Collectanea Mathematica (electronic version): http://www.mat.ub.es/CM

Collect. Math. 51, 2 (2000), 149-155
(c) 2000 Universitat de Barcelona

Weighted generalized weak type inequalities for modified Hardy operators

Pedro Ortega Salvador
Análisis Matemático, Facultad de Ciencias, Universidad de Málaga
29071 Málaga, Spain
E-mail: ortega@anamat.cie.uma.es

Received May 5, 1999. Revised September 16, 1999

Abstract

We consider the operator $T_{g} f(x)=g(x) \int_{0}^{x} f$, where g is a positive nonincreasing function, and characterize the pairs of positive measurable functions (u, v) such that the generalized weak type inequality $$
\Phi_{2}^{-1}\left(\Phi_{2}(\lambda) \int_{\left\{x \in(0, \infty) ;\left|T_{g} f(x)\right|>\lambda\right\}} u\right) \leq \Phi_{1}^{-1}\left(\int_{0}^{\infty} \Phi_{1}(K|f|) v\right)
$$ holds, where either Φ_{1} is a N-function and Φ_{2} is a positive increasing function such that $\Phi_{1} \circ \Phi_{2}^{-1}$ is countably subadditive or $\Phi_{1}(t)=t$ and Φ_{2} is a positive increasing function whose inverse is countably subadditive.

Let g be a positive measurable function on $(0, \infty)$ and let T_{g} be the operator defined for locally integrable functions f on $(0, \infty)$ by

$$
\begin{equation*}
T_{g} f(x)=g(x) \int_{0}^{x} f(y) d y \quad(x \in(0, \infty)) . \tag{1}
\end{equation*}
$$

The characterization of the couples of weights (u, v) such that

$$
\begin{equation*}
\left(\int_{\left\{x \in(0, \infty) ;\left|T_{g} f(x)\right|>\lambda\right\}} \lambda^{q} u\right)^{1 / q} \leq C\left(\int_{0}^{\infty}|f|^{p} v\right)^{1 / p} \tag{2}
\end{equation*}
$$

This research has been supported by D.G.I.C.Y.T. grant PB97-1097 and Junta de Andalucía.

Ortega

holds in the case $1 \leq p \leq q<\infty$ has been done in [6], where results due to Andersen and Muckhenhoupt [1], Sawyer [9] and Ferreyra [3] have been generalized and improved. If $q<p$ and g is a monotone function, the characterization of the couples of weights such that (2) holds has been done in [5].

In this note, we work with a nonincreasing g and characterize the couples of weights (u, v) such that the weighted generalized weak type inequality

$$
\begin{equation*}
\Phi_{2}^{-1}\left(\Phi_{2}(\lambda) \int_{\left\{x \in(0, \infty) ;\left|T_{g} f(x)\right|>\lambda\right\}} u\right) \leq \Phi_{1}^{-1}\left(\int_{0}^{\infty} \Phi_{1}(K|f|) v\right) \tag{3}
\end{equation*}
$$

holds, where either Φ_{1} is a N-function and Φ_{2} is a positive increasing function such that $\Phi_{1} \circ \Phi_{2}^{-1}$ is countably subadditive or $\Phi_{1}(t)=t$ and Φ_{2} is a positive increasing function whose inverse is countably subadditive. It is clear that, under these conditions over Φ_{1} and Φ_{2}, inequality (3) is a generalization of (2) in the case $1 \leq p \leq q$.

By a N-function we mean a continuous and convex function Φ defined on $[0, \infty)$ such that $\Phi(s)>0$ if $s>0, \frac{\Phi(s)}{s} \rightarrow 0$ when $s \rightarrow 0$ and $\frac{\Phi(s)}{s} \rightarrow \infty$ when $s \rightarrow \infty$. Every N-function Φ admits a representation of the form $\Phi(x)=\int_{0}^{x} \phi(t) d t$, where ϕ is nondecreasing, continuous by the right at every point and verifies $\phi(0)=0$, $\phi(s)>0$ if $s>0$ and $\phi(s) \rightarrow \infty$ when $s \rightarrow \infty$. The function ϕ is called the density function of Φ. Given a N-function Φ, the function $\Psi:[0, \infty) \rightarrow R$ defined by $\Psi(t)=\sup _{s \geq 0}(s t-\Phi(s))$ is also a N-function which is called the complementary function of Φ. Two complementary N-functions Φ and Ψ verify Young's inequality, which is a fundamental tool to prove our theorems: if $s, t \geq 0$, then $s t \leq \Phi(s)+\Psi(t)$.

Inequality (3) has been studied by L. Qinsheng [8] in the case $g \equiv 1$ (the Hardy operator) and by S. Bloom and R. Kerman [2] for nondecreasing g. When g is nondecreasing, T_{g} is a monotone operator (see [2]) and the set $O_{\lambda}=\left\{x \in(0, \infty) ; T_{g} f(x)>\right.$ $\lambda\}$ is an interval. This is not true for nonincreasing g. The difficulties that appear in this case are solved by mean of methods already applied in [5] and [6], which are based on [4]. We also use the standard methods of N-functions ([7] and [2]).

The results and their proofs are the following ones:

Theorem 1

Let u, v be positive locally integrable functions on $(0, \infty)$. Let Φ_{2} be a positive increasing function such that Φ_{2}^{-1} is countably subadditive. Then, the weak type inequality (3) holds with $\Phi_{1}(t)=t$ if and only if

$$
\begin{equation*}
\frac{\Phi_{2}^{-1}\left(\Phi_{2}(\lambda) \int_{b}^{\beta} u\right)}{\lambda}\left(\operatorname{ess} \sup _{x \in(0, b)} v^{-1}(x)\right) g(\beta-) \leq K \tag{4}
\end{equation*}
$$

holds for every $\lambda>0$ and every b, β with $0<b<\beta$, where $g(\beta-)=\lim _{x \rightarrow \beta^{-}} g(x)$.

Proof. Suppose that condition (4) holds. Let f be a non negative measurable function supported on a bounded interval $(0, A)$. Let $x_{0}=A$ and, given x_{k}, let x_{k+1} be the unique real number such that $\int_{0}^{x_{k}} f=2 \int_{0}^{x_{k+1}} f$. The sequence $\left\{x_{k}\right\}$ is decreasing and has limit 0 . Moreover,

$$
\begin{equation*}
\int_{0}^{x_{k}} f=4 \int_{x_{k+2}}^{x_{k+1}} f \tag{5}
\end{equation*}
$$

for every k. Let $\lambda>0, k \in N$ and $E_{k}=\left\{x \in\left(x_{k+1}, x_{k}\right) ; T_{g} f(x)>\lambda\right\}$. Let $\beta_{k}=\sup E_{k}$. If $x \in E_{k}$, then

$$
\begin{equation*}
\lambda<g(x) \int_{0}^{x} f<g(x) \int_{0}^{x_{k}} f \tag{6}
\end{equation*}
$$

Since (6) holds for every $x \in E_{k}$ and g is nonincreasing, we have

$$
\begin{equation*}
\lambda \leq g\left(\beta_{k}-\right) \int_{0}^{x_{k}} f \tag{7}
\end{equation*}
$$

Then, by (7), (5) and (4) we obtain

$$
\begin{align*}
& \Phi_{2}^{-1}\left(\Phi_{2}(\lambda) \int_{E_{k}} u\right) \leq \Phi_{2}^{-1}\left(\Phi_{2}(\lambda) \int_{x_{k+1}}^{\beta_{k}} u\right) \\
& \leq \frac{4}{\lambda} g\left(\beta_{k}-\right)\left(\int_{x_{k+2}}^{x_{k+1}} f\right) \Phi_{2}^{-1}\left(\Phi_{2}(\lambda) \int_{x_{k+1}}^{\beta_{k}} u\right) \tag{8}\\
& \leq \frac{4}{\lambda} g\left(\beta_{k}-\right)\left(\operatorname{ess} \sup _{x \in\left(x_{k+2}, x_{k+1}\right)} v^{-1}(x)\right)\left(\int_{x_{k+2}}^{x_{k+1}} f v\right) \Phi_{2}^{-1}\left(\Phi_{2}(\lambda) \int_{x_{k+1}}^{\beta_{k}} u\right) \\
& \leq K \int_{x_{k+2}}^{x_{k+1}} f v
\end{align*}
$$

for every k. Summing up in k, the subadditivity of Φ_{2}^{-1} gives the weak type inequality (3).

Conversely, let $\lambda>0$ and let β and b be real numbers with $0<b<\beta$. Let $\varepsilon>0$ and let F be a measurable subset of $(0, b)$ with positive measure such that $v(x) \leq \varepsilon+\operatorname{ess} \inf \{v(t) ; t \in(0, b)\}$ for every $x \in F$. Since we can assume $g(\beta-)>0$, there exists $\eta>0$ such that $\eta|F| g(\beta-)=(1+\varepsilon) \lambda$. Let $f=\eta \chi_{F}$. Then, if $x \in[b, \beta)$, $T_{g}(f)(x)=g(x) \eta|F| \geq \eta|F| g(\beta-)=(1+\varepsilon) \lambda>\lambda$. Therefore, $[b, \beta) \subset\left\{x ; T_{g}(f)(x)>\right.$ $\lambda\}$ and inequality (3) gives

$$
\begin{equation*}
\Phi_{2}^{-1}\left(\Phi_{2}(\lambda) \int_{b}^{\beta} u\right) \leq K \int_{F} \eta v \leq K \eta|F|(\varepsilon+\operatorname{ess} \inf \{v(t) ; t \in(0, b)\}) \tag{9}
\end{equation*}
$$

Multiplying by $g(\beta-)$, we obtain

$$
\begin{equation*}
\Phi_{2}^{-1}\left(\Phi_{2}(\lambda) \int_{b}^{\beta} u\right) g(\beta-) \leq(1+\varepsilon) K \lambda(\varepsilon+\operatorname{ess} \inf \{v(t) ; t \in(0, b)\}) \tag{10}
\end{equation*}
$$

Since inequality (10) holds for all $\varepsilon>0$, we are done.

Theorem 2

Let u, v be positive locally integrable functions on $(0, \infty)$. Let Φ_{1} be a N function and let Φ_{2} be a positive increasing function such that $\Phi_{1} \circ \Phi_{2}^{-1}$ is countably subadditive. Let Ψ_{1} be the complementary N-function of Φ_{1}. Then the weak type inequality (3) implies that the inequality

$$
\begin{equation*}
\int_{0}^{b} \Psi_{1}\left(\frac{g(\beta-)\left(\Phi_{1} \circ \Phi_{2}^{-1}\right)\left(\Phi_{2}(\lambda) \int_{b}^{\beta} u\right)}{K \lambda v}\right) v \leq\left(\Phi_{1} \circ \Phi_{2}^{-1}\right)\left(\Phi_{2}(\lambda) \int_{b}^{\beta} u\right) \tag{11}
\end{equation*}
$$

holds for every $\lambda>0$ and every b, β with $0<b<\beta$. Conversely, condition (11) with constant K implies the weak type inequality (3) with constant $8 K$.

Proof. Suppose that condition (11) holds. Let f be a non negative measurable function supported on a bounded interval $(0, A)$. Let $\left\{x_{k}\right\},\left\{E_{k}\right\}$ and β_{k} be defined as in the proof of Theorem 1, so that (5), (6) and (7) hold. Then, (7), (5), Young's inequality and condition (11) yield

$$
\begin{align*}
& 2\left(\Phi_{1} \circ \Phi_{2}^{-1}\right)\left(\Phi_{2}(\lambda) \int_{x_{k+1}}^{\beta_{k}} u\right) \\
& \leq\left(\Phi_{1} \circ \Phi_{2}^{-1}\right)\left(\Phi_{2}(\lambda) \int_{x_{k+1}}^{\beta_{k}} u\right) \frac{1}{\lambda} g\left(\beta_{k}-\right) \int_{x_{k+2}}^{x_{k+1}} 8 f \\
& =\int_{x_{k+2}}^{x_{k+1}} 8 K f \frac{\left(\Phi_{1} \circ \Phi_{2}^{-1}\right)\left(\Phi_{2}(\lambda) \int_{x_{k+1}}^{\beta_{k}} u\right) g\left(\beta_{k}-\right)}{K \lambda v} v \tag{12}\\
& \leq \int_{x_{k+2}}^{x_{k+1}} \Phi_{1}(8 K f) v+\int_{x_{k+2}}^{x_{k+1}} \Psi_{1}\left(\frac{\left(\Phi_{1} \circ \Phi_{2}^{-1}\right)\left(\Phi_{2}(\lambda) \int_{x_{k+1}}^{\beta_{k}} u\right) g\left(\beta_{k}-\right)}{K \lambda v}\right) v \\
& \leq \int_{x_{k+2}}^{x_{k+1}} \Phi_{1}(8 K f) v+\left(\Phi_{1} \circ \Phi_{2}^{-1}\right)\left(\Phi_{2}(\lambda) \int_{x_{k+1}}^{\beta_{k}} u\right) .
\end{align*}
$$

The above inequality is equivalent to

$$
\begin{equation*}
\left(\Phi_{1} \circ \Phi_{2}^{-1}\right)\left(\Phi_{2}(\lambda) \int_{x_{k+1}}^{\beta_{k}} u\right) \leq \int_{x_{k+2}}^{x_{k+1}} \Phi_{1}(8 K f) v \tag{13}
\end{equation*}
$$

which implies

$$
\begin{equation*}
\left(\Phi_{1} \circ \Phi_{2}^{-1}\right)\left(\Phi_{2}(\lambda) \int_{E_{k}} u\right) \leq \int_{x_{k+2}}^{x_{k+1}} \Phi_{1}(8 K f) v \tag{14}
\end{equation*}
$$

Summing up in k, the subadditivity of $\Phi_{1} \circ \Phi_{2}^{-1}$ gives the weak type inequality (3) with constant $8 K$.

Suppose now that (3) holds. Let $\lambda>0$ and let β and b be real numbers with $0<b<\beta$. Let ρ be a positive number and let n be a natural number. Then, for every $\varepsilon>0$,

$$
\begin{equation*}
\int_{0}^{b} \Psi_{1}\left(\frac{\varepsilon g(\beta-)}{v(y)+\frac{1}{n}}\right) \frac{v(y)+\frac{1}{n}}{\varepsilon} d y \leq b g(\beta-) \psi_{1}(n \varepsilon g(\beta-)) \tag{15}
\end{equation*}
$$

where ψ_{1} is the density function of Ψ_{1}, and, therefore, the integral is finite. The fact that the function $\frac{\Psi_{1}(t)}{t}$ increases taking all values from 0 to ∞, the continuity of the above integral as a function of ε and the fact that we can assume $g(\beta-)>0$ imply that there exists $\varepsilon>0$ such that

$$
\begin{equation*}
\int_{0}^{b} \Psi_{1}\left(\frac{\varepsilon g(\beta-)}{v(y)+\frac{1}{n}}\right) \frac{v(y)+\frac{1}{n}}{\varepsilon} d y=(1+\rho) K \lambda \tag{16}
\end{equation*}
$$

Now, if f is the function defined on $(0, \infty)$ by

$$
f(y)=\frac{1}{K} \Psi_{1}\left(\frac{\varepsilon g(\beta-)}{v(y)+\frac{1}{n}}\right) \frac{v(y)+\frac{1}{n}}{\varepsilon g(\beta-)} \chi_{(0, b)}(y)
$$

and $z \in[b, \beta)$, we have

$$
\begin{align*}
T_{g} f(z) & =g(z) \int_{0}^{b} \frac{1}{K} \Psi_{1}\left(\frac{\varepsilon g(\beta-)}{v(y)+\frac{1}{n}}\right) \frac{v(y)+\frac{1}{n}}{\varepsilon g(\beta-)} d y \\
& \geq \int_{0}^{b} \frac{1}{K} \Psi_{1}\left(\frac{\varepsilon g(\beta-)}{v(y)+\frac{1}{n}}\right) \frac{v(y)+\frac{1}{n}}{\varepsilon} d y=(1+\rho) \lambda \tag{17}
\end{align*}
$$

Then, $[b, \beta) \subset\left\{x \in(0, \infty) ; T_{g} f(x)>\lambda\right\}$ and the weak type inequality (3) together with the property $\Phi_{1}\left(\frac{\Psi_{1}(t)}{t}\right) \leq \Psi_{1}(t)$ and (16) give

$$
\begin{align*}
\left(\Phi_{1} \circ \Phi_{2}^{-1}\right) & \left(\Phi_{2}(\lambda) \int_{b}^{\beta} u\right) \leq \int_{0}^{b} \Phi_{1}\left(\Psi_{1}\left(\frac{\varepsilon g(\beta-)}{v(y)+\frac{1}{n}}\right) \frac{v(y)+\frac{1}{n}}{\varepsilon g(\beta-)}\right) v(y) d y \tag{18}\\
& \leq \int_{0}^{b} \Psi_{1}\left(\frac{\varepsilon g(\beta-)}{v(y)+\frac{1}{n}}\right)\left(v(y)+\frac{1}{n}\right) d y=(1+\rho) K \lambda \varepsilon
\end{align*}
$$

The fact that $S_{\Psi_{1}}(t)=\frac{\Psi_{1}(t)}{t}$ increases, (18) and (16) yield

$$
\begin{align*}
\int_{0}^{b} \Psi_{1} & \left(\frac{g(\beta-)\left(\Phi_{1} \circ \Phi_{2}^{-1}\right)\left(\Phi_{2}(\lambda) \int_{b}^{\beta} u\right)}{(1+\rho) K \lambda\left(v(y)+\frac{1}{n}\right)}\right) \frac{v(y)+\frac{1}{n}}{\left(\Phi_{1} \circ \Phi_{2}^{-1}\right)\left(\Phi_{2}(\lambda) \int_{b}^{\beta} u\right)} d y \tag{19}\\
& \leq \int_{0}^{b} \Psi_{1}\left(\frac{g(\beta-) \varepsilon}{v(y)+\frac{1}{n}}\right) \frac{v(y)+\frac{1}{n}}{(1+\rho) K \lambda \varepsilon} d y=1
\end{align*}
$$

By the monotone convergence theorem, we obtain from (19) the inequality

$$
\begin{equation*}
\int_{0}^{b} \Psi_{1}\left(\frac{g(\beta-)\left(\Phi_{1} \circ \Phi_{2}^{-1}\right)\left(\Phi_{2}(\lambda) \int_{b}^{\beta} u\right)}{(1+\rho) K \lambda v(y)}\right) \frac{v(y)}{\left(\Phi_{1} \circ \Phi_{2}^{-1}\right)\left(\Phi_{2}(\lambda) \int_{b}^{\beta} u\right)} d y \leq 1 \tag{20}
\end{equation*}
$$

Since this inequality holds for all positive ρ, letting ρ tends to 0 we obtain (11) (again by monotone convergence).

Final remark. It is worth noting that $\Phi_{2}(\lambda)$ can be replaced all over the paper by $h(\lambda)$, where h is an arbitrary positive function defined on $(0, \infty)$.

Acknowledgement. I have to thank the referee for some valuable comments and suggestions.

References

1. K.F. Andersen and B. Muckenhoupt, Weighted weak type Hardy inequalities with applications to Hilbert transforms and maximal function, Studia Math. 72 (1982), 9-26.
2. S. Bloom and R. Kerman, Weighted L_{Φ} integral inequalities for operators of Hardy type, Studia Math. 110(1) (1994), 35-52.
3. E. Ferreyra, Weighted Lorentz norm inequalities for integral operators, Studia Math. 96 (1990), 125-134.
4. F.J. Martín-Reyes, New proofs of weighted inequalities for the one-sided Hardy-Littlewood maximal functions, Proc. Amer. Math. Soc. 117 (1993), 691-698.
5. F.J. Martín-Reyes and P. Ortega Salvador, On weighted weak type inequalities for modified Hardy operators, Proc. Amer. Math. Soc. 126(6) (1998), 1739-1746.
6. F.J. Martín-Reyes, P. Ortega Salvador and M.D. Sarrión Gavilán, Boundedness of operators of Hardy type in $\Lambda^{p, q}$ spaces and weighted mixed inequalities for singular integral operators, Proc. Royal Soc. Edinburgh 127A (1997), 157-170.
7. P. Ortega Salvador and L. Pick, Two-weight weak and extra-weak type inequalities for the onesided maximal operator, Proc. Royal Soc. Edinburgh 123A (1993), 1109-1118.
8. Lai Qinsheng, Two weight mixed Φ-inequalities for the Hardy operator and the Hardy-Littlewood maximal operator, J. London Math. Soc. 46 (1992), 301-318.
9. E. Sawyer, Weighted Lebesgue and Lorentz norm inequalities for the Hardy operator, Trans. Amer. Math. Soc. 281 (1984), 329-337.
