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Abstract

It is shown that multilinear Calderón-Zygmund operators are bounded on products
of Hardy spaces.

1. Introduction

The study of multilinear singular integral operators has recently received increasing
attention. In analogy to the linear theory, the class of multilinear singular integrals
with standard Calderón-Zygmund kernels provide the foundation and starting point
of investigation of the theory. The class of multilinear Calderón-Zygmund operators
was introduced and first investigated by Coifman and Meyer [3], [4], [5], and was later
systematically studied by Grafakos and Torres [7].

In this article we take up the issue of boundedness of multilinear Calderón-
Zygmund operators on products of Hardy spaces. As in the linear theory, a certain
amount of extra smoothness is required for these operators to have such boundedness
properties. We will assume that K(y0, y1, . . . , ym) is a function defined away from the
diagonal y0 = y1 = . . . = ym in (Rn)m+1 which satisfies the following estimates

(1)
∣∣∂α0

y0
. . . ∂αm

ym
K(y0, y1, . . . , ym)

∣∣ ≤ Aα( m∑
k,l=0

|yk − yl|
)mn+|α|

, for all |α| ≤ N ,

where α = (α0, . . . , αm) is an ordered set of n-tuples of nonnegative integers, |α| =
|α0|+ . . .+ |αm|, where |αj | is the order of each multiindex αj , and N is a large integer
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to be determined later. We will call such functions K multilinear standard kernels.
We assume throughout that T is a weakly continuous m-linear operator defined on
products of test functions such that for some multilinear standard kernel K, the integral
representation below is valid

(2) T (f1, . . . , fm)(x) =
∫

Rn

. . .

∫
Rn

K(x, y1, . . . , ym)
m∏
j=1

fj(yj) dy1, . . . dym,

whenever fj are smooth functions with compact support and x /∈ ∩m
j=1 supp fj . In the

case m = 1 conditions (1) are called standard estimates and operators given by (2)
are called Calderón-Zygmund if they are bounded from L2(Rn) to L2(Rn). We will
adopt the same terminology in the multilinear case and call T a multilinear Calderón-
Zygmund operator if it is associated to a multilinear standard kernel as in (2) and
has a bounded extension from a product of some Lqj spaces into another Lq space
with 1/q = 1/q1 + . . . + 1/qm. If this is the case, it was shown in [7] that these
operators map any other product of Lebesgue spaces

∏m
j=1 Lpj (Rn) with pj > 1 into

the corresponding Lp space.
When m = 1, bounded extensions for Calderón-Zygmund operators on the Hardy

spaces Hp were obtained by Fefferman and Stein [6]. Here Hp = Hp(Rn) denotes
the real Hardy space in [6] defined for 0 < p ≤ 1. In this note we provide analogous
bounded extensions for multilinear Calderón-Zygmund on products of Hardy spaces.
The following theorem is our main result:

Theorem 1.1

Let 1 < q1, . . . , qm, q < ∞ be fixed indices satisfying

(3)
1
q1

+ . . . +
1
qm

=
1
q

and let 0 < p1, . . . , pm, p ≤ 1 be real numbers satisfying

(4)
1
p1

+ . . . +
1
pm

=
1
p
.

Suppose that K satisfies (1) with N = [n(1/p−1)]. Let T be related to K as in (2) and

assume that T admits an extension that maps Lq1(Rn) × . . . × Lqm(Rn) into Lq(Rn)
with norm B. Then T extends to a bounded operator from Hp1(Rn)× . . .×Hpm(Rn)
into Lp(Rn) which satisfies the norm estimate

‖T‖Hp1×...×Hpm→Lp ≤ C
(
B +

∑
|α|≤N+1

Aα

)
,

for some constant C = C(n, pj , qj).
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2. The proof of Theorem 1.1

Proof. We prove the theorem using the atomic decomposition of Hp. See Coifman [1]
and Latter [11]. Since finite sums of atoms are dense in Hp we will work with such
sums and we will obtain estimates independent of the number of terms in each sum.
The general case will follow by a simple density argument. Write each fj , 1 ≤ j ≤ m

as a finite sum of Hpj -atoms fj =
∑

k λj,kaj,k, where aj,k are Hpj -atoms. This means
that the aj,k’s are functions supported in cubes Qj,k and satisfy the properties

|aj,k| ≤ |Qj,k|−1/pj(5) ∫
Qj,k

xγaj,k(x) dx = 0,(6)

for all |γ| ≤ [n(1/pj − 1)]. By the theory of Hp spaces, see [12] page 112, we can take
the atoms aj,k to have vanishing moments up to any large fixed specified integer. In
this article we will assume that all the aj,k’s satisfy (6) for all |γ| ≤ [n(1/p− 1)]. For
a cube Q, let Q∗ denote the cube with the same center and 2

√
n its side length, i.e.

l(Q∗) = 2
√
nl(Q). Using multilinearity we write

(7) T (f1, . . . , fm)(x) =
∑
k1

. . .
∑
km

λ1,k1 . . . λm,km
T (a1,k1 , . . . , am,km

)(x).

We now fix k1, . . . , km and x ∈ R
n and we consider the following cases:

Case 1: x ∈ Q∗
1,k1

∩ . . . ∩Q∗
m,km

.

Case 2: x lies in the complement of at least one of the cubes Q∗
j,kj

.

Let us begin with case 2. We fix 1 ≤ r ≤ m and without loss of generality
(by permuting the indices) we assume that x ∈ Q∗

r+1,kr+1
∩ . . . ∩ Q∗

m,km
and that

x /∈ Q∗
1,k1

∪ . . . ∪ Q∗
r,kr

. Assume without loss of generality that the side length of the
cube Q1,k1 is the smallest among the side lengths of the cubes Q1,k1 , . . . , Qr,kr . Let
cj,kj

be the center of the cube Qj,kj
. Since a1,k1 has zero vanishing moments up to

order N = [n(1/p1−1)], we can subtract the Taylor polynomial PN
c1,k1

(x, · , y2, . . . , ym)
of the function K(x, · , y2, . . . , ym) at the point c1,k1 to obtain

T (a1,k1 , . . . , am,km)(x)

=
∫

(Rn)m−1

m∏
j=2

aj,kj (yj)
∫

Rn

a1,k1(y1)
[
K(x, y1, . . . , ym) − PN

c1,k1
(x, y1, y2, . . . , ym)

]
d"y

=
∫

(Rn)m−1

m∏
j=2

aj,kj (yj)
∫

Rn

a1,k1(y1)
∑

|γ|=N+1

(∂γ
y1
K)(x, ξ, y2, . . . , ym)

(y1−c1,k1)
γ

γ!
d"y,

for some ξ on the line segment joining y1 to c1,k1 by Taylor’s theorem. We have

|x− ξ| ≥ |x− c1,k1 | − |ξ − c1,k1 | ≥ |x− c1,k1 | −
1
2
√
n l(Q1,k1) ≥

1
2
|x− c1,k1 | ,
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since x /∈ Q∗
1,k1

= 2
√
nQ1,k1 . Similarly we obtain |x − yj | ≥ 1

2 |x − cj,kj | for j ∈
{2, 3, . . . , r}. Set

(8) A =
∑

|γ|≤N+1

Aγ

and note that A ≥
∑

|γ|=N+1 Aγ . The estimates for the kernel K and the size estimates
for the atoms give the following pointwise bound for the expression above:

∫
Rn

. . .

∫
Rn︸ ︷︷ ︸

m−r times

( ∑
|γ|=N+1

Aγ

)( ∫
Q1,k1

|a1,k1(y1)| |y1 − c1,k1 |N+1dy1

)

|Q2,k2 |1−1/p2 . . . |Qr,kr
|1−1/pr |Qr+1,kr+1 |−1/(pr+1) . . . |Qm,km

|−1/pmdym . . . dyr+1(
1
2 |x− c1,k1 | + . . . + 1

2 |x− cr,kr
| + |x− yr+1| + . . . + |x− ym|

)nm+N+1
.

Integrating the above over ym ∈ R
n, . . . , yr+1 ∈ R

n we obtain that the expression
above is bounded by a constant multiple of

A|Q2,k2 |1−1/p2 . . . |Qr,kr
|1−1/pr

∫
Q1,k1

|a1,k1(y1)| |y1 − c1,k1 |N+1dy1

(
1
2 |x− c1,k1 | + . . . + 1

2 |x− cr,kr |
)nm+N+1−n(m−r)|Qr+1,kr+1 |1/(pr+1) . . . |Qm,km |1/pm

.

But the integral above is easily seen to be controlled by a constant multiple of
|Q1,k1 |1−1/p2+(N+1)/n. Since the cube Q1,k1 was picked to have the smallest size among
the Q1,k1 , . . . , Qr,kr

, the expression above is bounded by a constant multiple of

A
r∏

j=1

|Qj,kj |1−1/pj+(N+1)/nr(
|x− cj,kj

| + l(Qj,kj
)
)n+(N+1)/r

|Qr+1,kr+1 |−1/(pr+1) . . . |Qm,km
|−1/pm

≤ C A
m∏
j=1

|Qj,kj |1−1/pj+(N+1)/nr(
|x− cj,kj | + l(Qj,kj )

)n+(N+1)/r
,

since x ∈ Q∗
r+1,kr+1

∩ . . . ∩Q∗
m,km

.
Summing over all possible 1 ≤ r ≤ m and all possible combinations of subsets of

{1, . . . ,m} of size r we obtain the pointwise estimate

(9)
∣∣T (a1,k1 , . . . , am,km)(x)

∣∣ ≤ CA

m∏
j=1

|Qj,kj
|1−1/pj+(N+1)/nm(

|x− cj,kj
| + l(Qj,kj

)
)n+(N+1)/m

for all x which belong to the complement of at least one Q∗
j,kj

(case 2).
Now using (7) and (9) we obtain

∣∣T (f1, . . . , fm)(x)
∣∣ ≤ G1(x) + G2(x),
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where G1(x) and G2(x) correspond to cases 1 and 2 respectively and are given by

G1(x) =
∑
k1

. . .
∑
km

|λ1,k1 | . . . |λm,km
||T (a1,k1 , . . . , am,km

)(x)|χQ∗
1,k1

∩...∩Q∗
m,km

(x)

G2(x) = C A
m∏
j=1

( ∑
kj

|λj,kj
| |Qj,kj |1−1/pj+(N+1)/nm(
|x− cj,kj | + l(Qj,kj )

)n+(N+1)/m

)
.

Applying Hölder’s inequality with exponents p1, . . . , pm and p we obtain the esti-
mate

‖G2‖Lp ≤CA
m∏
j=1

∥∥∥∥∑
kj

|λj,kj
| |Qj,kj |1−1/pj+(N+1)/nm(
|x− cj,kj

| + l(Qj,kj
)
)n+(N+1)/m

∥∥∥∥
Lpj

≤C ′A
m∏
j=1

( ∑
kj

|λj,kj
|pj

)1/pj

≤ C ′A
m∏
j=1

‖fj‖Hpj ,(10)

where we used the pj-subadditivity of the Lpj quasi-norm and the easy fact that the
functions

|Qj,kj |1−1/pj+(N+1)/nm(
|x− cj,kj

| + l(Qj,kj
)
)n+(N+1)/m

have Lpj norms bounded by constants.
We now turn our attention to case 1. Here we will show that

(11) ‖G1‖Lp ≤ C(A + B)
m∏
j=1

‖fj‖Hpj .

To prove (11) we will need the following lemma whose proof we postpone until the
next section.

Lemma 2.1

Let 0 < p ≤ 1. Then there is a constant C(p) such that for all finite collections of

cubes {Qk}Kk=1 in R
n and all nonnegative integrable functions gk with supp gk ⊂ Qk

we have ∥∥∥ K∑
k=1

gk

∥∥∥
Lp

≤ C(p)
∥∥∥∥

K∑
k=1

(
1

|Qk|

∫
Qk

gk(x) dx
)
χQ∗

k

∥∥∥∥
Lp

.

We momentarily assume Lemma 2.1 and we prove (11). Using the assumption that
T maps Lq1 × . . .×Lqm , it was proved in [7] that T maps all possible combinations of
products

L∞
c × . . .× L∞

c × L2 × L∞
c × . . .× L∞

c

into L2 with norm at most a multiple of A + B. L∞
c denotes here the space of all L∞

functions with compact support.
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Now fix atoms a1,k1 , . . ., am,km supported in cubes Q1,k1 , . . ., Qm,km respectively.
Assume that Q∗

1,k1
∩ . . . ∩ Q∗

m,km
�= ∅, otherwise there is nothing to prove. Since

Q∗
1,k1

∩ . . . ∩Q∗
m,km

�= ∅, we can pick a cube Rk1,...,km
such that

(12) Q∗
1,k1

∩ . . . ∩Q∗
m,km

⊂ Rk1,...,km ⊂ R∗
k1,...,km

⊂ Q∗∗
1,k1

∩ . . . ∩Q∗∗
m,km

and |Rk1,...,km | ≥ c|Q1,k1 |.
Without loss of generality assume that Q1,k1 has the smallest size among all these

cubes. Since T maps L2 × L∞ × . . .× L∞ into L2 we obtain that∫
Rk1,...,km

|T (a1,k1 , . . . , am,km)(x)| dx

≤
( ∫

Rn

|T (a1,k1 , . . . , am,km
)(x)|2 dx

)1/2

|Rk1,...,km
|1/2(13)

≤C(A + B)|Q∗∗
1,k1

|1/2|Q1,k1 |1/2−1/p1

m∏
j=2

|Qj,kj |−1/pj ,

since ‖a1,k1‖L2 ≤ |Q1,k1 |1/2−1/p1 and ‖aj,kj‖L∞ ≤ |Qj,kj |−1/pj . It follows from (13)
that ∫

Rk1,...,km

|T (a1,k1 , . . . , am,km)(x)| dx ≤ C(A + B)|Q1,k1 |
m∏
j=1

|Qj,kj |−1/pj

which combined with |Rk1,...,km | ≥ c|Q1,k1 | gives

(14)
1

|Rk1,...,km
|

∫
Rk1,...,km

|T (a1,k1 , . . . , am,km
)(x)| dx ≤ C(A + B)

m∏
j=1

|Qj,kj
|−1/pj .

We now have the easy estimate

G1(x) ≤
∑
k1

. . .
∑
km

|λ1,k1 | . . . |λm,km
||T (a1,k1 , . . . , am,km

)(x)|χRk1,...,km
(x),

and using Lemma 2.1, estimate (14), and the last inclusion in (12) we obtain

∥∥G1

∥∥
Lp ≤C(A + B)

∥∥∥∥∑
k1

. . .
∑
km

|λj,kj | . . . |λm,km |
m∏
j=1

|Qj,kj |−1/pjχQ∗∗
1,k1

. . . χQ∗∗
m,km

∥∥∥∥
Lp

≤C(A + B)
∥∥∥∥

m∏
j=1

( ∑
kj

|λj,kj ||Qj,kj |−1/pjχQ∗∗
j,kj

)∥∥∥∥
Lp

≤C(A + B)
m∏
j=1

∥∥∥∥
( ∑

kj

|λj,kj
||Qj,kj

|−1/pjχQ∗∗
j,kj

)∥∥∥∥
Lpj

≤C(A + B)
m∏
j=1

∥∥fj∥∥Hpj .

This proves (11) which combined with (10) completes the proof of the theorem. �
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3. The proof of Lemma 2.1

It remains to prove Lemma 2.1. This lemma will be a consequence of the lemma below.
Let D be the collection of all dyadic cubes on R

n and Dj be the set of all cubes in D
with side length l(Q) = 2−j .

Lemma 3.1

Suppose 0 < p ≤ 1. Then there is a constant C(p) such that for all finite subsets

J of D and all collections {fQ : Q ∈ J } of non-negative integrable functions on R
n

with supp fQ ⊂ Q we have

∥∥∥ ∑
Q∈J

fQ

∥∥∥
Lp

≤ C(p)
∥∥∥ ∑

Q∈J
aQχQ

∥∥∥
Lp

,

where

aQ = |Q|−1

∫
Q

fQ(x) dx.

Proof. Let us set Jm = J ∩Dm for all m ∈ Z. Given Q ∈ J , we define s(Q) to be the
unique m such that Q ∈ Jm. We also set

F =
∑
Q∈J

fQ, G =
∑
Q∈J

aQχQ, Gm =
m∑

k=−∞

∑
Q∈Jk

aQχQ.

We now observe that if Q ∈ J and m ≤ s(Q), then Gm is constant on Q. Therefore
for j ∈ Z the sets below are well-defined

Rj =
{
Q ∈ J : Gs(Q) ≤ 2j on Q

}
,

R′
j =

{
Q ∈ J : Gs(Q) > 2j on Q and Gs(Q)−1 ≤ 2j on Q

}
.

For Q ∈ R′
j and any t ∈ Q, we let

λQ =
2j −Gs(Q)−1(t)

Gs(Q)(t) −Gs(Q)−1(t)
.

Note that λQ is a constant since both functions Gs(Q) and Gs(Q)−1 are constant on Q.
We claim that for all x ∈ R

n we have the identity

(15)
∑

Q∈Rj

aQχQ(x) +
∑

Q∈R′
j

λQaQχQ(x) = min
(
2j , G(x)

)
.

To prove (15) observe that if G(x) ≤ 2j , then R′
j = ∅ and the conclusion easily follows.

Otherwise, there is a smallest m = m(x) such that

2j <
m∑

k=−∞

∑
Q∈Jk

aQχQ(x).
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Then all the cubes that contain x from the collection ∪k≤m−1Jk belong to Rj and the
cube that contains x from Jm belongs to R′

j . It follows that

∑
Q∈Rj

aQχQ(x) +
∑

Q∈R′
j

λQaQχQ(x)

= Gm−1(x) +
∑

Q∈R′
j

(
2j −Gm−1(x)

)
χQ(x) = 2j ,

since the last sum has only one term. This proves (15). Next we set

Fj =
∑

Q∈Rj

fQ +
∑

Q∈R′
j

λQfQ.

Then using (15) we obtain

∫
Rn

Fj(x) dx =
∫

Rn

( ∑
Q∈Rj

aQχQ(x) +
∑

Q∈R′
j

λQaQχQ(x)
)
dx

=
∫

Rn

min
(
2j , G(x)

)
dx.(16)

It is easy to see that the function Fj − Fj−1 is supported in the set {G > 2j−1}. The
function min

(
2j , G

)
−min

(
2j−1, G

)
is also supported in the set {G > 2j−1} and is

bounded by 2j . Using these facts, Hölder’s inequality, and (16) we obtain

∫
Rn

(
Fj(x) − Fj−1(x)

)p
dx ≤

∣∣{G > 2j−1}
∣∣1−p

( ∫
Rn

Fj(x) − Fj−1(x) dx
)p

≤
∣∣{G > 2j−1}

∣∣1−p
( ∫

Rn

min
(
2j , G(x)

)
−min

(
2j−1, G(x)

)
dx

)p

≤
∣∣{G > 2j−1}

∣∣1−p(2j |{G > 2j−1}|
)p = 2jp

∣∣{G > 2j−1}
∣∣.

Summing the above over all j ∈ Z and using the fact that

F (x) =
∑
j∈Z

(
Fj(x) − Fj−1(x)

)
,

and that p ≤ 1, we obtain the required estimate

∫
Rn

(
F (x)

)p
dx ≤

∑
j∈Z

2jp
∣∣{G > 2j−1}

∣∣ ≤ C(p)p
∫

Rn

(G(x))p dx,

where the last inequality follows by summation by parts. �

Having established Lemma 3.1, we now proceed to the proof of Lemma 2.1.
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Proof. Given the cubes {Qk}Kk=1 we can find a finite collection of dyadic cubes
{Qkj}mk

j=1 with
l(Qk) ≤ l(Qkj) ≤ 2l(Qk)

and

(17) Qk ⊂
mk⋃
j=1

Qkj ⊂ Q∗
k,

where mk ≤ 2n. We apply Lemma 3.1 to the functions {gkχQkj
}1≤j≤mk

1≤k≤K . (We collapse
terms when the same dyadic cube is used twice). We obtain

(18)
∥∥∥ K∑

k=1

gk

∥∥∥
Lp

≤
∥∥∥ K∑

k=1

mk∑
j=1

gkχQkj

∥∥∥
Lp

≤ C(p)
∥∥∥ K∑

k=1

mk∑
j=1

bkjχQkj

∥∥∥
Lp

,

where bkj = |Qkj |−1

∫
Qkj

gk(x) dx ≤ |Qk|−1

∫
Qk

gk(x) dx. Inserting this estimate in

(18) gives

∥∥∥ K∑
k=1

gk

∥∥∥
Lp

≤ C(p)
∥∥∥∥

K∑
k=1

(
|Qk|−1

∫
Qk

gk(x) dx
) mk∑

j=1

χQkj

∥∥∥∥
Lp

,

and the required conclusion follows from the last inclusion in (17). �

4. Related results and comments

We note that Theorem 1.1 can be extended to the case when some pj ’s are bigger than
1 and the remaining pj ’s are less than or equal to 1. We have the following:

Theorem 4.1

Let 1 < q1, . . . , qm, q < ∞ be fixed indices satisfying (3) and let 0 < p1, . . . , pm, p <

∞ be any real numbers satisfying (4). Suppose that K satisfies (1) for all |α| ≤ N where

N is sufficiently large. Let T be related to K as in (2) and assume that T admits an

extension that maps Lq1(Rn)×. . .×Lqm(Rn) into Lq(Rn) with norm B. Then T extends

to a bounded operator from Hp1(Rn)× . . .×Hpm(Rn) into Lp(Rn) (we set Hpj = Lpj

when pj > 1), which satisfies the norm estimate ‖T‖Hp1×...×Hpm→Lp ≤ C(A + B) for

some constant C = C(n, pj , qj). (A is as in (8).)

Proof. We discuss the multilinear interpolation needed to prove this theorem for all
indices 0 < pj < ∞. Theorem 4.1 is valid when all the pj ’s satisfy 1 < pj < ∞ as
proved in [7]. In Theorem 1.1 we considered the case when all 0 < pj ≤ 1.

We now fix indices 0 < pj < ∞ so that some of them are bigger than 1 and some
of them are less than or equal to 1. We pick ε > 0 and λ > 0 so that

0 < ε < min
( 1
m

,
1
p1

, . . . ,
1
pm

)
, λ >

(
min

( 1
p1

, . . . ,
1
pm

)
− ε

)−1

.
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Using that T is bounded from Lq1 × . . .×Lqm into Lq with norm at most B, it follows
from [7] that

(19) T : L1/ε × . . .× L1/ε → L1/mε

with norm at most a constant multiple of A + B. Now define sj by setting

(20)
1
sj

= λ
( 1
pj

− ε
)

+
1
pj

.

Then it is easy to see that 0 < sj < 1 for all 1 ≤ j ≤ m and by Theorem 1.1 we have

(21) T : Hs1 × . . .×Hsm → Ls,

with norm at most a constant multiple of A+B, where 1/s = 1/s1 + . . .+1/sm. Here
we need (1) with N = [n(1/s− 1)]. Identity (20) gives

1
pj

=
θ

sj
+

1 − θ

1/ε

where θ = (λ + 1)−1. Interpolating between (19) and (21) we obtain that

T : [L1/ε, Hs1 ]θ × . . .× [L1/ε, Hsm ]θ → [L1/mε, Ls]θ = Lp,

where 1/p = 1/p1 + . . . + 1/pm. But [L1/ε, Hsj ]θ = Lpj if pj > 1 or Hpj if pj ≤ 1 and
the required conclusion follows (see e.g. [10]). �

We note that mapping into the Hardy space Hp instead of Lp is hopeless even in
the translation invariant case unless some further cancellation is imposed. We refer to
[8] and [2] for results of this sort. Both references deal with bilinear operators but the
techniques can be adapted to give similar results for m-linear operators as well.

We now discuss some analogous results for the maximal singular integral operator
defined by

T∗(f1, . . . , fm)(x) = sup
δ>0

∣∣Tδ(f1, . . . , fm)(x)
∣∣,

where Tδ are the smooth truncations of T given by

Tδ(f1, . . . , fm)(x) =
∫

Rn

Kδ(x, y1, . . . , ym)f1(y1) . . . fm(ym) dy1 . . . dym.

Here Kδ(x, y1, . . . , ym) = η
(√

|x−y1|2 + . . . + |x−ym|2/δ
)
K(x, y1, . . . , ym) and η is a

smooth function on R
n which vanishes in a neighborhood of the origin and is equal to

1 outside a larger neighborhood of the origin.
It is proved in [9] that the sublinear operator T∗ satisfies similar boundedness

estimates as T . We have the following result regarding T∗.

Theorem 4.2

Under the same hypotheses as Theorem 4.1, T∗ maps the product Hp1(Rn)× . . .×
Hpm(Rn) boundedly into Lp(Rn), and satisfies the norm estimate

‖T∗‖Hp1×...×Hpm→Lp ≤ C(A + B)

for some constant C = C(n, pj , qj). As usually, we set Hpj = Lpj when pj > 1.
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Proof. The proof is similar to that for T . First we consider the case where all the pj ’s
are less than or equal to one. It follows from [9] that T∗ is bounded on the same range
as T with bound at most a multiple of A + B. Thus the estimates in case 1 follow
as before. Next observe that the kernels Kδ satisfy (1) uniformly in δ > 0. Hence
the estimates in case 2 for K equally apply to Kδ uniformly in δ > 0 and the same
conclusion follows.

The remainder of the argument is then similar. One treats the multilinear maps

Tδ1,...,δN (f1, . . . , fm)(x) =
{
Tδk(f1, . . . , fm)(x)

}N

k=1
,

as maps Tδ1,...,δN : Hs1 × . . . × Hsm → Ls(0N∞), for any finite set δ1, . . . , δN > 0 and
uses complex interpolation as before. �

The first author would like to thank Xuan Thinh Duong for his hospitality in
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