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Abstract

We show that in all infinite-dimensional normed spaces it is possible to construct a
fixed point free continuous map of the unit ball whose measure of noncompactness
is bounded by 2. Moreover, for a large class of spaces (containing separable spaces,
Hilbert spaces, and �∞(S)) even the best possible bound 1 is attained for certain
measures of noncompactness.

Throughout, let X be a normed space, and

B(X) = {x ∈ X : ‖x‖ ≤ 1}, S(X) = {x ∈ X : ‖x‖ = 1}.

It is well-known that whenever X has infinite dimension, there exists a fixed point free
continuous map of B(X). Using the axiom of choice, this has first been proved in [10].
A more constructive proof has been given in [19]:

Roughly speaking, the idea is to find a closed subset Γ of B(X) which is homeo-
morphic to [0, 1). By the (scalar-valued!) Tietze-Urysohn extension theorem, one may
then construct a retraction onto Γ; the composition of this retraction with a fixed point
free map of [0, 1) (via the homeomorphism) gives the desired map. The construction
of Γ can in the above situation be carried out by a countable (recursive) application of
Riesz’ lemma—the axiom of choice is not needed in its full generality. More precisely,
the so-called principle of dependent choices (see e. g. [17]) suffices which allows coun-
tably many recursive or nonrecursive choices. Throughout this paper we shall assume
only this axiom in place of the (general) axiom of choice.
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It is an unsolved problem what additional properties a fixed point free map F of
B(X) can have: Although it is always possible to find even a Lipschitz continuous such
map [5, 20] almost nothing is known about the best possible Lipschitz constant (see
[15] for a summary of known results in this direction; see also [12, 13]). A well-known
fixed point theorem on nonexpanding maps implies that at least in uniformly convex
spaces the Lipschitz constant must be larger than 1 (see e. g. [21, 23] or [15]).

We shall discuss a related question now: What can be said about the best possible
γ-Lipschitz constant where γ denotes a measure of noncompactness?

More precisely, we are interested in the following measures of noncompactness:

Definition 1. For a set M ⊆ X, we define:

1. The Kuratowski measure of noncompactness α(M) is the infimum of all ε > 0 such
that M has a finite covering of sets with diameter at most ε.

2. The Hausdorff measure of noncompactness χH(M) (with respect to a set H ⊆ X)
is the infimum of all ε > 0 such that M has a finite ε-net in H.

3. The lattice measure of noncompactness β(M) (in literature also called separation
measure of noncompactness) is the supremum of all ε > 0 such that M contains a
sequence xn with ‖xn − xk‖ ≥ ε (n 
= k).

Here, we put inf ∅ = ∞ and sup ∅ = 0.
The above measures of noncompactness γ ∈ {α, β, χH} are indeed measures of

noncompactness in the sense of Sadovskĭı, i. e. they satisfy

γ(M) = γ(convM)
(
M ⊆ H ⊆ X, H = convH

)
, (1)

see e. g. [1, 4]. Moreover, they are equivalent in the sense that

χX(M) ≤ χH(M) ≤ β(M) ≤ α(M) ≤ 2χX(M) (M ⊆ H ⊆ X).

For γ ∈ {α, β, χH} and a map F : D ⊆ X → X, we define [F ]γ as the infimum
(actually minimum) of all L ≥ 0 such that

γ
(
F (M)

)
≤ Lγ(M) (M ⊆ D).

(Put [F ]γ = ∞ if no such L exists). If F : B(X) → B(X) is Lipschitz continuous with
constant L, it follows that [F ]α ≤ L. Hence, any fixed point free Lipschitz continuous
map of B(X) provides an estimate to our above question. However, we can do much
better.

It follows from Darbo’s fixed point theorem [6] (and its extension of Sadovskĭı [24])
that any fixed point free continuous map F : B(X) → B(X) must satisfy [F ]γ ≥ 1 for
γ ∈ {α, β, χX} (if X is a Banach space). Even estimates for the minimal displacement
κ(F ) = inf{‖x− f(x)‖ : x ∈ B(X)} are known [14, 22]. For example, it has been
proved in [14] that κ(F ) ≤ max {1 − 1/α(F ), 0} in normed spaces.

As a consequence of Darbo’s fixed point theorem, [F ]γ = 1 is the best possible
constant that can be expected for a fixed point free map. We shall see that this constant
is actually achieved for Hilbert spaces and for γ = χX when X is either separable or if
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X at least has a geometry which allows a reduction to the separable case. For general
spaces X, we shall find the universal bound [F ]γ ≤ 2.

Definition 2. We say that a normed space X is δ-separated (with respect to a set
H ⊆ X), if there is a sequence of pairwise disjoint points en ∈ B(X) and (continuous)
paths Γn ⊆ B(X) without double points joining en with en+1 such that the following
holds:

1. The paths Γn are pairwise disjoint (up to the end points en).
2. For any x ∈ H and any ε > 0 we have dist(x,Γn) ≥ δ − ε for all except finitely

many n.
In case H = X, we call X strongly δ-separated. If the second condition holds for all
points x ∈ Γ :=

⋃
Γn, we say that X is weakly δ-separated.

It is clear that any strongly δ-separated space is also weakly δ-separated. The
converse holds up to the factor 2:

Proposition 1

Any weakly δ-separated space is strongly δ/2-separated.

Proof. Let X be weakly δ-separated, and let Γn denote the corresponding paths.
Let x ∈ X and ε > 0 be given. We claim that dist(x,Γn) ≥ δ/2 − ε for almost all
n. To prove this, it is no loss of generality to assume that dist(x,Γn) < δ/2 − ε/2
for some n, since otherwise we are done already. Then we find some y ∈ Γn with
‖x− y‖ < δ/2 − ε/2. By assumption, we have dist(y,Γk) ≥ δ − ε/2 for almost all
k, which implies dist(x,Γk) ≥ (δ − ε/2) − (δ/2 − ε/2) = δ/2 − ε for almost all k, as
claimed. �

We intend to prove now that all spaces are weakly 1-separated. A straightforward
attempt to prove this fact is to start with an “almost orthogonal” sequence en ∈ S(X)
in the sense that the distance of en+1 to the linear hull Un of e1, . . . , en tends to 1
as n → ∞ (Riesz’ lemma). Then one might try to connect en and en+1 by a line
segment, multiplied by a positive scalar function such that the corresponding path
Γn lies in S(X). However, this approach does not provide us sufficient information
on the distance of Γn to e. g. en−1. For this reason, we disturb the path Γn such
that dist(Γn, Un−1) tends to 1 as n → ∞: We can do this by combining the proof
of Riesz’ lemma with the following result on a continuous selection of “almost best
approximating” maps:

Lemma 1

If U 
= 0 is a separable, complete, and convex subset of some normed space

X, then we find for each c > 1 a continuous retraction R : X → U onto U which

additionally satisfies ‖x−R(x)‖ ≤ cdist(x, U).
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Proof. Let un ∈ U be dense in U . Choose a sequence cn > 0 with
∑

cn < ∞ and∑
cn‖un‖ < ∞. For x ∈ U put R(x) = x, and for x ∈ X \ U put

λn(x) = cn max
{

0, c− ‖x− un‖
dist(x, U)

}

and

R(x) =
∑

λn(x)un∑
λn(x)

.

By our choice of cn, both series converge (since U is complete). Moreover, λn(x) > 0
if and only if ‖x− un‖ < cdist(x, U). Since un is dense in U , this implies on the one
hand that the denominator does not vanish. On the other hand, this implies also that
λn(x)‖x− un‖ ≤ λn(x)cdist(x, U), and so

‖x−R(x)‖ =
∥∥∥∑

λn(x)(x− un)∑
λn(x)

∥∥∥ ≤
∑

λn(x)‖x− un‖∑
λn(x)

≤ cdist(x, U).

Since the right-hand side tends to 0 as x → u ∈ ∂U , the above formula also shows
that R is continuous on ∂U . The fact that R is continuous on X \U and that R(x) ∈
convU = U can be verified by a straightforward calculation. �

The proof of Lemma 1 is a slight modification of a well-known construction (see
e. g. [8, Proof of Proposition 1.1]).

We emphasize that Lemma 1 does not hold for c = 1, i. e. the projection onto an
element of best approximation has no continuous selection, in general. An example may
be given even for X = R

3 (with an appropriate norm) and U being a one-dimensional
subspace. The idea of this example is due to G. Dirr (personal communication):

Example 1: Consider in X = R
3 the sets

Br =
{

(ξ1, ξ2, ξ3) :
2

1 − ξ3
ξ2
1 + ξ2

2 ≤ 1, ξ1 > 0, ξ3 ∈ [−1, 1)
}
,

P = Br \Br =
{
(0, ξ2, ξ3) : ξ2, ξ3 ∈ [−1, 1]

}
,

and B� = −Br. Observe that Br is convex: Indeed, if x = (ξ1, ξ2, ξ3) and y =
(η1, η2, η3) belong to Br, and 0 < λ < 1 is given, put ζi = λξi +(1−λ)ηi. Since ellipses
are convex, the function f(t) = 2ζ2

1/(1 − t) + ζ2
2 satisfies f(ξ3) ≤ 1 and f(η3) ≤ 1.

By the monotonicity of f on [−1, 1), this implies f(ζ3) ≤ 1, and so λx + (1 − λ)y =
(ζ1, ζ2, ζ3) ∈ Br, as claimed.

Now it is easily verified that B = B�∪P∪Br is closed, even, convex, and absorbing.
Consequently, we may equip X = R

3 with the Minkowski norm ‖ · ‖ corresponding to
B, i. e. B = B(X).

Consider now the subspace U = {(0, 0, s) : s ∈ R} and the points xt =
(t,

√
1 − t2, 0) with t ∈ [−1, 1]. For t < 0, the intersection (xt +B) ∩ U consists of the

single point yt = (0, 0,−1): Indeed, if x ∈ B is such that xt + x = (0, 0, s) ∈ U , we
must have x = (−t,−

√
1 − t2, s) ∈ Br, because t < 0. Hence, 2

1−s t
2 +(1− t2) ≤ 1, and

so
(

2
1−s − 1

)
t2 ≤ 0. In view of t < 0 and s ∈ [−1, 1), this is only possible if s = −1.
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We may conclude that yt is the only point satisfying ‖xt − yt‖ = 1 = dist(xt, U).
For t > 0 a similar calculation shows that the only point satisfying this relation is
yt = (0, 0, 1). Now observe that the mapping t �→ xt defines a continuous path in X,
but the mapping t �→ yt onto the corresponding points of best approximation in U is
discontinuous at 0 (no matter how yt is chosen for t = 0).

Theorem 1

If a normed space X does not have finite dimension, then it is weakly 1-separated

(and thus strongly 1/2-separated).

Proof. Fix some sequence 1 > εn ↓ ∅. Choose e1 ∈ S(X) arbitrary. Now we proceed
recursively: Assume that e1, . . . , en ∈ S(X) and Γ1, . . . ,Γn−1 ⊆ S(X) are already
defined. Let Un denote the linear hull of e1, . . . , en. Since X does not have finite
dimension, there is some fn+1 ∈ X \ Un. Put cn = (1 − εn)−1, and let Rn be a
retraction onto Un−1 (U0 := {0}) with ‖x−Rn(x)‖ ≤ cndist(x, Un−1) (Lemma 1).
Define gn(t) = en + t(fn+1 − en) (0 ≤ t ≤ 1) and un(t) = R(gn(t)). Let Γn ⊆ S(X) be
the path

γn(t) =
gn(t) − un(t)

‖gn(t) − un(t)‖ (0 ≤ t ≤ 1),

and put en+1 = γn+1(1).
The paths Γn (and the points en) obtained in this way are pairwise disjoint,

since by construction Γn ∩ Un = {en} and Γn ⊆ Un+1 (observe that U1 ⊆ U2 ⊆ . . .).
Moreover, we have dist(Γn, Un−1) ≥ 1−εn: Indeed, for any t ∈ [0, 1] and any u ∈ Un−1

we have

‖γn(t) − u‖ =
‖gn(t) − un(t) − ‖gn(t) − un(t)‖u‖

‖gn(t) − un(t)‖

≥ dist(gn(t), Un−1)
‖gn(t) − un(t)‖ ≥ c−1

n = 1 − εn.

Since Γn ⊆ Un and U1 ⊆ U2 ⊆ . . ., we thus have dist(Γn,Γk) ≥ 1 − εn whenever
|n− k| > 1. Hence, we have proved that the two conditions of Definition 2 are satisfied
with δ = 1. �

We do not know whether each infinite-dimensional space is even strongly 1-
separated. At least, this is the case for a rather large class of spaces. Let us first
show that this is true for separable spaces:

Theorem 2

If a separable normed space X does not have finite dimension, then it is strongly

1-separated.
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Proof. Since X is separable, there is a sequence U1 ⊆ U2 . . . ⊆ of finite-dimensional
subspaces of X such that

⋃
Un is dense in X. (For example, if {x1, x2, . . .} is dense in

X, one may let Un denote the linear hull of x1, . . . , xn). It is no loss of generality to
assume that dimUn = n. Let b1, b2, . . . ∈ S(X) be such that Un is the linear hull of
b1, . . . , bn. Now we define en and Γn as in the previous proof with the choice e1 = b1
and fn+1 = bn+1. Then Γn has the desired properties: If x ∈ H = X and ε > 0 are
given, we find some n and some u ∈ Un with ‖x− u‖ ≤ ε/2. For all k > n+1 we have
dist(u,Γk) ≥ dist(Γk, Un) ≥ 1 − εk, and so dist(x,Γk) ≥ 1 − ε/2 − εk ≥ 1 − ε for all
except finitely many k > n+ 1, as claimed. �

Once we know that separable spaces are strongly 1-separated, we may conclude
that even more spaces are 1-separated:

Definition 3. A normed space X has the separable retraction property, if there is a
separable subspace Y which does not have finite dimension such that for each ε > 0
we find a mapping R : X → Y which satisfies

‖R(x) −R(y)‖ ≤ (1 + ε)‖x− y‖ + ε
(
x ∈ X, y ∈ B(Y )

)
(2)

and
‖R(y) − y‖ ≤ ε

(
y ∈ B(Y )

)
. (3)

For example, one may let R be a linear projection of X onto Y with norm 1 (if
such a projection exists).

Corollary 1

Any space X with the separable retraction property is strongly 1-separated.

Proof. Let Y be as in Definition 3. By Theorem 2, the space Y is 1-separated. Let
Γn ⊆ B(Y ) ⊆ B(X) be the corresponding paths. Given x ∈ X and ε > 0, we have
dist(R(x),Γn) ≥ 1−ε for almost all n, where R denotes the mapping from Definition 3.
Now (2) and (3) imply in view of Γn ⊆ B(Y ) that

dist(x,Γn) ≥ (1 + ε)−1dist
(
R(x), R(Γn)

)
− ε

≥ (1 + ε)−1[dist(R(x),Γn) − ε] − ε ≥ (1 + ε)−1(1 − 2ε) − ε

for almost all n. Since the last term tends to 1 as ε ↓ 0, this implies that X is strongly
1-separated. �

The class of spaces X with the separable retraction property is actually rather
large: It contains all separable spaces, but also many other spaces. Before we give
some examples, let us note that the retraction property is inherited by “sufficiently
large” subspaces:

Proposition 2

Let X have the separable retraction property with Y as in Definition 3. If X0 ⊆ X

is some subspace such that Y0 = X0 ∩ Y is dense in Y , then also X0 has the separable

retraction property and we may use Y0 as the corresponding subspace in Definition 3.

For X0 = X, we find as a special case:
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Lemma 2

If the subspace Y ⊆ X has the property of Definition 3, then the closure Y has

this property, too.

Proof. Given ε > 0, let R : X → Y be a mapping satisfying (2) and (3). For any
y ∈ B(Y ) we find some y0 ∈ B(Y ) such that ‖y − y0‖ < ε. Hence, ‖R(y) −R(y0)‖ ≤
ε2 + ε. This implies

‖R(x) −R(y)‖ = ‖(R(x) −R(y0)) + (R(y0) −R(y))‖
< (ε‖(x− y) + (y − y0)‖ + ε) + (ε2 + ε) < ε‖x− y‖ + 3ε2 + ε

and ‖R(y) − y‖ = ‖(R(y) −R(y0)) + (R(y0) − y0)‖ ≤ ε2 + 2ε. Since ε > 0 was arbi-
trary, Y has the required property. �

Proof of Proposition 2. Replacing Y by Y (Lemma 2) we may assume that Y is closed.
Given ε > 0, let R : X → Y be a mapping satisfying (2) and (3). Let C ⊆ Y0

be countable and dense in Y0 (and thus Y = C). We define inductively a mapping
ρ : Y → C with the property that ‖ρ(y) − y‖ ≤ ε for all y ∈ Y . If c1, c2, . . . is an
enumeration of the elements of C, we just map the ball (in Y ) with radius ε and center
c1 onto c1, then all points of the ball with radius ε and center c2 which have not yet
been mapped onto c2, and so on.

Let R0 = ρ ◦R. Then we have for any x ∈ X0 and y ∈ B(Y0) that

‖R0(x) −R0(y)‖ = ‖(ρ(R(x)) −R(x)) + (R(x) −R(y)) + (R(y) − ρ(R(y)))‖ ≤ ε

+ (ε‖x− y‖ + ε) + ε

and also ‖R0(y) − y‖ = ‖(ρ(R(y)) −R(y)) + (R(y) − y)‖ < 2ε. �

Example 2: Any infinite-dimensional inner product space X has the separable re-
traction property and we may even use any separable subspace Y ⊆ X of infinite
dimension in Definition 3:

Indeed, let X and Y denote the completion of X and Y . The Hilbert space X

has the separable retraction property and we may use Y ⊆ X as the corresponding
subspace in Definition 3 (let R : X → Y be the orthogonal projection onto the element
of nearest distance). Hence, the statement follows from Proposition 2.

Example 3: Any space X = �p(S) (1 ≤ p < ∞) with an infinite (not necessarily
countable!) set S has the separable retraction property: Let S0 ⊆ S be countable, and
Y be the subspace of all functions x ∈ X which vanish outside S0. The mapping R

can be chosen as the projection which puts all components outside S0 to 0.

Example 4: Recall that a Banach space X is called weakly compactly generated (see
e. g. [7, 16]) if there is some weakly compact set K ⊆ X whose linear hull is dense in X.
All separable spaces and all reflexive spaces are weakly compactly generated. Using
the axiom of choice, it can be proved that for any weakly compactly generated Banach
space X and any separable X0 ⊆ X there is a linear projection R : X → Y with norm
1 onto a separable subspace Y ⊇ X0, see e. g. [2] or [9, Chapter 5, §2, Theorem 3]. This
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result implies that any weakly compactly generated Banach space has the separable
retraction property (if one assumes the axiom of choice).

Using a refinement of the construction from [19] described in the beginning, we
can prove the following result.

We call a set M ⊆ X relatively compact if M is compact. Observe that α(M) = 0
does not imply that M is relatively compact, since X need not be complete (but the
converse holds). In this sense, the following statement is even slightly stronger than
one might expect after the first reading:

Theorem 3

Let X be weakly δ1-separated and δ2-separated with respect to some H ⊆ X (with

the same paths Γn).

Then there is a fixed point free continuous map F : X → B(X) with the following

property: If the image F (M) is not relatively compact, then β(M) ≥ δ1 and χH(M) ≥
δ2.

It can additionally be arranged that F (X) is contained in the set Γ occurring in

Definition 2.

Proof. Let en and Γn be as in Definition 2. For each n, we find some εn > 0 such that
dist(Γn,Γk) ≥ εn (|k − n| > 1):

Indeed, let n be fixed. We find a finite (δ1/3)-net N ⊆ Γn for Γn. For almost all
k we have dist(N,Γk) ≥ 2δ1/3, and so dist(Γn,Γk) ≥ δ1/3. In particular, the relation
dist(Γn,Γk) < δ1/3 holds at most for finitely many k. Since dist(Γn,Γk) > 0 whenever
|k − n| > 1 (because Γn and Γk are compact and disjoint), we find indeed some εn > 0
with the required properties.

Without loss of generality, we may assume that εn → 0. Then we consider the
“half-open line” Γ =

⋃
Γn, and the “shrinking tube” T =

⋃
n{x ∈ X : dist(x,Γ) ≤ εn}

around Γ. Fix some strictly increasing sequence αn ↑ 1 with α1 = 0, and define a scalar
continuous map f : Γ → [0, 1) such that f : Γn → [αn, αn+1] and f(en) = αn.

Now we extend f onto the tube T : For x ∈ ∂T , we put f(x) = 0. To define f in
the interior of T , we divide T into the chain Tn = {x ∈ X : dist(x,Γn) < εn}. Observe
that Tn ∩Tk = ∅ for |n− k| > 1 and Tn ∩Tn+1 � en+1. On each Tn ∩Tn+1, we use the
Tietze-Urysohn theorem to extend f to a continuous map f : Tn ∩ Tn+1 → [0, αn+1]
in such a way that we need not redefine f on some of the sets where it already was
defined. After we have done so, we extend f in a similar manner to a continuous map
f : Tn → [0, αn+1].

The map f : T → [0, 1) obtained in this way has the property that f(Tn) ⊆
[0, αn+1], f(Γn) ⊆ [αn, αn+1], and f(∂T ) = 0. Putting f(x) = 0 outside T , we have a
continuous map f : X → [0, 1). Now let g : [0, 1) → Γ be continuous with g(0) = e3
such that the interval [αn, αn+1] is mapped onto Γn+2. We claim that F = g ◦ f has
the required properties:

If x is some point in the image of F , we have x ∈ Γn for some n. But then
f(x) ∈ [αn, αn+1] which implies F (x) ∈ Γn+2 which is disjoint from Γn � x. Hence, F
has no fixed points.
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Now, letM ⊆ X be such that F (M) is not relatively compact. Then s = sup f(M)
must be 1, because otherwise F (M) were contained in the compact set g([0, s]). Since
f(Tk) ⊆ [0, αk+1], we may conclude that M intersects infinitely many Tk, say xn ∈
M ∩ Tkn where k1 < k2 < . . . .

Given ε > 0, we may assume by passing to a subsequence that εkn < ε. Hence,
for each xn we find some yn ∈ Γkn with ‖xn − yn‖ < ε.

We now define a sequence n1 < n2 < . . . inductively as follows: Put n1 = 1. If
n1, . . . , nj are already defined, our assumption implies that each of the finitely many
relations

‖yn − ym‖ ≥ δ1 − ε (n = n1, . . . , nj)

is satisfied for almost all m. Hence, the relations are even satisfied simultaneously for
almost all indices m. Let m > nj be some index with this property, and put nj+1 = m.
For the thus defined sequence we have

δ1 − ε < ‖yn − ynj+1‖ = ‖(yn − xn) + (xn − xnj+1) + (xnj+1 − ynj+1)‖
≤ ε+ ‖xn − xnj+1‖ + ε (n = n1, . . . , nj).

Hence, the sequence zj = xnj
∈ M satisfies ‖zj − zi‖ ≥ δ1 − 3ε (j 
= i), and so

β(M) ≥ δ1 − 3ε. Since ε > 0 was arbitrary, we have β(M) ≥ δ1, as claimed.
The proof of the estimate χH(M) ≥ δ2 is similar: Given ε > 0, let xn ∈ M ∩ Tkn

and yn ∈ Γkn
be as above, and N ⊆ H be an arbitrary finite set. Our assumption

implies that for each x ∈ N the relation ‖x− yn‖ ≥ δ2 − ε holds for almost all n.
Hence, the relation holds for almost all n even simultaneously for all x ∈ N . Fixing
some n with this property, we have

δ2 − ε ≤ ‖x− yn‖ = ‖(x− xn) + (x− yn)‖ ≤ ‖x− xn‖ + ε.

Since xn ∈ M , the (arbitrary!) finite set N ⊆ H can at most be an (δ2 − 2ε)-net for
M , i. e. χH(M) ≥ δ2 − 2ε. Hence, χH(M) ≥ δ2. �

Sometimes one is not only interested in fixed point free continuous maps F :
B(X) → B(X) but even in such maps with the additional property that F vanishes
on ∂B(X) = S(X). This can easily be achieved:

Proposition 3

Let F : B(X) → B(X) be continuous without fixed points. Then there is a

continuous map G : B(X) → B(X) without fixed points with [G]γ = [F ]γ (γ ∈
{α, β, χX}) which additionally satisfies G|S(X) = 0.

Proof. A map with the required properties is given by

G(x) =




1
2
F (2x) if ‖x‖ ≤ 1

2
,(

1 − ‖x‖
)
F

( x

‖x‖
)

if ‖x‖ > 1
2
.
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Indeed, let B1/2 = {x ∈ X : ‖x‖ ≤ 1
2}. Since each γ is semi-homogeneous (i. e.

γ(λM) = |λ|γ(M)), it readily follows that [G|B1/2 ]γ = [F ]γ , and so [G]γ ≥ [F ]γ .
For the converse equality, we also use the fact that each γ is semi-additive, i. e.
γ(M1 ∪M2) = max{γ(M1), γ(M2)}: Given a set M ⊆ B(X) it thus suffices to prove
γ(G(Mi)) ≤ [F ]γγ(Mi) (i = 1, 2) where M1 = M ∩ B1/2 and M2 = M \ M1, since
G(M) = G(M1) ∪ G(M2). For i = 1, the estimate follows from [G|B1/2 ] = [F ]γ . For
i = 2, we apply (1): Letting

RM2 =
{ x

‖x‖ : x ∈ M2

}
,

we have γ(RM2) ≤ γ
(
conv(M2 ∪ {0})

)
= γ(M2 ∪ {0}) = γ(M2), and so

γ
(
G(M2)

)
≤ γ

(
conv(F (RM2) ∪ {0})

)
≤ γ

(
F (RM2)

)
≤ [F ]γγ(RM2) ≤ [F ]γγ(M2),

as claimed. �

Let us now summarize the main results:

Corollary 2

If the normed space X does not have finite dimension, then there is a fixed point

free continuous map F : B(X) → B(X) such that [F ]γ ≤ 2 (γ ∈ {α, β, χX}).
Moreover, if X is separable or at least has the separable retraction property (De-

finition 3) we even have [F ]χX
≤ 1.

It may additionally be arranged that F |S(X) = 0.

Proof. By Theorem 1, X is weakly 1-separated; under the additional assumptions,
Theorem 2 resp. Corollary 1 imply that X is even strongly 1-separated. Thus, the first
statements follow from Theorem 3, observing that γ(F (M)) ≤ γ(Γ) ≤ γ(B(X)) for
each M ⊆ X, and that β(B(X)) ≤ α(B(X)) ≤ 2χX(B(X)) ≤ 2. The final statement
follows from Proposition 3. �

In Hilbert spaces the best possible value is always achieved:

Theorem 4

If an inner product space X does not have finite dimension, then there exists

a fixed point free continuous map F : B(X) → B(X) with F |S(X) = 0 such that

[F ]α = [F ]β = [F ]χX
= 1. Moreover,

α
(
F (M)

)
≤ β(M)

(
M ⊆ B(X)

)
. (4)

Proof. Let e1, e2, . . . be an orthonormal system in X, and Γn be given by the path
γn(t) = gn(t)/‖gn(t)‖ (0 ≤ t ≤ 1) where gn(t) = en + t(en+1−en). For any |n− k| > 1
and any t, s ∈ [0, 1] the points γn(t) and γk(s) are orthonormal to each other, and
so ‖γn(t) − γk(s)‖ =

√
2. This implies that X is weakly

√
2-separated. Moreover,

we have ‖γn(t) − γk(s)‖ ≤
√

2 for each k, n and each t, s ∈ [0, 1]. Indeed, writing
γn(t) =

∑
ξjej and γk(s) =

∑
ηjej , we have ξj , ηj ≥ 0 and ‖(ξj)j‖2 = ‖(ηj)j‖2 = 1
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(actually, all except at most two of the entries of (ξj)j and (ηj)j vanish). In particular,
ξj , ηj ≥ 0 implies that

‖γn(t) − γk(s)‖ = ‖(ξj − ηj)j‖2 ≤ ‖(max{|ξj |, |ηj |})j‖2

≤ ‖(|ξ1|, |η1|, |ξ2|, |η2|, . . .)‖2.

Since the vector in the last norm is the sum of two vectors which are orthonormal to
each other (in the space �2), its norm is

√
2. Hence, ‖γn(t) − γk(s)‖ ≤

√
2, as claimed.

We thus have proved that ‖γn(t) − γk(s)‖ ≤
√

2, and so the diameter of the set
Γ =

⋃
Γn is bounded by

√
2. In particular, for the map F of Theorem 3, we have

α
(
F (M)

)
≤ α(Γ) ≤

√
2 ≤ β(M)

for each setM ⊆ X for which F (M) is not relatively compact. This estimate proves (4),
and [F ]α ≤ 1 and [F ]β ≤ 1 follows. To see that [F ]χX

≤ 1 holds for the same function
F , we observe that by Example 2 the linear hull Y of e1, e2, . . . can be used to witness
that X has the separable retraction property. Hence, the proof of Corollary 1 shows
that actually the same paths Γn can be used to witness that X is strongly 1-separated,
and so the estimate [F ]χX

≤ 1 follows from Theorem 3.
To see the converse estimate [F ]γ ≥ 1, we can not use Darbo’s fixed point theorem,

since we do not assume that X is complete. However, it is clear from the construction
that F maps the set M = {e1, e2, . . .} onto the set M \M0 where M0 is finite. Hence,
γ(F (M)) = γ(M). Since γ(M) > 0 (because e. g. β(M) > 0), this implies [F ]γ ≥ 1, as
claimed. �

For X = �2, a much simpler example of a fixed point free continuous function
F : B(�2) → B(�2) with [F ]γ = 1 is due to Kakutani [18] (see e. g. [4, Chapter II,
Example 7]): For

x = (ξ1, ξ2, . . .) ∈ B(�2) put F (x) =
(√

1 − ‖x‖2
, ξ1, ξ2, . . .

)
.

However, as we shall see below, this map does not satisfy the stronger compactness
condition (4).

An example of a fixed point free continuous function F : B(�2) → B(�2) which
additionally satisfies F |S(�2) = 0 but only the estimate [F ]α ≤ 2 was presented in [3].

In the space X = c0, the sharp bound [F ]α = 1 was already obtained in [3].
The latter is even easier to describe than in the Hilbert space case. This is not too
surprising, since one might expect: The “better” the geometry of the space, the harder
it is to find fixed point free functions (recall e. g. that in uniformly convex Banach spaces
no fixed point free nonexpanding function can exist). In this sense it is extremely
surprising that for Hilbert spaces (with the “nicest” geometry), we could construct a
fixed point free function with the best possible bounds. Thus, it is a natural conjecture
that the best possible bound [F ]α = 1 is actually achieved in every space X (of infinite
dimension). However, it is hard to prove this conjecture, since mappings are very
difficult to describe in general spaces.
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Let us prove the conjecture for the spaces X = �p(S) (and once more for X =
c0): Note that in particular even in the “worst” space X = �∞(S) (which might be
considered as the extreme converse of a Hilbert space) the conjecture [F ]α = 1 thus
holds true.

Theorem 5

Let X be a subspace of some space �p(S) (1 ≤ p ≤ ∞) which contains infinitely

many elements with pairwise disjoint support (thus S is infinite but need not necessarily

be countable).

Then there is a fixed point free map F of B(X) satisfying F |S(X) = 0, [F ]α =
[F ]β = [F ]χX

= 1, and even (4).

Proof. Let en be a sequence of elements with disjoint support with ‖en‖ = 1. With
these vectors, we may proceed analogously to the proof of Theorem 4. The main
difference is that we now get the estimates ‖γn(t) − γk(s)‖ = 21/p for |n− k| > 1 and
‖γn(t) − γk(s)‖ ≤ 21/p for all n, k, and so α(F (M)) ≤ 21/p ≤ β(M) whenever F (M)
is not relatively compact (here, we put 21/∞ := 1). Hence (4) holds which implies
[F ]α = [F ]β = 1. In the case p < ∞, the proof of [F ]χX

= 1 is similar as in the proof
of Theorem 4.

In the case p = ∞, the equality [F ]χX
= 1 follows from [F ]α = 1 in view of the fact

that α(M) = 2χX(M) for any M ⊆ X = �∞(S). The latter has been observed e. g. in
[4, Chapter II, Example 2] (for S = N). The argument is simple: If A1, . . . , An ⊆ M is
a finite covering of M with diam(Ai) ≤ 2ε, then {( 1

2 (ξi,s + ηi,s))s : i = 1, . . . , n} ⊆ X

provides a finite ε-net for M where ξi,s = inf {ξs : (ξs)s ∈ Ai} and ηi,s = sup {ξs :
(ξs)s ∈ Ai}. �

We note that Theorem 4 is not a straightforward consequence of Theorem 5 for
p = 2 unless we assume the (uncountable) axiom of choice (since the proof of the
representation theorem X ∼= �2(S) for Hilbert spaces X uses the axiom of choice).

The map constructed in the previous proofs (more precisely in the proof of The-
orem 3) is of course not very explicit. At least for p < ∞, we can give a simpler map
with the same properties (only the proof that the map in the following example has
the required properties is lengthy):

Example 5: Let X be a subspace of some �p(S) (1 ≤ p < ∞) which contains infinitely
many elements with pairwise disjoint support. To simplify notation we may by an
obvious identification assume that N ⊆ S and that X contains the vectors en where
en = (δsn)s (with the Kronecker symbol δsn). Choose a sequence αn ↑ 1 with α1 = 0,
and put αs = 0 for s ∈ S \ N. For x = (ξs)s, let f(x) = ‖(αsξs)s‖. Put

g(t) = en+2 +
t− αn

αn+1 − αn
(en+3 − en+2)

(
αn ≤ t ≤ αn+1

)

and G(t) = g(t)/‖g(t)‖. Then F (x) = G(f(x)) maps B(X) continuously into S(X)
and does not have any fixed points. Indeed, if x ∈ F (X), then x = y/‖y‖ where
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y = en + λ(en+1 − en) for some n and 0 ≤ λ ≤ 1 which implies f(x) ∈ [αn, αn+1], and
so g(f(x)) is linear independent from x. Consequently, F (x) 
= x.

As we have seen in the proof of Theorems 4/5, the range of G (which is the range
of F ) has diameter 21/p, and so α(F (X)) ≤ 21/p. Moreover, if F (M) is not relatively
compact, then s = sup f(M) must be 1, since otherwise F (M) is contained in the
compact set G([0, s]). We shall prove that sup f(M) = 1 for some M ⊆ B(X) in turn
implies χX(M) ≥ χlp(M) ≥ 1 and β(M) ≥ 21/p which then shows that we actually
have (4) and [F ]α = [F ]β = [F ]χX

= 1 (for the converse estimates [F ]γ ≥ 1 we may
argue as in the proof of Theorems 4/5).

Indeed, the relation sup f(M) = 1 implies that for each n and each ε we find some
x = (ξs)s ∈ M such that

∑
k>n |ξk|

p
> 1 − ε:

Otherwise, we would have for all x = (ξs)s ∈ M that

f(x)p ≤ αp
n

n∑
k=1

|ξk|p +
∞∑

k=n+1

|ξk|p ≤ αp
n‖x‖

p

+ (1 − αp
n)

∞∑
k=n+1

|ξk|p ≤ αp
n + (1 − αp

n)(1 − ε),

and so f(x)p were bounded by 1 − ε(1 − αp
n) < 1, contradicting sup f(M) = 1.

Given ε > 0, we may thus inductively choose elements xk = (ξ(k)
s )s ∈ M

and indices nk ∈ N with n1 < n2 < . . . such that
∑∞

n=nk
|ξ(k)

n |
p
> 1 − ε and∑∞

n=nk+1
|ξ(k)

n |
p
< ε. Since

∑∞
n=1 |ξ

(k)
n |

p
≤ ‖x‖p ≤ 1, this implies

nk+1−1∑
n=nk

|ξ(j)
n |p

{
> 1 − 2ε if j = k,

< ε if j 
= k.

Consequently, we have for j 
= k that

nk+1−1∑
n=nk

|ξ(k)
n − ξ(j)

n |p = ‖(ξ(k)
nk
, . . . , ξ

(k)
nk+1−1) − (ξ(j)

nk
, . . . , ξ

(j)
nk+1−1)‖

p

p

≥
∣∣∣‖(ξ(k)

nk
, . . . , ξ

(k)
nk+1−1)‖p − ‖(ξ(j)

nk
, . . . , ξ

(j)
nk+1−1)‖p

∣∣∣p
>

(
(1 − 2ε)1/p − ε1/p

)p
(we may assume that ε is sufficiently small). We may conclude that for j 
= k the
relation

‖xk − xj‖pp ≥
nk+1−1∑
n=nk

|ξ(k)
n − ξ(j)

n |p +
nj+1−1∑
n=nj

|ξ(k)
n − ξ(j)

n |p > 2
(
(1 − 2ε)1/p − ε1/p

)p

holds. Since the last expression tends to 2 as ε → 0, we thus have proved that indeed
β(M) ≥ 21/p.
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The proof that χ�p(M) ≥ 1 is similar: If N ⊆ X is a finite set, we find for each
ε > 0 some n such that for each y = (ηs)s ∈ N the estimate

∑∞
k=n |ηk|

p
< ε holds.

As we have seen above, we find some x = (ξs)s ∈ M such that
∑

k>n |ξk|
p
> 1 − ε. A

similar calculation as before shows that ‖x− y‖ > (1−2ε)1/p−ε1/p. Hence, χX(M) ≥
(1 − 2ε)1/p − ε1/p which for ε ↓ 0 implies χX(M) ≥ 1, as claimed.

The map F in the previous example has a rather strange property: Any ball
Br = {x ∈ X : ‖x‖ ≤ r} with r < 1 is mapped into a relatively compact set. However,
for r = 1 the image has a rather large measure of noncompactness. An inspection of
the proof of Theorem 3 shows that the map F constructed there has the same property
(since the tube T in the proof becomes “arbitrary small”, and so Br intersects at most
finitely many of the sets Tn which implies sup f(Br) ≤ αn+1 < 1 for some n).

An even simpler example of a fixed point free map with [F ]γ = 1 in X = �p(S)
(1 ≤ p < ∞) is given by the map mentioned after Theorem 4:

Example 6: With the notation as in Example 5, define a map F : B(X) → B(X) in
the following way: For x = (ξs)s ∈ X let F (x) = (ηs)s where ηs = ξs for s ∈ S \ N,
η1 = (1 − ‖x‖)1/p, and ηn+1 = ξn (n = 1, 2, . . .). Then F has no fixed points, but
[F ]α = [F ]β = [F ]χX

= 1.

The simpler map F from Example 6 does not satisfy the stronger compactness
condition (4) if p > 1, even for M = B(X): Indeed, since α(B(X)) = 2 for any infinite-
dimensional space X (see e. g. [1, 4]), we evidently have α(F (M)) = α(M) = 2 for this
map. In contrast, β(M) = 21/p < 2 for 1 < p < ∞ by [4, Theorem 3.10 and 3.13].

Let us finally note that our results are related to the measure of solvability intro-
duced in [11]:

Let Br = {x ∈ X : ‖x‖ ≤ r}. Given F : X → X with F (x) 
= 0 (x 
= 0) one
defines

νr(F ) = inf
{
k ≥ 0 : there exists continuous G : Br → Xwith G|∂Br

= 0, [G]α ≤ k,

and F (x) 
= G(x) for all x ∈ Br(X)
}

and calls
ν(F ) = inf

r>0
νr(F )

the measure of solvability of F . This measure is related to the so-called measure of
non-solvability introduced in [25] and has some applications in the spectral theory for
nonlinear operators, see e. g. [3, 11]. The explicit calculation of ν(F ) even for simple
operators F is rather complicated. Our above results imply:

Corollary 3

In any infinite-dimensional Banach space X, the identity operator I satisfies 1 ≤
ν(I) ≤ 2. Moreover, we have ν(I) = 1 if either X is a Hilbert space or if X is a

(closed) subspace of some �p(S) (1 ≤ p ≤ ∞) which contains infinitely many elements

with disjoint support.
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Proof. The estimate ν(I) ≥ 1 for Banach spaces is a consequence of Rothe’s variant of
Darbo’s fixed point theorem (any continuous map G : Br → X with G(∂Br) ⊆ Br and
[G]α < 1 has a fixed point; for a proof see e. g. [8, Section 18.1]). For r = 1, we have
ν1(I) ≤ 2, since by Corollary 2 we find a functionG : B1 → B1 withG∂B1 = 0, [G]α ≤ 2
such that I(x) 
= G(x) for all x ∈ B1. Hence, ν(I) ≤ ν1(I) ≤ 2. Theorem 4 resp. 5
implies analogously that ν(I) ≤ ν1(I) ≤ 1 if X is a Hilbert space resp. X is a subspace
of �p(S) as in the statement. �

The previous argument shows together with Proposition 3: The earlier mentioned
conjecture that in any infinite-dimensional Banach space X there is a fixed point free
continuous map F : B(X) → B(X) with [F ]α ≤ 1 is equivalent to the equality ν(I) = 1
in any infinite-dimensional Banach space.
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