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Abstract

In this paper we give some results on the computation of the minimal resolution
of the ideal I(V ) of a smooth parametric variety V ⊂ P

n
k of dimension m

represented by homogeneous polynomials of the same degree r and without base
points. We show that the Castelnuovo-Mumford regularity of V is reg(V ) =
min{d ≥ m − �m

r � | HV (d) =
(
dr+m

m

)
} + 1, where HV (d) is the Hilbert

function of V . If V has maximal rank and the minimal degree of a generator of
I(V ) is α ≥ m−�m

r � then reg(V ) ≤ α+ 1. In this case the shifts of the free
modules Fi of a minimal free resolution of I(V ) are at most two and we show that
the Betti numbers are determined by computing the linear part of the resolution.
In particular, if V is minimally resolved the Fi have one shift, for all but one i.
We show that if (a1, ..., aq) ∈ kq are the coefficients of the polynomials that
represent V there is an open subset U of A

q
k such that, if (a1, ..., aq) ∈ U , V is

minimally resolved and that it is possible to check that U is non-empty for fixed
m,n, r by computer.

Introduction

In [8] and [3] the number of generators of the ideal of a smooth general parametric
variety was studied. In this paper we want to examine the resolution of this ideal.
First we determine the Castelnuovo-Mumford regularity σ = reg(V ) of any smooth
parametric variety V ⊂ P

n
k , over an algebraically closed field k, parametrized by a map

Φ
(
[t0, . . . , tm]

)
=

[
f0(t0, . . . , tm), . . . , fn(t0, . . . , tm)

]
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where fi ∈ k[t0, . . . , tm] are homogeneous polynomials of the same degree r without
base points. We prove that σ = min

{
d ≥ m − �m

r � | HV (d) =
(
dr+m

m

)}
+ 1, where

HV (d) is the Hilbert function of V . Then, considering the set T of N =
(
rσ+m

m

)
general

points Qi = Φ(Pi) of P
n
k , we show that if

0 →
⊕

i≥α+n−1

R(−i)bni → . . . →
⊕
i≥α

R(−i)b1i → I(T ) → 0

is a minimal graded free resolution of I(T ) then

0 →
σ+n−1⊕

i=α+n−1

R(−i)bni → . . . →
σ⊕

i=α

R(−i)b1i → I(V ) → 0

is a minimal graded free resolution of I(V ). If V has maximal rank and the minimal
degree of a generator of I(V ) is α ≥ m− �m

r � then reg(V ) ≤ α + 1 and the resolution
of I(V ) is

0 → R(−α− n +1)an ⊕R(−α−n)bn → . . . → R(−α)a1 ⊕R(−α−1)b1 → I(V ) → 0.

Furthermore the numbers ai and bi are linked by the following relations:

a1 =
(
α + n

n

)
−

(
αr + m

m

)

a2 − b1 = (n + 1)a1 −
(
α + 1 + n

n

)
+

(
(α + 1)r + m

m

)

ad+1 − bd = (−1)d
(
α+d +n

n

)

+ (−1)d+1

(
(α + d)r + m

m

)
+ (−1)d+1

(
n + d

n

)
a1

+ (−1)d+1
d−1∑
i=1

(−1)i(ai+1 − bi)
(
d− i + n

n

)
, 2 ≤ d ≤ n, (an+1 = 0)

which allow us to determine the Betti numbers b1, . . . , bn if one knows the Betti num-
bers a1, . . . , an of the linear part of the resolution of I(V ).

If ai+1bi = 0, for any n ≥ i > 0, V is said to be minimally resolved. The above
mentioned result on the resolution of the set T of general points on V allows us to
prove that if (a1, ..., aq) ∈ kq are the coefficients of the polynomials that represent V

there is an open subset U of A
q
k such that, if (a1, ..., aq) ∈ U , V is minimally resolved.

But for fixed m,n, r the set U can be empty (for example if V is a curve of degree 5
in P

3 or P
4). We show that the non-emptiness of U can be checked over the finite field

Zp and this allows us to use computers for finding varieties which have maximal rank
and are minimally resolved. The computer calculations suggest that, if 2m < n and
α ≥ m− �m

r �, fixed m,n a general parametric variety V is minimally resolved, except
for a few r.
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In the following V ⊂ P
n
k will be a non-degenerate reduced irreducible variety over

an algebraically closed field k.
We will say that V is a parametric variety if there is a polynomial map Φ : P

m
k →

P
n
k (m < n), defined by homogeneous polynomials of the same degree r, whose image

is a dense subset of V .
Observe that, if the characteristic of k is zero then any rational map P

m
k → P

n
k can

be given by homogeneous polynomials. So, if the characteristic of k is zero, parametric
and unirational are synonymous.

If M =
⊕

d≥0 Md is a graded finitely generated module over the polynomial ring
k[x0, . . . , xn] then the Hilbert function of M is given by H(M,d) = dimk(Md). If M

is the coordinate ring A(V ) of a variety V we say that HV (d) = dimk A(V )d is the
Hilbert function of V and that PV (d) = HV (d) (d >> 0) is the Hilbert polynomial of
V . Note that HV (d) =

(
d+r
r

)
− dimk I(V )d.

1. Regularity of smooth parametric varieties without base points

A coherent sheaf F on P
n
k is d-regular if Hi(F(d− i)) = 0 for i > 0. If F is d-regular,

F is d + 1-regular [7, Lecture 14].

Definition 1.1. A variety V ⊂ P
n
k is d-regular if the sheaf IV associated to the ideal

I(V ) of V is d-regular. We set:

reg(V ) = min
{
d | IV is d-regular

}
.

In the following we say that V is generated in degree d if the ideal I(V ) of V can
be generated by forms of degree ≤ d.

Proposition 1.2

If σ = reg(V ) and α = min {d | I(V )d �= 0} then a minimal graded free resolution

of I(V ) is given by

0 → Fn
φn→ . . . Fi

φi→ Fi−1 → . . . → F1
φ1→ I(V )

φ0→ 0

where, for i = 1, . . . , n

Fi =
σ+i−1⊕

j=α+i−1

R(−j)bij .

In particular V is generated in degree σ.

Proof. See [4, Sections 20.5 and 20.6]. �

In the following we will say that bij are the Betti numbers and we will denote with
Ni = kerφi, n ≥ i ≥ 0, the modules of the syzygies of the resolution of Proposition
1.2. We will denote by (Ni)d the graded part of degree d of Ni and by (Ni)≤d the
submodule of Ni generated by the elements of degree ≤ d.
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Proposition 1.3
Let V be a parametric variety parametrized by a map Φ : P

m
k → P

n
k given by

Φ([t0, . . . , tm]) = [f0(t0, .., tm), . . . , fn(t0, .., tm)] where fi ∈ k[t0, . . . , tm] are homoge-
neous polynomials of degree r. Then:

(a) HV (d) ≤ min
{(

d+n
n

)
,
(
dr+m

m

)}
, for all d;

(b) V is smooth of dimension m and has degree rm if and only if HV (d) =
(
dr+m

m

)
, for

some d > 0
(
that is the Hilbert polynomial PV (d) of V is

(
dr+m

m

))
.

Proof. (a) Since HV (d) is the dimension of A(V )d, the claim follows from the natural
map:

α : A(V )d → K[t0, . . . , tm]dr
which is easily proved to be injective. In fact for all F ∈ A(V )d = k[x0, . . . , xn] put

α(F ) = F
(
f0(t0, . . . , tm), . . . , fn(t0, . . . , tm)

)
∈ k[t0, . . . , tm]

and observe that α vanishes on all polynomials F which are 0 on V ; conversely, if
F (P ) �= 0 for some P ∈ V , then the same holds for some point in the image of Φ, i.e.
there is a point Q ∈ P

m with α(F )(Q) �= 0, so that α(F ) is not null. Hence the kernel
of α is exactly I(V )d and α is injective.

(b) The condition that V has dimension m and degree rm implies that the base
locus of the fi is empty and hence V is isomorphic to P

m. Hence the map α is an
isomorphism for d >> 0. Thus the Hilbert polynomial of V is PV (d) =

(
dr+m

m

)
and

HV (d) =
(
dr+m

m

)
, for d >> 0. Vice versa assume that this last equality is attained for

some d. Then the polynomials f i0
0 · · · f in

n , i0 + · · ·+ in = d, generate all polynomials of
degree dr in t0, . . . , tm and this is clearly impossible unless the fi have no base points
and separate points and tangent vectors; it follows that Φ is a regular embedding and
V is smooth of dimension m and degree rm. �

Theorem 1.4
Let V ⊂ P

n
k be a smooth parametric variety of dimension m and represented by

polynomials of the same degree r and without base points. Then:

reg(V ) = min

{
d ≥ m− �m

r
� | HV (d) =

(
dr + m

m

)}
+ 1.

Proof. By Proposition 1.3 we have HV (d) =
(
dr+m

m

)
, for some d > 0. Then let σ =

min{d ≥ m−�m
r � | HV (d) =

(
dr+m

m

)
}+1. Since V is isomorphic to P

m the restriction
map H0(OPn(σ − 1)) → H0(OV (σ − 1)) surjects; this implies H1(IV (σ − 1)) = 0
and Hi(IV (σ − i)) = Hi−1(OV (σ − i)) = Hi−1(OPm(r(σ − i)) for m > i > 1. Since
σ > m − �m

r � we have r(σ − m − 1) �= −m − 1 and then these cohomology groups
vanish for i > 0; hence V is σ-regular, which implies reg(V ) ≤ σ. If d = reg(V ),
H1(IV (d−1)) = 0 and the restriction map H0(OPn(d−1)) → H0(OV (d−1)) surjects.
Then HV (d−1) =

(
(d−1)r+m

m

)
. Thus, to prove the result it is enough to show that d >

m−�m
r �. But, if V is d-regular Hm+1(IV (d− i)) = Hm(OV (d− i)) = Hm(OPm(r(d−

m − 1)) = 0, which implies r(d − m − 1) > −m − 1. From this inequality it easily
follows that d ≥ m + 1 − �m

r �. �

Corollary 1.5
If V is a Veronese variety, that is n =

(
r+m
m

)
− 1, then reg(V ) = m + 1 − �m

r �.
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Proof. It is well known that if V is a Veronese variety V is projectively normal and its
Hilbert function is HV (d) =

(
dr+m

m

)
, for any d ≥ 0. �

In the case of curves we find a result of [8, Proposition 1.5] as a consequence of
Theorem 1.4

Corollary 1.6
If C is a smooth rational curve of degree r, then

reg(V ) = min
{
d | HV (d) = dr + 1

}
+ 1.

Proof. It is well known that a rational curve of degree r can be represented by poly-
nomials of the same degree r without bases points. Then the formula follows from
Theorem 1.4 in which m = 1. �

2. Computing the minimal resolution of a parametric variety via points

Definition 2.1. Let d and m be fixed positive integers. We say that the set S =
{P1, . . . , PN} ⊂ P

m of N =
(
d+m
m

)
points is in generic position if it is not contained

in any hypersurface of degree d.

Remarks. 1) If m = 1 any set of points is in generic position.
2) The N-tuples of points (P1, . . . , PN ) which are in generic position form a non-

empty open subset of P
m × . . . × P

m, that is almost all sets of N =
(
d+m
m

)
points

S = {P1, . . . , PN} ⊂ P
m are in generic position [5, Theorem 4].

3) A systematic way of finding points in generic position in P
m has been described

in [3].

Proposition 2.2
Let V ⊂ P

n
k be a parametric variety parametrized by the map Φ : P

m
k → P

n
k , given

by homogeneous polynomials, f0, . . . , fn of the same degree r. Let σ = reg(V ) and
α = min {d | I(V )d �= 0}. Consider N =

(
rσ+m

m

)
points P1, ..., PN of P

m
k in generic

position such that Qi = Φ(Pi) form a set T of N points of V . Then σ < σ′ = reg(T ).
Furthermore if

0 →
σ′+n−1⊕

j=α+n−1

R(−j)bnj
φ′
n→ . . .

φ′
2→

σ′⊕
j=α

R(−j)b1j
φ′

1→ I(T )
φ′

0→ 0

is a minimal graded free resolution of I(T ) then

0 →
σ+n−1⊕

j=α+n−1

R(−j)bnj
φn→ . . .

φ2→
σ⊕

j=α

R(−j)b1j
φ1→ I(V )

φ0→ 0

is a minimal graded free resolution of I(V ). That is, for every i = 1, . . . , n and j =
α + i − 1, . . . , σ + i − 1 the Betti numbers bij , of the minimal resolution of I(T ) give
all the Betti numbers of the minimal resolution of I(V ).

In particular a minimal set of generators of I(V ) is given by the elements of degree
≤ σ of a minimal set of generators of I(T ) and HV (d) = HT (d), for any d ≤ σ.
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Proof. First we prove the last statement. Since I(V ) is generated in degree σ we
have to prove that I(V )d = I(T )d for d ≤ σ. It is obvious that I(V )d ⊂ I(T )d, for
any d, so we have to prove the opposite inclusion, for d ≤ σ. If f /∈ I(V )d then
there is a point P ∈ P

m such that f(Φ(P )) �= 0, so that f(f0, . . . , fn) is a non-zero
polynomial of degree dr ≤ σr; on the other hand, if f ∈ I(T )d then f(f1, . . . , fn)
vanishes on the N =

(
σr+m

m

)
points Pi and this contradicts the assumption of generic

position. The equality of the Hilbert functions follows from their definition HV (d) =(
d+r
r

)
− dimk I(V )d = HT (d) =

(
d+r
r

)
− dimk I(T )d. Now we prove that σ < σ′. It

is well known that σ′ = min{d | HT (d) =
(
σr+m

m

)
}+1 and that HT (d) <

(
rσ+m

m

)
}

for d < σ′ − 1. By Proposition 1.3 HT (σ − 1) = HV (σ − 1) ≤
(
r(σ−1)+m

m

)
and then

HT (σ−1) �=
(
rσ+m

m

)
. thus σ < σ′. The claim on the resolutions is equivalent to saying

that if Ni = Kerφi and N ′
i = Kerφ′

i then Ni = (N ′
i)≤σ+i, i = 0, . . . , n. We prove

this by induction. By the previous considerations we have N0 = I(V ) = (I(T ))≤σ =
(N ′

0)≤σ. Now if N ′
i is minimally generated by m1, . . . ,mh, . . . ,ml where m1, . . . ,mh are

the generators of Ni = (N ′
i)≤σ+i, the elements of Ni+1 are the syzygies of m1, . . . ,mh

and Ni+1 = (N ′
i+1)≤σ+i. �

Let T = {P1, ..., Ph} ∈ P
n
k be a set of points and d be a positive integer. The

vector space I(T )d is easily seen to be the null space of a matrix with elements in k.
In fact if Rn = {F ∈ k[X0, ..., Xn] | deg(F ) = d} then:

I(T )d =
{
F ∈ Rd | F (Pi) = 0, i = 1, ..., h

}
.

If we denote with Ti, i = 1, ..., u, the terms of degree d in the indeterminates X0, ..., Xr

then S = {T1, ..., Tu} is a basis of the k-vector space Rd. Let Gd(T ) be the following(
d+r
r

)
×h matrix:

Gd(T ) = (bij) where bij = Ti(Pj).

If F = a1T1 + ... + auTu ∈ k[X0, ..., Xn], then the vector of the coefficients of F is

(F )S =




a1

a2
...
au


 .

Then, I(T )d =
{
F ∈ Rd | Gd(T )(F )S = 0

}
, that is F ∈ I(T )d if and only if (F )S is a

vector of the null space of the matrix Gd(T ).

Proposition 2.3

Let V ⊂ P
n
k be a parametric variety parametrized by the map Φ : P

m
k → P

n
k , given

by homogeneous polynomials, f0, . . . , fn of the same degree r. Let a1, . . . , aq be all the

coefficients of f1, . . . , fn. For any i = 0, . . . , n and d = α + i, . . . , σ + i, H(Ni, d) (and

then HV (d)) is the rank of a matrix whose elements are polynomials in a1, . . . , aq.
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Proof. Clearly it is enough to show that the elements of a basis of (Ni)d have coeffi-
cients which are polynomials in a1, . . . , aq. We proceed by induction. By the previous
considerations on sets of points, for any d, if F ∈ (N0)d = I(T )d (T as in Proposition
2.2) the vector of the coefficients of F belongs the null space of the matrix Gd(T ) whose
elements are monomials evaluated at the coordinates of the points of T . Now the points
of T correspond to the values of parameters t0, . . . , tm and then the coordinates of the
points of T are linear functions of the coefficients a0, . . . , aq. Then the coefficients of
F are polynomials in a1, . . . , aq. Thus the claim is proved for N0. We assume now the
claim true for Ni that is that the elements of a basis of (Ni)d have coefficients which are
polynomials in a1, . . . , aq. Then the elements of a minimal set G1, ...., Gh of generators
of Ni have coefficients which are polynomials in a1, . . . , aq. But a basis of (Ni+1)d con-
sists of syzygies of G1, ...., Gh. These syzygies have coefficients which belong to the null
space of a matrix whose elements are, by induction, polynomials in a1, . . . , aq. Then
a basis of this null space has elements whose coefficients are polynomials in a1, . . . , aq.
Thus the claim. �

3. Parametric varieties with maximal rank and minimally resolved

Definition 3.1. Let V be a variety and ρ(d) : H0(OP
n
k
(d)) → H0(OV (d)) be the

natural restriction map. We say that V has maximal rank if, for every integer d ≥ 0,
ρ(d) has maximal rank as a map of vector spaces i.e. it is injective or surjective.

Theorem 3.2

Let V be a parametric variety parametrized by a map Φ : P
m
k → P

n
k given by

polynomials fi of degree r and α = min{d ∈ N | I(V )d �= 0}. The following conditions

are equivalent:

(a) V has maximal rank;

(b) HV (d) = min
{(

d+n
n

)
,
(
dr+m

m

)}
;

(c) HV (α− 1) =
(
α+n−1

n

)
and HV (α) =

(
αr+m

m

)
;

furthermore if α ≥ m− �m
r � the previous conditions are equivalent to

(d) V is smooth, the fi have no base points and reg(V ) ≤ α + 1 (in particular the

ideal I(V ) of V is generated by forms of degree α and α + 1 ).

Proof. (a) ⇔ (b) Clear since h0(OP
n
k
(d)) =

(
d+n
n

)
and h0(OV (d)) =

(
dr+m

m

)
and by

Proposition 1.3, (b).
(b) ⇔ (c) Since HV (d) =

(
d+n
n

)
− dimk I(V )d, then HV (d) =

(
d+n
n

)
is equivalent

to I(V )d = 0 and then HV (α − 1) =
(
α+n−1

n

)
implies HV (d) =

(
d+n
n

)
, for d < α.

Furthermore by Theorem 1.4 HV (α) =
(
αr+m

m

)
implies that V is α + 1 regular and

then HV (d) =
(
dr+m

m

)
for any d ≥ α.

(c) ⇒ (d) Since HV (α) =
(
αr+m

m

)
, by Theorem 1.4, reg(V ) ≤ α + 1 and, by

Proposition 1.2, V is generated in degree α + 1.
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(d) ⇒ (c) By Theorem 1.4 HV (α) =
(
αr+m

m

)
and since V has no generator of

degree < α we have HV (α− 1) =
(
α+n−1

n

)
. �

Remarks. (1) If V has maximal rank then α = min{d ∈ N |
(
d+n
n

)
>

(
rd+m

m

)
}.

(2) The assumption α ≥ m − �m
r � of Theorem 3.2 is necessary. For example if

V ⊂ P
n
k is a Veronese variety with r ≥ m > 3, V has maximal rank since HV (d) =(

dr+m
m

)
, for any d ≥ 0, and reg(V ) = m + 1 − �m

r � = m [Corollary 1.5] but it is well
known that α = 2.

By Theorem 3.2, if α ≥ m− �m
r � and V has maximal rank then the resolution of

I(V ) is of the form :

(∗) 0 → R(−α−n+1)an ⊕R(−α−n)bn
φn→ . . .

φ2→ R(−α)a1 ⊕R(−α−1)b1
φ1→ I(V )

φ0→ 0.

We have H(Ni, α + i) = ai. Note that a1 = dimk(I(V )α) �= 0.

Now, for every i = 0, . . . , n, let Ni = ker φi and W (Ni) denote the vector subspace
of (Ni)α+i+1 generated by (Ni)α+i under multiplication by X0, ..., Xn, that is

W (Ni) = X0(Ni)α+i + . . . + Xn(Ni)α+i ⊆ (Ni)α+i+1.

Clearly bi = H(Ni, α + i + 1) − dimk(W (Ni)) and dimk(W (Ni)) ≤ min{(n +
1)ai, H(Ni, α + i + 1)}

Definition 3.3. Let V be a parametric variety of maximal rank parametrized by a
map Φ : P

m
k → P

n
k given by polynomials fi of degree r. Let min

{
d ∈ N |

(
d+n
n

)
>(

rd+m
m

)}
= α ≥ m − �m

r �. V is said minimally resolved if, for any i = 0, . . . , n, the
vector spaces W (Ni) have maximal dimension

(∗∗) dimk(W (Ni)) = min
{
(n + 1)ai, H(Ni, α + i + 1)

}
that is bi = max {0, H(Ni, α + i + 1) − (n + 1)ai}. If (∗∗) holds for i = 0, V is said
minimally generated.

Minimally generated curves have been studied in [8]. Minimally generated surfaces
and threefolds have been studied in [3].

Proposition 3.4

Let V ⊂ P
n
k be a non-degenerate parametric variety represented by polynomials

fi ∈ k[t0, . . . , tm], i = 1, . . . , n. Assume that m < 2n and min{d | I(V )d �= 0} = α ≥
m− �m

r �. Let a1, ..., aq be all the coefficients of all the polynomial fi. Then:

(a) the set U ⊂ A
q of the q-tuples (a1, ..., aq) for which V is smooth of dimension m

and degree mr is open and non-empty;

(b) the set U1 ⊂ A
q of the q-tuples (a1, ..., aq) ∈ U for which V has maximal rank is

open;

(c) the set U2 ⊂ A
q, of the q-tuples (a1, ..., aq) ∈ U1 for which V is minimally generated

is open;

(d) the set U3 ⊂ A
q, of the q-tuples (a1, ..., aq) ∈ U2 for which V is minimally resolved

is open.
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Proof. (a) First we prove that for any m, r > 0 and n > 2m there exists a V0 which
is smooth, of dimension m and degree rm: it is enough to take a general projection
in P

n of the Veronese embedding of P
m, which is defined by a basis for the space of

homogeneous polynomials of degree n. Then by Proposition 1.3, (b) there exists a d0

such that HV0(d) =
(
dr+m

m

)
.

Now by Proposition 2.3 HV (d0) is equal to the rank ρ(M) of a matrix M whose
elements are polynomials in a0, . . . , aq and by Proposition 1.3, (a) ρ(M) ≤

(
d0r+m

m

)
.

Then ρ(M) is maximal if and only if ρ(M) =
(
d0r+m

m

)
that is (a0, ..., aq) is not the

solution of a finite set of polynomials, i.e. it belongs to an open set of A
q.

(b) By Theorem 3.2, (1) ⇔ (3) and Proposition 2.3 this condition is equivalent
to the maximality of the ranks of two matrices whose elements are polynomials in
a1, . . . , an that is by the non vanishing of a finite number of polynomials in a1, . . . , an.
Thus the claim.

(d) This condition is given by the maximality of the dimension of the vector spaces
W (Ni). But W (Ni) ⊆ (Ni)α+i+1 is generated by the the elements of a basis of (Ni)α+i

multiplied by the indeterminates X0, . . . , Xn. Now the elements of a basis of (Ni)α+i

have coefficients which are polynomials in a1, . . . , aq [Proposition 2.3] so dimk(W (Ni))
is the rank of a matrix with coefficients which are polynomials in a1, . . . , an and the
claim follows as in point (a).

(c) Same argument as in (d) for i = 0. �

Theorem 3.5

Let V be a parametric variety parametrized by a map Φ : P
m
k → P

n
k given by

polynomials fi of degree r and α = min {d ∈ N | I(V )d �= 0}. Suppose that V has

maximal rank and α ≥ m− �m
r �. Set an+1 = 0.

(a) We have:

a1 =
(
α + n

n

)
−

(
αr + m

m

)
, a2 − b1 = (n + 1)a1 −

(
α + 1 + n

n

)
+

(
(α + 1)r + m

m

)

and for d = 2, ..., n

(−1)d+1(ad+1 − bd) = −
(
α+d +n

n

)
+

(
(α + d)r + m

m

)
+

(
n + d

n

)
a1

+
d−1∑
i=1

(−1)i(ai+1 − bi)
(
d− i + n

n

)
.

Then to determine all the Betti numbers of the resolution of V it is enough to

determine the Betti numbers a1, ..., an of the linear part of the resolution.

(b) V is minimally resolved if and only ai+1bi = 0, for any n ≥ i > 0.
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Proof. a) By computing the dimensions of the homogeneous components of (*) we get:

dimk(I(V ))α+d = a1

(
n + d

n

)
+

d∑
i=1

(−1)i(ai+1 − bi)
(
d− i + n

n

)

for d = 1, . . . , n − 1. We have dimk(I(V ))α+d =
(
α+d+n

n

)
−

(
(α+d)r+m

m

)
. Thus a1 =

dimk(I(V ))α =
(
α+n
n

)
−

(
αr+m

m

)
and a2 − b1 =

(
n+1
n

)
a1 −dimk(I(V ))α+1 = (n+1)a1 −(

α+1+n
n

)
+

(
(α+1)r+m

m

)
and the third claim easily follows.

(b) If n > i ≥ 1 consider the graded short exact sequence:

0 → Ni+1 → R(−α− i +1)ai ⊕R(−α−i)bi → Ni → 0.

Then, from the additivity of the Hilbert function, we get that
ai+1 = H(Ni+1, α+ i) = (n+1)ai + bi−H(Ni, α+ i) = (n+1)ai−dimk(W (Ni)).

Then ai = 0 implies ai+1 = 0 and

h = min
{
i | dimk(W (Ni)) = (n + 1)ai

}
= min

{
i | ai+1 = 0

}
> 0.

Hence V is minimally resolved if and only if ai = 0 for i > h and bi = 0 for
i ≤ h− 1. �

Corollary 3.6
Under the assumptions of Theorem 3.5 if(

α + 1 + n

n

)
−

(
(α + 1)r + m

m

)
− (n + 1)a1 ≥ 0

and V is minimally generated then V is minimally resolved.

Proof. It is enough to observe that under the assumptions
(
α+1+n

n

)
−

(
(α+1)r+m

m

)
=

H(N0, α + 1) ≥ (n + 1)a1 and then, by Definition 3.3, dimk(W (Ni)) = (n + 1)ai that
is a2 = 0 which by Theorem 3.5 implies that V is minimally resolved. �

Proposition 3.7
Let V ⊂ P

n
k be a parametric variety of maximal rank parametrized by the map

Φ : P
m
k → P

n
k , given by homogeneous polynomials, f0, . . . , fn of the same degree r.

Let α = min{d | I(V )d �= 0} = min {d ∈ N |
(
d+n
n

)
>

(
rd+m

m

)
}. Consider N =

(
rα+m

m

)
points P1, ..., PN of P

m in generic position such that Qi = Φ(Pi) form a set T of N
points of V . Then the linear part of the resolution of I(V ) is also the linear part of
the resolution of I(T ).

Proof. If in the first part of the proof of Proposition 2.2 we substitute α for σ we get
that I(V )α = I(T )α. Now the claim on the resolutions is equivalent to saying that
(Ni)α = (N ′

i)α, i = 0, . . . , n. We prove this by induction. We have N0 = I(V )α =
(I(T ))σ = (N ′

0)σ. Now if the linear syzygies of N ′
i coincide with the linear syzygies

of of Ni, the linear syzygies of Ni+1 and of N ′
i+1 are both syzygies of m1, . . . ,mh and

then coincide. �



On the computation of the minimal resolution of smooth parametric varieties 31

4. Proving that a parametric variety has maximal rank or is minimally

resolved by computer

In the following we want to show how the computer can be used to find parametric
smooth varieties V of maximal rank, minimally generated and minimally resolved.

Let Zp be the residue field of the integers modulo a prime p. If f = b1T1 + ... +
buTu is a polynomial of Zp[t1, . . . , tm] (Ti are the terms in t1, . . . , tm and bi ∈ Zp are
the coefficients of f) then f = b1T1 + ... + buTu is the corresponding polynomial in
Z[t1, t2, . . . , tm].

Proposition 4.1

Let V ⊂ P
n
Z∗
p

(Z∗
p= algebraic closure of Z

∗
p) be a parametric variety represented

by homogeneous polynomials f i ∈ Zp[t0, . . . , tm], i = 0, . . . , n of degree r. Let V ⊂ P
r
k

(char(k)=0) be the corresponding parametric variety represented by the polynomials

fi ∈ Z[t0, . . . , tm] ⊂ k[t0, . . . , tm]. Then:

(a) if V has maximal rank also V has maximal rank;

(b) if V is minimally generated also V is minimally generated;

(c) if V is minimally resolved also V is minimally resolved.

Proof. First we recall the following straightforward fact: if Q = (aij) is a c× d matrix
with entries aij ∈ Z and Q = aij is the c× d matrix whose entries are the integers aij
modulo a prime p then rk(Q) ≤ rk(Q) (rk=rank). Hence if rk(Q) is maximal, that is
rk(Q) = min {c, d}, also rk(Q) = min {c, d}. Now, by Proposition 2.3 and by the proof
of Proposition 3.4, the conditions of (a), (b), (c) are all conditions on the maximality of
ranks of matrices whose elements are polynomials in the coefficients of the polynomials
fi. The proposition then follows. �

Theorem 4.2

Fix integers m,n, r such that min
{
d ∈ N |

(
d+n
n

)
>

(
rd+m

m

)}
≥ m − �m

r �. If,

for a prime p, there exists a parametric variety of P
n
Z∗
p

represented by homogeneous

polynomials fi ∈ Zp[t0, . . . , tm], i = 0, . . . , n of degree r which has maximal rank or

(respectively) is minimally generated or (respectively) is minimally resolved then, for

any field k of characteristic zero, a generic parametric variety V ⊂ P
n
k of dimension m

represented by polynomials of degree r has maximal rank or (respectively) is minimally

generated or (respectively) is minimally resolved.

Proof. The claim follows from Propositions 3.4 and 4.1. �

Using the previous results of the paper it is now easy to construct algorithms that
for fixed m,n, r produce examples (if they exist) of parametric varieties V with maximal
rank or minimally generated (Algorithm 4.3) or minimally resolved (Algorithm 4.4).
These algorithms are based on existing algorithms that compute the Hilbert function,
generators and the linear part of the resolution of ideals of a finite set of points (see
[1], [2]).
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Algorithm 4.3. (For checking maximal rank and minimal generation.)

Step 1. Input the integers m,n, r, the prime p and the the coefficients (in Zp) of
the polynomials f i that represent V .

Step 2. If α = min
{
d ∈ N |

(
d+n
n

)
>

(
rd+m

m

)}
, determine the set T , of

N =
(
r(α+1)+m

m

)
points of V , described in Proposition 2.2 (this can always be done, if

p is large enough).

Step 3. Compute the Hilbert functions HT (α− 1), HT (α).

Step 4. If HT (α − 1) =
(
α+n−1

n

)
and HT (α) =

(
αr+m

m

)
then output: V has

maximal rank, otherwise output: it is not possible to decide if V has maximal rank,
and stop.

Step 5. Compute the elements of degree ≤ α + 1 of a minimal set of generators
of I(T ). This gives the Betti number b1.

Step 6. If b1 = max
{
0,

(
α+1+n

n

)
−

(
(α+1)r+m

m

)
− (n+1)[

(
α+n
n

)
−

(
αr+m

m

)
]
}

output:
V is minimally generated, otherwise stop.

Algorithm 4.4. (For checking maximal rank and minimal resolution.)

Step 1. Input the integers m,n, r, the prime p and the the coefficients (in Zp) of
the polynomials f i that represent V .

Step 2. If α = min{d ∈ N |
(
d+n
n

)
>

(
rd+m

m

)
}, determine the set T , of N =

(
rα+m

m

)
points of V , described in Proposition 3.7 (this can always be done, if p is large enough).

Step 3. Compute the Hilbert functions HT (α− 1), HT (α).

Step 4. If HT (α − 1) =
(
α+n−1

n

)
and HT (α) =

(
αr+m

m

)
then output: V has

maximal rank, otherwise output: it is not possible to decide if V has maximal rank,
and stop.

Step 5. Compute the Betti numbers ai, 1 ≤ i ≤ n, of the linear part of the
resolution of the ideal I(T ).

Step 6. Compute the Betti numbers bi of I(V ) by using the formulas of Theorem
3.5.

Step 7. If ai+1bi = 0 for any i output: V is minimally resolved, otherwise output:
it is not possible to decide if V is minimally resolved.

Remark. By Proposition 3.4 with a random choice of coefficients in Step 1 of Algo-
rithms 4.3 and 4.4 one always finds a variety V of maximal rank or minimally generated
or minimally resolved unless for fixed m,n, r there is no variety V of maximal rank or
minimally generated or minimally resolved.

It is possible to implement Algorithm 4.3 and 4.4 in the language C++ by using
a combination of the softwares Points99 [9] and linsyz [6]. This has been done for
us by F. Cioffi on an Intel Pentium running Linux. The examples we have run on
the computer suggest that, if 2m < n and α ≥ m − �m

r �, for fixed m,n a general
parametric variety has maximal rank and is minimally resolved for any r , except for
a few exceptions. We quote, the following cases which we proved by computer.
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Theorem 4.5 ([8])

Let the base field k have characteristic char(k) = 0. A general parametric curve

V ⊂ P
n
k , n ≥ 3, of degree δ ≤ 100, has maximal rank and is minimally generated if

and only if n �∈ {3, 4} or δ �= 5.

Theorem 4.6 ([3])

Let char(k) = 0 and V ⊂ P
n
k (n ≥ 5) be a general parametric surface of degree

δ ≤ 49. If n �= 7 or δ �= 9 a general V has maximal rank and is minimally generated.

A general surface of degree 9 in P
7 has maximal rank but we do not know if it is

minimally generated (the computer suggests that it is not minimally generated).

Theorem 4.7 ([3])

Let char(k) = 0 and V ⊂ P
n
k (n ≥ 7) be a parametric non-degenerate smooth

threefold of degree δ ≤ 27. A general V has maximal rank and is minimally generated

if and only if n �= 7 or δ �= 8.

Theorem 4.8

Let char(k) = 0 and V ⊂ P
n
k (3 ≤ n ≤ 7) be a general parametric curve which

has degree δ �= 5 in P
3
k or in P

4
k or degree δ �= 6 in P

5
k or degree δ /∈ {7, 8} in P

6
k or

degree δ /∈ {9, 10} in P
7
k. Then if δ ≤ 20, V is minimally resolved.

We do not know if a general parametric curve of degree δ = 6 in P
5
k or degree

δ ∈ {6, 7} in P
6
k is minimally resolved (the computer suggests that it is not minimally

resolved).

Theorem 4.9

Let char(k) = 0 and V ⊂ P
n
k (5 ≤ n ≤ 7) be a general parametric surface of

degree δ ≤ 9 with (δ, n) �= (9, 7). Then V is minimally resolved.

Remark. By using Theorems 4.5, 4.6, 4.7 and Corollary 3.6 it is possible to find other
case of minimally resolved varieties. For example a general parametric curve of degree
22 or 24 in P

4, or of degree 26 in P
6 is minimally generated by Theorem 4.5 and then

minimally resolved, since it is easily shown that it satisfies the condition of Corollary
3.6. The same happens for a general parametric surface of degree 25 in P

8.
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