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Abstract

We consider the operator Tgf(x)=g(x)
∫ x

0
f , where g is a positive nonincreasing

function, and characterize the pairs of positive measurable functions (u,v) such
that the generalized weak type inequality

Φ−1
2

(
Φ2(λ)

∫
{ x∈(0,∞);|Tgf(x)|>λ }

u

)
≤Φ−1

1

(∫ ∞
0

Φ1(K|f |)v
)

holds, where either Φ1 is a N-function and Φ2 is a positive increasing func-
tion such that Φ1◦Φ−1

2 is countably subadditive or Φ1(t)=t and Φ2 is a positive
increasing function whose inverse is countably subadditive.

Let g be a positive measurable function on (0,∞) and let Tg be the operator defined
for locally integrable functions f on (0,∞) by

(1) Tgf(x) = g(x)
∫ x

0

f(y)dy (x ∈ (0,∞)).

The characterization of the couples of weights (u, v) such that

(2)

(∫
{ x∈(0,∞);|Tgf(x)|>λ }

λqu

)1/q

≤ C

(∫ ∞

0

|f |pv
)1/p

This research has been supported by D.G.I.C.Y.T. grant PB97-1097 and Junta de Andalucı́a.

149

Administrador




150 Ortega

holds in the case 1 ≤ p ≤ q < ∞ has been done in [6], where results due to
Andersen and Muckhenhoupt [1], Sawyer [9] and Ferreyra [3] have been generalized
and improved. If q < p and g is a monotone function, the characterization of the
couples of weights such that (2) holds has been done in [5].

In this note, we work with a nonincreasing g and characterize the couples of
weights (u, v) such that the weighted generalized weak type inequality

(3) Φ−1
2

(
Φ2(λ)

∫
{ x∈(0,∞);|Tgf(x)|>λ }

u

)
≤ Φ−1

1

(∫ ∞

0

Φ1(K|f |)v
)

holds, where either Φ1 is a N -function and Φ2 is a positive increasing function
such that Φ1 ◦ Φ−1

2 is countably subadditive or Φ1(t) = t and Φ2 is a positive
increasing function whose inverse is countably subadditive. It is clear that, under
these conditions over Φ1 and Φ2, inequality (3) is a generalization of (2) in the case
1 ≤ p ≤ q.

By a N -function we mean a continuous and convex function Φ defined on [0,∞)
such that Φ(s) > 0 if s > 0, Φ(s)

s → 0 when s → 0 and Φ(s)
s → ∞ when s → ∞.

Every N -function Φ admits a representation of the form Φ(x) =
∫ x

0
φ(t)dt, where

φ is nondecreasing, continuous by the right at every point and verifies φ(0) = 0,
φ(s) > 0 if s > 0 and φ(s) → ∞ when s → ∞. The function φ is called the
density function of Φ. Given a N -function Φ, the function Ψ : [0,∞) → R defined
by Ψ(t) = sups≥0(st−Φ(s)) is also a N -function which is called the complementary
function of Φ. Two complementary N -functions Φ and Ψ verify Young’s inequality,
which is a fundamental tool to prove our theorems: if s, t ≥ 0, then st ≤ Φ(s)+Ψ(t).

Inequality (3) has been studied by L. Qinsheng [8] in the case g ≡ 1 (the Hardy
operator) and by S. Bloom and R. Kerman [2] for nondecreasing g. When g is nonde-
creasing, Tg is a monotone operator (see [2]) and the set Oλ = {x ∈ (0,∞);Tgf(x) >
λ} is an interval. This is not true for nonincreasing g. The difficulties that appear
in this case are solved by mean of methods already applied in [5] and [6], which are
based on [4]. We also use the standard methods of N -functions ([7] and [2]).

The results and their proofs are the following ones:

Theorem 1
Let u, v be positive locally integrable functions on (0,∞). Let Φ2 be a positive

increasing function such that Φ−1
2 is countably subadditive. Then, the weak type

inequality (3) holds with Φ1(t) = t if and only if

(4)
Φ−1

2

(
Φ2(λ)

∫ β

b
u
)

λ

(
ess sup

x∈(0,b)

v−1(x)

)
g(β−) ≤ K

holds for every λ > 0 and every b, β with 0 < b < β, where g(β−) = limx→β− g(x).
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Proof. Suppose that condition (4) holds. Let f be a non negative measurable
function supported on a bounded interval (0, A). Let x0 = A and, given xk, let
xk+1 be the unique real number such that

∫ xk

0
f = 2

∫ xk+1

0
f . The sequence {xk} is

decreasing and has limit 0. Moreover,

(5)
∫ xk

0

f = 4
∫ xk+1

xk+2

f

for every k. Let λ > 0, k ∈ N and Ek = {x ∈ (xk+1, xk);Tgf(x) > λ }. Let
βk = supEk. If x ∈ Ek, then

(6) λ < g(x)
∫ x

0

f < g(x)
∫ xk

0

f.

Since (6) holds for every x ∈ Ek and g is nonincreasing, we have

(7) λ ≤ g(βk−)
∫ xk

0

f.

Then, by (7), (5) and (4) we obtain

(8)

Φ−1
2

(
Φ2(λ)

∫
Ek

u

)
≤ Φ−1

2

(
Φ2(λ)

∫ βk

xk+1

u

)

≤ 4
λ
g(βk−)

(∫ xk+1

xk+2

f

)
Φ−1

2

(
Φ2(λ)

∫ βk

xk+1

u

)

≤ 4
λ
g(βk−)

(
ess sup

x∈(xk+2,xk+1)

v−1(x)

) (∫ xk+1

xk+2

fv

)
Φ−1

2

(
Φ2(λ)

∫ βk

xk+1

u

)

≤ K

∫ xk+1

xk+2

fv

for every k. Summing up in k, the subadditivity of Φ−1
2 gives the weak type inequal-

ity (3).
Conversely, let λ > 0 and let β and b be real numbers with 0 < b < β. Let

ε > 0 and let F be a measurable subset of (0, b) with positive measure such that
v(x) ≤ ε+ess inf {v(t); t ∈ (0, b)} for every x ∈ F . Since we can assume g(β−) > 0,
there exists η > 0 such that η|F |g(β−) = (1+ε)λ. Let f = ηχF . Then, if x ∈ [b, β),
Tg(f)(x) = g(x)η|F | ≥ η|F |g(β−) = (1+ε)λ > λ. Therefore, [b, β) ⊂ {x;Tg(f)(x) >
λ} and inequality (3) gives

(9) Φ−1
2

(
Φ2(λ)

∫ β

b

u

)
≤ K

∫
F

ηv ≤ Kη|F | (ε+ ess inf {v(t); t ∈ (0, b)}) .
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Multiplying by g(β−), we obtain

(10) Φ−1
2

(
Φ2(λ)

∫ β

b

u

)
g(β−) ≤ (1 + ε)Kλ (ε+ ess inf {v(t); t ∈ (0, b)}) .

Since inequality (10) holds for all ε > 0, we are done. �

Theorem 2

Let u, v be positive locally integrable functions on (0,∞). Let Φ1 be a N -

function and let Φ2 be a positive increasing function such that Φ1 ◦Φ−1
2 is countably

subadditive. Let Ψ1 be the complementary N -function of Φ1. Then the weak type

inequality (3) implies that the inequality

(11)
∫ b

0

Ψ1


g(β−)(Φ1 ◦ Φ−1

2 )
(
Φ2(λ)

∫ β

b
u
)

Kλv


 v ≤ (Φ1 ◦ Φ−1

2 )

(
Φ2(λ)

∫ β

b

u

)

holds for every λ > 0 and every b, β with 0 < b < β. Conversely, condition (11)
with constant K implies the weak type inequality (3) with constant 8K.

Proof. Suppose that condition (11) holds. Let f be a non negative measurable
function supported on a bounded interval (0, A). Let {xk}, {Ek} and βk be defined
as in the proof of Theorem 1, so that (5), (6) and (7) hold. Then, (7), (5), Young’s
inequality and condition (11) yield

(12)

2(Φ1 ◦ Φ−1
2 )

(
Φ2(λ)

∫ βk

xk+1

u

)

≤ (Φ1 ◦ Φ−1
2 )

(
Φ2(λ)

∫ βk

xk+1

u

)
1
λ
g(βk−)

∫ xk+1

xk+2

8f

=
∫ xk+1

xk+2

8Kf
(Φ1 ◦ Φ−1

2 )
(
Φ2(λ)

∫ βk

xk+1
u
)
g(βk−)

Kλv
v

≤
∫ xk+1

xk+2

Φ1(8Kf)v +
∫ xk+1

xk+2

Ψ1


 (Φ1 ◦ Φ−1

2 )
(
Φ2(λ)

∫ βk

xk+1
u
)
g(βk−)

Kλv


 v

≤
∫ xk+1

xk+2

Φ1(8Kf)v + (Φ1 ◦ Φ−1
2 )

(
Φ2(λ)

∫ βk

xk+1

u

)
.
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The above inequality is equivalent to

(13) (Φ1 ◦ Φ−1
2 )

(
Φ2(λ)

∫ βk

xk+1

u

)
≤

∫ xk+1

xk+2

Φ1(8Kf)v,

which implies

(14) (Φ1 ◦ Φ−1
2 )

(
Φ2(λ)

∫
Ek

u

)
≤

∫ xk+1

xk+2

Φ1(8Kf)v.

Summing up in k, the subadditivity of Φ1 ◦ Φ−1
2 gives the weak type inequality (3)

with constant 8K.
Suppose now that (3) holds. Let λ > 0 and let β and b be real numbers with

0 < b < β. Let ρ be a positive number and let n be a natural number. Then, for
every ε > 0,

(15)
∫ b

0

Ψ1

(
εg(β−)
v(y) + 1

n

)
v(y) + 1

n

ε
dy ≤ bg(β−)ψ1(nεg(β−)),

where ψ1 is the density function of Ψ1, and, therefore, the integral is finite. The
fact that the function Ψ1(t)

t increases taking all values from 0 to ∞, the continuity
of the above integral as a function of ε and the fact that we can assume g(β−) > 0
imply that there exists ε > 0 such that

(16)
∫ b

0

Ψ1

(
εg(β−)
v(y) + 1

n

)
v(y) + 1

n

ε
dy = (1 + ρ)Kλ.

Now, if f is the function defined on (0,∞) by

f(y) =
1
K

Ψ1

(
εg(β−)
v(y) + 1

n

)
v(y) + 1

n

εg(β−)
χ(0,b)(y)

and z ∈ [b, β), we have

(17)

Tgf(z) = g(z)
∫ b

0

1
K

Ψ1

(
εg(β−)
v(y) + 1

n

)
v(y) + 1

n

εg(β−)
dy

≥
∫ b

0

1
K

Ψ1

(
εg(β−)
v(y) + 1

n

)
v(y) + 1

n

ε
dy = (1 + ρ)λ.
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Then, [b, β) ⊂ {x ∈ (0,∞);Tgf(x) > λ } and the weak type inequality (3) together
with the property Φ1(

Ψ1(t)
t ) ≤ Ψ1(t) and (16) give

(18)

(Φ1 ◦ Φ−1
2 )

(
Φ2(λ)

∫ β

b

u

)
≤

∫ b

0

Φ1

(
Ψ1

(
εg(β−)
v(y) + 1

n

)
v(y) + 1

n

εg(β−)

)
v(y)dy

≤
∫ b

0

Ψ1

(
εg(β−)
v(y) + 1

n

) (
v(y) +

1
n

)
dy = (1 + ρ)Kλε.

The fact that SΨ1(t) = Ψ1(t)
t increases, (18) and (16) yield

(19)

∫ b

0

Ψ1


g(β−)(Φ1 ◦ Φ−1

2 )
(
Φ2(λ)

∫ β

b
u
)

(1 + ρ)Kλ
(
v(y) + 1

n

)

 v(y) + 1

n

(Φ1 ◦ Φ−1
2 )

(
Φ2(λ)

∫ β

b
u
)dy

≤
∫ b

0

Ψ1

(
g(β−)ε
v(y) + 1

n

)
v(y) + 1

n

(1 + ρ)Kλε
dy = 1.

By the monotone convergence theorem, we obtain from (19) the inequality

(20)
∫ b

0

Ψ1


g(β−)(Φ1 ◦ Φ−1

2 )
(
Φ2(λ)

∫ β

b
u
)

(1 + ρ)Kλv(y)


 v(y)

(Φ1 ◦ Φ−1
2 )

(
Φ2(λ)

∫ β

b
u
)dy ≤ 1.

Since this inequality holds for all positive ρ, letting ρ tends to 0 we obtain (11)
(again by monotone convergence). �

Final remark. It is worth noting that Φ2(λ) can be replaced all over the paper by
h(λ), where h is an arbitrary positive function defined on (0,∞).

Acknowledgement. I have to thank the referee for some valuable comments and
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