∥
n∑

i=1

xiri

∥∥∥∥∥
L1

≥
∥∥∥∥∥ 1√
n

n∑
i=1

ri

∥∥∥∥∥
L1

‖x‖2 +
1
2
(
‖x‖1 −

√
n‖x‖2

)
;(5)

∥∥∥∥∥
n∑

i=1

xiri

∥∥∥∥∥
L1

≤
∥∥∥∥∥ 1√
n

n∑
i=1

ri

∥∥∥∥∥
L1

‖x‖2 +
(
x#k+1 + ...+ x#n − n− k√

n
‖x‖2

)
.(6)

Equality in (4), (5) and (6) is attained for x1 = x2 = ... = xn = ‖x‖2/
√
n.
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Proof. Observe first that if (5) is true then (4) is also true, so we prove (5). From the
symmetry of ‖

∑n
i=1 xiri‖ we may suppose that 0 ≤ x1 ≤ ... ≤ xn. For n = 2, (5) is

equivalent to x2 ≥ (x1 + x2)/2, which is trivial. Let n > 2. If x1 = x2 = ... = xn,
then in (5) we have equality. We may assume x1 < xn. It follows that∥∥∥∥∥

n∑
i=1

xiri

∥∥∥∥∥
L1

=
1
2n

∑
εi=±1

∣∣∣∣∣
n∑

i=1

xiεi

∣∣∣∣∣
=

1
2n−2

∑
εi=±1

1
4

(∣∣∣∣∣xn + x1 +

∣∣∣∣∣
n−1∑
i=2

xiεi

∣∣∣∣∣
∣∣∣∣∣

+

∣∣∣∣∣xn − x1 +

∣∣∣∣∣
n−1∑
i=2

xiεi

∣∣∣∣∣
∣∣∣∣∣ +

∣∣∣∣∣xn + x1 −
∣∣∣∣∣
n−1∑
i=2

xiεi

∣∣∣∣∣
∣∣∣∣∣

+

∣∣∣∣∣xn − x1 −
∣∣∣∣∣
n−1∑
i=2

xiεi

∣∣∣∣∣
∣∣∣∣∣
)

=
1

2n−2

∑
εi=±1

1
4
g2

(
xn, x1,

∣∣∣∣∣
n−1∑
i=2

xiεi

∣∣∣∣∣
)

+
1
2
(xn + x1).

If ‖x‖2/
√
n <

√
(x2n + x21)/2, using Lemma 2.1 (for g2 ), one obtains∥∥∥∥∥

n∑
i=1

xiri

∥∥∥∥∥
L1

≥ 1
2n−2

∑
εi=±1

1
4
g2

(
x′n,

‖x‖2√
n
,

∣∣∣∣∣
n−1∑
i=2

xiεi

∣∣∣∣∣
)

+
1
2
(xn + x1)

=

∥∥∥∥∥‖x‖2√
n
r1 +

n−1∑
i=2

xiri + x′nrn

∥∥∥∥∥
L1

+
1
2

(
xn + x1 − x′n − ‖x‖2√

n

)
,

where x2n + x21 = (x′n)2 + ‖x‖2
2/n. If ‖x‖2/

√
n >

√
(x2n + x21)/2, again using Lemma

2.1, we have:∥∥∥∥∥
n∑

i=1

xiri

∥∥∥∥∥
L1

≥
∥∥∥∥∥x′1r1 +

n−1∑
i=2

xiri +
‖x‖2√
n
rn

∥∥∥∥∥
L1

+
1
2

(
xn + x1 − x′1 −

‖x‖2√
n

)
,

with x21 + x2n = (x′1)
2 + ‖x‖2

2/n. If ‖x‖2/
√
n =

√
(x2n + x21)/2, then∥∥∥∥∥

n∑
i=1

xiri

∥∥∥∥∥
L1

≥
∥∥∥∥∥‖x‖2√
n
r1 +

n−1∑
i=2

xiri +
‖x‖2√
n
rn

∥∥∥∥∥
L1

+
1
2

(
x1 + xn − 2

‖x‖2√
n

)
.

Let us observe that applying this procedure once we have∥∥∥∥∥
n∑

i=1

xiri

∥∥∥∥∥
L1

≥
∥∥∥∥∥

n∑
i=1

yiri

∥∥∥∥∥
L1

+
1
2
(
x1 + ...+ xn − y1 − ...− yn

)
,
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where 0 ≤ y1 ≤ ... ≤ yn, y21 + ... + y2n = x21 + ... + x2n, and at least one of yi’s
is ‖x‖2/

√
n. After at most n − 1 steps all the yi’s become equal to ‖x‖2/

√
n, and

finally: ∥∥∥∥∥
n∑

i=1

xiri

∥∥∥∥∥
L1

≥
∥∥∥∥∥ 1√
n

n∑
i=1

ri

∥∥∥∥∥
L1

‖x‖2 +
1
2
(
x1 + ...+ xn −

√
n‖x‖2

)
.

Using Lemma 2.1 (for g3 ), a similar proof can be given for (6); here instead of
(1/2)(x′1 +‖x‖2/

√
n) we put max {x′1, ‖x‖2/

√
n}, and (1/2)(x′n +‖x‖2/

√
n) becomes

max {x′n, ‖x‖2/
√
n}. �

Remarks.

a) Define the functions Φi : R
n
+ → R, i = 1, 2, 3 by

Φ1(x1, ..., xn) =

∥∥∥∥∥
n∑

i=1

√
xiri

∥∥∥∥∥
L1

− 1
4

n∑
i=1

[
1 − sign

(
xi −

∑n
j=1 xj

n

)]
√
xi,

Φ2(x1, ..., xn) =

∥∥∥∥∥
n∑

i=1

√
xiri

∥∥∥∥∥
L1

− 1
2

n∑
i=1

√
xi,

Φ3(x1, ..., xn) =

∥∥∥∥∥
n∑

i=1

√
xiri

∥∥∥∥∥
L1

− 1
2

n∑
i=1

[
1 + sign

(
xi −

∑n
j=1 xj

n

)]
√
xi.

The proof of Theorem 2.2 shows that Φ1 and Φ2 are Schur-convex and that Φ3 is
Schur-concave on R

n
+.

b) Suppose that ϕ : R → R+ is an even function which satisfies the property:
there exists a constant M such that for any fixed a, r > 0 the functions ϕMa,r :
[0, π/4] → R, defined by

ϕMa,r(t) = E
(
ϕ(ε1r cos t+ ε2r sin t+ a)

)
−M

(
ϕ(r cos t) + ϕ(r sin t)

)
, t ∈ [0, π/4],

are all decreasing (increasing). Here E is the expectation with respect to ε1, ε2 ∈
{−1, 1}. Under these conditions we have

∥∥∥∥∥ϕ
(

n∑
i=1

xiri

)∥∥∥∥∥
L1

≥ (≤)

∥∥∥∥∥ϕ
(
‖x‖2√
n

n∑
i=1

ri

)∥∥∥∥∥
L1

+M

(
n∑

i=1

ϕ(xi) − nϕ
(‖x‖2√

n

))
,

with equality for x1 = ... = xn = ‖x‖2/
√
n. The proof is the same as that of (5) in

Theorem 2.2, where ϕ(x) = |x| and ϕ1/2
a,r is decreasing for all a, r > 0. The function

ϕ(x) = |x|p, p ∈ {2}∪ [3,∞), has the attached functions ϕ0
a,r, a, r > 0, increasing (by

[3]). As a consequence of Lemma 4.1 in [1], an Orlicz function ϕ such that ϕ′′ is a
concave function in [0,∞) has the associate functions ϕ1

a,r; a, r > 0, increasing.
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3. Variants of Khintchine’s inequality and Haagerup functions

In this section we obtain variants of inequalities (2) with coefficients depending of n.
We first consider an improved form of the first inequality in (2), where equality will
be attained for n = 2 and x = (1, 1). We need some auxiliary results.

Lemma 3.1
Suppose that 0 ≤ a1 ≤ a2 ≤ b2 ≤ b1 ≤ 1 and that a21 + b21 = a22 + b22. Then

(7) cos(a1t) cos(b1t) ≤ cos(a2t) cos(b2t), t ∈ [0, π/2].

Proof. Indeed, using the well-known representation formula:

cos t =
∞∏
k=0

(
1 − 4t2/((2k + 1)2π2)

)
, t ∈ R,

our inequality is equivalent to
∞∏
k=0

(
1 − 4(a21 + b21)t

2

(2k + 1)2π2
+

16a21b
2
1t

4

(2k + 1)4π4

)

≤
∞∏
k=0

(
1 − 4(a22 + b22)t

2

(2k + 1)2π2
+

16a22b
2
2t

4

(2k + 1)4π4

)
,

t ∈ [0, π/2], which is true since, under our hypothesis, a21b
2
1 ≤ a22b22.�

Lemma 3.2
Let Φ be the function defined as above. Then

Φ(0) ≤ Φ(b) ≤ Φ(1), b ≥ 0.

This is Lemma 8 (i) in [4].

Lemma 3.3
Let x = (x1, ..., xn) ∈ R

n, n ≥ 2 be such that 1 = x1 ≥ ... ≥ xn ≥ 0. Then

(8)
n∏

k=1

cos(xkt) ≤ cosn
(‖x‖2√

n
t

)
, t ∈ [0, π/2].

Proof. The case n = 2 follows immediately from Lemma 3.1. Suppose that n > 2.
If x1 = ... = xn = ‖x‖2/

√
n, then (8) becomes equality. Assume that x1 > xn. With

arguments as in the proof of Theorem 2.2, by (7) we have:
n∏

k=1

cos(xkt) ≤
n∏

k=1

cos(ykt), t ∈ [0, π/2],

where 1 ≥ y1 ≥ ... ≥ yn ≥ 0, and at least one of yi’s is ‖x‖2/
√
n. Applying at most

n− 1 times the preceding procedure one obtains (8). �

Lemma 3.4
Let x = (x1, ..., xn) ∈ R

n, be such that 1 = x1 ≥ ... ≥ xn ≥ 0. Denote by

hn(x) = − 2
π

∫ ∞

π/2

∏n
k=1 cos(xkt)
t2

dt .

Then hn(e1 + e2) ≤ hn(x) ≤ hn(e1), where e1 = (1, 0, ..., 0) and e1 + e2 =
(1, 1, 0, ..., 0).
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This Lemma is proved in [4, p.18].

Proposition 3.5

For any n ∈ N and x = (x1, ..., xn) ∈ R
n we have:

∥∥∥∥∥
n∑

i=1

xiri

∥∥∥∥∥
L1

≥
∥∥∥∥∥ 1√
n

n∑
i=1

ri

∥∥∥∥∥
L1

‖x‖2(9)

+
2‖x‖∞
π

∫ ∞

π/2

cosn
(

‖x‖2√
n‖x‖∞

t
)

t2
dt− Φ(1)‖x‖∞.

The inequality becomes equality for n = 2 and x = (1, 1).

Proof. We may suppose, by homogeneity, that ‖x‖∞ = 1, and by the symmetry of ri
that 1 = x1 ≥ ... ≥ xn ≥ 0. Using the integral form of Rademacher averages from [2]
and applying successively Lemma 3.3, Lemma 3.2, and Lemma 3.4, it follows

∥∥∥∥∥
n∑

i=1

xiri

∥∥∥∥∥
L1

=
2
π

∫ ∞

0

1 −
∏n

k=1 cos(xkt)
t2

dt

≥ 2
π

∫ π/2

0

1 − cosn
(

‖x‖2√
n
t
)

t2
dt+

2
π

∫ ∞

π/2

1 −
∏n

k=1 cos(xkt)
t2

dt

≥ 2
π

∫ ∞

0

1 − cosn
(

‖x‖2√
n
t
)

t2
dt+

2
π

∫ ∞

π/2

cosn
(

‖x‖2√
n
t
)

t2
dt

− Φ(1) =

∥∥∥∥∥ 1√
n

n∑
i=1

ri

∥∥∥∥∥
L1

‖x‖2

+
2
π

∫ ∞

π/2

cosn
(

‖x‖2√
n
t
)

t2
dt− Φ(1). �

We turn now to the main result of this section. We first need some technical
lemmas. The following result is stated, without proof, in [4].

Lemma 3.6

The function g : [1,∞) → R defined by:

g(α) =
√
α

∫ π/2

0

cosα t ln
1

cos t
t2

dt,

is increasing on [1,∞).
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Writing g′ as a difference of two integrals, I1 − I2 and integrating by parts I2,
after a straightforward but tedious computation one obtains the positivity of g′.

Let us denote by Sn := ‖
∑n

i=1 ri‖L1
.

Lemma 3.7

Let fn : [1, n] → R be the function defined by

fn(α) = − Sn√
n

√
α+

2
π

∫ π/2

0

1 − cosα t
t2

dt, α ∈ [1, n].

Then fn(α) ≤ max {fn(1), fn(n)}.

Proof. A straightforward computation yields

f ′n(α) =
1√
α


− Sn

2
√
n

+
2
π

√
α

∫ π/2

0

cosα t ln
1

cos t
t2

dt




=
1√
α

(
− Sn

2
√
n

+
2
π
g(α)

)
, α ∈ [1, n].

By Lemma 3.6 the function g is increasing, which implies that f ′n(α) ≤ 0 for all
α ∈ [1, n], or f ′n(α) ≥ 0 for all α ∈ [1, n], or there exists an α0 ∈ (1, n) such that
f ′n(α) ≤ 0 for all α ∈ [1, α0] and f ′n(α) > 0 for all α ∈ (α0, n]. In all of these cases
fn(α) ≤ max {fn(1), fn(n)}. �

Lemma 3.8

If the sequence (s(n))n≥1 is defined by

s(n) = fn(1) − fn(n), n = 1, 2, ... ,

then the sequence (s(2n))n≥2 is increasing.

Proof. We have

s(2n) = f2n(1) − f2n(2n) =
2√
π

Γ
(

2n+1
2

)
Γ

(
2n
2

) · 1√
2n

(
√

2n− 1)

− 2
π

∫ π/2

0

cos t− cos2n t
t2

dt = F (2n)(
√

2n− 1)

− 2
π

∫ π/2

0

cos t− cos2n t
t2

dt,

where F is the Haagerup function defined in [2] by

F (s) =
2√
π

Γ( s+1
2 )√

sΓ( s2 )
, s > 0.
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Recall that, by [2, p.238], we have

(10) F (s+ 2) =
√

s

s+ 2
s+ 1
s
F (s), s > 0 .

Then
s(2n+ 2) − s(2n) = F (2n+ 2)

(√
2n+ 2 − 1

)
− F (2n)

(√
2n− 1

)
− 2
π

∫ π/2

0

cos2n t(1 + cos t)
1 − cos t
t2

dt .

Since (1 − cos t)/t2 ≤ 1/2, t ∈ (0, π/2], by (10) and the well-known formula

∫ π/2

0

cosα t dt =
√
π

2
Γ(α+1

2 )
Γ(α+2

2 )
, α > −1,

it follows that

s(2n+ 2) − s(2n) ≥ F (2n)

(
1 +

1√
2n

− 2n+ 1
2
√
n(n+ 1)

)

− 1
π

∫ π/2

0

(cos2n t+ cos2n+1 t) dt

= F (2n)

(
1 +

1√
2n

− 2n+ 1
2
√
n(n+ 1)

)

− 1
2
√

2n
F (2n) − 1

2
√

2n+ 1
F (2n+ 1)

≥ F (2n)

(
1 +

1
2
√

2n
− 2n+ 1

2
√
n(n+ 1)

)
− F (2n+ 2)

2
√

2n+ 1
.

Using again the recurrence formula (10) one obtains

s(2n+ 2) − s(2n)

≥ F (2n)
4
√
n(n+ 1)

·
√

2n+ 1
(√

2n+ 1 − 2
)

+ 2
√
n+ 1

(√
n−

√
2
)

(
2
√
n(n+ 1) + 2n+ 1

)(√
2n+ 2 +

√
2n+ 1

) > 0,

for n ≥ 2. �

Theorem 3.9

For any n ∈ N and x = (x1, ..., xn) ∈ R
n

(11)

∥∥∥∥∥
n∑

i=1

xiri

∥∥∥∥∥
L1

≤
∥∥∥∥∥ 1√
n

n∑
i=1

ri

∥∥∥∥∥
L1

‖x‖2 +


1 −

∥∥∥∥∥ 1√
n

n∑
i=1

ri

∥∥∥∥∥
L1


 ‖x‖∞.

Proof. Observe that if 0 ≤ a < b ≤ 1, then a‖x‖2 + (1 − a)‖x‖∞ ≤ b‖x‖2 + (1 −
b)‖x‖∞. Using the well-known factorial representation of S2n, (S2n−1 ) we obtain
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that the sequence (S2n/
√

2n)n≥1, (respectively (S2n−1/
√

2n− 1)n≥1 ), is increasing
(decreasing) and

lim
n→∞

S2n/
√

2n = lim
n→∞

S2n−1/
√

2n− 1 =
√

2/π.

Then we have S2n−1/
√

2n− 1 >
√

2/π, and in this case (11) follows (for n odd)
from the inequality (2), proved in [4].

Let x = (x1, ..., x2n) ∈ R
2n be given. We may assume that 1 = x1 ≥ ... ≥ x2n ≥

0. Denoting α = x21 + ... + x22n, it follows that α ∈ [1, 2n]. By Lemma 5 in [4] we
have: cos(xt) ≥ (cos t)x

2
, 0 ≤ x ≤ 1, and 0 ≤ t ≤ π/2. This fact, Lemma 3.4 and

Lemma 3.7 imply successively that∥∥∥∥∥
2n∑
i=1

xiri

∥∥∥∥∥
L1

=
2
π

∫ ∞

0

1 −
∏2n

i=1 cos(xit)
t2

≤ S2n√
2n

√
α+ f2n(α) + h2n(x) +

2
π

∫ ∞

π/2

dt

t2

≤ S2n√
2n

√
α+ f2n(α) + h2n(e1) +

4
π2

≤ S2n√
2n

√
α+ max

{
f2n(1), f2n(2n)

}
+ h2n(e1) +

4
π2
.

Since s(8) = f8(1)−f8(8) = 35
64

√
2(2

√
2−1)− 2

π (−Si(π2 )+ 1
16Si(4π)+ 7

8Si(2π)+ 7
8Si(π)+

3
8Si(3π)) ≈ 0.005987... > 0, where Si(x) =

∫ x

0
sin t
t dt, is the sinus integral, by Lemma

3.8 it follows that s(2n) ≥ 0, for all n ≥ 4. Then f2n(α) ≤ max {f2n(1), f2n(2n)} =
f2n(1), n ≥ 4. But α = 1 if and only if x = e1 and this yields∥∥∥∥∥

2n∑
i=1

xiri

∥∥∥∥∥
L1

− S2n√
2n

‖x‖2 = f2n
(
‖x‖2

2

)
+ h2n(x) +

4
π2

≤ f2n(‖e1‖2) + h2n(e1) +
4
π2

= ‖r1‖L1 −
S2n√
2n

‖e1‖2 = 1 − S2n√
2n
, n ≥ 4 .

It follows that ∥∥∥∥∥
2n∑
i=1

xiri

∥∥∥∥∥
L1

≤
∥∥∥∥∥ 1√

2n

2n∑
i=1

ri

∥∥∥∥∥
L1

‖x‖2(12)

+


1 −

∥∥∥∥∥ 1√
2n

2n∑
i=1

ri

∥∥∥∥∥
L1


 ‖x‖∞, n ≥ 4 .

In the case n = 1, the preceding inequality is equivalent to

max
{
|x1|, |x2|} ≤ 1√

2

√
x21 + x22 +

(
1 − 1√

2

)
max

{
|x1|, |x2|

}
, x1, x2 ∈ R ,
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i.e.
√
x21 + x22 ≥ max {|x1| + |x2|}, which is true. If n = 2 and x = (x1, x2, x3, x4),

with 1 = x1 ≥ x2 ≥ x3 ≥ x4 ≥ 0, then the inequality (12) becomes

4 + 2x2 + 2x3 + |1 − x2 − x3 + x4| + | − 1 + x2 + x3 + x4| ≤ 6
√

1 + x22 + x23 + x24 .

If x2 +x3 ≤ 1−x4, then (12) is equivalent to x22 +x23 +x24 ≥ 0; if 1−x4 ≤ x2 +x3 ≤
1 + x4 then (12) is equivalent to

2(x2 + x3 + x4)2 − 4(x2 + x3 + x4) + 5

+ 6(x22 + x23 + x24 − x2x3 − x2x4 − x3x4) ≥ 0 ,

which is true and finally if x2 + x3 ≥ 1 + x4 then (12) becomes

4(x2 − x3)2 + (x2 − 2)2 + (x3 − 2)2 + 9x24 ≥ 0 ,

which is also true. Unfortunately, in the remaining case n = 3,

f6(1) − f6(6) =
5
√

6
16

(√
6 − 1

)
− 2
π

(
− Si

(π
2

)
+

3
16

Si(3π)

+
15
16

Si(π) +
3
4
Si(2π)

)
≈ −0.00013.. < 0 .

However, for x = (x1, ..., x6), with 1 = x1 ≥ ... ≥ x6 ≥ 0, using the computer one
obtains that the maximum of the following function of five variables,

1
32

∑
εi=±1

∣∣∣∣∣1 +
6∑

i=2

εixi

∣∣∣∣∣ −
(

1 − 15
8
√

6

)
− 15

8
√

6

√
1 + x22 + ...+ x26 ,

is zero. This means that (12) is also true for n = 3. �
Finally we remark that using the inequality (11) one obtains (with the same proofs

as in [4]) slightly improved estimates for the absolute projection constants of �np -spaces,
p ∈ (1, 2), for large n.
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