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Abstract

The asymptotic expansion of the trace of the heat kernel Θ(t) =
∑∞

j=1

exp(−tλj) as t → 0+ has been derived for a variety of domains, where {λj}
are the eigenvalues of the negative Laplace operator −∆ = −

∑2
i=1(

∂
∂xi )2

in the (x1, x2)-plane. The dependence of Θ(t) on the connectivity of domains
and the boundary conditions is analyzed. Particular attention is given for a ge-
neral annular drum in R

2 together with Robin boundary conditions, where the
coefficients in the boundary conditions are positive smooth functions. Some
applications of an ideal gas enclosed in the general annular drum are given.

1. Introduction

Let Ω be a given arbitrary simply connected bounded domain in R
2 with a smooth

boundary ∂Ω. Consider the Robin problem

−∆u = λu in Ω ,
( ∂

∂n
+ γ

)
u = 0 on ∂Ω , (1.1)

where ∂
∂n denotes differentiation along the inward pointing normal to ∂Ω, where the

coefficient γ is a positive smooth function and u ∈ C2(Ω) ∩ C(Ω̄).
Denote its eigenvalues counted according to multiplicity, by

0 < λ1 ≤ λ2 ≤ λ3 ≤ ... ≤ λj ≤ ... → ∞ as j → ∞ . (1.2)
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The basic problem is that of determining some geometric quantities associated with
the bounded domain Ω from complete knowledge of the eigenvalues (1.2) using the
asymptotic expansion of the trace of the heat kernel

Θ(t) =
∞∑
j=1

exp(−tλj) as t → 0+. (1.3)

The Robin problem (1.1) has been investigated by many authors (see for exam-
ple, Pleijel [14], Kac [9], McKean and Singer [10], Stewartson and Waechter [19],
Gottlieb [5] and Hsu [8]) in the following special cases:

(i) case 1. γ = 0 (the Neumann problem)

Θ(t) =
|Ω|
4πt

+
|∂Ω|

8(πt)1/2
+ a0 +

7
256

( t

π

)1/2
∫
∂Ω

K2(z) dz + O(t) as t → 0+, (1.4)

(ii) case 2. γ → ∞ (the Dirichlet problem)

Θ(t) =
|Ω|
4πt

− |∂Ω|
8(πt)1/2

+ a0 +
1

256

( t

π

)1/2
∫
∂Ω

K2(z) dz + O(t) as t → 0+. (1.5)

In these formulae, |Ω| is the area of Ω, |∂Ω| is the total length of ∂Ω and K(z)
is the curvature of ∂Ω,where z is the arc length of the counterclockwise oriented
boundary ∂Ω. The constant term a0 has geometric significance, e.g., if Ω is smooth
and convex, then a0 = 1

6 and if Ω is permitted to have a finite number of smooth
convex holes “H”, then a0 = (1 −H)/6.

We merely note that aspects of the question of Kac [9], namely, can one hear
the shape of a drum? have been discussed by Sleeman and Zayed [15] for the Robin
problem (1.1) when γ is a positive constant, and by Zayed [25] when γ is a positive
smooth function. Further, the Robin problem (1.1) has been investigated by Hsu [8]
in the general situation where Ω is a compact Riemannian manifold of n-dimensions
with smooth boundary, and has determined the first four terms of Θ(t) as t → 0+.

Thus, in the mathematical terms, Kac’s question becomes: Does the boundary
condition define the spectrum uniquely? The proof of Gordon et al [6] uses drums
made by piecing together with few (identical) basic shapes, for examples, triangles.
Gordon et al [6] proved that different shaped drums can posses identical spectra, that
is they are “isospectral”. The examples of Hajima Urakawa [20] and peter Buser [4]
also show that one can not always hear the shape of a domain in R

n, for n ≥ 3 . Also,
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Milnor [11] has constructed two non-congruent 16−dimensional tori whose Laplace
Beltrami operators have precisely the same eigenvalues.

In the present paper we are not concerned with the discussions of the non-
uniqueness of the inverse problems, but we are concerned with the determination of
some geometric quantities of some general bounded domains from complete know-
ledge of its eigenvalues.

The object of this paper is to discuss the following inverse problem: Suppose
that Ω is a general annular drum in R

2 consisting of a simply connected bounded
inner domain Ω1 with a smooth boundary ∂Ω1 and a simply connected bounded
outer domain Ω2 ⊃ Ω̄1 with a smooth boundary ∂Ω2. Suppose that the eigenvalues
(1.2) are given for the Helmholtz equation

−∆u = λu in Ω (1.6)

together with the Robin boundary conditions

( ∂

∂n1
+ γ1

)
u = 0 on ∂Ω1,( ∂

∂n2
+ γ2

)
u = 0 on ∂Ω2, (1.7)

where ∂
∂ni

(i = 1, 2) denote differentiations along the inward pointing normals to the
boundaries ∂Ωi (i = 1, 2) respectively, while the coefficients γi (i = 1, 2) are positive
smooth functions defined on ∂Ωi (i = 1, 2) respectively.

The basic problem is to determine some geometric quantities associated with
the general annular drum Ω from complete knowledge of its eigenvalues (1.2) using
the asymptotic expansion of Θ(t) for small positive t.

Note that the problem (1.6)-(1.7) has been discussed by Zayed [21, 24] in the
case where γi (i = 1, 2) are positive constants.

2. Statement of results

Before we state our main results, we remind the reader that x and y are two-
dimensional variables, while dx, dy (or dyi and dzi, i = 1, 2) denote the two (or
one)-dimensional Euclidean area elements, as indicated in Section 2 and 3.
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Theorem
Suppose that the boundaries ∂Ωi (i = 1, 2) of the general annular drum Ω are

given locally by the equations xn = yn(zi) (n = 1, 2) in which zi (i = 1, 2) are the
arc lengths of the counter clockwise-oriented boundaries ∂Ωi (i = 1, 2) and yn(zi) ∈
C∞(∂Ωi). Let Li be the lengths of ∂Ωi (i = 1, 2) and let Ki(zi) (i = 1, 2) be their
curvatures respectively. Then, the result of our main problem (1.6)-(1.7) can be
summarized in the following form:

Θ(t) =
a1

t
+

a2

t1/2
+ a3 + a4t

1/2 + O(t) as t → 0, (2.1)

where

a1 =
|Ω|
4π

,

a2 =
( 2∑

i=1

Li

)
/ 8π1/2,

a3 =
1
2π

[ ∫
∂Ω1

γ1(z1) dz1 −
∫

∂Ω2

γ2(z2) dz2

]
,

a4 =
7

256π1/2

2∑
i=1

∫
∂Ωi

[
K2

i (zi) −
32
7

{
γi(zi)Ki(zi) − 2γ2

i (zi)
}]

dzi.

From this theorem, we note that the formula (2.1) is in agreement with Zayed’s
result [21, 24] when γi (i = 1, 2) are positive constants.

With reference to the formula (1.4) and Zayed [24], the asymptotic expansion
(2.1) may be interpreted as follows:

(i) Ω is a general annular drum in R
2 and we have the Robin boundary condi-

tions (1.7) where γi (i = 1, 2) are positive smooth functions.
(ii) For the first four terms, Ω is a general annular drum in R

2 with H =
1 − 3

π [
∫

∂Ω1

γ1(z1) dz1 −
∫

∂Ω2

γ2(z2) dz2] holes, and has area |Ω| and the inner com-

ponent of the boundary has length L1 and curvature [K2
1 (z1) − 32

7 {γ1(z1)K1(z1) −
2γ2

1(z1)}]1/2 together with the Neumann boundary condition, while the outer com-
ponent of the boundary has length L2 and curvature [K2

2 (z2) − 32
7 {γ2(z2)K2(z2) −

2γ2
2(z2)}]1/2 together with the Neumann boundary condition, provided “H” is a

positive integer.
We close this section with the following question: Can one construct two non-

congruent general annular drums (with Dirichlet or Neumann or Robin boundary
conditions) whose Laplace operators have precisely the same eigenvalues? This is
an open problem, which has been left for the interested readers.
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3. Construction of the results

With reference to Kac [9], Hsu [8] and Zayed [25], it is easily seen that Θ(t) associated
with the main problem (1.6)-(1.7) is given by

Θ(t) =
∫∫
Ω

G γ(t, x, x) dx (3.1)

where the heat kernel G γ(t, x, y) is defined on (0, ∞) × Ω̄ × Ω̄, which satisfies the
following: For fixed x ∈ Ω̄, and γ is a function of γi (i = 1, 2), G γ(t, x, y) satisfies
the heat equation in t, y:

( ∂

∂t
− ∆y

)
G γ(t, x, y) = 0, (3.2)

and the Robin boundary conditions

[ ∂

∂niy
+ γi(y)

]
G γ(t, x, y) = 0 on ∂Ωi (i = 1, 2), (3.3)

and the initial condition

lim
t→0+

G γ(t, x, y) = δ(x− y), (3.4)

where δ(x− y) is the Dirac delta function located at the source point x = y.

Note that in (3.2), (3.3) the subscript “y” means that the derivatives are taken
in y-variable. By the super position principle of the heat equation, we write

G γ(t, x, y) = GN (t, x, y) + κ γ(t, x, y), (3.5)

where GN (t, x, y) is the Neumann heat kernel on Ω which satisfies (3.2) and the
Neumann boundary conditions ∂

∂niy
GN (t, x, y) = 0 on ∂Ωi (i = 1, 2) and the initial

condition (3.4), while κ γ(t, x, y) satisfies (3.2) and the boundary conditions

∂

∂niy
κ γ(t, x, y) = −γi(y)G γ(t, x, y) on ∂Ωi (i = 1, 2), (3.6)

and the initial condition
lim
t→0+

κ γ(t, x, y) = 0 . (3.7)
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Now, the solution κ γ(t, x, y) which satisfies (3.2), (3.6) and (3.7), (see for example
[8], [17, 18], [25]) can be written in the form

κ γ(t, x, y) =
∫ t

0

ds

∫
∂Ω1

GN (t− s, x, z1) γ1(z1)G γ(s, z1, y) dz1

−
∫ t

0

ds

∫
∂Ω2

GN (t− s, x, z2) γ2(z2)G γ(s, z2, y) dz2. (3.8)

From (3.5) and (3.8) we have the following integral equation:

G γ(t, x, y) = GN (t, x, y) +
∫ t

0

ds

∫
∂Ω1

GN (t− s, x, z1)γ1(z1)G γ(s, z1, y)dz1

−
∫ t

0

ds

∫
∂Ω2

GN (t− s, x, z2) γ2(z2)G γ(s, z2, y) dz2. (3.9)

On applying the iteration method (see for example [1, 2], [12], [22, 23]) to the integral
equation (3.9) we obtain an infinite convergent series

G γ(t, x, y) =
∞∑

m=0

(−1)mFm(t, x, y), (3.10)

where
F0(t, x, y) = GN (t, x, y) (3.11)

and

Fm(t, x, y) =
∫ t

0

ds

∫
∂Ω2

GN (t− s, x, z2) γ2(z2)Fm−1(s, z2, y) dz2

−
∫ t

0

ds

∫
∂Ω1

GN (t− s, x, z1) γ1(z1)Fm−1(s, z1, y) dz1 (3.12)

where m = 1, 2, 3, ...
We will often use the following simple estimate for the Neumann heat kernel

(see for example [1, 2], [3], [8]): There exists positive constants t0, c1 such that for
all t < t0, x, y ∈ Ω̄ × Ω̄, we get

GN (t, x, y) ≤ c1t
−1 exp

{
− |x− y|2

c1t

}
. (3.13)
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Lemma 3.1

We have that

∞∑
m=3

∫∫
Ω

|Fm(t, x, x)| dx = O(t) as t → 0+. (3.14)

Proof. With reference to the article [10], we use the convolution property of the
Gaussian kernel to verify by induction that Fm(t, x, y) has an estimate of the form

|Fm(t, x, y)| ≤ c2 c
m
3

[
Γ
(m + 1

2
)]−1

t(m−2)/2 exp
{
− |x− y|2

c1t

}
, (3.15)

where c2 and c3 are positive constants and Γ is the gamma function. Summing over
m and using (3.10) we see that there exists positive constant c4, t0 such that for all
t < t0 and x, y ∈ Ω̄ × Ω̄, we get

G γ(t, x, y) ≤ c4t
−1 exp

{
− |x− y|2

c1t

}
. (3.16)

Let gγm = (−1)mFm(t, x, y), gγ1m = (−1)m+1Fγ1m(t, x, y) , gγ2m = (−1)m

Fγ2m(t, x, y) with the boundary functions γi = −‖γi‖∞ (i =1,2) where Fm =
Fγ2m−Fγ1m. Then by the recursive relation (3.12) of gγm(t, x, y) = gγ2m(t, x, y)+
gγ1m(t, x, y) we get

∞∑
m=2

gγm(t, x, y) ≤ ‖γ2‖2
∞

∫ t

0

ds1

∫
∂Ω2

GN (t− s1, x, z
′

2) dz
′

2

×
∫ s1

0

ds2

∫
∂Ω2

GN

(
s1 − s2, z

′

2, z
′′

2

) ∞∑
m=0

gγ2m

(
s2, z

′′

2 , y
)
dz

′′

2

+ ‖γ1‖2
∞

∫ t

0

ds1

∫
∂Ω1

GN

(
t− s1, x, z

′

1

)
dz

′

1

×
∫ s1

0

ds2

∫
∂Ω1

GN

(
s1 − s2, z

′

1, z
′′

1

) ∞∑
m=0

gγ1m

(
s2, z

′′

1 , y
)
dz

′′

1 . (3.17)

But it is clear from (3.10) and (3.12) that

∞∑
m=0

gγi m(s, z, y) ≤ G−‖γi‖∞
(s, z, y), (i = 1, 2).
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Hence the right-hand side of (3.17) can be estimated by the Gaussian type upper
bounds (3.13) and (3.16) of the heat kernels GN (t, x, y) and G−‖γi‖∞

(t, x, y), (i =
1, 2) and we get

∞∑
m=2

gγm(t, x, y) ≤ c5 exp
{
− |x− y|2

c6t

}
. (3.18)

where c5 and c6 are positive constants. From the recursive relation of gγm again, we
have

∫∫
Ω

gγm(t, x, x) dx = ‖γ2‖2
∞

∫ t

0

(t− u) du
∫

∂Ω2

dy2

×
∫

∂Ω2

GN (t− u, y2, z2)g(m−2)γ2(u, z2, y2) dz2

+ ‖γ1‖2
∞

∫ t

0

(t− u) du
∫

∂Ω1

dy1

×
∫

∂Ω1

GN (t− u, y1, z1)g(m−2)γ1(u, z1, y1) dz1

≤ ‖γ2‖2
∞ t

∫ t

0

du

∫
∂Ω2

dy2

×
∫

∂Ω2

GN (t− u, y2, z2)g(m−1)γ2(u, z2, y2) dz2

+ ‖γ1‖2
∞ t

∫ t

0

du

∫
∂Ω1

dy1

×
∫

∂Ω1

GN (t− u, y1, z1)g(m−1)γ1(u, z1, y1) dz1

= ‖γ2‖∞ t

∫
∂Ω2

g(m−1)γ2(t, y2, y2) dy2

+ ‖γ1‖∞ t

∫
∂Ω1

g(m−1)γ1( t, y1, y1) dy1. (3.19)

Summing over m from 3 to infinity and using (3.18) we obtain (3.14) from the in-
equality |Fm| ≤ gγm.This proves Lemma 3.1.
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From (3.1), (3.10), (3.11) and (3.14) we deduce for t → 0+ that

Θ(t) = ΘN (t) −
∫∫
Ω

F1(t, x, x) dx +
∫∫
Ω

F2(t, x, x) dx + O(t), (3.20)

where

ΘN (t) =
∫∫
Ω

GN (t, x, x) dx . (3.21)

On the other hand, the asymptotic expansion of ΘN (t) as t → 0+ for the Neumann
problems (γ1 = γ2 = 0) is well known (see, for example [5], [23], [24]) and is given
by

ΘN (t) =
|Ω|
4πt

+
(L1 + L2)
8(πt)1/2

+
7

256

( t

π

)1/2 2∑
i=1

∫
∂Ωi

K2
i (zi) dzi+O(t) as t → 0, (3.22)

where the constant term a0 disappears in (3.22) because the general annular drum
Ω has only one hole (i.e. H = 1). �

The problem now is to calculate the integrals of Fi(t, x, x), (i = 1, 2) over the
general annular drum Ω as follows:

Lemma 3.2

If Ω is a general annular drum in R
2, then we have

∫∫
Ω

F1(t, x, x) dx =
1
2π

[ ∫
∂Ω2

γ2(z2) dz2 −
∫

∂Ω1

γ1(z1) dz1

]

+
1
8π

( t

π

)1/2 2∑
i=1

∫
∂Ωi

γi(zi)Ki(zi) dzi + O(t), as t → 0+ . (3.23)

Proof. The definition of F1(t, x, x) and the Chapman-Kolmogorov equation of the
heat kernel (see [8], [13]) imply

∫∫
Ω

F1(t, x, x) dx = t

{ ∫
∂Ω2

GN (t, z2, z2)γ2(z2) dz2 −
∫

∂Ω1

GN (t, z1, z1)γ1(z1) dz1

}
.

(3.24)
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Hsu [8] has shown that the Neumann heat kernel GN (t, z2, z2) when z2 ∈ ∂Ω2 is
given by the following asymptotic formula:

GN (t, z2, z2) =
1

2πt

[
1 +

1
4
(πt)1/2K2(z2)

]
+ O(1) as t → 0+. (3.25)

Using methods similar to those obtained by Hsu, we deduce that the Neumann heat
kernel GN (t, z1, z1) when z1 ∈ ∂Ω1 is given by:

GN (t, z1, z1) =
1

2πt

[
1 − 1

4
(πt)1/2K1(z1)

]
+ O(1) as t → 0+. (3.26)

On inserting (3.25) and (3.26) into (3.24) we arrive at the proof of the Lemma 3.2. �

Lemma 3.3

If Ω is a general annular drum in R
2, then we have

∫∫
Ω

F2(t, x, x) dx =
1
4

( t

π

)1/2 2∑
i=1

∫
∂Ωi

γ2
i (zi) dzi + O(t) as t → 0+. (3.27)

Proof. From the definition of F2(t, x, x) and with the help of the expression of
F1(t, x, x), we deduce that

∫∫
Ω

F2(t, x, x) dx =
2∑

i=1

∫ t

0

(t− u) du
∫
∂Ωi

γ2
i (zi) dzi

×
∫
∂Ωi

GN (t− u, zi, yi) γi(yi)GN (u, yi, zi) dyi . (3.28)

We replace γi(yi) in the above integral by γi(zi)+O(|zi − yi|) and split the integral
into two integrals accordingly. On using the estimate (3.13) we deduce that∫

∂Ωi

|zi − yi|GN (t− u, yi, zi)GN (u, zi, yi) dyi

≤ c1[u(t− u)]−1

∫
R1

|yi| exp
{
− c2t |yi|2

u(t− u)

}
dyi . (3.29)

Since the integral in the right-hand side of (3.29) is bounded by c7t
−1 where c7 is a

positive constant, we deduce as t → 0+ that
∫∫
Ω

F2(t, x, x) dx =
2∑

i=1

∫
∂Ωi

γ2
i (zi) g(t, zi) dzi + O(t), (3.30)
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where

g(t, zi) =
∫ t

0

(t− u) du
∫
∂Ωi

GN (t− u, yi, zi)GN (u, zi, yi) dyi. (3.31)

The right-hand side of (3.31) can be computed by taking the first term in the series
expansion of the Neumann heat kernel

GN (t− u, yi, zi) = 2q(t− u, yi, zi), GN (u, zi, yi) = 2q(u, zi, yi) ,

where

q(t, yi, zi) = (4πt)−1 exp
{
− |yi − zi|2

4t

}
.

The explicit computation can be carried out with the help of a suitably chosen local
coordinates system and the localization principle (see [8]). We leave the details of this
computation to the interested reader and we content ourselves with the statement
that the leading term g(t, zi) is equal to the same integral in the Euclidean plane,
i.e.,

g(t, zi) =
1

4π2

∫ t

0

du

u

∫
R1

exp
{
− |zi − yi|2

4(t− u)
− |zi − yi|2

4u

}
dyi + O(t). (3.32)

After some calculations, we deduced that

g(t, zi) =
1

2t1/2π3/2

∫ t

0

( t− u

u

)1/2

du + O(t)

=
1
4

( t

π

)1/2

+ O(t). (3.33)

On inserting (3.33) into (3.30) we arrive at the proof of Lemma 2. Now, our main
result (2.1) follows immediately from the formulae (3.20)-(3.22) and Lemmas 3.2
and 3.3. �
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4. Some applications of the inverse problem for an ideal gas

Following Gutierrez and Yanez [7], we are interested in examining how the thermo-
dynamic properties of an ideal gas are influenced by the geometry of its container.
Thermodynamic properties of an ideal gas can be extracted from the partition func-
tion

Z(β) =
zN (β)
N !

, (4.1)

where N is the number of particles and z(β) is given by

z(β) =
∑
j

exp(−βEj), (4.2)

where β = (kBT )−1, kB is Boltzmann constant, and T is the absolute temperature.
The energy level (eigenvalues) Ej of one particle are obtained from the stationary
states Ψ = u exp {−iEt/ h̄} of the time-dependent Schrodinger equation

h̄2

2M
∆Ψ + V (x)Ψ = ih̄

∂Ψ
∂t

, (4.3)

with V (x) = 0, where M is the mass and h̄ is the Planck constant. Thus, u satisfies
the Helmholtz equation −∆u = λu, with λ = 2ME/ h̄2. Therefore, we deduce that
the asymptotic expansion of the sum (1.3) of Θ(t) as t → 0+ which formally is the
same as the one-particle function (4.2) of z(β) as β → 0+. The purpose of this section
is to use our main result (2.1) to derive a general expression for the corrections to
the thermodynamic quantities, particularly, the energy of an ideal gas enclosed in
the general annular drum Ω in R

2.

Following the discussions of Section 2, we can obtain information about the
shape of the general annular drum Ω, by studying the asymptotic expansion of the
sum (4.2) when β → 0 (i.e., T → ∞, the ideal gas case). Noting that the eigenvalue
problem of the Schrodinger equation is the same as the eigenvalue problem of the
wave equation, we can use directly the asymptotic expansion (2.1) of Θ(t) replacing
t by ( h̄2

2M )β.
Let us now consider the general partition function (4.1) in two-dimensions. On

using the formula (2.1) for the Robin problem, equation (4.2) gives:

z(β) =
(2M

h̄2

)a1

β
+

(2M
h̄2

)1/2 a2

β1/2
+ a3 +

( h̄2

2M

)1/2

a4β
1/2 + O(β) as β → 0+.

(4.4)
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We set out to apply the formula (4.4) to the thermodynamic quantities such that
the internal energy U = −[ ∂

∂β lnZ(β)]V, N , the pressure P = β−1[ ∂
∂V lnZ(β)]T, N

and the specific heat C =
(
∂U
∂T

)
N, V

, among others (see [7]).
Thus, in the case of the internal energy, we get

U = −N
∂

∂β
ln

{(2M
h̄2

)a1

β
+

(2M
h̄2

)1/2 a2

β1/2
+ a3 +

( h̄2

2M

)1/2

a4β
1/2 + O(β)

}
.

Now, differentiating, expanding in powers of β = (kBT )−1 and using the definition
of the thermal wave length Λ(T ) = ( 2πh̄2

MkBT )1/2 we deduce, after some reduction,
that the internal energy U(T ) has the asymptotic form:

U(T ) = NkBT

{
1 −

[ a2

4a1
√
π

]
Λ(T ) +

1
8π

[(a2

a1

)2 − 2a3

a1

]
Λ2(T )

− 1
16π3/2

[(a2

a1

)3 − 3a2a3

a2
1

+
3a4

a1

]
Λ3(T ) + O[Λ4(T )]

}
as T → ∞ . (4.5)

Similar expressions hold for the pressure and the specific heat.
Note that Gutierrez and Yanez [7] have recently constructed a formula simi-

lar to (4.5) but for a simply connected bounded domain with Dirichlet boundary
conditions by using the formula (1.5) of Section 1.

Our main result (4.5) shows, in principle, that an ideal gas could feel some
aspects of the shape of the general annular drum Ω ⊆ R

2 because its thermodynamic
quantities depend on some geometric properties of Ω. But, we note that an ideal gas,
even with all terms in the expansion of the partition function completely known, is
not able to discriminate between two different shapes. This theoretical result was
experimentally verified in [16] by employing thin microwave cavities shaped in the
form of two different domains known to be isospectral. Of course, with reference
to the articles [6] and [16], there are domains where although different in shapes,
the thermodynamic properties of an ideal gas will be exactly the same. From these
discussions, we deduce that the answer of either Kac’s question or Gutierrez and
Yanez’s question is negative.

Acknowledgement. The author wishes to thank the referee for some useful sug-
gestions and comments.
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