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A note on the density of the parabolic area integral
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Abstract

The density of the area integral for parabolic functions is defined in analogy with
the case of harmonic functions. We prove its equivalence with the local time of the
associated martingale. Using probabilistic methods, we show its equivalence in
Lp-norm with the parabolic area function for p>1.

Introduction

A large part of what is known about the boundary behavior of harmonic or parabolic
functions in R

d+1
+ relies on the identity Hu2 = 2 |∇u|2 if Hu = 0. (Here H is the

Laplacian if u is harmonic, or the heat operator if u is a parabolic function. In the
latter case, the gradient is restricted to the horizontal variables in R

d). In both cases,
the quantity Hu2 plays a fundamental role in the study of of the area integral of
harmonic or parabolic functions.

The study of harmonic functions, as far as maximal functions, area integrals,
Hp spaces are concerned, has been developed in the fundamental papers of Calderón
[6], Stein [20], Stein and Weiss [21], Fefferman and Stein [11], and many others. The
parabolic analog has been treated by Calderón and Torchinsky [7], Jones and Tu [15],
and others.

Another point of view has been introduced by Gundy [12] (see: [13], [14], [4],
[5], [2]) for harmonic functions. We consider here the case of parabolic functions. The
starting point, valid for H-harmonic functions for the two possible choices of H, is
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that H (|u− r|) is a positive measure on R
d+1
+ for each r ∈ R, and, in the sense of

distributions, one has the disintegration formula∫ +∞

−∞
H
(
|u− r|

)
dr = H(u2).

This is explained in Section 2.
The principal results obtained here for parabolic functions are as follows. We

consider the integral

Dr
T (θ) :=

∫
ΠT (θ)

H
(
|u− r|

)
t−d/2dydt,

where ΠT (θ) is the parabolic region ΠT (θ) =
{

(y, t) : |y − θ|2 < t, t ≤ T
}

. The func-
tional Dr

T (θ) is called the density of the parabolic area integral at level r. The parabolic
area integral is obtained by integration over the parameter r. Calderón and Torchinsky
[7] have shown that the parabolic area integral and parabolic maximal function have
equivalent norms for all Lp, 0 < p < ∞. We show here that D∗(θ) = sup

r,T
Dr

T (θ) is

another functional that is norm-equivalent for p > 1 to the above functionals.
To do this, we have explored the probabilistic methods used by Gundy and

Brossard in the harmonic case, specifically, we have obtained the Lp-inequalities from
Barlow-Yor inequalities, using the analogy between the density of the area integral and
the local time of the heat martingale. In the construction, we have followed Brossard’s
paper [4], who considers the Brownian motion starting from some point x instead of
the “background radiation” as in the fundamental of Gundy [12].

Let us mention that we leave open the case 0 < p ≤ 1. In the harmonic case these
inequalities are proved in [14] using “good lambda inequalities”. The probabilistic
methods used here seem not be sufficient to prove this case.

Acknowledgment: The author would like to thank R. Gundy, who proposed the
study of this problem, and supported her throughout its realization. Thanks also to J.
Brosssard who pointed out some of the difficulties. The commentaries and remarks of
W. Urbina have been very useful.

1. Preliminaries: parabolic functions and its functionals associated

We say that a function u(x, t), x ∈ R
d, t > 0 is a parabolic function if it satisfies the

heat equation
∂

∂t
u(x, t) =

1
2
∆u(x, t), (1)

where ∆ =
d∑

j=1

∂2

∂x2
j

.



A note on the density of the parabolic area integral 77

We denote by p(t, x, y) the Gaussian density centered at x ∈ R
d with variance

t > 0, that is

p(t, x, y) =
(
2πt
)−d/2 exp

(
−|x− y|2

2t

)
.

The function p(t, x, y) is certainly parabolic as are all the functions u(x, t) arising
as the parabolic extension of a Schwartz distribution f on R

d, by

u(x, t) =
∫
Rd

f(y)p
(
t, x, y

)
dy. (2)

Moreover, if u(x, t) is parabolic and positive in R
d+1
+ , then it has a representation

as (2).

For any θ ∈ R
d, set Πα(θ) = {(y, t) : |θ − y|2 < α2t}. This is a parabolic cone of

vertex θ, aperture α and vertical axis in R
d+1
+ . For T > 0, we denote the parabolic

cone truncated at T by Πα,T (θ) = {(y, t) : |θ − y|2 < α2t, t ≤ T}.
We say that the parabolic function u has a parabolic limit at θ if the following

limit exists for all α:

ũα(θ) = lim
(y,t)→(θ,0)
(y,t)∈Πα(θ)

u(y, t).

Also, we define the parabolic maximal function Mα(θ) by:

Mα(θ) = sup
(y,t)∈Πα(θ)

|u(y, t)| .

We know (see: Jones and Tu [15]) that these two quantities exist for the same
set, neglecting a set of zero measure. The parabolic area function was defined later
by Calderón and Torchinsky [7] as follows (we write the definition more conveniently,
in our context):

A2
α(θ) =

∫∫
Πα(θ)

∣∣∇u(y, t)
∣∣2t−d/2dydt,

where ∇ =
(

∂
∂yj

)d
j=1

.

From the Good-Lambda inequalities (see: [7], [1]), we can deduce that for every
α > 1 and 0 < p < ∞,

‖Aα‖p ≈ ‖Mα‖p . (3)

We will write Mα,T (θ) and Aα,T (θ) when the functionals are restricted to the
truncated cone Πα,T (θ).
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2. Density of area integral

To simplify the notation we take α = 1. We define the density of the parabolic area
integral of u, which shall be denoted by Dr(θ). Following the idea of the definition for
the harmonic case (Gundy-Silverstein [14]), Dr(θ) must satisfy the following relation:

∫∫
Π(θ)

g
(
u(y, t)

)
|∇u|2 (y, t)t−d/2dydt =

∞∫
−∞

g(r)Dr(θ)dr, (4)

for all measurable and positive real functions g. If, with one particular g, we define

G(s) =
∞∫

−∞
g(r)(s− r)+dr , we have

∆G(u) = G′′(u) |∇u|2 + G′(u)∆u = g(u) |∇u|2 + 2
∂

∂t
G(u).

We denote by H the heat operator, that is, H = 1
2∆ − ∂

∂t . The expression above
becomes:

HG(u) =
1
2
g(u) |∇u|2 and HG(u) =

∞∫
−∞

g(r)H(u− r)+dr, (5)

in the sense of distributions. The fact that H ((u− r)+) is a positive Radon measure
with support in the set {u = r} can be proved as in [4]. Using a smooth approximation
of the indicator function of Π(θ), and using (5) at the left-hand side of (4), we obtain∫∫

Π(θ)

g
(
u(y, t)

)
|∇u|2 (y, t)t−d/2dydt

= 2
∫∫

Π(θ)

HG
(
u(y, t)

)
t−d/2dydt

= 2
∫∫

Π(θ)

∞∫
−∞

g(r)H
(
(u(y, t) − r)+

)
t−d/2drdydt

= 2

∞∫
−∞

g(r)

(∫∫
Π(θ)

H
(
(u(y, t) − r)+

)
t−d/2dydt

)
dr,

where, in the last equality, we have used Fubini’s theorem. Now we can write the
following explicit expressions for Dr(θ):

1
2
Dr(θ) =

∫∫
Π(θ)

H
(
(u(y, t) − r)+

)
t−d/2dydt

=
∫∫

Π(θ)

H
(
(u(y, t) − r)−

)
t−d/2dydt.

The last expression justifies the following definition:
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Definition 1. For a parabolic function u(x, t) defined in R
d+1
+ and r ∈ R, we define

the density of the parabolic area integral by

Dr(θ) =
∫∫

Π(θ)

H
(
|u(y, t) − r|

)
t−d/2dydt.

We define also,
D∗(θ) = sup

r∈R

Dr(θ).

We denote Dr
T (θ) the density of the area integral when the integral is restricted to

ΠT (θ).

3. Probabilistic approach. Local time

Let T be a fixed time. Let B = (Bt; t > 0) be a Brownian motion in R
d starting at

x ∈ R
d. We denote by Px and Ex the probability and the expected value associated

to B. An application of Itô’s formula gives us:

u(Bt, T − t) = u(x, T ) +

t∫
0

∇u(Bt, T − s)dBs +

t∫
0

H
(
u(Bs, T − s)

)
ds.

The last integral is zero since u is parabolic; hence, we deduce that the process
U = (Us = u(Bs, T − s); 0 < s < T ) is a continuous local martingale with increasing
process

A2
t =

t∫
0

|∇u|2 (Bs, T − s)ds, 0 ≤ t ≤ T.

We shall denote

UT = lim
t→T

Ut and MT = sup
0≤t≤T

|Ut| .

Because u is parabolic, UT exist Px-a.s. (see Doob [9]). If M(θ) is bounded a.e., then
UT = ũ(BT ), Px-a.s., where ũ denotes the parabolic limit of u.

In fact,

u(x, T ) = Ex [Ut] =
∫

u(y, T − t) p(t, x, y)dy.

Because lim
t→T

u(y, T − t) = ũ(y) and lim
t→T

p(t, x, y) = p(T, x, y), by the bounded conver-

gence theorem we have∫
u(y, T − t) p(t, x, y)dy →

∫
ũ(y) p(T, x, y)dy,

when t tends to T . Then

u(x, T ) = Ex [UT ] = lim
t→T

Ex [Ut] = Ex

[
ũ(BT )

]
,
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and
UT = ũ(BT ) Px-a.s.

Let (Lr
t ; 0 < t < T, r ∈ R) be the local time family associated with the local

martingale defined above. We also denote

L∗
t = sup

r∈R

Lr
t .

We have the following occupation formula for the local time:

σ∫
0

g(Ut) |∇u|2 (Bt, T − t)dt =

∞∫
−∞

g(r)Lr
σdr, (6)

where g is a measurable, real, positive function and σ is a stopping time.
We shall denote by PT

x→θ the probability associated to the Brownian bridge be-
tween x and θ during the time interval [0, T ], and ET

x→θ the expected value with
respect to PT

x→θ. Consider W a parabolic domain, that is, for a Borel set E in R
d,

W =
⋃

θ∈E

ΠT (θ) we define the stopping time

σ = inf
{
0 ≤ t ≤ T ; (Bt, T − t) /∈ W

}
.

We denote GW (T, t, x, y) the Green function of the Dirichlet problem for the heat
equation in W , that is

GW (T, t, x, y)dy = Px

{
Bt ∈ dy, t ≤ σ

}
.

Note that the right-hand side depends on T as follows from the definition of σ. We have
the following absolute continuity relation of PT

x→θ with respect to Px (see Revuz-Yor
[19]). Let ϕt be a bounded Ft-measurable functional on Ω × [0, T ] and σ a stopping
time. Then,

ET
x→θ(Fσ) =

1
p(T, x, θ)

Ex

[
ϕσp(T − σ,Bσ, θ);σ < T

]
. (7)

4. Relation between the density of the area integral and the local time

The following results will be used in the proofs given in the next section. They are
quite similar to results due to Brossard [4] for the harmonic case.

Proposition 1

Let W be the parabolic region, and σ the stopping time defined before. If |x−θ|2 <

T we have:

ET
x→θ [Lr

σ] =
∫∫

W

GW (T, t, x, y) p(T − t, y, θ)
p(T, x, θ)

H
(
|u(y, T − t) − r|

)
dydt. (8)
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Proof. We have from (6) and (7) that

∞∫
−∞

g(r)ET
x→θ [Lr

σ] dr = ET
x→θ

 σ∫
0

g(Ut) |∇u|2 (Bt, T − t)dt


=

1
p(T, x, θ)

Ex

p(T − σ,Bσ, θ)

σ∫
0

g(Ut) |∇u|2 (Bt, T − t)dt;σ < T

 .

Itô’s formula, applied to p(T − σ,Bσ, θ), allows us to write this expression as

1
p(T, x, θ)

Ex

 σ∫
0

∇p(T − t, Bt, θ)dBt

 σ∫
0

g(Ut) |∇u|2 (Bt, T − t)dt

 ; σ < T

 .

The integration by parts formula of stochastic calculus, implies that this quantity is
equal to

1
p(T, x, θ)

Ex

 σ∫
0

p
(
T − t, Bt, θ

)
g(Ut) |∇u|2

(
Bt, T − t

)
dt;σ < T


=

T∫
0

Ex

[
p(T − t, Bt, θ)

p(T, x, θ)
g(Ut) |∇u|2 (Bt, T − t);σ ≥ t

]
dt

=
∫∫ GW (T, t, x, y)p(T − t, y, θ)

p(T, x, θ)
g
(
u(y, T − t)

)
|∇u|2 (y, T − t) dydt

=

∞∫
−∞

g(r)
∫∫

W

GW (T, t, x, y)p(T − t, y, θ)
p(T, x, θ)

H
(
|u(y, T − t) − r|

)
dydtdr,

where, in the last equality, we have used (4) and (5). �
In the next proposition, we restrict to the case W = R

d+1
+ where the Green

function is known.

Proposition 2

If |x− θ|2 < T , then we have

ET
x→θ [Lr

T ] ≥ C(d)Dr
T/2(u, θ), (9)

for some constant C(d) and in consequence

ET
x→θ [L∗

T ] ≥ C(d)D∗
T/2(u, θ).

Proof. In the following C(d) denotes a constant which may change its value. From the
Proposition 1, we know that

ET
x→θ [Lr

T ] =
∫∫

Rd×[0,T ]

p(t, x, y)p(T − t, y, θ)
p(T, x, θ)

H
(
|u(y, T − t) − r|

)
dydt.
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Now if |x− θ|2 < T and t > T
2 we have:

p(t, x, y)p(T − t, y, θ)
p(T, x, θ)

≥
[
2π(T − t)

]−d/2
C(d)1{|y−θ|2<(T−t)}.

Then,

ET
x→θ [Lr

T ] ≥ C(d)

T∫
T/2

∫
(T − t)−d/2 1{|y−θ|2<(T−t)}H

(
|u(y, T − t) − r|

)
dydt

= C(d)
∫∫

ΠT/2(θ)

t−d/2H
(
|u(y, t) − r|

)
dydt. �

5. Main result: Lp−Inequality

Because Dr(θ) satisfies (4), for g ≡ 1 we have

A2(θ) =
∫∫

Π(θ)

|∇u|2 (y, t)t−d/2dydt =

∞∫
−∞

Dr(θ)dr.

The function Dr(θ) is non zero in the range of u, so we have

A2(θ) =

M(θ)∫
−M(θ)

Dr(θ)dr ≤ 2M(θ)D∗(θ). (10)

Theorem 1

For every 1 < p < ∞,

Cp ‖A‖p ≤ ‖D∗‖p ≤ C ′
p ‖A‖p .

Proof. From (10), Cauchy-Schwarz inequality and the equivalence (3), we obtain

‖A‖p ≤ Cp ‖D∗‖1/2
p ‖M‖1/2

p ≤ Cp ‖D∗‖1/2
p ‖A‖1/2

p .

In the other direction: let I (x) denote the set
{
θ : |x− θ|2 < T

}
. On this set,

p(T, x, θ) ≥ CT−d/2. Then, using (9),

CT−d/2

∫
I(x)

(
D∗

T/2(θ)
)p

dθ ≤
∫

I(x)

(
ET

x→θ [L∗
T ]
)p

p(T, x, θ) dθ

≤
∫ (

ET
x→θ [L∗

T ]
)p

p(T, x, θ)dθ = Ex [L∗
T ]p ,
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we deduce that

CT−d/2

∫
I(x)

(
D∗

T/2(θ)
)p

dθ ≤ Ex [L∗
T ]p ≤ C ′Ex [MT ]p .

The right-hand side inequality is a consequence of the Barlow-Yor inequality [3]. Now,
Doob’s inequality implies that

Ex [MT ]p ≤
(

p

p− 1

)p

Ex

[
|UT |p

]
.

We can use Doob’s inequality since

sup
0≤t≤T

Ex |Ut|p = sup
0≤t≤T

∫
p(t, x, y) |u(y, T − t)|p dy

≤ C sup
0≤t≤T

∫
|u(y, T − t)|p dy ≤ C

∫
|M(y)|p dy < ∞.

Now, we integrate in the variable x. Using Fubini’s theorem and the remarks at the
beginning of Section 3, we have that∫ (

D∗
T/2(θ)

)p
dθ ≤ Cp

∫
Ex [|UT |p] dx

= Cp

∫
|ũ(y)|p

∫
p(T, x, y)dxdy = Cp

∫
|ũ(y)|p dy

≤ Cp

∫
|M(y)|p dy.

The proof is finished using the Lp-equivalence (3) between M and A and by making
T tend to infinity. �

References
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d+1
+ et limites non-tangentielles, Invent. Math. 93

(1988), 297–308.
5. J. Brossard and L. Chevalier, Classe L log L et densité de l’intégrale d’aire dans R
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