Collect. Math. 51, 2 (2000), 149-155

© 2000 Universitat de Barcelona

Weighted generalized weak type inequalities for modified Hardy operators

Pedro Ortega Salvador

Análisis Matemático, Facultad de Ciencias, Universidad de Málaga 29071 Málaga, Spain

E-mail: ortega@anamat.cie.uma.es

Received May 5, 1999. Revised September 16, 1999

Abstract

We consider the operator $T_g f(x) = g(x) \int_0^x f$, where g is a positive nonincreasing function, and characterize the pairs of positive measurable functions (u,v) such that the generalized weak type inequality

$$\Phi_2^{-1}\bigg(\Phi_2(\lambda)\int_{\{\,x\in(0,\infty);|T_g\,f(x)|>\lambda\,\}}u\bigg) \leq \Phi_1^{-1}\bigg(\int_0^\infty\Phi_1(K|f|)v\bigg)$$

holds, where either Φ_1 is a *N*-function and Φ_2 is a positive increasing function such that $\Phi_1 \circ \Phi_2^{-1}$ is countably subadditive or $\Phi_1(t) = t$ and Φ_2 is a positive increasing function whose inverse is countably subadditive.

Let g be a positive measurable function on $(0, \infty)$ and let T_g be the operator defined for locally integrable functions f on $(0, \infty)$ by

(1)
$$T_g f(x) = g(x) \int_0^x f(y) dy \quad (x \in (0, \infty)).$$

The characterization of the couples of weights (u, v) such that

(2)
$$\left(\int_{\{x \in (0,\infty); |T_g f(x)| > \lambda\}} \lambda^q u \right)^{1/q} \le C \left(\int_0^\infty |f|^p v \right)^{1/p}$$

This research has been supported by D.G.I.C.Y.T. grant PB97-1097 and Junta de Andalucía.

150 Ortega

holds in the case $1 \leq p \leq q < \infty$ has been done in [6], where results due to Andersen and Muckhenhoupt [1], Sawyer [9] and Ferreyra [3] have been generalized and improved. If q < p and g is a monotone function, the characterization of the couples of weights such that (2) holds has been done in [5].

In this note, we work with a nonincreasing g and characterize the couples of weights (u, v) such that the weighted generalized weak type inequality

(3)
$$\Phi_2^{-1} \left(\Phi_2(\lambda) \int_{\{ x \in (0,\infty); |T_g f(x)| > \lambda \}} u \right) \le \Phi_1^{-1} \left(\int_0^\infty \Phi_1(K|f|) v \right)$$

holds, where either Φ_1 is a N-function and Φ_2 is a positive increasing function such that $\Phi_1 \circ \Phi_2^{-1}$ is countably subadditive or $\Phi_1(t) = t$ and Φ_2 is a positive increasing function whose inverse is countably subadditive. It is clear that, under these conditions over Φ_1 and Φ_2 , inequality (3) is a generalization of (2) in the case $1 \le p \le q$.

By a N-function we mean a continuous and convex function Φ defined on $[0, \infty)$ such that $\Phi(s) > 0$ if s > 0, $\frac{\Phi(s)}{s} \to 0$ when $s \to 0$ and $\frac{\Phi(s)}{s} \to \infty$ when $s \to \infty$. Every N-function Φ admits a representation of the form $\Phi(x) = \int_0^x \phi(t) dt$, where ϕ is nondecreasing, continuous by the right at every point and verifies $\phi(0) = 0$, $\phi(s) > 0$ if s > 0 and $\phi(s) \to \infty$ when $s \to \infty$. The function ϕ is called the density function of Φ . Given a N-function Φ , the function $\Psi: [0, \infty) \to R$ defined by $\Psi(t) = \sup_{s \ge 0} (st - \Phi(s))$ is also a N-function which is called the complementary function of Φ . Two complementary N-functions Φ and Ψ verify Young's inequality, which is a fundamental tool to prove our theorems: if $s, t \ge 0$, then $st \le \Phi(s) + \Psi(t)$.

Inequality (3) has been studied by L. Qinsheng [8] in the case $g \equiv 1$ (the Hardy operator) and by S. Bloom and R. Kerman [2] for nondecreasing g. When g is nondecreasing, T_g is a monotone operator (see [2]) and the set $O_{\lambda} = \{x \in (0, \infty); T_g f(x) > \lambda\}$ is an interval. This is not true for nonincreasing g. The difficulties that appear in this case are solved by mean of methods already applied in [5] and [6], which are based on [4]. We also use the standard methods of N-functions ([7] and [2]).

The results and their proofs are the following ones:

Theorem 1

Let u, v be positive locally integrable functions on $(0, \infty)$. Let Φ_2 be a positive increasing function such that Φ_2^{-1} is countably subadditive. Then, the weak type inequality (3) holds with $\Phi_1(t) = t$ if and only if

(4)
$$\frac{\Phi_2^{-1}\left(\Phi_2(\lambda)\int_b^\beta u\right)}{\lambda} \left(\operatorname{ess}\sup_{x\in(0,b)} v^{-1}(x)\right) g(\beta - 1) \leq K$$

holds for every $\lambda > 0$ and every b, β with $0 < b < \beta$, where $g(\beta -) = \lim_{x \to \beta^-} g(x)$.

Proof. Suppose that condition (4) holds. Let f be a non negative measurable function supported on a bounded interval (0, A). Let $x_0 = A$ and, given x_k , let x_{k+1} be the unique real number such that $\int_0^{x_k} f = 2 \int_0^{x_{k+1}} f$. The sequence $\{x_k\}$ is decreasing and has limit 0. Moreover,

(5)
$$\int_0^{x_k} f = 4 \int_{x_{k+2}}^{x_{k+1}} f$$

for every k. Let $\lambda > 0$, $k \in N$ and $E_k = \{x \in (x_{k+1}, x_k); T_g f(x) > \lambda\}$. Let $\beta_k = \sup E_k$. If $x \in E_k$, then

(6)
$$\lambda < g(x) \int_0^x f < g(x) \int_0^{x_k} f.$$

Since (6) holds for every $x \in E_k$ and g is nonincreasing, we have

(7)
$$\lambda \le g(\beta_k -) \int_0^{x_k} f.$$

Then, by (7), (5) and (4) we obtain

$$\Phi_{2}^{-1}\left(\Phi_{2}(\lambda)\int_{E_{k}}u\right) \leq \Phi_{2}^{-1}\left(\Phi_{2}(\lambda)\int_{x_{k+1}}^{\beta_{k}}u\right)
\leq \frac{4}{\lambda}g(\beta_{k}-)\left(\int_{x_{k+2}}^{x_{k+1}}f\right)\Phi_{2}^{-1}\left(\Phi_{2}(\lambda)\int_{x_{k+1}}^{\beta_{k}}u\right)
\leq \frac{4}{\lambda}g(\beta_{k}-)\left(\operatorname{ess}\sup_{x\in(x_{k+2},x_{k+1})}v^{-1}(x)\right)\left(\int_{x_{k+2}}^{x_{k+1}}fv\right)\Phi_{2}^{-1}\left(\Phi_{2}(\lambda)\int_{x_{k+1}}^{\beta_{k}}u\right)
\leq K\int_{x_{k+2}}^{x_{k+1}}fv$$

for every k. Summing up in k, the subadditivity of Φ_2^{-1} gives the weak type inequality (3).

Conversely, let $\lambda > 0$ and let β and b be real numbers with $0 < b < \beta$. Let $\varepsilon > 0$ and let F be a measurable subset of (0,b) with positive measure such that $v(x) \le \varepsilon + \mathrm{ess}$ inf $\{v(t); t \in (0,b)\}$ for every $x \in F$. Since we can assume $g(\beta -) > 0$, there exists $\eta > 0$ such that $\eta |F|g(\beta -) = (1+\varepsilon)\lambda$. Let $f = \eta \chi_F$. Then, if $x \in [b,\beta)$, $T_g(f)(x) = g(x)\eta |F| \ge \eta |F|g(\beta -) = (1+\varepsilon)\lambda > \lambda$. Therefore, $[b,\beta) \subset \{x; T_g(f)(x) > \lambda\}$ and inequality (3) gives

(9)
$$\Phi_2^{-1}\left(\Phi_2(\lambda)\int_b^\beta u\right) \le K\int_F \eta v \le K\eta |F| \left(\varepsilon + \text{ess inf } \{v(t); t \in (0,b)\}\right).$$

152 Ortega

Multiplying by $g(\beta-)$, we obtain

(10)
$$\Phi_2^{-1}\left(\Phi_2(\lambda)\int_b^\beta u\right)g(\beta-) \le (1+\varepsilon)K\lambda\left(\varepsilon + \text{ess inf } \{v(t); t \in (0,b)\}\right).$$

Since inequality (10) holds for all $\varepsilon > 0$, we are done. \square

Theorem 2

Let u, v be positive locally integrable functions on $(0, \infty)$. Let Φ_1 be a N-function and let Φ_2 be a positive increasing function such that $\Phi_1 \circ \Phi_2^{-1}$ is countably subadditive. Let Ψ_1 be the complementary N-function of Φ_1 . Then the weak type inequality (3) implies that the inequality

$$(11) \qquad \int_0^b \Psi_1\left(\frac{g(\beta-)(\Phi_1\circ\Phi_2^{-1})\left(\Phi_2(\lambda)\int_b^\beta u\right)}{K\lambda v}\right)v \leq (\Phi_1\circ\Phi_2^{-1})\left(\Phi_2(\lambda)\int_b^\beta u\right)$$

holds for every $\lambda > 0$ and every b, β with $0 < b < \beta$. Conversely, condition (11) with constant K implies the weak type inequality (3) with constant 8K.

Proof. Suppose that condition (11) holds. Let f be a non negative measurable function supported on a bounded interval (0, A). Let $\{x_k\}$, $\{E_k\}$ and β_k be defined as in the proof of Theorem 1, so that (5), (6) and (7) hold. Then, (7), (5), Young's inequality and condition (11) yield

$$2(\Phi_{1} \circ \Phi_{2}^{-1}) \left(\Phi_{2}(\lambda) \int_{x_{k+1}}^{\beta_{k}} u\right)$$

$$\leq (\Phi_{1} \circ \Phi_{2}^{-1}) \left(\Phi_{2}(\lambda) \int_{x_{k+1}}^{\beta_{k}} u\right) \frac{1}{\lambda} g(\beta_{k} -) \int_{x_{k+2}}^{x_{k+1}} 8f$$

$$(12) = \int_{x_{k+2}}^{x_{k+1}} 8Kf \frac{(\Phi_{1} \circ \Phi_{2}^{-1}) \left(\Phi_{2}(\lambda) \int_{x_{k+1}}^{\beta_{k}} u\right) g(\beta_{k} -)}{K\lambda v} v$$

$$\leq \int_{x_{k+2}}^{x_{k+1}} \Phi_{1}(8Kf) v + \int_{x_{k+2}}^{x_{k+1}} \Psi_{1} \left(\frac{(\Phi_{1} \circ \Phi_{2}^{-1}) \left(\Phi_{2}(\lambda) \int_{x_{k+1}}^{\beta_{k}} u\right) g(\beta_{k} -)}{K\lambda v}\right) v$$

$$\leq \int_{x_{k+2}}^{x_{k+1}} \Phi_{1}(8Kf) v + (\Phi_{1} \circ \Phi_{2}^{-1}) \left(\Phi_{2}(\lambda) \int_{x_{k+1}}^{\beta_{k}} u\right).$$

The above inequality is equivalent to

(13)
$$(\Phi_1 \circ \Phi_2^{-1}) \left(\Phi_2(\lambda) \int_{x_{k+1}}^{\beta_k} u \right) \le \int_{x_{k+2}}^{x_{k+1}} \Phi_1(8Kf) v,$$

which implies

(14)
$$(\Phi_1 \circ \Phi_2^{-1}) \left(\Phi_2(\lambda) \int_{E_k} u \right) \le \int_{x_{k+2}}^{x_{k+1}} \Phi_1(8Kf) v.$$

Summing up in k, the subadditivity of $\Phi_1 \circ \Phi_2^{-1}$ gives the weak type inequality (3) with constant 8K.

Suppose now that (3) holds. Let $\lambda > 0$ and let β and b be real numbers with $0 < b < \beta$. Let ρ be a positive number and let n be a natural number. Then, for every $\varepsilon > 0$,

(15)
$$\int_0^b \Psi_1\left(\frac{\varepsilon g(\beta-)}{v(y)+\frac{1}{n}}\right) \frac{v(y)+\frac{1}{n}}{\varepsilon} dy \le bg(\beta-)\psi_1(n\varepsilon g(\beta-)),$$

where ψ_1 is the density function of Ψ_1 , and, therefore, the integral is finite. The fact that the function $\frac{\Psi_1(t)}{t}$ increases taking all values from 0 to ∞ , the continuity of the above integral as a function of ε and the fact that we can assume $g(\beta-)>0$ imply that there exists $\varepsilon>0$ such that

(16)
$$\int_0^b \Psi_1\left(\frac{\varepsilon g(\beta-)}{v(y)+\frac{1}{n}}\right) \frac{v(y)+\frac{1}{n}}{\varepsilon} dy = (1+\rho)K\lambda.$$

Now, if f is the function defined on $(0, \infty)$ by

$$f(y) = \frac{1}{K} \Psi_1 \left(\frac{\varepsilon g(\beta -)}{v(y) + \frac{1}{n}} \right) \frac{v(y) + \frac{1}{n}}{\varepsilon g(\beta -)} \chi_{(0,b)}(y)$$

and $z \in [b, \beta)$, we have

(17)
$$T_{g}f(z) = g(z) \int_{0}^{b} \frac{1}{K} \Psi_{1} \left(\frac{\varepsilon g(\beta -)}{v(y) + \frac{1}{n}} \right) \frac{v(y) + \frac{1}{n}}{\varepsilon g(\beta -)} dy$$

$$\geq \int_{0}^{b} \frac{1}{K} \Psi_{1} \left(\frac{\varepsilon g(\beta -)}{v(y) + \frac{1}{n}} \right) \frac{v(y) + \frac{1}{n}}{\varepsilon} dy = (1 + \rho)\lambda.$$

154 Ortega

Then, $[b,\beta) \subset \{x \in (0,\infty); T_g f(x) > \lambda \}$ and the weak type inequality (3) together with the property $\Phi_1(\frac{\Psi_1(t)}{t}) \leq \Psi_1(t)$ and (16) give

(18)
$$(\Phi_{1} \circ \Phi_{2}^{-1}) \left(\Phi_{2}(\lambda) \int_{b}^{\beta} u \right) \leq \int_{0}^{b} \Phi_{1} \left(\Psi_{1} \left(\frac{\varepsilon g(\beta -)}{v(y) + \frac{1}{n}} \right) \frac{v(y) + \frac{1}{n}}{\varepsilon g(\beta -)} \right) v(y) dy$$

$$\leq \int_{0}^{b} \Psi_{1} \left(\frac{\varepsilon g(\beta -)}{v(y) + \frac{1}{n}} \right) \left(v(y) + \frac{1}{n} \right) dy = (1 + \rho) K \lambda \varepsilon.$$

The fact that $S_{\Psi_1}(t) = \frac{\Psi_1(t)}{t}$ increases, (18) and (16) yield

(19)
$$\int_{0}^{b} \Psi_{1} \left(\frac{g(\beta -)(\Phi_{1} \circ \Phi_{2}^{-1}) \left(\Phi_{2}(\lambda) \int_{b}^{\beta} u \right)}{(1 + \rho)K\lambda \left(v(y) + \frac{1}{n} \right)} \right) \frac{v(y) + \frac{1}{n}}{(\Phi_{1} \circ \Phi_{2}^{-1}) \left(\Phi_{2}(\lambda) \int_{b}^{\beta} u \right)} dy$$

$$\leq \int_{0}^{b} \Psi_{1} \left(\frac{g(\beta -)\varepsilon}{v(y) + \frac{1}{n}} \right) \frac{v(y) + \frac{1}{n}}{(1 + \rho)K\lambda\varepsilon} dy = 1.$$

By the monotone convergence theorem, we obtain from (19) the inequality

$$(20) \quad \int_0^b \Psi_1 \left(\frac{g(\beta -)(\Phi_1 \circ \Phi_2^{-1}) \left(\Phi_2(\lambda) \int_b^\beta u \right)}{(1 + \rho) K \lambda v(y)} \right) \frac{v(y)}{(\Phi_1 \circ \Phi_2^{-1}) \left(\Phi_2(\lambda) \int_b^\beta u \right)} dy \le 1.$$

Since this inequality holds for all positive ρ , letting ρ tends to 0 we obtain (11) (again by monotone convergence). \square

Final remark. It is worth noting that $\Phi_2(\lambda)$ can be replaced all over the paper by $h(\lambda)$, where h is an arbitrary positive function defined on $(0, \infty)$.

Acknowledgement. I have to thank the referee for some valuable comments and suggestions.

References

- 1. K.F. Andersen and B. Muckenhoupt, Weighted weak type Hardy inequalities with applications to Hilbert transforms and maximal function, *Studia Math.* **72** (1982), 9–26.
- 2. S. Bloom and R. Kerman, Weighted L_{Φ} integral inequalities for operators of Hardy type, *Studia Math.* **110**(1) (1994), 35–52.

- 3. E. Ferreyra, Weighted Lorentz norm inequalities for integral operators, *Studia Math.* **96** (1990), 125–134.
- 4. F.J. Martín-Reyes, New proofs of weighted inequalities for the one-sided Hardy-Littlewood maximal functions, *Proc. Amer. Math. Soc.* **117** (1993), 691–698.
- 5. F.J. Martín-Reyes and P. Ortega Salvador, On weighted weak type inequalities for modified Hardy operators, *Proc. Amer. Math. Soc.* **126**(6) (1998), 1739–1746.
- 6. F.J. Martín-Reyes, P. Ortega Salvador and M.D. Sarrión Gavilán, Boundedness of operators of Hardy type in $\Lambda^{p,q}$ spaces and weighted mixed inequalities for singular integral operators, *Proc. Royal Soc. Edinburgh* **127A** (1997), 157–170.
- 7. P. Ortega Salvador and L. Pick, Two-weight weak and extra-weak type inequalities for the one-sided maximal operator, *Proc. Royal Soc. Edinburgh* **123A** (1993), 1109–1118.
- 8. Lai Qinsheng, Two weight mixed Φ -inequalities for the Hardy operator and the Hardy-Littlewood maximal operator, *J. London Math. Soc.* **46** (1992), 301–318.
- 9. E. Sawyer, Weighted Lebesgue and Lorentz norm inequalities for the Hardy operator, *Trans. Amer. Math. Soc.* **281** (1984), 329–337.