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Abstract

Frames consisting of translates of a single function play an important role in sam-
pling theory as well as in wavelet theory and Gabor analysis. We give a necessary
and sufficient condition for a subfamily of regularly spaced translates of a function
φ∈L2(R), (τnbφ)n∈Λ, Λ⊂Z, to form a frame (resp. Riesz basis) for its closed linear
span. One consequence is that if Λ⊂N, then this family is a frame if and only if it
is a Riesz basis. For the case of arbitrary translates of a function φ∈L1(R) we show
that for sparse sets, having an upper frame bound is equivalent to the family being a
frame sequence. Also we give some relatively mild density conditions which yield
frame sequences. Finally, we use the fractional Hausdorff dimension to identify
classes of exact frame sequences.
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1. Preliminaries

Let H be a Hilbert space with inner product < ·, · > linear in the first entry. Let Λ be
any countable index set. Recall that a sequence (fn)n∈Λ ⊆ H is a frame for H if

(1.1) ∃A,B > 0 : A||f ||2 ≤
∑
n∈Λ

| < f, fn > |2 ≤ B||f ||2, ∀f ∈ H.

A,B are called the lower and upper frame bounds. They are not unique: the biggest
lower bound and the smallest upper bound are called the optimal frame bounds. It
can be shown that every element f ∈ H has a representation as an infinite linear
combination of the frame elements: using the frame operator

S : H → H, Sf =
∑

< f, fn > fn.

Then
f = SS−1f =

∑
< f, S−1fn > fn, ∀f ∈ H.

Clearly a frame (fn) is total, i.e., span(fn) = H. In case (fn) is a frame for span(fn)
(which in general might be a proper subspace of H) we say that (fn) is a frame
sequence. We say that (fn) is an exact frame sequence if (fn) is a Riesz basis for
span (fn); i.e., if

(1.2) ∃A,B > 0 : A
∑

|cn|2 ≤
∥∥∥ ∑
n∈Λ

cnfn

∥∥∥2

≤ B
∑

|cn|2,

for all (cn) ∈ c00(Λ), the space of finitely nonzero sequences.
Let us remark here that (1.1) implies that (fn)n∈Λ is a frame for H with frame

bounds A and B, if and only if there is a bounded operator V : H → �2(Λ) defined
by V f = {〈f, fn〉}n∈Λ with A‖f‖2 ≤ ‖V f‖2 ≤ B‖f‖2 for f ∈ H. Thus V must be
an isomorphism onto its range V (H). Let (en)n∈Λ denote the canonical basis vectors
in �2(λ). We then see, taking adjoints, that the above condition is also equivalent to
the existence of a bounded surjective operator T : �2(Λ) → H so that Ten = fn and
A‖a‖2 ≤ ‖Ta‖2 ≤ B‖a‖2 for a ∈ (ker T )⊥ or, equivalently Ad(a, ker T )2 ≤ ‖Ta‖2 ≤
B‖f‖2. The frame operator is S = TV = TT ∗.

Thus in particular (fn)n∈Λ is a frame sequence with constants A,B if and only if
we have the linear map T : c00(Λ) → H defined by Ten = fn extends to a bounded
operator on �2(Λ) and satisfies

(1.3) A‖a‖2 ≤ ‖Ta‖2 ≤ B‖a‖2

for a ∈ (ker T )⊥. Comparing with (1.2) we see that (fn) is an exact frame sequence if
and only if T is one-one.

The most important examples of frame sequences comes from sampling theory [5].
For x ∈ R we define translation by x by

τx : L2(R) → L2(R), (τxf)(y) = f(y − x), y ∈ R.
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It is proved in [4] that a collection (τxnφ), where φ ∈ L2(R), (xn) ⊆ R can never be a
frame for L2(R). However, frame sequences of this form exist and play an important
role in sampling theory as well as wavelet theory ([5], [6], [8]).

We start by considering sequences of the form (τnbφ)n∈Λ, φ ∈ L2(R), Λ ⊂ Z. In
section 2 we give necessary and sufficient conditions for such sets to form frame (resp.
exact frame) sequences. This extends work of Benedetto and Walnut [2] and Benedetto
and Li [1] (see also Hernández and Weiss [9]) as well as removing an unnecessary
hypothesis in their results. Kim and Lim [13] also showed that this was an unnecessary
hypothesis in [2]. As one of several applications of this result, we show that if Λ ⊂ N,
then (τnbφ)n∈Λ is a frame sequence if and only if it is an exact frame sequence. In
section 3 we give conditions for an arbitrary sequence of translates to have finite
upper frame bound. In section 4 we consider the case where Φb (see section 2 for the
definition) is continuous and use the cardinality of the zero set of Φb and the density
of our set to produce frame sequences. Finally, in section 5 we relate the fractional
Hausdorff dimension to exact frame sequences of translates.

2. Frames of translates

Our first theorem is a generalization of a result of Benedetto and Li [1]. The proof we
give is considerably simpler.

We first introduce some notation. For a function φ ∈ L1(R) we denote by φ̂ the
Fourier transform of φ

φ̂(ξ) =
∫
φ(x)e−2πiξx(x)dx.

As usual the definition of the Fourier transform extends to an isometry φ → φ̂ on
L2(R).

Now suppose φ ∈ L2(R) and that b > 0. Let us identify the circle T with the
interval [0, 1) via the standard map ξ → e2πiξ. We define the function Φb : T → R by

Φb(ξ) =
∑
n∈Z

∣∣∣φ̂
(ξ + n

b

)∣∣∣2.

Note that Φb ∈ L1(T).
For any n ∈ Z we note that

〈τnbφ, φ〉 = 〈e−2πinξbφ̂, φ̂〉 =
1
b

∫ 1

0

Φb(ξ)e−2πinξdξ =
1
b
Φ̂b(n).

If Λ ⊂ Z we let HΛ be the closed subspace of L2(T) generated by the characters
e2πinξ for n ∈ Λ.We let EΛ be the closed subspace of HΛ of all f such that Φb(ξ)f(ξ) =
0 a.e. If f ∈ HΛ we denote by d(f,EΛ) the distance of f to the subspace EΛ.
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Theorem 2.1
Suppose φ ∈ L2(R) and b > 0. If Λ ⊂ Z then (τnbφ)n∈Λ is a frame sequence with

frame bounds A and B if and only if for every f ∈ HΛ we have

Ad(f,EΛ)2 ≤ 1
b

∫ 1

0

|f(ξ)|2Φb(ξ)dξ ≤ B‖f‖2,

or equivalently, for all f ∈ HΛ ∩ E⊥
Λ ,

A‖f‖2 ≤ 1
b

∫ 1

0

|f(ξ)|2Φb(ξ)dξ ≤ B‖f‖2.

Furthermore, if this condition is satisfied, (τnbφ)n∈Λ is an exact frame sequence with
the same bounds if and only if EΛ = {0}.

Proof. By our remarks and the definition (τnbφ)n∈Λ is a frame sequence with frame
bounds A,B if and only if the linear map T : c00(Λ) → L2(R) defined by Ten = τnbφ
extends to a bounded linear operator T : �2(Λ) → L2(R) such that Ten = τnbφ and

Ad(u, ker T )2 ≤ ‖Tu‖2 ≤ B‖u‖2

for u ∈ �2(Λ).
Let U : HΛ → �2(Λ) be the natural isometry Uf = {f̂(n)}n∈Λ. Then for any

trigonometric polynomial f ∈ HΛ

‖TUf‖2 =
∥∥∥ ∑
n∈Λ

f̂(n)τnbφ
∥∥∥2

=
∫ ∞

−∞

∣∣∣ ∑
n∈Λ

f̂(n)e−2πinbξφ̂(ξ)
∣∣∣2dξ

=
1
b

∑
n∈Z

∫ 1

0

|f(ξ)|2
∣∣∣φ̂

(n+ ξ
b

)∣∣∣2dξ

=
1
b

∫ 1

0

|f(ξ)|2Φb(ξ)dξ.

This immediately implies the theorem. �
Theorem 2.1 yields a generalization of a result of Benedetto and Li [1] which is part

(3) of the next theorem (note that an unnecessary hypothesis in [1] is also eliminated).

Theorem 2.2
If φ ∈ L2(R), and b > 0 then:

(1) (τnbφ)n∈Z is an orthonormal sequence if and only if

Φb(γ) = b a.e.

(2) (τnbφ)n∈Z is an exact frame sequence with frame bounds A, B if and only if

bA ≤ Φb(γ) ≤ bB a.e.

(3) (τnbφ)n∈Z is a frame sequence with frame bounds A, B if and only if

(2.1) bA ≤ Φb(γ) ≤ bB a.e. on T \Nb,

where Nb = {ξ ∈ T : Φb(ξ) = 0}.
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Proof. Note that (1) follows easily from the fact that (τnbφ)n∈Z is orthonormal if and
only if TU is unitary. (2) is immediate from (3). For (3) we note that if Λ = Z then
HΛ = L2(T) and EΛ = L2(Nb). Hence d(f,EΛ)2 =

∫
T\Nb

|f |2dξ. The proof is then
immediate. �

The next theorem addresses the relationship between frame properties for the two
families (τnbφ)n∈Z and (τnaφ)n∈Z. Observe that we can assume 0 < b < a without loss
of generality.

Theorem 2.3

Let a, b ∈ R with 0 < b < a.
(1) There exists a function φ ∈ L2(R) so that (τnaφ)n∈Z is a frame sequence but

(τnbφ)n∈Z is not a frame sequence.

(2) If a
b ∈ Z and (τnbφ)n∈Z is a frame sequence, then (τnaφ)n∈Z is a frame sequence.

(3) If a
b /∈ Z then there is a function φ ∈ L2(R) so that (τnbφ)n∈Z is a frame sequence,

but (τnaφ)n∈Z is not a frame sequence.

Proof. (1) Define a function φ ∈ L2(R) so that

φ̂(ξ) = 1, if 0 ≤ ξ ≤ 1
a
,

φ̂(ξ) =
ab

b− a
(
x− 1

b

)
if

1
a
≤ ξ ≤ 1

b
,

and
φ̂(ξ) = 0, otherwise.

Then we can easily check that

Φb(ξ) = φ̂
(ξ
b

)2

,

for all ξ ∈ T. Hence, Φb(ξ) is not bounded below on T and so (τnbφ)n∈Z is not a frame
sequence. On the other hand, if ξ ∈ T then ξ

a ∈ [0, 1
a ], so that Φa(ξ) ≥ 1. Therefore,

Φa(ξ) is bounded below on T and so (τnaφ)n∈Z is a frame sequence.
(2) By our assumption, there is a natural number m so that a = mb. Hence,

Φa(ξ) =
∑
n

∣∣∣φ̂
(ξ + n
a

)∣∣∣2 =
∑
n

∣∣∣φ̂
(ξ + n
mb

)∣∣∣2

=
m−1∑
k=0

∣∣∣φ̂
( ξ

m + k
m + n
b

)∣∣∣2 =
m−1∑
k=0

Φb

(ξ + k
m

)
.

It follows that if (τnbφ)n∈Z is a frame sequence, then either Φa(ξ) = 0 or A ≤ Φa(ξ) ≤
Bm. Hence, (τnaφ)n∈Z is also a frame sequence.

(3) Since a
b /∈ Z, there is an 0 < ε so that

ξ + n
a

/∈
[1
b
,
1
b

+ ε
]
, ∀n ∈ Z, ∀0 < ξ < ε.
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Define a function φ ∈ L2(R) so that,

φ̂(ξ) = ξ, ∀ 0 ≤ ξ ≤ 1
a
,

φ̂(ξ) = 1, ∀ ξ ∈
[1
b
,
1
b

+ ε
]
,

and φ̂(ξ) = 0 otherwise. Then,

Φa(ξ) = φ̂
( ξ
a

)2

, ∀ 0 ≤ γ ≤ ε,

and so Φa(ξ) is not bounded below on T. Therefore, (τnaφ)n∈Z is not a frame sequence.
On the other hand,

Φb(ξ) ≥ 1 on [0, c],

where c = min{ε, εb}, and for ξ ∈ [c, 1], either Φb(ξ) = 0 or Φb(ξ) ≥ c2. It follows that
where Φb(ξ) is non-zero, it is bounded above and below and hence (τnbφ)n∈Z is a frame
sequence. �

Notice that Theorem 2.3(2) implies that if (τnbφ)n∈Z is a frame sequence then
(τnbφ)n∈Λ is a frame sequence whenever Λ is a subgroup of Z. It is also clear that
any subsequence of an exact frame sequence remains an exact frame sequence. The
following result is a converse of this.

Theorem 2.4

Suppose φ ∈ L2(R) and b > 0. Then the sequence (τnbφ)∞n=1 is a frame sequence

if and only if (τnbφ)n∈Z is an exact frame sequence.

Proof. Assume (τnbφ)n∈N is a frame sequence. Then (see for example [7]) if 0 �= f ∈ HN

we have that log |f | ∈ L1 and so, in particular, |f | > 0 a.e. This implies that EN = {0}.
It follows that if A,B are the frame bounds for (τnb)n∈N then for every trigonometric
polynomial in HN we have

A‖f‖2 ≤
∫

|f(ξ)|2Φb(ξ)dξ ≤ B‖f‖2.

Now suppose f is any trigonometric polynomial. Then for large enough n we have
that e2πniξf ∈ HN. Thus the same inequality follows trivially for all trigonometric
polynomials in L2(T). This implies the theorem. �

Remark. If (τnbφ)n∈Z is a frame sequence but not an exact sequence frame, then of
course (τnbφ)∞n=1 cannot be a frame sequence. The set (τnbφ)n∈Z is linearly indepen-
dent, but it follows easily that the lower frame bound for (τnbφ)Nn=1 must converge to
0 as N → ∞.

Remark. Note that if Λ ⊂ N then the argument of the above theorem shows that
(τnbφ)n∈Λ is a frame sequence if and only if it is also an exact frame sequence.
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3. Upper frame bounds for subsequences

In this section we give some criteria for the existence of an upper frame bound for a
sequence (τnbφ)n∈Λ.

First we introduce some notation. If Λ is a countable subset of R we define for
x > 0 the function

DΛ(x) = sup
t∈R

|Λ ∩ [t, t+ x]|.

Our first result concerns general conditions for an upper frame bound to exist for
a sequence of translates (which need not in this case be regularly spaced).

Theorem 3.1

Let F : (0,∞) → (0,∞) be a monotone-decreasing function such that F ∈ L2.

Define

(3.1) G(x) = F (x)
∫ x

0

F (t)dt+
∫ ∞

x

F (t)2dt.

Let Λ = (λn) be a countable subset of R. Then:

(1) Suppose φ ∈ L2(R) is such that for some X and every x with |x| ≥ X we have

|φ(x)| ≤ F (|x|). Then in order that (τλn
φ) has an upper frame bound it is sufficient

that ∫ ∞

1

G(x)DΛ(x)
dx

x
<∞.

(2) If ψ(x) = F (|x|) for x �= 0 then a necessary condition for (τλnψ) to have an upper

frame bound is that

sup
x>1

G(x)DΛ(x) <∞.

Remark. Note that G is continuous, decreasing and bounded by

G(0) = lim
x→0

G(x) =
∫ ∞

0

F (x)2dx.

Proof. Suppose t > 0. Note that

∫ ∞

−∞
ψ(x+ t)ψ(x− t)dx = 2

∫ 2t

0

ψ(x+ t)ψ(x− t)dx+ 2
∫ ∞

2t

ψ(x+ t)ψ(x− t)dx.

Now

2F (3t)
∫ t

0

F (x)dx ≤
∫ 2t

0

ψ(x+ t)ψ(x− t)dx ≤ 2F (t)
∫ t

0

F (x)dx

and ∫ ∞

3t

F (x)2dx ≤
∫ ∞

2t

ψ(x+ t)ψ(x− t)dx ≤
∫ ∞

t

F (x)2dx.
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We now argue that

4
3
G(3t) ≤

∫ ∞

−∞
ψ(x+ t)ψ(x− t)dx ≤ 4G(t).

Indeed we have

4
3
G(3t) =

4
3
F (3t)

∫ 3t

0

F (x)dx+
4
3

∫ ∞

3t

F (x)2dx

≤ 4F (3t)
∫ t

0

F (x)dx+
4
3

∫ ∞

2t

ψ(x+ t)ψ(x− t)dx

≤ 2
∫ 2t

0

ψ(x+ t)ψ(x− t)dx+
4
3

∫ ∞

2t

ψ(x+ t)ψ(x− t)dx

≤
∫ ∞

−∞
ψ(x+ t)ψ(x− t)dx

= 2
∫ 2t

0

ψ(x+ t)ψ(x− t)dx+ 2
∫ ∞

2t

ψ(x+ t)ψ(x− t)dx

≤ 4F (t)
∫ t

0

F (x)dx+ 2
∫ ∞

t

F (x)2dx

≤ 4G(t).

Let us now prove (1). We first estimate |φ| ≤ |ψ|+ |φχ[−X,X]|. It now follows that
if t ≥ X ∫ ∞

−∞

∣∣φ(x+ t)||φ(x− t)
∣∣ dx ≤ 4G(t) + C F (2t−X)

for a suitable constant C. It follows (noting that G is bounded) that for a suitable
constant C we have that

〈φ, τaφ〉 ≤ CG
(1

2
a
)

for all a > 0.
Consider any finitely nonzero sequence (cn). Then

∥∥∥
∞∑
n=1

cnτλn
φ
∥∥∥2

=
∞∑

m=1

∞∑
n=1

cmcn〈φ, τλn−λm
φ〉

≤ C
∞∑

m=1

∞∑
n=1

|cm||cn|G
(1

2
|λm − λn|

)

≤ 1
2
C

∞∑
m=1

∞∑
n=1

(
|cm|2 + |cn|2

)
G

(1
2
|λm − λn|

)

≤ C
∞∑

m=1

|cm|2
∞∑
n=1

G
(1

2
|λm − λn|

)
.
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Now
∞∑
n=1

G
(1

2
|λm − λn|

)
≤ 2

∞∑
k=0

∑
2k−1<|λm−λn|≤2k

G(2k−1) +
∑

|λm−λn|≤1/2

G(0)

≤ 4
∞∑
k=0

DΛ(2k−1)G(2k−1) +DΛ(1)G(0)

≤ 8
∞∑
k=0

DΛ(2k−2)G(2k−1) +Dλ(1)G(0)

≤ 8(log 2)−1

∫ ∞

1/4

Dλ(x)G(x)
dx

x
+DΛ(1)G(0)

≤ 8(log 2)−1

∫ ∞

1

DΛ(x)G(x)
dx

x
+ (1 + log 4)DΛ(1)G(0).

This establishes (1).
To prove (2) fix x > 1 and t ∈ R, and let A = {n : t ≤ λn ≤ t+ x}. Then

∥∥∥ ∑
n∈A

τλn
φ
∥∥∥2

≥ 4
3

∑
m∈A

∑
n∈A

G
(3

2
|λm − λn|

)

≥ 4
3
|A|2G

(3
2
x
)

so that if B is the upper frame bound,

G
(3

2
x
)
|A| ≤ 3

4
B.

Hence
G

(3
2
x
)
DΛ(x) ≤ 3

4
B.

Now this implies that

G(x)DΛ(x) ≤ 2G(x)DΛ

(1
2
x
)
≤ 3

2
B.

This completes the proof. �

Corollary 3.2

Under the hypotheses of the theorem if F ∈ L1(R) then a necessary and sufficient

condition for (τλn
φ) to have an upper frame bound is that DΛ(1) <∞.

Proof. In this case we clearly have an estimate G(x) ≤ CF (x). The condition DΛ(1) <
∞ is equivalent to DΛ(x) ≤ Cx for x ≥ 1. �
Lemma 3.3

Suppose that F : (0,∞) → (0,∞) satisfies the conditions of Theorem 3.1 and is

such that for some ε > 0 we have that x1−εF (x) is increasing for x ≥ 1 and x1+εF (x)2

is decreasing for x ≥ 1. Then there is a constant C so that C−1xF (x)2 ≤ G(x) ≤
CxF (x)2, for x ≥ 1, where G is defined in (3.1).
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Proof. This is an immediate calculation from (3.1). �

Remark. Note that in the theorem if F (x) = min(1, x−a) where 1
2 < a < 1 then G(x) ≈

min(1, x1−2a). Hence a necessary condition for (τλn
(φ)) to have an upper-frame bound

is that DΛ(x) ≤ Cx2a−1 for x ≥ 1 and a sufficient condition is that DΛ(x) ≤ Cx2a−1−ε

for x ≥ 1, for some ε > 0. If F (x) = min(1, x−1) then G(x) ≈ x−1(1 + log x) for x ≥ 1.

We now prove a more precise result for the case when F is of the form given
in Lemma 3.3, by giving a condition which is close to necessary and sufficient. This
result will not be used later and the reader who is only interested in later results may
therefore omit it. The argument is simply an adaptation of an argument used for a
similar result in [10] and derives from more general results in [11].

Theorem 3.4

Suppose F : (0,∞) → (0,∞) is a monotone decreasing function with the property

that for some ε > 0 we have x1−εF (x) is increasing for x ≥ 1 but x1+εF (x) is decreasing

for x ≥ 1. Let Λ = (λn) be a countable subset of R. Then:

(1) Suppose φ ∈ L2(R) is such that for some X and every x ≥ X we have |φ(x)| ≤
F (|x|). Then in order that (τλn

φ) has an upper frame bound it is necessary that there

is a constant C so that for every finite interval I we have

(3.2)
∑

λm,λn∈I
G

(
|λm − λn|

)
≤ C

∣∣Λ ∩ [t, t+ x]
∣∣

where G is defined by (3.1).

(2) If ψ(x) = F (|x|) then (3.2) is also necessary for (τλn
φ) to have an upper frame-

bound.

Proof. In this proof, we will use C for a constant depending only on F which may
vary from line to line. Note that we have estimates of the form F (x/2) ≤ CF (x) and
G(x/2) ≤ CG(x). It follows therefore that

1
C
G(|a|) ≤ 〈ψ, τaφ〉 ≤ C G(|a|).

Let us first prove (2) (necessity). Indeed for any bounded interval I, if A = {n : λn ∈
I}, then ∥∥∥ ∑

n∈A
τλn
ψ

∥∥∥2

2
≥ 1
C

∑
m,n∈A

G
(
|λm − λn|

)

and so the conclusion is immediate.
The other direction (1) is harder. It will be convenient to assume F (x) = 1 for

0 ≤ x ≤ 1. Clearly if we prove the result under this assumption the general case will
follow.

Let us start by observing the estimate from (3.2) that if A = {n : λn ∈ I} then
G(x)|A|2 ≤ C|A| so that

(3.3) |Λ ∩ I| ≤ C G(x)−1.
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Now fix t ∈ R and suppose x > 1. We estimate, using Lemma 3.3:

∑
|t−λn|≥x

F
(
|t− λn|

)
≤ C

∞∑
k=1

F
(
2k−1x

) ∣∣{n : 2k−1x ≤ |t− λn| ≤ 2kx
}∣∣

≤ C
∞∑
k=0

F (2kx)G(2kx)−1

≤ C
∞∑
k=0

2−kx−1F (2kx)−1

≤ C
∞∑
k=0

2−εk
(
2(ε−1)kx−1F (2kx)−1

)

≤ Cx−1F (x)−1.

In general for all x > 0 we conclude an estimate of the type:

(3.4)
∑

|t−λn|≥x

F (|t− λn|) ≤ Cmin(1, x−1)F (x)−1.

We now introduce two further functions. Let N(t) = |Λ ∩ [t − 1, t + 1]| and let
H(t) =

∑
n F (|t− λn|). Our assumptions give us that N(t) ≤ C and N(t) ≤ H(t). By

(3.4) we have H(t) ≤ N(t) + C.

Suppose we have an interval I = [x − h/2, x + h/2] of length h > 1. Let J =
[x−h, x+h]. Then we can writeH(t) = H1(t)+H2(t) whereH1(t) =

∑
λn∈J F (|t−λn|)

and H2(t) = H(t) −H1(t). Using (3.4) we have, if |t− x| ≤ 1
2h,

H2(t)2 ≤ 2
∑
λm /∈J

∑
|λn−t|≥|λm−t|

F (|t− λm|)F (|t− λn|)

≤ C
∑
λm /∈J

|t− λm|−1.

On the other hand:

∫ ∞

−∞
H1(t)2 ≤ C

∑
λm,λn∈J

G(|λm − λn|) ≤ C
∑
λm∈J

1.

Combining we have

∫
I

H(t)2dt ≤ C
∑
m

min(1, h|x− λm|−1).
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We use this inequality to estimate
(3.5)∫ ∞

−∞
F (|t− x|)H(x)2dx ≤

∫ t+1

t−1

H(x)2dx

+ C
∞∑
k=1

F (2k)
∫

2k−1<|t−x|<2k

H(x)2dx

≤ C
∞∑
k=0

F (2k)
∑
m

min(1, 2k|t− λm|−1)

= C
∑
m

∞∑
k=0

F (2k) min(1, 2k|t− λm|−1)

≤ C
∑
m

∑
2k<|x−λm|

2kF (2k)|t− λm| + C
∑
m

∑
2k≥|x−λm|

F (2k)

≤ C
∑
m

F (|t− λm|) = CH(t).

For each n let En = (λn − 1
2 , λn + 1

2 ). For any finitely nonzero sequence (an), let
f =

∑
n |an|χEn . Then since f2 ≤ N(t)

∑
n |an|2χEn we have ‖f‖2 ≤ C(

∑
n |an|2).

We also have:

(3.6)

∥∥∥∑
n

anτλn
φ
∥∥∥2

2
≤ C

∑
m,n

|am| |an|
∫ ∞

−∞
F (|t− λm|)F (|t− λn|)dt

≤ C
∑
m,n

|am| |an|
∫ ∞

−∞

∫
En

F (|t− x|)dx
∫
Em

F (|t− y|)dy dt

≤ C
∫ ∞

−∞
(f̃(t))2dt,

where

f̃(t) =
∫ ∞

−∞
F (|t− s|)f(s)ds.

Now suppose g is any nonnegative L2−function of compact support with ‖g‖ = 1
and suppose g̃(t) =

∫ ∞
−∞ F (|t− s|)g(s)ds. Then g̃ ∈ L2 and

(3.7)

∫ ∞

∞
g(t)f̃(t)dt =

∫ ∞

−∞
g̃(t)f(t)dt

≤ C
∫ ∞

−∞
g̃(t)f(t)H(t)2dt

≤ C
( ∫ ∞

−∞
g̃(t)2H(t)2dt

)1/2( ∑
n

|an|2
)1/2

.
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Now

(3.8)

g̃(t)2 =
∫ ∞

−∞

∫ ∞

−∞
F (|t− x|)F (|t− y|)g(x)g(y)dx dy

≤ C
∫ ∞

−∞

∫ ∞

−∞
F (|y − x|)(F (|t− x|) + F (|t− y|))g(x)g(y)dx dy

≤ C
∫ ∞

−∞

∫ ∞

−∞
F (|y − x|)F (|t− x|)g(x)g(y)dx dy

≤ C
∫ ∞

−∞
F (|t− x|)g(x)g̃(x)dx.

Hence, using (3.5),
∫ ∞

−∞
g̃(t)2H(t)dt ≤ C

∫ ∞

−∞

∫ ∞

−∞
F (|t− x|)g(x)g̃(x)H(t)2dt dx

≤
∫ ∞

−∞
g(x)g̃(x)

∫ ∞

−∞
F (|x− t|)H(t)2dt

≤ C
∫ ∞

−∞
g(x)g̃(x)H(x)dx

≤ C
( ∫ ∞

−∞
g̃(x)2H(x)2dx

)1/2

which implies ∫ ∞

−∞
g̃(x)2H(x)2dx ≤ C.

Now (3.7) implies ∫ ∞

−∞
g(t)f̃(t)dt ≤ C

( ∑
m

|am|2
)1/2

and as g is arbitrary (subject to being of compact support and norm one) this implies
that ‖f̃‖2 ≤ C

∑
m |am|2 and (3.6) then yields the theorem. �

For regularly spaced sequences we have some other criteria. We use the terminol-
ogy of Section 2. Recall that a subset Λ of Z is a Λ(p)−set (for p > 2) if the L2− and
Lp−norms are equivalent on HΛ. See [14] and [3].

Theorem 3.5

Suppose b ∈ R and that φ ∈ L2(R). Suppose Λ is a Λ(p)−set where p > 2 and

that Φb ∈ Lr(T) where 1
r + 2

p = 1. Then (τnbφ)n∈Λ has an upper-frame bound.

Proof. If f ∈ HΛ, we observe that∫
T

|f(γ)|2Φb(γ)dγ ≤ ‖f‖2
p‖Φb‖r

and so the theorem is immediate. �
Remark. In order that Φb ∈ Lr it is sufficient by the Hausdorff-Young inequality that∑

n∈Z
|〈φ, τnbφ〉|p/2 <∞.
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4. Frame sequences when φ ∈ L1(R).

Let us call a subset Λ of Z sparse if for any n ∈ N the set Λ ∩ (Λ + n) is finite. Thus
any increasing sequence (λn) is sparse if and only if limn→∞(λn − λn−1) = ∞.

Theorem 4.1

Suppose 0 �= φ ∈ L1(R) ∩ L2(R) and Λ is a sparse subset of Z. Then (τnbφ)n∈Λ

has an upper frame bound if and only if it is a frame. In particular if |φ(x)| = O(F (x))
where F : (0,∞) → (0,∞) is monotone-decreasing and integrable then (τnbφ)n∈Λ is a

frame.

Proof. Suppose (τnbφ)n∈Λ has an upper frame bound but no lower frame bound. We
appeal to Theorem 2.1. There is a sequence (fn) ∈ HΛ ∩ E⊥

Λ so that

lim
n→∞

∫ 1

0

|fn(ξ)|2Φb(ξ)dξ = 0

but ‖fn‖ = 1 for all n. By passing to a subsequence, we can assume without loss
of generality that fn converges weakly to some f ∈ HΛ ∩ E⊥

Λ , and even further that
gn = 1

n (f1 + · · ·+ fn) converges in norm to f . Since (gn) converges to f in measure, it
follows from Fatou’s Lemma that

∫ 1

0
|f(ξ)|2Φb(ξ)dξ = 0 and so f ∈ EΛ. Hence f = 0,

and fn converges weakly to zero.
Now we estimate

∣∣∣
∫ 1

0

|fn(ξ)|2e−2πikξdξ
∣∣∣ ≤ ∑

j∈Z

|f̂n(j)| |f̂n(k + j)|.

Hence ∣∣∣
∫ 1

0

|fn(ξ)|2e−2πikξdξ
∣∣∣ ≤ ∑

j∈Λ∩(Λ−k)

|f̂n(j)| |f̂n(j + k)|.

Since fn converges to 0 weakly this converges to 0 if k �= 0. Hence the measures
|fn(ξ)|2dξ converge weak∗ to dξ in C(T)∗.

Now since φ ∈ L1 the function φ̂ is continuous and so Φb(t) is lower-semi-
continuous and 2π−periodic when regarded as a function on R. In particular Φb is
lower-semi-continuous on T and hence there is a sequence of functions ψn ∈ C(T) such
that 0 ≤ ψn ↑ Φb pointwise.

Clearly ∫ 1

0

ψk(ξ)dξ = lim
n→∞

∫ 1

0

ψk(ξ)|fn(ξ)|2dξ

≤ lim sup
n→∞

∫ 1

0

Φb(ξ)|fn(ξ)|2dξ

= 0.

Hence
∫ 1

0
Φb(ξ)dξ = 0 which is a contradiction. �

If φ decays rapidly enough at ∞ we can achieve a stronger result. We will need
the following lemma.
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Lemma 4.2

Suppose Λ ⊂ Z, and suppose f ∈ HΛ, with ‖f‖ = 1. Let F = |f |2. If J is a finite

interval in Z then ∑
n∈J

|F̂ (n)| ≤ DΛ(|J|).

Proof. We have
|F̂ (n)| ≤

∑
k∈Z

χΛ(k)χΛ(n− k)|f̂(k)||f̂(n− k)|.

Making the estimate |f̂(k)| |f̂(n− k)| ≤ 1
2 (|f̂(n)|2 + |f̂(n− k)|2) we obtain

|F̂ (n)| ≤
∑
k∈Z

|f̂(k)|2χΛ(n− k)

so that ∑
n∈J

|F̂ (n)| ≤ DΛ(|J|)
∑
k∈Z

|f̂(k)|2

which immediately yields the lemma. �

Theorem 4.3

Suppose φ ∈ L2(R) and that b ∈ R. Assume Φb is continuous on T and has exactly

N zeros. Suppose Λ is any set satisfying the density condition

lim
x→∞

DΛ(x)
x

<
1
N
.

Then (τnbφ)n∈Λ is a frame sequence.

Proof. Since Φb is bounded the upper frame bound is trivial. Assume there is no lower
frame bound. Then there is a sequence fn ∈ HΛ with ‖fn‖ = 1 and

lim
n→∞

∫
Φb(x)|f(x)|2 = 0.

Without loss of generality we can suppose the measures |fn(x)|2dx converge weak∗ to
a probability measure dµ. Since Φb is continuous (lower semi-continuity would suffice!)
we have ∫

Φb(x)dµ(x) = 0

so that µ can be written in the form µ =
∑N

k=1 akδtk where t1, . . . , tN are the zeros of
Φb and 0 ≤ ak with

∑
ak = 1.

Now if Fn = |fn|2 we have, applying Lemma 4.2, for every natural number m that

m∑
k=−m

|F̂n(k)|2 ≤ DΛ(2m+ 1).
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Hence
m∑

k=−m

|µ̂(k)|2 ≤ DΛ(2m+ 1).

It follows from a theorem of Wiener [12] that

N∑
k=1

a2k ≤ lim
m→∞

DΛ(2m+ 1)
2m+ 1

<
1
N
.

But then this contradicts the Cauchy-Schwartz inequality since
∑N

k=1 ak = 1. �

Theorem 4.4

Suppose h : (0,∞) → (0,∞) is an increasing continuous function such that there

exist constants 1 < c1 < c2 < ∞ with c1h(x) ≤ h(2x) ≤ c2h(x) for all x, and∫ ∞
1
t−2h(t)dt = ∞. Suppose φ ∈ L2(R) satisfies the condition that φ(x) = O(e−δh(x)))

as x → ∞, where δ > 0. Then, for any b ∈ R, there exists an integer N so that if

Λ ⊂ Z with limx→∞
DΛ(x)

x < 1
N then (τnbφ)n∈Λ is a frame sequence.

Proof. The idea of the proof is to show that the function Φb is C∞ on T and is quasi-
analytic (see [12]) so that there is no ξ ∈ [0, 1) for which all derivatives Φ(n)

b (ξ) = 0
for n ≥ 0. It then follows from Taylor’s theorem that the zeros of Φb are isolated and
hence finite. Theorem 4.3 will then complete the proof. To show Φb is quasi-analytic
we need to show that if Mn = ‖Φ(n)

b ‖2 and τ(r) = infn(Mnr
n) then

(4.1)
∫ ∞

0

log τ(r)
1 + r2

dr = −∞.

Throughout the proof C will denote a constant, depending on h and φ, which
may vary from line to line but is independent of x,m, n, k etc. We begin with the
observation that there exists a constant C so that

1
C

∫ x

0

h(t)
dt

t
≤ h(x) ≤ C

∫ x

0

h(t)
dt

t

so that by replacing h with H(x) =
∫ x

0
h(t)dtt we can suppose h is continuously differ-

entiable and that there is a constant C so that

1
C

≤ xh′(x)
h(x)

≤ C

for all x > 0. If we let v = h−1 be the inverse function then we also have

1
C

≤ xv′(x)
v(x)

≤ C.

Let m ∈ N. Then xme−h(x) attains a maximum at a point xm where xmh′(xm) =
m and so C−1m ≤ h(xm) ≤ Cm. Hence also C−1v(m) ≤ xm ≤ Cv(m). Combining we
have

xme−h(x) ≤
(
Cv(m)

)m
.
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Let N be an integer greater than 2/δ. It follows that

xNme−h(x) ≤
(
C

(
v(Nm)

))Nm

and so

xme−δh(x)/2 ≤
(
Cv(m)

)m
.

From this we obtain

∫ ∞

0

xme−δh(x)dx ≤
(
Cv(m)

)m ∫ ∞

0

e−δh(x)/2dx ≤
(
Cv(m)

)m
.

We now use the argument of Theorem 3.1 to deduce that

|〈φ, τnbφ〉| ≤ Cmin(1, e−δh(1/2|n|b))

for some suitable constant C and all n ∈ Z. It follows easily that

Φb(ξ) =
∑
n∈Z

〈φ, τnbφ〉e2πinξ

is C∞. Furthermore

Mn = ‖Φ(n)
b ‖ ≤ C

∑
k∈Z

|k|ne−δh(1/2|k|b)

for n ∈ N. Hence

Mn ≤ Cn

∫ ∞

0

xne−δh(x)dx ≤
(
Cv(n)

)n
.

It follows that

τ(r) ≤ inf
n≥1

(
Cv(n)r

)n
.

For given r < 1 choose n = [Ch(r−1)/e]. Then Cv(n)r ≤ 1/e and n ≥ Ch(r−1)/e− 1.
Hence

log τ(r) ≤ −Ch(r−1)

for small enough r. Now

∫ 1

0

h(r−1)
1 + r2

dr =
∫ ∞

1

h(r)
1 + r2

dr = ∞

so that (4.1) holds and the proof is complete. �
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5. Fractional dimension of the zero-set and frames

For our next lemma (which is probably known) we let �(I) be the length of an interval
I ⊂ T.

Lemma 5.1
Suppose Λ ⊂ Z, and suppose f ∈ HΛ, with ‖f‖ = 1. Then there is a constant C

so that if I is an interval contained in T then∫
I

|f(ξ)|2dx ≤ C�(I)DΛ

(
�(I)−1

)
.

Proof. Let I be the interval [t− h, t+ h]. Set r = 1 − h and then let

ψ(x) =
1 − r2

1 − 2r cos(2π(x− t)) + r2
=

∑
k∈Z

r|n|e2πin(t−x).

Then for some absolute constant C independent of t, h we have χI ≤ Ch−1ψ. Hence∫
I

|f(x)|2dx ≤ Ch−1

∫ 1

0

ψ(x)F (x)dx

≤ Ch−1
∑
k∈Z

r|k| |F̂ (n− k)|

≤ 2Ch−1
∞∑
k=0

rmkDΛ(m)

for any integer m. Let m be chosen so that �(I)−1 ≤ m ≤ 2�(I)−1. Then rm ≤
(1 − h)1/(2h) ≤ c < 1 for some absolute constant c. We thus quickly obtain the result
since DΛ(2x) ≤ 2DΛ(x) for any x. �

Now if 0 < α < 1 let us define the essential α-Hausdorff measure denoted Hα(E)
of a subset E of T to be the infimum of

∑∞
n=1 �(In)α over all collections of intervals

(In)∞n=1 so that E ⊂ F ∪
⋃∞

n=1 In where F has measure zero.

Theorem 5.2
Suppose φ ∈ L2(R), b > 0 and Λ ⊂ Z are such that (τnbφ)n∈Λ has an upper

frame bound. Suppose further that 0 < α < 1 and limε→0Hα(Φb > ε) = 0 and that
DΛ(x) ≤ Cx1−α for some C and all x. Then (τnbφ)n∈Λ is an exact frame sequence.

Proof. If ε > 0 then pick intervals In so that {Φb > ε} ⊂
⋃∞

n=1 In up to a set of
measure zero and

∑∞
n=1 �(In)α < 2Hα(Φb > ε). Then∫ 1

0

Φb(ξ)|f(ξ)|2dξ ≥ ε
(
‖f‖2 −

∞∑
n=1

∫
In

|f(ξ)|2dξ
)
.

If f ∈ HΛ then
∞∑
n=1

∫
In

|f(ξ)|2dξ ≤ C‖f‖2
∞∑
n=1

�(In)α ≤ 2CHα(ΦB > ε)‖f‖2.

If we take ε small enough we have:
∞∑
n=1

∫
In

|f(ξ)|2dξ ≤ 1
2
‖f‖2

and the result follows by appealing to Theorem 2.1. �
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Combining this with Theorem 3.1 gives us the following theorem:

Theorem 5.3

Suppose 1
2 < a < 1 and that φ ∈ L2(R) satisfies the conditions that |φ(x)| =

O(x−a−ε) as |x| → ∞ where ε > 0 and that limε→0H2a−1(Φb > ε) = 0. Then for

any subset Λ ⊂ Z with DΛ(x) ≤ Cx2(1−a) we have that (τnbφ)n∈Λ is an exact frame

sequence.

Note that in the case when Φb is lower-semi-continuous the condition limε→0Hα

(Φb > ε) reduces to the condition that hα(Φb = 0) = 0 where hα(E) is the infimum of∑
�(In)α over all coverings E ⊂

⋃∞
n=1 In. Thus in this case the condition is essentially

a condition on the fractal dimension of the zero set of Φb.

Example: We conclude by constructing an example where Φb is bounded,
limε→0Hα(Φb > ε) = 0, for every ε > 0 we have an estimate DΛ(x) ≤ Cεx

1−α+ε,

but (τnbφ)n∈Λ fails to be a frame sequence. We observe however we do not have any
such example with Φb continuous or lower-semicontinuous.

For each n ∈ N let mn = max([αn−√
n], 0). We then let Λ =

⋃
n≥1{2n + k2mn :

1 ≤ k ≤ 2n−mn}. Now suppose N = 2p. Then for any interval J of length N it is clear
that we have

|Λ ∩ J | ≤
p−1∑
j=1

2j−mj + 2|J| max
j≥p

2−mj .

Hence

|Λ ∩ J | ≤ 2p−mp

p−1∑
j=1

2−j+mp−mp−j + 2p−mp max
j≥p

2mp−mj .

Since we have an estimate mp ≤ mp−j + Cβj where α < β < 1 and C is a constant
independent of j, p, this implies that

DΛ(2p) ≤ C2p−mp

which implies DΛ(x) ≤ Cεx1−α+ε for all ε > 0.
Now suppose

fn(ξ) = 2(mn−n)/2
2n−mn∑
k=1

e2πik2mnξ

so that ‖fn‖ = 1 and fn ∈ HΛ. Notice that

|fn(ξ)| = 2(mn−n)/2

∣∣∣∣ sin(2n−1ξ/2)
sin(2mn−1ξ)

∣∣∣∣ .

Let En = {|fn| < 21/2(n−mn−
√
n/2)}, and let Fn = T \ En. We will have for an

appropriate constant C that
∫
En

|f(ξ)|2dξ ≤ C2−12
√
n.
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Also Fn is a union of at most 2mn equal intervals and has total measure bounded
by C2mn−n+1/2

√
n. Hence

Hα(Fn) ≤ C2mn−αn+α
√
n/2) ≤ 2−α

√
n/2.

Set F0 = T. Now define Φ on T = [0, 1) by

Φ(ξ) = inf
k≥0

2−kχFk
.

Then Hα(∪j≥kFj) → 0 so that Φ > 0 a.e. and indeed limε>0Hα(Φ > ε) = 0.
We choose φ ∈ L2(R) so that φ̂ = Φ1/2χ[0,1). If we take b = 1 then Φ = Φb. Now

∫ 1

0

|fn(ξ)|2Φ(ξ)dξ ≤ 2−n

∫
Fn

|f(ξ)|2dξ + C2−
√
n/2 → 0.

Hence (τnφ)n∈Λ cannot be a frame sequence.

Remark. Just before this paper went to press we became aware of a paper by J.J.
Benedetto and O.M. Trieber, A perfect reconstruction multirate system with narrow
band filters, Wavelet Transforms and Time-Frequency Signal Analysis, Chapter I, Sec-
tion 1.4, Birkhauser, Boston, 2000. In this paper the authors also give a proof of
the result of Benedetto and Li [1] which removes the unnecessary hypothesis of that
theorem.

References

1. J.J. Benedetto and S. Li, The theory of multiresolution analysis frames and applications to filter
banks, Appl. Comput. Harmon. Anal. 5 (1998), 389–427.

2. J.J. Benedetto and D.F. Walnut, Gabor frames for L2 and related spaces, Wavelets: mathematics
and applications, 97–162, Stud. Adv. Math., CRC, Boca Raton, FL, 1994.

3. J. Bourgain, Bounded orthogonal sets and the Λ(p)−problem, Acta Math. 162 (1989), 227–246.
4. O. Christensen, B. Deng, and C. Heil, Density of Gabor frames, Appl. Comput. Harmon. Anal. 7

(1999), 292–304.
5. I. Daubechies, Ten lectures on wavelets, CBMS-NSF Regional Conference Series in Applied Math-

ematics, 61, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992.
6. B. Deng, C. Xiao, W. Schempp, and Z. Wu, On the existence of Weyl-Heisenberg and affine frames

in L2(R), (preprint).
7. P. Duren, Theory of Hp spaces, Pure and Applied Mathematics, 38, Academic Press, New York-

London, 1970.
8. C. Heil, J. Ramanathan, and P. Topiwala, Linear independence of time-frequency translates, Proc.

Amer. Math. Soc. 124 (1996), 2787–2795.
9. E. Hernández and G. Weiss, A first course on wavelets, Stud. Adv. Math., CRC, Boca Raton, FL,

1996.
10. N.J. Kalton and L. Tzafriri, The behaviour of Legendre and ultraspherical polynomials in Lp-spaces,

Canad. J. Math. 50 (1998), 1236–1252.
11. N.J. Kalton and I. Verbitsky, Weighted norm inequalities and nonlinear equations, Trans. Amer.

Math. Soc. 351 (1999), 3441–3497.
12. Y. Katznelson, An introduction to harmonic analysis, Dover, New York, 1976.
13. H.O. Kim and J.K. Lim, Frame multiresolution analysis, (preprint).
14. W. Rudin, Trigonometric series with gaps, J. Math. Mech. 9 (1960), 203–227.


