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Abstract

Semiperfect semigroups are abelian involution semigroups on which every positive
semidefinite function admits a disintegration as an integral of hermitian multiplica-
tive functions. Famous early instances are the group on integers (Herglotz’ The-
orem) and the semigroup of nonnegative integers (Hamburger’s Theorem). In the
present paper, semiperfect semigroups are characterized within a certain class of
semigroups. The paper ends with a necessary condition for the semiperfectness of
a finitely generated involution semigroup, a condition which has since been found
to be also sufficient.

1. Introduction

With the possible exception of finite abelian groups, the oldest example of a semiperfect
semigroup is the group Z of integers. Herglotz’ Theorem [23] of 1911 asserts that a two-
sided sequence (sn)∞n=−∞ of complex numbers is a trigonometric moment sequence, in
the sense that

sn =
∫

T

zn dµ(z), n ∈ Z

for some measure µ on the complex unit circle T, if and only if (sn) is positive semide-
finite in the sense that

n∑
j,k=0

cjcksj−k ≥ 0

for every choice of n in N0 = {0, 1, 2, . . .} and c0, . . . , cn in the complex field C. When
the condition is satisfied, there is just one such measure µ.
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Hamburger’s Theorem of 1920 ([22], see the monographs by Akhiezer [1], Shohat
and Tamarkin [30], p. 5, or Berg, Christensen, and Ressel [3], 6.2.2) asserts that a
sequence (sn)∞n=0 of reals is a moment sequence, in the sense that

sn =
∫

R

xn dµ(x), n ∈ N0 (1)

for some measure µ on the real line R, if and only if (sn) is positive semidefinite in the
sense that

n∑
j,k=0

cjcksj+k ≥ 0

for every choice of n ∈ N0 and c0, . . . , cn ∈ R.
Sz.-Nagy [32] showed in 1952 that a sequence (sn)∞n=0 of self-adjoint bounded

linear operators on a Hilbert space H admits the disintegration (1) for some measure
µ on R with values that are positive bounded linear operators on H if and only if (sn)
is of positive type in the sense that

n∑
j,k=0

〈sj+kξj , ξk〉 ≥ 0

for every choice of n ∈ N0 and ξ0, . . . , ξn ∈ H where 〈·, ·〉 denotes the inner product
on H. It is not sufficient that (sn) be positive semidefinite in the sense that for each
ξ ∈ H the scalar sequence (〈snξ, ξ〉)∞n=0 be positive semidefinite; a counterexample
exists already for H = C2 [4].

The moment problems solved by Herglotz, Hamburger, and Sz.-Nagy can be ge-
neralized to arbitrary abelian involution semigroups. Suppose (S,+, ∗) is an abelian
semigroup equipped with an involution, that is, a mapping s 
→ s∗:S → S satisfying
(s∗)∗ = s and (s + t)∗ = s∗ + t∗ for all s, t ∈ S. Such a structure will be called a ∗-
semigroup, abbreviated ‘semigroup’ when confusion is unlikely, such as when applying
an adjective which makes sense only in the presence of an involution (e.g., ‘semiperfect
semigroup’). For subsets H and K of S, write H + K = {x + y | x ∈ H, y ∈ K },
abbreviated a+K in caseH = {a} for some a ∈ S. SupposeD is a complex vector space
and let S(D) be the set of all sesquilinear forms on D. A function ϕ:S + S → S(D)
is of positive type if

n∑
j,k=1

ϕ(sj + s∗k)(ξj , ξk) ≥ 0

for every choice of n ∈ N, s1, . . . , sn ∈ S, and ξ1, . . . , ξn ∈ D. Denote by P(S,D) the
set of all such functions. Make the convention that in the notation for an entity in
the definition of which a complex vector space D occurs, the symbol ‘D’ is omitted
(together with any comma immediately preceding it) in case D = C. Furthermore,
identify S(C) with C itself by identifying a ∈ C with the sesquilinear form (ξ, η) 
→ aξη

on C. Thus, P(S) is the set of those functions ϕ:S + S → C which are positive
semidefinite in the sense that

n∑
j,k=1

cjckϕ(sj + s∗k) ≥ 0
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for every choice of n ∈ N, s1, . . . , sn ∈ S, and c1, . . . , cn ∈ C. We reserve the name
‘positive definite’ for functions such that the same sum is positive whenever the sj are
pairwise distinct and the cj are not all zero.

A character on S is a function σ:S → C, not identically zero, such that σ(s∗) =
σ(s) and σ(s+ t) = σ(s)σ(t) for all s, t ∈ S. Denote by S∗ the set of all characters on
S.

Let A(S∗) be the least σ-ring of subsets of S∗ rendering measurable for each s ∈ S
the function ŝ:S∗ → C defined by ŝ(σ) = σ(s) for σ ∈ S∗. For s ∈ S and n ∈ N, define
an A(S∗)-measurable set Gs,n as the set of those σ ∈ S∗ such that |σ(s)| > 1/n. Let
A0(S∗) be the subring of A(S∗) consisting of those measurable sets which are contained
in the union of finitely many Gs,n. The set of those sets which are contained in the
union of countably many Gs,n is a σ-ring of subsets of S∗ rendering ŝ measurable for
each s ∈ S and so contains A(S∗) by the definition of the latter. Hence, the subring
A0(S∗) generates A(S∗) as a σ-ring. It follows that every measure µ on A0(S∗) which
is finite in the sense that µ(A) < ∞ for all A ∈ A0(S∗) extends to a unique measure
on A(S∗) ([21], Theorem A p. 53). (A measure is positive by definition. When we
presently introduce measures with values that are sesquilinear forms, those forms will
be positive by definition.)

For every mapping µ:A0(S∗) → S(D) and for each ξ ∈ D we define a mapping
µ(·)(ξ, ξ):A0(S∗) → C by µ(·)(ξ, ξ)(A) = µ(A)(ξ, ξ) for A ∈ A0(S∗). The mapping
µ is a measure if µ(·)(ξ, ξ) is a measure for each ξ ∈ D. Let F+(S∗, D) be the set of
those measures µ in this sense such that for each ξ ∈ D the scalar measure µ(·)(ξ, ξ)
integrates the function |ŝ|2 for each s ∈ S. For µ ∈ F+(S∗, D) define Lµ:S+S → S(D)
by

Lµ(s)(ξ, ξ) =
∫
S∗
σ(s) dµ(·)(ξ, ξ)(σ)

for s ∈ S+S and ξ ∈ D. The integral is understood as one with respect to the unique
measure on A(S∗) which extends the measure µ(·)(ξ, ξ); it exists by Hölder’s inequality.
The remaining values of Lµ(s) follow by polarization. A function ϕ:S + S → S(D) is
a moment function if ϕ = Lµ for some µ ∈ F+(S∗, D), and a moment function ϕ is
determinate if there is only one such µ. Denote by H(S,D) the set of all moment func-
tions, and by HD(S,D) the subset of determinate moment functions. Using ideas from
the paper of Schmüdgen [29] on the matrix version of the multidimensional moment
problem, one can show H(S,D) ⊂ P(S,D). The semigroup S is semiperfect of order
d ∈ N if H(S,Cd) = P(S,Cd), and completely semiperfect if this is so for all d ∈ N.
If S is completely semiperfect then we even have H(S,D) = P(S,D) for every com-
plex vector space D [10]. The semigroup S is said to be semiperfect for brevity if it is
semiperfect of order 1. Every semigroup which has ever (to our knowledge) been shown
to be semiperfect has even been shown to be completely semiperfect. The exception
is the semiperfect semigroup in [5], Example 3, the complete semiperfectness of which
could probably easily be established along the same lines as the semiperfectness. The
semigroup S is said to be perfect if HD(S) = P(S). As remarked by Christian Berg
in the late 1980’s, if S is perfect then HD(S,D) = P(S,D) for every complex vector
space D.
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The group Z with the inverse involution (n∗ = −n) is perfect by Herglotz’ Theo-
rem. More generally, every abelian group with the inverse involution is perfect by the
discrete version of the Bochner-Weil Theorem. Even more generally, a ∗-semigroup S
is perfect if it is an abelian inverse semigroup in the sense that s + s∗ + s = s for all
s ∈ S. (Warning: The ‘Bochner-Weil Theorem for Locally Compact Abelian Inverse
Semigroups’ is false, even in the compact metrizable case. Berg, Christensen, and Res-
sel write ([3], p. 143): “The compact semigroup S = [0, 1] with maximum as semigroup
operation has only one continuous semicharacter, namely, the constant semicharacter.”
On this semigroup, the function ϕ defined by ϕ(s) = 1 − s is a continuous positive
semidefinite function, and the unique measure µ such that ϕ = Lµ is concentrated on
the set of discontinuous characters. The same authors continue: “The right dual object
to look at might be the set of semicharacters which are continuous at 0.” However,
there exist a compact metrizable semigroup S with zero and s∗ = s = s + s for all
s ∈ S and a continuous positive semidefinite function ϕ on S such that the unique
measure µ such that ϕ = Lµ is concentrated on the set of those characters which are
discontinuous at 0 [8].)

The perfectness of abelian inverse semigroups has found two generalizations: (1)
A ∗-semigroup S is perfect if 2(s + s∗) = s + s∗ for all s ∈ S; (2) a ∗-semigroup S
is perfect if it is ∗-divisible in the sense that for each s ∈ S there exist t ∈ S and
m,n ∈ N0 such that m + n ≥ 2 and s = mt + nt∗ (for the case of semigroups with
zero, see the paper by Ressel and the author [16]; for the general case, the paper by
Sakakibara and the author [17]). So far, no natural result is known which generalizes
both (1) and (2).

The semigroup N0 with its unique involution, the identity, is semiperfect by Ham-
burger’s Theorem and completely semiperfect by the result of Sz.-Nagy cited above.
This semigroup is not perfect since there exist indeterminate moment sequences, such
as the example n 
→ (4n + 3)! given by Stieltjes [31] in 1894, 26 years prior to the
publication of Hamburger’s Theorem.

The group Z, considered with the identical involution, is semiperfect as shown
by Jones, Nj̊astad, and Thron [25]; see [3], 6.4.1, for a modern proof. The complete
semiperfectness of Z is an easy consequence of that of N0. The semigroup Z, like N0,
is non-perfect since there exist indeterminate two-sided moment sequences, such as
n 
→ en

2/2 ([3], 6.4.6).
For k ≥ 2 the semigroups Nk

0 and Zk, considered with the identical involution, are
non-semiperfect. For Nk

0 , this was first shown by Berg, Christensen, and Jensen [2] and,
independently and simultaneously, by Schmüdgen [28]. Each set of authors proved that
the convex cone Σ generated by sums of squares of polynomials in R[x, y] is closed in
the finest locally convex topology. Since, as shown already by Hilbert [24], the set Σ is
not all of the set R[x, y]+ of nonnegative polynomials, by the Hahn-Banach Theorem it
follows that there is a linear form L on R[x, y] which is nonnegative on Σ but not on all
of R[x, y]+. The function ϕ: N2

0 → R defined by ϕ(m,n) = L(xmyn) for (m,n) ∈ N2
0 is

then positive semidefinite, but not a moment function. Perhaps the simplest example
of a polynomial in R[x, y]+ \ Σ is the Motzkin polynomial 1 + x4y2 + x2y4 − 3x2y2,
which is nonnegative by the arithmetic-geometric inequality and which is not a sum
of squares of real polynomials by term-inspection.
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Thus no explicit example of a function ϕ ∈ P(N2
0) \ H(N2

0) was produced. The
first such example was given by Friedrich [19]. In his example,

ϕ(0, n) = exp
{[(

n/2 + 2
2

)
+ 1

]
! log

(
n/2 + 2

2

)
!
}

for even n ≥ 8. This lead to the question: How fast must ϕ(m,n) grow as m+n→∞
if ϕ ∈ P(N2

0) \H(N2
0)? It was shown in [7] that there is some ϕ ∈ P(N2

0) \H(N2
0) such

that
ϕ(m,n) = O

(
(m+ n)a(m+n)

)
as m+ n→∞

for each a > 1, and the constant 1 is the best possible.
The example in [7] involves the integral∫ ∞

0

xne−x/(1+(log x)2) dx,

which we have not been able to evaluate. Let us describe a function ϕ ∈ P(N2
0)\H(N2

0),
of growth intermediate between that of Friedrich and the one from [7], which has the
merit of being completely explicit. Let S be the semigroup N0\{1}. The first published
proof of the non-semiperfectness of S is due to Nakamura and Sakakibara [26] although
the result had been known to the present author 4 years earlier. Let γ be the positive
solution to the equation

∑∞
n=1 γ

n2
= 1/2, define a = γ−1/4, and define f :S → R by

f(n) =

{
an

2
if n is even and n �= 2

0 if n is odd or n = 2.

Then f is positive semidefinite but not a moment function. If ϕ: N2
0 → R is defined

by ϕ(m,n) = f(2m + 3n) for (m,n) ∈ N2
0 then ϕ is positive semidefinite but not a

moment function.
The case of Zk is an exercise in [3].
These negative results are subsumed in the result that a subsemigroup of Zk with

the identical involution is semiperfect only if it is {0} or isomorphic to Z or N0. The
case of semigroups containing 0 is due to Sakakibara [27]. The general case is a corollary
of the characterization of semiperfect countable R-separative C-finite semigroups, to
be cited presently.

A ∗-homomorphism between ∗-semigroups is a homomorphism h satisfying h(s∗) =
h(s)∗ for all s in the domain.

Given a subsetM of C, a ∗-semigroup S is said to beM -separative if theM -valued
characters on S separate points in S. The greatest M -separative ∗-homomorphic image
of S is the quotient ∗-semigroup S/∼ where ∼ is the congruence relation in S defined by
the condition that s ∼ t if and only if σ(s) = σ(t) for everyM -valued character σ on S.
As the name implies, S/∼ is M -separative, and among M -separative ∗-homomorphic
images of S it is ‘greatest’ in the sense of corresponding to the smallest congruence
relation. Thus, if f is a ∗-homomorphism of S into an M -separative ∗-semigroup T
then there is a unique ∗-homomorphism h:S/∼ → T such that f = h ◦ g where g is
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the quotient mapping of S onto S/∼. Clifford and Preston [18] use the term ‘maximal’
where we use ‘greatest’.

Suppose S is a ∗-semigroup. For every subset V of S, denote by E(V ) the set
of those v ∈ V such that if s, t ∈ S, s + s∗, t + t∗ ∈ V , and s + t∗ = v then s = t.
For every subset U of S, denote by C(U) the union of all finite subsets V of S such
that E(V ) ⊂ U . The ∗-semigroup S is C-finite if C(U) is a finite set for every finite
subset U of S. In [6] we included in the definition of C-finiteness the condition of
R-separativity. We apologize for being inconsistent.

A ∗-subsemigroup of a ∗-semigroup is a subsemigroup stable under the involution.
A ∗-semigroup H is ∗-archimedean if for all x, y ∈ H there exist z ∈ H and

n ∈ N such that n(x + x∗) = y + z. A ∗-archimedean component of a ∗-semigroup S
is a ∗-archimedean ∗-subsemigroup of S which is maximal for the inclusion ordering.
Every ∗-semigroup is the disjoint union of its ∗-archimedean components, and every ∗-
archimedean ∗-subsemigroup of a ∗-semigroup S is contained in a unique ∗-archimedean
component of S. See Clifford and Preston [18], Section 4.3, for the case of the identical
involution.

An abelian semigroup H is archimedean if for all x, y ∈ H there exist z ∈ H and
n ∈ N such that nx = y + z. An archimedean component of an abelian semigroup
S is an archimedean subsemigroup of S which is maximal for the inclusion ordering.
An abelian semigroup considered with the identical involution is ∗-archimedean if and
only if it is archimedean, and the ∗-archimedean components of an abelian semigroup
considered with the identical involution are precisely its archimedean components.

The main result of [6] states that a countable R-separative C-finite semigroup S
satisfying S = S + S is semiperfect if and only if the following condition is satisfied:

(B) Each archimedean component of S is isomorphic to the product of a torsion
group of exponent 1 or 2 and one of the semigroups {0}, Z, N.

Every semigroup satisfying S = S + S and (B) is completely semiperfect.
Just as [6] was going to press, it turned out that a semiperfect countable R-

separative C-finite semigroup S automatically satisfies S = S + S. It was too late for
a revision. See [11].

It was shown near the end of [6] that every R-separative finitely generated semi-
group is C-finite. Thus the main result of [6] (as augmented in [11]) implies a charac-
terization of semiperfect (or equivalently, completely semiperfect) R-separative finitely
generated semigroups.

It is even possible to characterize semiperfect (or equivalently, completely semiper-
fect) finitely generated abelian semigroups carrying the identical involution without the
condition of R-separativity. Consider an arbitrary ∗-semigroup S. Denote by χ the
quotient mapping of S onto its greatest C-separative ∗-homomorphic image. For d ∈ N

the ∗-semigroup S is semiperfect of order d if and only if, firstly, χ(S) is semiperfect
of order d, and secondly, every positive semidefinite function on S factors via χ ([5],
proof of Proposition 5). If S is finitely generated and carries the identical involution
then the same is true of its ∗-homomorphic image χ(S). Since χ(S) is furthermore R-
separative then whether χ(S) is semiperfect (or equivalently, completely semiperfect)
can be determined by previous results. It remains to consider the factoring problem.
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A ∗-semigroup S is of class M if for each x ∈ S there exist e ∈ S and n ∈ N

such that n(x + x∗) = e + n(x + x∗). The main result of [9] states that if S is a
∗-semigroup of class M satisfying S = S +S then every positive semidefinite function
on S factors via χ. Every semiperfect finitely generated ∗-semigroup is of class M
([11], Theorem 17). However, not every semiperfect finitely generated ∗-semigroup
S satisfies S = S + S. Fortunately, in [9] we also considered the case that S is of
class M but S �= S + S. We quote: Suppose S is a ∗-semigroup of class M. Define
A = {x ∈ S | x + x∗ ∈ S + S + S }. Let A be the least subset of S, containing A,
such that if x ∈ S and x+ x∗ ∈ A+ S then x ∈ A. Define E = S \ A. Every set that
generates S as a semigroup without involution contains E. In particular, if S is finitely
generated then E is finite. Define an equivalence relation ∼ in E2 by the condition that
(e, f) ∼ (g, h) if and only if e+ f∗ = g + h∗. In order that every positive semidefinite
function on S factor via χ, it is necessary that for every nonempty subset A of E2 which
is a union of equivalence classes with respect to ∼ and which is itself an equivalence
relation on some subset of E there exist (e, f) ∈ A such that e+ f∗ ∈ A+ S. If E is
finite, the condition is also sufficient. This result, which formally contains the case that
S = S + S (in which case the set E is empty, so the condition is empty), completes
the characterization of semiperfect (or equivalently, completely semiperfect) finitely
generated abelian semigroups with the identical involution, cf. [11], Theorem 18. It
also shows how the problem of characterizing semiperfect (or, presumably equivalently,
completely semiperfect) finitely generated abelian semigroups with arbitrary involution
is reduced to solving the C-separative case.

Since semiperfect finitely generated semigroups with the identical involution have
been completely characterized, it is natural to try to extend the result to arbitrary
involution. Since the first step in the case of the identical involution was the charac-
terization of semiperfect countable R-separative C-finite semigroups, it seems natural
to begin by extending this result by replacing the condition of R-separativity by that
of C-separativity. It is the first main purpose of the present paper to do this. We shall
show.

Theorem 1

A countable C-separative C-finite semigroup S is semiperfect (or equivalently,

completely semiperfect) if and only if S = S+S and the following condition is satisfied:

(CT) For each ∗-archimedean component H of S there exist an abelian torsion

group D carrying the inverse involution, a semigroup P , which is {0}, Z, or

N and carries the identical involution, and a ∗-subgroup G of the ∗-group

D × (P − P ) such that H is isomorphic to the ∗-semigroup G ∩ (D × P ).
Every ∗-semigroup S satisfying S = S + S and (CT) is completely semiperfect.

The sufficiency part follows from results in other sources. Indeed, suppose S
is a ∗-semigroup and d ∈ N. Denoting by Md(C) the algebra of square complex
matrices of order d with the adjoint operation (∗) as involution, let Md(C)[S] be the
semigroup ring, that is, the space of finitely supported Md(C)-valued functions on
S equipped with the multiplication ∗ (convolution) and the involution ˜ defined by
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a ∗ b(u) =
∑

s,t∈S:s+t=u a(s)b(t) and ã(u) = a(u∗)∗ for a, b ∈ Md(C)[S] and u ∈ S.
For a ∈ Md(C)[S] define â:S∗ → Md(C) by â(σ) =

∑
s∈S σ(s)a(s) for σ ∈ S∗. Let

Md(C)[S+S]+ be the set of those a ∈Md(C)[S+S] (i.e., those a ∈Md(C)[S] supported
by S+S) which are nonnegative in the sense that â(σ) is a positive semidefinite matrix
for each σ ∈ S∗, and let Md(C)[S + S]sa+ be the subset consisting of those which
are furthermore self-adjoint in the sense that a = ã. The ∗-semigroup S is adapted
if for each x ∈ S there exist n ∈ N and y1, . . . , yn+1 ∈ S such that n(x + x∗) =
y1 + y∗1 + · · · + yn+1 + y∗n+1. By a result in [10], the ∗-semigroup S is semiperfect of
order d if and only if S is adapted and the convex cone

Σd(S) =
{
ã1 ∗ a1 + · · ·+ ãn ∗ an | a1, . . . , an ∈Md(C)

}
is dense in Md(C)[S + S]sa+ .

By [13], Theorem 2, if S is an arbitrary ∗-semigroup satisfying (CT) then not
only is Σd(S) dense in Md(C)[S]+, but for each a ∈ Md(C)[S]+ there is even some
b ∈ Md(C)[S] such that a = b̃ ∗ b. If furthermore S = S + S then S is obviously
adapted, hence semiperfect of order d. This being so for all d ∈ N, S is completely
semiperfect. This proves the sufficiency of the condition in Theorem 1. We shall prove
the necessity of the condition in the next section.

Unlike the case of the identical involution, the step from Theorem 1 to a character-
ization of semiperfect C-separative finitely generated ∗-semigroups is not easy and has
not been completed at the time of writing. This is because a semiperfect C-separative
finitely generated ∗-semigroup need not be C-finite, cf. the example of Z with the
inverse involution. Let (C) be the condition which is as (CT) except that the word
‘torsion’ is omitted. We shall show in Section 3 that in order for a C-separative finitely
generated ∗-semigroup S to be semiperfect it is necessary that S = S+S and that (C)
hold. Again, the example of Z shows that we could not retain the word ‘torsion’. It
is unknown whether every ∗-semigroup S satisfying S = S + S and (C) is semiperfect
(even if S is assumed to be finitely generated). One special case in which the answer
is known to be affirmative is the case that for each ∗-archimedean component H of S
we have H = D × P (see [12]).

Note added in proof: Since the above was written, it has turned out that as long
as one stays within the realm of finitely generated abelian semigroups with involution,
the condition of which we show the necessity at the end of this paper is also sufficient.
However, the proof exists only in hand-written form.

2. Necessity

This section contains the proof of the necessity of the condition in Theorem 1. We
assume from the outset that S is a semiperfect countable C-separative C-finite semi-
group. We have to show that S = S + S and that (CT) holds. Define Σ(S) = Σ1(S),
identifying a square matrix of order 1 with its unique entry. Saying that S is normal
means that C(∅) = ∅.

Lemma 1
We have Σ(S) = C[S + S]+.
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Proof. Since S is C-separative then S is normal ([11], Corollary 2). Since S is countable,
normal, and C-finite then by [11], Theorem 10, the convex cone Σ(S) is closed in the
finest locally convex topology, hence equal to C[S+S]+ by the fact that S is semiper-
fect. �

Denote by ρ the quotient mapping of S onto its greatest R+-separative ∗-
homomorphic image. Say that a mapping f of a set X into a set Y is proper if
f−1(y) is a finite set for each y ∈ Y . This use of the term is in accordance with its use
in general topology if the sets involved are considered with the discrete topology. Since
S is C-separative then S is, in particular, ∗-separative in the sense that if x, y ∈ S are
such that

x+ x∗ = y + x∗ = x+ y∗ = y + y∗ (2)

then x = y. (Proof: Apply to (2) an arbitrary character σ on S, see that it follows
that σ(x) = σ(y), and use C-separativity.) Hence, each ∗-archimedean component of
S is cancellative [9].

Lemma 2

The semigroup ρ(S) is C-finite and the mapping ρ is proper.

Proof. Define a ∗-subsemigroup S# of S by S# = { s+s∗ | s ∈ S }. By [11], Theorem 4,
the semigroup ρ(S) is isomorphic to S# which, being a ∗-subsemigroup of the C-finite
semigroup S, is C-finite. Thus ρ(S) is C-finite. To see that the mapping ρ is proper,
suppose y ∈ ρ(S); we have to show that the set A = ρ−1(y) is finite. Let K be the
archimedean component of ρ(S) containing y. The set H = ρ−1(K) is a ∗-archimedean
component of S ([5], Lemma 3) which clearly contains A. Recall that H is cancellative.
Choose a ∈ A. For s ∈ A we have s+a∗ ∈ C({a+a∗, s+s∗}) by [11], Theorem 1, item
(viii). Now a+ a∗ = s+ s∗. To see this, note that ρ(a) = y = ρ(s). By [11], equation
(3), it follows that there is some n ∈ N such that n(a + a∗) = n(y + y∗). For σ ∈ S∗

we have |σ(a)|2n = σ
(
n(a + a∗)

)
= σ

(
n(s + s∗)

)
= |σ(s)|2n, hence |σ(a)| = |σ(s)|, so

σ(a + a∗) = |σ(a)|2 = |σ(s)|2 = σ(s + s∗). This being so for all σ ∈ S∗, since S is
C-separative it follows that a + a∗ = s + s∗, as claimed. Thus s + a∗ ∈ C({a + a∗}).
Thus the mapping s 
→ s+ a∗ maps A into the set C({a+ a∗}) which is finite since S
is C-finite. That mapping is one-to-one since H is cancellative, so the set A is likewise
finite. �

Saying that S is a Z-semigroup means that each archimedean component of ρ(S)
is isomorphic to a subsemigroup of Z.

Lemma 3

Each archimedean component of ρ(S) is isomorphic to {0}, Z, or N. In particular,

S is a Z-semigroup.



64 Bisgaard

Proof. Being a ∗-homomorphic image of the countable semiperfect semigroup S, ρ(S)
is countable and (by [16], Proposition 1) semiperfect. Thus ρ(S) is a semiperfect
countable R+-separative C-finite semigroup. By [11], Theorem 15, it follows that each
archimedean component of ρ(S) is isomorphic to the product of a torsion group and
one of the semigroups {0}, Z, N. The torsion group involved must be the trivial group
since ρ(S) (hence each archimedean component of it) is R+-separative. Thus each
archimedean component of ρ(S) is isomorphic to {0}, Z, or N. �

Lemma 4

We have S = S+S, and S is of class M. For each x ∈ S there is some e ∈ S such

that x = e+ x.

Proof. Since S is semiperfect, it is adapted. Since S is an adapted ∗-separative Z-
semigroup, by [11], Theorem 14, it follows that S = S + S and that S is of class M.
The remaining statement follows by [11], Corollary 3. �

It remains to be shown that (CT) holds. In the remainder of this section, we
assume that H is a ∗-archimedean component of S. We have to show that there exist
D, P , and G as in (CT). For every ∗-semigroup T , denote by π the quotient mapping
of T onto its greatest (T ∪ {0})-separative ∗-homomorphic image. Define D = π(H)
and P = ρ(H).

Lemma 5

The semigroup P is isomorphic to {0}, Z, or N.

Proof. By [5], Lemma 3, P is an archimedean component of ρ(S). The claim follows
by Lemma 3. �

Lemma 6

The ∗-semigroup D is an abelian group carrying the inverse involution.

Proof. From the fact that D is (T ∪ {0})-separative it follows that D is an abelian
inverse semigroup. Being a ∗-homomorphic image of the ∗-archimedean semigroup H,
D is ∗-archimedean. The claim follows. �

Since S is C-separative, so is H. If η is an arbitrary character on H then the
function |η| is a nonnegative character on H and so factors via P . Since H is ∗-
archimedean then η is nowhere zero ([5], Lemma 2), so the function η/|η| is well-
defined. This function being a T-valued character on H, it factors via π. From the C-
separativity ofH we can therefore infer that the mapping x 
→

(
π(x), ρ(x)

)
:H → D×P

is one-to-one. We suppress this mapping, thus identifying H with a ∗-subsemigroup of
D × P . Since P is {0}, Z, or N then P − P is a group, and we consider the product
group D × (P − P ) with the natural involution, i.e., (x, n)∗ = (−x, n) for x ∈ D and
n ∈ P − P . Then the set G = H −H is a ∗-subgroup of D × (P − P ). What remains
to be shown is that D is a torsion group and H = G∩ (D×P ). For n ∈ P −P denote
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by Gn the set of those x ∈ D such that (x, n) ∈ G. The set G0 is a subgroup of D of
index 1 or 2, and each Gn is a coset of G0, equal to G0 for even n and to the other
coset for odd n. For these facts, see [13], proof of Lemma 6.

Theorem 2

If P is a group then so is H, and D is a torsion group. Thus the conclusions of

the necessity part of Theorem 1 hold in this case.

Proof. Suppose P is a group. So is H, by [14], Theorem 12. It remains to be shown
that D is a torsion group. Since the group G0 has finite index in D, it suffices to show
that G0 is a torsion group. It obviously suffices to show that G0 is finite. But this
follows from the fact that the set G0×{0} is finite, being equal to the set ρ−1(0) which
is finite since the mapping ρ is proper. �

In the remainder of this section, we assume that P = N.
A face of S is a ∗-subsemigroup X of S such that if x, y ∈ S and x+ y ∈ X then

x, y ∈ X. Every intersection of faces of S, if nonempty, is a face of S, so if A is a
nonempty subset of S then there is a least face of S containing A, viz., the intersection
of all faces of S containing A, the set of such faces being nonempty since S itself is
such a face. If A is a ∗-subsemigroup of S then the least face X of S containing A
is equal to the set Y of those x ∈ S such that x + y ∈ A for some y ∈ S. The proof
consists in noting that it is clear that Y ⊂ X, and for the converse inclusion it suffices
to verify that Y is a face of S containing A; which is trivial.

Let X be the least face of S containing H. Then X + H ⊂ H (see, e.g., the
Introduction in [11]). Define g:X → G by the condition that given x ∈ X one chooses
y ∈ H and sets g(x) = (x+y)−y (difference in the group G). It is easily seen that the
definition of g(x) is independent of the choice of y and that the mapping g so defined is a
∗-homomorphism. Note that g(X)+H = X+H ⊂ H. Define Y = H∪(ρ◦g)−1(0) ⊂ X.
By [14], Lemma 4, Y is a ∗-subsemigroup of S.

Lemma 7

We have Σ(Y ) = C[Y ]+. Moreover, Y is adapted, so Y is semiperfect.

Proof. Since Σ(S) = C[S]+ then by the proof of [14], Lemma 5, we have Σ(Y ) = C[Y ]+.
To see that Y is semiperfect it therefore suffices to verify that Y is adapted. It clearly
suffices to show Y = Y +Y . So suppose y ∈ Y . By Lemma 4 there is some e ∈ S such
that y = e+ y. Since e+ y = y ∈ Y ⊂ X then e ∈ X by the definition of a face. Now
g(y) = g(e + y) = g(e) + g(y). Since G is a group it follows that g(e) = 0. So much
the more is ρ

(
g(e)

)
= 0. Now e ∈ (ρ ◦ g)−1(0) ⊂ Y . Thus y = e + y ∈ Y + Y . Since

y ∈ Y was arbitrary, we have shown Y = Y + Y , as desired. �
We have already once used the homomorphism theorem, which asserts that every

∗-homomorphic image of a semiperfect semigroup is semiperfect. See the paper by
Ressel and the author [16], Proposition 1.

Corollary 1

The ∗-semigroup g(Y ) is semiperfect.
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Note that g
(
(ρ ◦ g)−1(0)

)
⊂ ρ−1(0) = G0 × {0}. Since the set to the left is

a ∗-semigroup and since G0 carries the inverse involution, it follows that g(Y ) =
(B × {0}) ∪H for a certain subgroup B of G0.

For n ∈ N let Hn be the set of those x ∈ D such that (x, n) ∈ H. Clearly
Hn ⊂ Gn. Since P = ρ(H) then

Hn �= ∅. (3)

Since H is ∗-stable then Hn is symmetric, i.e.,

Hn = −Hn. (4)

Since H is a semigroup then
Hj +Hk ⊂ Hj+k (5)

for j, k ∈ N. Since g(Y ) +H ⊂ H then

B +Hn ⊂ Hn. (6)

Lemma 8

The group B is finite, hence a torsion group.

Proof. By (3) and (6), for each n ∈ N the set Hn contains a coset of B. Thus it suffices
to show that Hn is finite. But this follows from the fact that the set Hn×{n} = ρ−1(n)
so is, the mapping ρ being proper. �

By [14], Theorem 11, we have

Σ(C[Hn]) = C[H2n]+, (7)

hence
Hn +Hn = H2n, (8)

for all n ∈ N.
Our next aim is to show that D is a torsion group. In the following portion of the

present section, we assume that D is not a torsion group. That portion will end when
we have arrived at a contradiction.

Denote by Dt the torsion of D. Since we now are assuming that D is not a torsion
group then the torsion-free group D/Dt is nonzero, so its enveloping rational vector
space is of positive dimension. Hence we can choose a nonzero linear form on that
space. We see from this that there is a nonzero homomorphism of D into Q, which we
denote by x 
→ x. The mapping (x, n) 
→ (x, n):D × N → Q× N will also be denoted
by x 
→ x. For every subset A of D or D × N we denote by A the image of A under
the mapping x 
→ x.

Lemma 9

The analogues of (3) through (8) hold with bars over.
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Proof. Left as an exercise. �

Lemma 10

For each n ∈ N the setHn is a finite arithmetic progression, i.e., there exist pn ∈ Q,

dn > 0, and mn ∈ N0 such that Hn = {−pn,−pn + dn,−pn + 2dn, . . . ,−pn +mndn}.
Moreover, −pn +mndn = pn.

Proof. The set Hn, being a finite subset of Q, can be identified with a subset of Z.
From the bar-analogue of (7), by a result of Gabardo [20] it follows that Hn is an
arithmetic progression. The remaining statement follows from the fact that Hn is
symmetric. �

By the Lemma and the bar-analogue of (5) it is clear that

pj + pk = pj+k (9)

for j, k ∈ N.

Lemma 11

There is some d > 0 such that dn = d for all n ∈ N.

Proof. It is clear from (5) that dj and dk are integral multiples of dj+k. Hence, the
sequence (dn)∞n=1 is nonincreasing. Now that sequence must be constant since by (8)
we have dn = d2n for all n. �

It is clear from (9) and the Lemmas that Hj +Hk = Hj+k for all j, k ∈ N. By
induction it follows that

Hn =

n︷ ︸︸ ︷
H1 + · · ·+H1 (10)

for all n ∈ N.

Theorem 3

The group D is a torsion group.

Proof. We continue with the assumption that D is not a torsion group. The set H1

consists of m1 + 1 points. Hence, by (10), the set Hn consists of nm1 + 1 points.
If we had m1 = 0 then all the Hn would be singletons, contradicting the fact that
we chose a nonzero homomorphism of D into Q. Thus m1 ≥ 1. We leave it as an
exercise to describe a ∗-isomorphism f of H ∪ {0} into the ∗-semigroup (N2

0, ∗) where
∗ is the switching involution, (p, q)∗ = (q, p). (Hint: Map (−p1, 1) to (m1, 0).) By
Corollary 1 and the homomorphism theorem, the semigroup H ∪ {0} is semiperfect.
Hence so is its image by f , which we denote by T . Note that T is the set of those
(p, q) ∈ (N2

0, ∗) such that p+q is a multiple of m1. Now the property of semiperfectness
is clearly a property of the semigroup ring. See [3], proof of 6.3.5, for a ∗-algebra
isomorphism between the semigroup rings of the ∗-semigroups (N2

0, ∗) and N2
0, where
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by ‘N2
0’ (without ‘∗’) we understand the semigroup N2

0 with the identical involution.
Under this isomorphism, the semigroup ring of T , which is a ∗-subalgebra of C[N2

0, ∗],
corresponds to the semigroup ring of a semigroup U which is the same set as T , but
is now considered as a subsemigroup of N2

0 with the identical involution. Since T is
semiperfect, so is U . But this contradicts the fact that every semiperfect subsemigroup
of N2

0 is {0} or isomorphic to N0. This is the desired contradiction which shows that
D is a torsion group. �

We can now quickly complete the proof of Theorem 1. Indeed, by [15], Theorem
4, the group G0 is contained in Hn for all even n, and the set H1 contains a coset
of every finite subgroup of G0. Since the sets Hn are finite then G0 is finite, so H1

contains a coset of G0 itself. On the other hand, H1 is contained in such a coset, viz.,
the set G1. It follows that we must have H1 = G1. It easily follows that Hn = Gn for
all n, that is, H = G ∩ (D × N), as desired.

3. On semiperfect finitely generated ∗-semigroups

The purpose of the present section is to prove the following result.

Theorem 4

If S is a semiperfect C-separative finitely generated ∗-semigroup then S = S + S
and the following condition is satisfied:

(C) For each ∗-archimedean component H of S there exist an abelian group D

carrying the inverse involution, a semigroup P , which is {0}, Z, or N and

carries the identical involution, and a ∗-subgroup G of the ∗-groupD×(P−P )
such that H is isomorphic to the ∗-semigroup G ∩ (D × P ).

The proof is the remainder of this section. As we mentioned in the Introduction,
a main problem is that the groups D cannot be assumed to be torsion groups. The
idea of proof is to ‘factor away the non-torsion’. Indeed, we shall describe a certain
∗-homomorphic image φ(S) of S which is C-finite. Then we know that φ(S) satisfies
(CT), and pulling this information back along φ we shall obtain (C).

Let J (S) be the set of all ∗-archimedean components of S. For H,K ∈ J (S)
the ∗-subsemigroup H + K of S is ∗-archimedean, hence contained in a unique ∗-
archimedean component of S, which we denote by H ∨K. The pair

(
J (S),∨

)
is an

abelian semigroup. Consider J (S) with the partial ordering ≤ defined by the condition
that H ≤ K if and only if H ∨K = K (that is, H +K ⊂ K).

Since S is C-separative then each H ∈ J (S) is cancellative, and we denote by
GH the group H − H. For H,K ∈ J (S) such that H ≤ K, we define a mapping
gH,K :H → GK by choosing y ∈ K and setting

gH,K(x) = (x+ y)− y (difference in the group GK)

for x ∈ H. It is easily seen that the definition of gH,K(x) is independent of the
choice of y and that the mapping gH,K so defined is a ∗-homomorphism. Being a
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∗-homomorphism of H into the group GK , the mapping gH,K extends to a unique
∗-homomorphism of GH into GK , also denoted by gH,K . We leave it as an exercise
to verify that the family (gH,K), indexed by those H,K ∈ J (S) such that H ≤ K, is
compatible in the sense that gH,H is the identity on GH and gH,L = gK,L ◦ gH,K for all
H,K,L ∈ J (S) such that H ≤ K ≤ L. Hence, the disjoint union

G =
⋃

H∈J (S)

GH

becomes a ∗-semigroup when considered with the addition defined by

x+ y = gH,H∨K(x) + gK,H∨K(y) (sum in the group GH∨K)

for H,K ∈ J (S), x ∈ GH , and y ∈ GK , and the unique involution which extends the
given one on each GH . For the case of no involution, see Clifford and Preston [18],
Theorem 4.11. We leave the bit about the involution as an exercise.

For H ∈ J (S) we write DH = π(H) and PH = ρ(H) and denote the mappings
π|H and ρ|H by πH and ρH , respectively. Since S is C-separative, so is H, so the
mapping x 
→

(
π(x), ρ(x)

)
:H → DH × PH is one-to-one. We suppress this mapping,

thus identifying H with a ∗-subsemigroup of DH × PH . Since H is ∗-archimedean
then DH is a group. The mapping πH , being a ∗-homomorphism of H into the group
DH , extends to a unique ∗-homomorphism of GH into DH , also denoted by πH . The
semigroup P , being a ∗-homomorphic image of the ∗-archimedean semigroup H, is
archimedean. Being also R+-separative, it is cancellative and the group PH − PH is
torsion-free. The mapping ρH , being a ∗-homomorphism of H into the group PH−PH ,
extends to a unique ∗-homomorphism of GH into PH − PH , also denoted by ρH .

For H,K ∈ J (S) such that H ≤ K, the mapping πK ◦gH,K is a ∗-homomorphism
of GH into the group DK , which carries the inverse involution, and so has the form
πK ◦ gH,K = πH,K ◦ πH for a unique homomorphism πH,K :DH → DK . The mapping
ρK ◦ gH,K :GH → PK −PK is a ∗-homomorphism of GH into the R+-separative group
PK − PK and so has the form ρK ◦ gH,K = ρH,K ◦ ρH for a unique homomorphism
ρH,K :PH − PH → PK − PK . We extend the mapping gH,K :GH → GK to a ∗-
homomorphism of DH × (PH − PH) into DK × (PK − PK), also denoted by gH,K , by
setting

gH,K(x, y) =
(
πH,K(x), ρH,K(y)

)
for (x, y) ∈ DH × (PH − PH).

For H ∈ J (S), let XH be the least face of S containing H. It is easily seen that

XH =
⋃

I∈J (S):I≤H

I.

In particular, XH +H ⊂ H. Since S is finitely generated, so is XH . Indeed, suppose
E is a finite set that generates S as a semigroup without involution. Each element of
XH can be written as the sum of certain elements of E, repetitions allowed, and these
must be in XH by the definition of a face. Thus XH is generated by the finite set
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E ∩XH . Let gH :XH → GH be the union of the mappings gI,H (I ∈ J (S), I ≤ H).
The set {0} ∪

(
gH(XH) ∩ (DH × {0})

)
has the form BH × {0} for a unique subgroup

BH of DH . Let φH :DH → DH/BH be the quotient mapping and denote by the same
symbol the mapping (x, y) 
→

(
φH(x), y

)
:DH × (PH −PH)→ (DH/BH)× (PH −PH).

For H,K ∈ J (S) such that H ≤ K, we have XH ⊂ XK , hence πH,K(BH) ⊂ BK .
Thus the mapping φK ◦ πH,K :DH → DK/BK vanishes on BH and so has the form
φK ◦ πH,K = φH,K ◦ φH for a unique homomorphism φH,K :DH/BH → DK/BK . We
denote by the same symbol the mapping (x, y) 
→

(
φH,K(x), ρH,K(y)

)
: (DH/BH) ×

(PH − PH) → (DK/BK) × (PK − PK). We leave it as an exercise to verify that the
family (φH,K), indexed by those H,K ∈ J (S) such that H ≤ K, is compatible. It
follows that the disjoint union

φ(G) =
⋃

H∈J (S)

φH(GH)

is a ∗-semigroup with the natural operations, cf. [18], Theorem 4.11. We now define
a mapping φ:G → φ(G) by φ|GH = φH for H ∈ J (S). We leave it as an exercise to
verify that φ is a ∗-homomorphism. Being a ∗-homomorphic image of the semiperfect
semigroup S, the semigroup φ(S) is semiperfect. Since S is finitely generated, so is
φ(S). In particular, this semigroup is countable. We leave it as an exercise to verify
that φ(S) is C-separative. Now the point is that φ(S) is C-finite. In order not to
interrupt the flow of the present proof, we postpone the proof of this to a Lemma below.
Believing that it is true, we see that φ(S) is a semiperfect countable C-separative C-
finite semigroup. By Theorem 1 it follows that if K is a ∗-archimedean component of
φ(S) then there exist an abelian group A carrying the inverse involution, a semigroup
Q, which is {0}, Z, or N and carries the identical involution, and a ∗-subgroup F of
the ∗-group A× (Q−Q) such that

K = F ∩ (A×Q). (11)

Moreover, φ(S) = φ(S) + φ(S). From the latter fact it easily follows that S = S + S.
It remains to be shown that (C) holds. Suppose H is a ∗-archimedean component of
S. We leave it as an exercise to verify that the set K = φ(H) is a ∗-archimedean
component of φ(S). Hence (11) holds, and applying φ−1 we get the desired fact.

To make the proof of Theorem 4 complete, it remains to show a few Lemmas.
For n ∈ N consider Nn

0 with the product ordering, i.e., if x = (x1, . . . , xn) and y =
(y1, . . . , yn) are elements of Nn

0 then we write x ≤ y if xi ≤ yi for i = 1, . . . , n. Say
that x and y are incomparable if neither x ≤ y nor y ≤ x.

Lemma 12

If X is a subset of Nn
0 such that every two distinct elements of X are incomparable

then X is finite.



Semiperfect countable C-separative C-finite semigroups 71

Proof. If X is empty, there is nothing to prove. Suppose X is nonempty and choose
x = (x1, . . . , xn) ∈ X. It suffices to show that the set Y = X \ {x} is finite. If
y = (y1, . . . , yn) ∈ Y then by hypothesis it is not the case that y ≥ x. Hence we have
y ∈ Y1 ∪ · · · ∪ Yn where Yi, for i = 1, . . . , n, is the set of those z = (z1, . . . , zn) ∈ Y
such that zi < xi. It suffices to show that Yi is finite for each i. Let us show that the
set Z = Y1 is finite, the other cases being similar. We have Z = Z0∪· · ·∪Zx1−1 where
Zm is the set of those (z1, . . . , zn) ∈ Z such that z1 = m. It suffices to show that each
Zm is finite. Now Zm = {m} ×W for a certain subset W of Nn−1

0 . Since every two
elements of Zm are incomparable, the same is true of W . By an obvious induction
argument (the beginning of which is trivial), we may assume that it follows that W is
finite. This completes the proof. �

Lemma 13

Suppose G is an abelian group, A is a subgroup of G, and S is a finitely generated

subsemigroup of G. If the set A∩ S is finite then so is the set B ∩ S for every coset B

of A in G.

Proof. First suppose S contains 0 and the set A∩S is reduced to {0}. Let B be a coset
of A in G; we have to show that the set B ∩S is finite. Choose a finite set {e1, . . . , en}
which generates S. Define h: Nn

0 → S by h(x) =
∑n

i=1 xiei for x = (x1, . . . , xn) ∈ Nn
0 .

Then h maps Nn
0 onto S. Hence, we can choose a subset X of Nn

0 such that the
mapping h|X is a bijection of X onto S. Now we precisely have to show that the set
Y = h−1(B ∩ S) is finite. Suppose it is infinite. By the preceding Lemma there exist
x, y ∈ Y such that x ≤ y but x �= y. Thus the element z = y − x is a well-defined
nonzero element of Nn

0 and h(z) = h(y)−h(x) ∈ B−B = A, hence h(z) ∈ A∩S = {0},
that is, h(z) = 0, whence h(x) = h(y), contradicting the fact that x �= y, cf. the choice
of Y .

In a second step, still suppose 0 ∈ S, but now let A∩ S be arbitrary (except that
it should of course be finite). Then the set C = A ∩ S, being a finite cancellative
semigroup, is a finite group. Denoting by a prime the passage to the quotient group
G/C, the set A′ ∩ S′ is {0}, so by what we already proved, if B is a coset of A in G
then B′ is a coset of A′ in G′, so the set B′ ∩ S′ is finite. Hence so is its inverse image
under the quotient mapping since that mapping is proper, C being finite. That is, the
set B ∩ S is finite.

In a third and last step, remove the assumption that S contains 0. Let T be the
semigroup obtained by adjoining 0 to S. Then the sets A∩S and A∩T differ by only
one point, and for every coset B of A distinct from A itself the sets B ∩ S and B ∩ T
are the same. Thus, the statement about S follows from the corresponding one for T ,
which is true by what we already proved. �

Lemma 14

Among C-separative semigroups, the C-finite ones are characterized by the pro-

perties mentioned in Lemma 2.
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Proof. Suppose S is a C-separative semigroup; we have to show that S is C-finite if
and only if ρ(S) is C-finite and the mapping ρ is proper. The ‘only if’ part is Lemma 2.
Conversely, suppose ρ(S) is C-finite and the mapping ρ is proper; we have to show that
S is C-finite. Suppose U is a finite subset of S; we have to show that the set C(U) is
finite. The set ρ(U) is obviously finite. So is the set C

(
ρ(U)

)
since ρ(S) is C-finite. The

semigroup S, being C-separative, is normal. Now ρ is a ∗-homomorphism of the normal
∗-semigroup into ρ(S). It follows that ρ

(
C(U)

)
⊂ C

(
ρ(U)

)
([14], Theorem 8). Thus

the set ρ
(
C(U)

)
is finite. Since the mapping ρ is proper, so is the set ρ−1

[
ρ
(
C(U)

)]
,

which clearly contains C(U). �
We can now clear up the remaining point in the proof of Theorem 4. We have to

show that φ(S) is C-finite. By Lemma 14, it suffices to show that ρ
(
φ(S)

)
is C-finite

and the mapping ρ is proper. Since ρ already denotes the quotient mapping of S onto
its greatest R+-separative ∗-homomorphic image, the corresponding mapping for φ(S)
will be denoted by another symbol. Indeed, it is easily seen that there is a unique
mapping ρ′:φ(S)→ ρ(S) such that ρ = ρ′ ◦φ. We leave it as an exercise to verify that
ρ′ can be identified with the quotient mapping of φ(S) onto its greatest R+-separative
∗-homomorphic image. Thus the greatest R+-separative ∗-homomorphic image of φ(S)
is (canonically isomorphic to) ρ(S), which is C-finite. It remains to be shown that the
mapping ρ′ is proper. We leave this as an exercise.
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