Collectanea Mathematica (electronic version): http://www.mat.ub.es/CM

Collect. Math. **51**, 2 (2000), 131–148 c 2000 Universitat de Barcelona

Duality and reflexivity in grand Lebesgue spaces

Alberto Fiorenza[∗]

Dipartimento di Costruzioni e Metodi Matematici in Architettura, via Monteoliveto, 3 I-80134 Napoli, Italy

E-mail: fiorenza@unina.it

Received February 19, 1999. Revised April 7, 1999

ABSTRACT

The grand L^p space $L^{p}(\Omega)$ (1*<p<*+ ∞) introduced by Iwaniec-Sbordone is defined as the *Banach Function Space* of the measurable functions *f* on Ω such that

$$
\|f\|_{p)} = \sup_{0 < \varepsilon < p-1} \left(\varepsilon \frac{1}{\Omega} \int\limits_{\Omega} |f|^{p-\varepsilon} dx \right)^{1/(p-\varepsilon)} < +\infty \, .
$$

We introduce the *small* $L^{p'}$ *space* denoted by $L^{p'}(\Omega)$ and we prove that the associate space of $L^{(p)}(\Omega)$ is $L^{(p)'}(\Omega)$. It turns out that $L^{(p)'}(\Omega)$ is a *Banach Function Space* whose norm satisfy the Fatou property, and that it is the dual of the closure of $L^{\infty}(\Omega)$ in $L^{p)}(\Omega)$. Moreover, we give a characterization of $L^{p)}(\Omega)$ as dual space, and we prove that for any $1 < p < +\infty$ the spaces $L^{p)}(\Omega)$ and $L^{p'}(\Omega)$ are not reflexive.

131

[∗] This work has been partially performed as a part of a National Research Project supported by M.U.R.S.T

132 FIORENZA

1. Introduction

Let $\Omega \subset \mathbb{R}^N$ $(N \geq 1)$ be a set of Lebesgue measure $|\Omega| < +\infty$ and let $1 < p < +\infty$. The grand L^p space, that will be denoted by $L^{p)}(\Omega)$, introduced by Iwaniec-Sbordone in [8] is defined as the space of the measurable functions f on Ω such that

$$
||f||_{p} = \sup_{0 < \varepsilon < p-1} \left(\varepsilon \frac{1}{| \Omega |} \int_{\Omega} |f|^{p-\varepsilon} \, dx \right)^{1/(p-\varepsilon)} < +\infty \, .
$$

Grand L^p spaces have been considered in various fields: in the theory of Partial Differential Equations (see e.g. [9], [10], [13], [14]), in the study of maximal operators and, more generally, quasilinear operators, and in interpolation theory (see e.g. [4], [2]). In particular, in the theory of Partial Differential Equations, it turns out that they are the right spaces in which some nonlinear equations have to be considered (see [7], [5]). Also, they have been studied in their own, various properties have been developed e.g. in [6], [3].

The aim of this paper is to find an explicit expression of the "best" functional $\mathcal{N}_{p'}$, usually called the *associate norm* of $\|\cdot\|_{p}$, such that the following Hölder inequality holds

$$
\underset{\Omega}{\int} fg dx \leq \left\|f\right\|_{p)}\mathcal{N}_{p'}(g)
$$

where the symbol \overline{f} Ω stands for $\frac{1}{|\Omega|}$ Ω . Namely, the problem we solve is to find an expression of the associate norm free from the definition of the norm in grand *L^p* spaces. It turns out that the solution of this problem gives also a characterization of the dual of the closure of $L^{\infty}(\Omega)$ in $L^{p}(\Omega)$.

Many concepts from the theory of Banach Function Spaces are used: we refer to the books by Zaanen ([15]) and Bennett-Sharpley ([1]) for the main results of this theory.

After introducing in Section 2 the auxiliary Banach space $L^{(p')}(\Omega)$, in Section 3 we study the *small* $L^{p'}$ *space* denoted by $L^{p'}(\Omega)$ and we prove that the associate space of $L^{p}(\Omega)$ is $L^{p'}(\Omega)$. In particular, the following Hölder inequality holds

$$
\int_{\Omega} fg dx \leq ||f||_{p)} ||g||_{p'} \qquad \forall f \in L^{p'}(\Omega), g \in L^{p'}(\Omega).
$$

Finally, the fundamental function of the grand Lebesgue Space is estimated, and, as a consequence, the spaces $L^{p)}(\Omega)$ and $L^{p'}(\Omega)$ are characterized as dual spaces. Moreover, we show that $L^{p}(\Omega)$ and $L^{p'}(\Omega)$ are not reflexive.

In order to have a simpler notation, unless differently specified, all the spaces considered in the sequel have to be intended as spaces of functions on Ω , therefore for instance we will write L^{p} instead of $L^{p}(\Omega)$, \overline{L}^{∞} instead of $L^{\infty}(\Omega)$, etc.

2. The space $L^{(p)}$

Let $\Omega \subset \mathbb{R}^N$ $(N \geq 1)$, $\vert \Omega \vert < +\infty$, and let \mathcal{M}_0 be the set of all measurable functions, whose values lie in $[-\infty, +\infty]$, finite a.e. in Ω . Also, let \mathcal{M}_0^+ be the class of functions in \mathcal{M}_0 whose values lie in $[0, +\infty]$.

Let us begin by proving the following

Lemma 2.1

If $f, g \in \mathcal{M}_0^+$ and $g \leq f = \sum_{k=1}^{\infty} f_k$ with $f_k \geq 0$ $\forall k \in \mathbb{N}$ then the functions *defined in* Ω *by*

$$
h_k = \left[f_k - \max\left(g - \sum_{j=1}^{k-1} f_j, 0\right) \right] \chi_{\left\{ \sum_{j=1}^k f_j > g \right\}} \qquad \forall k \in \mathbb{N}
$$

are such that

$$
(2.1) \t\t 0 \le h_k \le f_k \t \forall k \in \mathbb{N}
$$

and

(2.2)
$$
g = \sum_{k=1}^{\infty} (f_k - h_k).
$$

Proof. For a.e. $x \in \Omega$ such that $g(x) = f(x)$ we have $h_k(x) = 0 \quad \forall k \in \mathbb{N}$ and therefore (2.1) and (2.2) are obvious.

For a.e. $x \in \Omega$ such that $g(x) < f(x)$ let

$$
\widehat{k} = \widehat{k}_x = \min \left\{ k : \sum_{j=1}^k f_j(x) > g(x) \right\}.
$$

If $k < \hat{k}$ we have $\sum_{j=1}^{k} f_j(x) \leq g(x)$ and therefore $h_k(x) = 0$ from which (2.1) follows.

If $k = \hat{k}$ we have $\sum_{j=1}^{k-1} f_j(x) \le g(x)$ and $\sum_{j=1}^{k} f_j(x) > g(x)$, therefore

$$
h_{\widehat{k}}(x) = f_{\widehat{k}}(x) - \left(g(x) - \sum_{j=1}^{\widehat{k}-1} f_j(x)\right)
$$

satisfies (2.1).

If $k > \hat{k}$ then $h_k(x) = f_k(x)$ and therefore (2.1) is immediate. Inequalities (2.1) are proved for any $k \in \mathbb{N}$.

On the other hand equality (2.2) holds because for a.e. $x \in \Omega$ such that $g(x)$ $f(x)$ we have

$$
\sum_{k=1}^{\infty} (f_k(x) - h_k(x)) = \sum_{k \leq k} (f_k(x) - h_k(x))
$$

+ $f_{\widehat{k}}(x) - h_{\widehat{k}}(x) + \sum_{k > \widehat{k}} (f_k(x) - h_k(x))$
= $\sum_{k \leq \widehat{k}} f_k(x) + f_{\widehat{k}}(x) - \left(f_{\widehat{k}}(x) - g(x) + \sum_{k \leq \widehat{k}} f_k(x) \right)$
+ $\sum_{k > \widehat{k}} (f_k(x) - f_k(x)) = g(x) . \square$

For each $g \in \mathcal{M}_0^+$ let us pose

$$
||g||_{(p'} = \inf_{g=\sum_{k=1}^{\infty} g_k} \left\{ \sum_{k=1}^{\infty} \inf_{0 \le \varepsilon \le p-1} \varepsilon^{-1/(p-\varepsilon)} \left(\int_{\Omega} |g_k|^{(p-\varepsilon)'} dx \right)^{1/(p-\varepsilon)'} \right\}
$$

where $1 < p < +\infty$, $p' = p/(p-1)$ and $g_k \in \mathcal{M}_0$ $\forall k \in \mathbb{N}$.

Corollary 2.2

For each $g \in \mathcal{M}_0^+$ *we have*

$$
\|g\|_{(p')} = \inf_{\substack{g=\sum_{k=1}^{\infty} g_k \\ g_k \ge 0}} \left\{ \sum_{k=1}^{\infty} \inf_{0 < \varepsilon < p-1} \varepsilon^{-1/(p-\varepsilon)} \left(\int_{\Omega} g_k^{(p-\varepsilon)}' dx \right)^{1/(p-\varepsilon)'} \right\}.
$$

Proof. For any sequence (g_k) in \mathcal{M}_0 put

(2.3)
$$
\mathcal{S}\big((g_k)\big) = \sum_{k=1}^{\infty} \inf_{0 \le \varepsilon \le p-1} \varepsilon^{-1/(p-\varepsilon)} \left(\int_{\Omega} |g_k|^{(p-\varepsilon)'} dx\right)^{1/(p-\varepsilon)'}
$$

We have to show that for any $g \in \mathcal{M}_0^+$ and for any decomposition $g = \sum_{k=1}^{\infty} g_k$ with $g_k \in \mathcal{M}_0$ there exists a decomposition $g = \sum_{k=1}^{\infty} \gamma_k$ with $\gamma_k \in \mathcal{M}_0^+$ $\forall k \in \mathbb{N}$ such that $\mathcal{S}((g_k)) \geq \mathcal{S}((\gamma_k)).$

Let us apply Lemma 2.1 replacing f_k by $g_k^+ = \max\{g_k, 0\}$ $\forall k \in \mathbb{N}$, and let us set $\gamma_k = g_k^+ - h_k \quad \forall k \in \mathbb{N}$. Since $|g_k^+ + g_k^-| = |g_k^+ + (-g_k^-)|$ where $g_k^- = \min\{g_k, 0\}$, we have

$$
\mathcal{S}\big((g_k)\big) = \mathcal{S}\big((g_k^+ + g_k^-)\big) = \mathcal{S}\big((g_k^+ + (-g_k^-))\big) \geq \mathcal{S}\big((g_k^+)\big) \geq \mathcal{S}\big((g_k^+ - h_k)\big) = \mathcal{S}\big((\gamma_k)\big)
$$

from which the assertion of Corollary 2.2 follows. \Box

Theorem 2.3

The space defined by

$$
L^{(p')}=\left\{g\in\mathcal{M}_{0}:\left\|\;\right|g\mid\right\|_{(p'}<+\infty\right\}
$$

is a Banach Function Space.

Proof. Most of the properties of $|| \cdot || ||_{(p)}$ needed to show that $L^{(p')}$ is a Banach Function Space are trivial or easy to prove. Here we show only that the following properties hold for all *f*, *g*, $g^{(n)}$ ($n \in \mathbb{N}$), in \mathcal{M}_0^+ :

(*i*) $\left\| \sum_{n=1}^{\infty} g^{(n)} \right\|_{(p)}$ $\leq \sum_{n=1}^{\infty} \|g^{(n)}\|_{(p')},$ *.* (*ii*) If $g \le f$ a.e. in Ω , then $||g||_{(p'} \le ||f||_{(p')}$.

Proof of (*i*). Let us assume that the functions $g_k^{(n)} \in \mathcal{M}_0^+$ are such that

$$
\sum_{n=1}^{\infty} \left\| g^{(n)} \right\|_{(p'} < +\infty \quad \forall n \in \mathbb{N},
$$

otherwise the assertion is trivial. Let $\varepsilon > 0$ and let $g_k^{(n)} \in \mathcal{M}_0^+$ (the existence follows from Corollary 2.2) be such that

$$
g^{(n)} = \sum_{k=1}^{\infty} g_k^{(n)} \qquad \forall n \in \mathbb{N}
$$

.

and

$$
\sum_{k=1}^\infty \inf_{0<\varepsilon < p-1} \varepsilon^{-1/(p-\varepsilon)} \Biggl(\int\limits_{\Omega} \bigl(g_k^{(n)} \bigr)^{(p-\varepsilon)'} dx \Biggr)^{1/((p-\varepsilon)')} < \left\| g^{(n)} \right\|_{(p'} + \frac{\varepsilon}{2^n} \, .
$$

We have

$$
\left\| \sum_{n=1}^{\infty} g^{(n)} \right\|_{(p'} = \left\| \sum_{n=1}^{\infty} \sum_{k=1}^{\infty} g_k^{(n)} \right\|_{(p'} = \left\| \sum_{n,k=1}^{\infty} g_k^{(n)} \right\|_{(p'}
$$

\n
$$
\leq \sum_{n,k=1}^{\infty} \inf_{0 < \varepsilon < p-1} \varepsilon^{-1/(p-\varepsilon)} \left(\int_{\Omega} (g_k^{(n)})^{(p-\varepsilon)} dx \right)^{1/(p-\varepsilon')}
$$

\n
$$
= \sum_{n=1}^{\infty} \sum_{k=1}^{\infty} \inf_{0 < \varepsilon < p-1} \varepsilon^{-1/(p-\varepsilon)} \left(\int_{\Omega} (g_k^{(n)})^{(p-\varepsilon)} dx \right)^{1/(p-\varepsilon')}
$$

\n
$$
\leq \sum_{n=1}^{\infty} \left\| g^{(n)} \right\|_{(p'} + \varepsilon \quad \forall \varepsilon > 0.
$$

Proof of (ii). For any decomposition $f = \sum_{k=1}^{\infty} f_k$ with $f_k \in \mathcal{M}_0^+$ $\forall k \in \mathbb{N}$ let (h_k) in \mathcal{M}_{p}^{+} $\forall k \in \mathbb{N}$ be given by Lemma 2.1, such that $g = \sum_{k=1}^{\infty} (f_k - h_k)$. By using Corollary 2.2 we have

$$
||f||_{(p'} = \inf_{\substack{f = \sum_{k=1}^{\infty} f_k}} S((f_k)) \ge \inf_{\substack{f = \sum_{k=1}^{\infty} f_k}} S((f_k - h_k)) \ge \inf_{\substack{g = \sum_{k=1}^{\infty} g_k}} S((g_k)) = ||g||_{(p'}
$$

and the proof of (ii) is now complete. \square

After Theorem 2.3 $L^{(p)}$ is a Banach space under the norm

$$
||g||_{(p')} = \inf_{|g| = \sum_{k=1}^{\infty} g_k} \left\{ \sum_{k=1}^{\infty} \inf_{0 < \varepsilon < p-1} \varepsilon^{-1/(p-\varepsilon)} \left(\int_{\Omega} |g_k|^{(p-\varepsilon)'} dx \right)^{1/(p-\varepsilon)'} \right\}
$$

where $g_k \in \mathcal{M}_0$ $\forall k \in \mathbb{N}$. We remark that in the right hand side it is possible to replace $|g|$ simply by g , in fact we have

Proposition 2.4

For any $g \in L^{(p)}$

$$
||g||_{(p'} = \inf_{g=\sum_{k=1}^{\infty} g_k} \left\{ \sum_{k=1}^{\infty} \inf_{0 \le \varepsilon \le p-1} \varepsilon^{-1/(p-\varepsilon)} \left(\int_{\Omega} |g_k|^{(p-\varepsilon)'} dx \right)^{1/(p-\varepsilon)'} \right\}
$$

where $g_k \in \mathcal{M}_0$ $\forall k \in$

Proof. Let $|g| = \sum_{k=1}^{\infty} h_k$ be any decomposition of $|g|$ in \mathcal{M}_0^+ . We have $g(x) =$ $\text{sgn}(g(x)) | g(x) |$ a.e. in Ω (where $\text{sgn} = \chi_{]0, +\infty[} - \chi_{] - \infty, 0[}$) and therefore

$$
g(x) = \operatorname{sgn}(g(x)) \sum_{k=1}^{\infty} h_k(x) = \sum_{k=1}^{\infty} \operatorname{sgn}(g(x)) h_k(x) \quad \text{a.e. in } \Omega
$$

from which

$$
\inf_{\substack{g=\sum_{k=1}^{\infty} g_k}} \mathcal{S}\left((g_k)\right) \le \mathcal{S}\left((\text{sgn}(g)h_k)\right) = \mathcal{S}\left((h_k)\right)
$$

where $S((g_k))$ is given by (2.3). Therefore

$$
\inf_{\substack{g=\sum_{k=1}^{\infty} g_k}} S\left((g_k)\right) \leq \inf_{\substack{|g|=\sum_{k=1}^{\infty} h_k \\ h_k \in \mathcal{M}_0^+}} S\left((h_k)\right) = \inf_{\substack{|g|=\sum_{k=1}^{\infty} h_k \\ h_k \in \mathcal{M}_0}} S\left((h_k)\right).
$$

On the other hand, let $g = \sum_{k=1}^{\infty} g_k$ be any decomposition of g in \mathcal{M}_0 , and let

$$
\gamma_{(g_k)} = \sum_{k=1}^{\infty} |g_k|.
$$

We have $| g | \leq \gamma(g_k)$ and therefore

$$
\inf_{\substack{|g|=\sum_{k=1}^{\infty}h_k \ \delta\left(\left(h_k\right)\right) \leq \min_{\substack{\gamma(g_k)=\sum_{k=1}^{\infty}h_k \ \delta\left(\left(h_k\right)\right) \leq \delta\left(\left(g_k\right)\right) \\ h_k \in \mathcal{M}_0}}
$$

from which

$$
\inf_{\substack{|g|=\sum_{k=1}^{\infty}h_k}} S((h_k)) \leq \inf_{\substack{g=\sum_{k=1}^{\infty}g_k\\g_k\in \mathcal{M}_0}} S((g_k)) .
$$

Proposition 2.4 is therefore proved. \Box

We remark that the following inclusions are easy to prove

$$
L^{p'+\varepsilon} \subset L^{(p'} \subset L^{p'} \qquad \forall \epsilon > 0.
$$

In particular, we have that $L^{\infty} \subset L^{(p)}$.

Next theorem is the main result of this section.

Theorem 2.5

The following H¨older-type inequality holds

$$
\int_{\Omega} fg dx \leq ||f||_{p)} ||g||_{(p'} \qquad \forall f \in L^{p^j}, g \in L^{(p')}.
$$

Proof. Let $|g| = \sum_{k=1}^{\infty} g_k$ be any decomposition with $g_k \geq 0 \quad \forall k \in \mathbb{N}$ and let $f \in L^{p}$. For each $k \in \mathbb{N}$ and for each $0 < \varepsilon < p-1$ we have

$$
\int_{\Omega} fg_k dx \le \left(\int_{\Omega} |f|^{p-\varepsilon} dx\right)^{1/(p-\varepsilon)} \left(\int_{\Omega} |g_k|^{(p-\varepsilon)'} dx\right)^{1/(p-\varepsilon)'}\n= \left(\varepsilon \int_{\Omega} |f|^{p-\varepsilon} dx\right)^{1/(p-\varepsilon)} \cdot \varepsilon^{-1/(p-\varepsilon)} \left(\int_{\Omega} |g_k|^{(p-\varepsilon)'} dx\right)^{1/(p-\varepsilon)'}\n\le \varepsilon^{-1/(p-\varepsilon)} \left(\int_{\Omega} |g_k|^{(p-\varepsilon)'} dx\right)^{1/(p-\varepsilon)'}\n\le \varepsilon^{-1/(p-\varepsilon)} \left(\int_{\Omega} |g_k|^{(p-\varepsilon)'} dx\right)^{1/(p-\varepsilon)'}\n\|f\|_{p}
$$

and therefore

$$
\int_{\Omega} fg_k dx \le \inf_{0 \le \varepsilon \le p-1} \varepsilon^{-1/(p-\varepsilon)} \left(\int_{\Omega} |g_k|^{(p-\varepsilon)'} dx \right)^{1/(p-\varepsilon)'} \|f\|_{p)}
$$

from which

$$
\int_{\Omega} fg dx \leq \int_{\Omega} |f| \left| \sum_{k=1}^{\infty} g_k \right| dx \leq \sum_{k=1}^{\infty} \int_{\Omega} |f| g_k dx
$$
\n
$$
\leq \sum_{k=1}^{\infty} \inf_{0 \leq \varepsilon < p-1} \varepsilon^{-1/(p-\varepsilon)} \left(\int_{\Omega} |g_k|^{(p-\varepsilon)'} dx \right)^{1/(p-\varepsilon)'} \|f\|_{(p')}.
$$

Hence

$$
\int_{\Omega} fg dx \leq ||g||_{(p'}||f||_{p)}.
$$

Theorem 2.5 is therefore proved. \square

We will need in the following some other properties of the space $L^{(p)}$. Let us begin with the following

Lemma 2.6

Let $F_n \subset \Omega$, $n \in \mathbb{N}$, be such that $\chi_{F_n} \downarrow 0$ *a.e.* in Ω *and let g be any function in* $L^{(p)}$ *. Then*

$$
\left\|g\chi_{_{F_n}}\right\|_{(p^{'}}\to 0\,.
$$

Proof. Without loss of generality we can assume that g is nonnegative. Let $g =$ $\sum_{k=1}^{\infty} g_k$ be a decomposition with $g_k \geq 0 \quad \forall k \in \mathbb{N}$ such that

$$
\sum_{k=1}^{\infty} \inf_{0 \leq \varepsilon \leq p-1} \varepsilon^{-1/(p-\varepsilon)} \left(\int_{\Omega} g_k^{(p-\varepsilon)'} dx \right)^{1/((p-\varepsilon)')} < +\infty.
$$

Setting

$$
a_{k,n} = \inf_{0 < \varepsilon < p-1} \varepsilon^{-1/(p-\varepsilon)} \left(\int_{\Omega} g_k^{(p-\varepsilon)} \chi_{F_n} dx \right)^{1/(p-\varepsilon)'} \qquad \forall k \in \mathbb{N}, \forall n \in \mathbb{N}
$$

we have

$$
\left\|g\chi_{_{F_n}}\right\|_{(p'}\leq \sum_{k=1}^\infty a_{k,n}<+\infty\qquad \forall n\in\mathbb{N}\,.
$$

Since $\sum_{k=1}^{\infty} a_{k,1} < +\infty$ and $a_{k,n} \downarrow 0 \quad \forall k \in \mathbb{N}$, the lemma is proved. \square

Corollary 2.7

Let $E_n \subset \Omega$, $n \in \mathbb{N}$, be such that $\chi_{E_n} \uparrow \chi_{\Omega}$ *a.e.* in Ω *and let g be any function* \int *in* $L^{(p)}$ *. Then*

$$
g\chi_{E_n} \to g \quad \text{in} \quad L^{(p')}.
$$

Proof. It suffices to apply Lemma 2.6 with $F_n = \Omega - E_n$. \Box

Corollary 2.8

Let $g \geq 0$ be any function in $L^{(p)}$ and let (g_n) be an increasing sequence of *nonnegative functions converging to <i>g a.e.* in Ω *. Then* $||g_n||_{(p')},$ \uparrow $||g||_{(p')}$.

Proof. Because of the order-preserving property of $\|\cdot\|_{(p)}$ it is clear that $\|g_n\|_{(p)}$ is an increasing sequence and $\lim_{n\to\infty} \|g_n\|_{(p')}\leq \|g\|_{(p')}$. On the other hand, by Corollary 2.7, for any $\varepsilon > 0$ there exists *M* such that

$$
\left\|g\right\|_{(p^{'}} - \varepsilon \leq \left\|\min\left\{M,g\right\}\right\|_{(p^{'}} \leq \left\|g\right\|_{(p^{'}}.
$$

Obviously $0 \le \min\{M, g_n\} \uparrow \min\{M, g\}$ a.e. in Ω and, since $\min\{M, g\} \in$ L^{∞} , we have also min $\{M, g_n\}$ → min $\{M, g\}$ in $L^{p'+1}$ therefore min $\{M, g_n\}$ → $\min \{M, g\}$ in $L^{(p')}$. This means that there exists $\nu \in \mathbb{N}$ such that

$$
\left\|\min\left\{M,g\right\}\right\|_{(p^{'}}-\varepsilon\leq\left\|\min\left\{M,g_{\nu}\right\}\right\|_{(p^{'}}\leq\left\|\min\left\{M,g\right\}\right\|_{(p^{'}}.
$$

Therefore for any $\varepsilon > 0$ we found $\nu \in \mathbb{N}$ such that

$$
\left\Vert g\right\Vert_{(p^{'}}-2\varepsilon\leq\left\Vert \min\left\{ M,g_{\nu}\right\} \right\Vert_{(p^{'}}\leq\left\Vert g_{\nu}\right\Vert_{(p^{'}}\leq\left\Vert g\right\Vert_{(p^{'}}.\ \Box
$$

Lemma 2.9

Let f be any function in L^{∞} *. Then there exists* $g \in L^{\infty}$ *such that*

$$
\int_{\Omega} fg dx = ||f||_{p)} ||g||_{p'}.
$$

Proof. If $f \in L^{\infty}$ then

$$
\lim_{\varepsilon \to 0} \left(\varepsilon \int_{\Omega} |f|^{p-\varepsilon} dx \right)^{1/(p-\varepsilon)} = 0
$$

therefore

$$
\sup_{0 < \varepsilon < p-1} \left(\varepsilon \int_{\Omega} |f|^{p-\varepsilon} dx \right)^{1/(p-\varepsilon)} = \left(\sigma \int_{\Omega} |f|^{p-\sigma} dx \right)^{1/(p-\sigma)} = \|f\|_{p}
$$

where $\sigma = \sigma(f) \in]0, p-1[$. Let $g \in L^{\infty}$ be such that

$$
\oint_{\Omega} fg dx = \left(\oint_{\Omega} |f|^{p-\sigma} dx\right)^{1/(p-\sigma)} \left(\oint_{\Omega} |g|^{(p-\sigma)'} dx\right)^{1/((p-\sigma)')}
$$

we have

$$
\int_{\Omega} fg dx \leq ||f||_{p)} ||g||_{(p'} \leq ||f||_{p)} \inf_{0 < \varepsilon < p-1} \varepsilon^{-1/(p-\varepsilon)} \left(\int_{\Omega} |g|^{(p-\varepsilon)'} dx \right)^{1/((p-\varepsilon)')}
$$
\n
$$
\leq ||f||_{p)} \sigma^{-1/(p-\sigma)} \left(\int_{\Omega} |g|^{(p-\sigma)'} dx \right)^{1/(p-\sigma)}.
$$
\n
$$
= \sigma^{1/(p-\sigma)} \left(\int_{\Omega} |f|^{p-\sigma} dx \right)^{1/(p-\sigma)} \sigma^{-1/(p-\sigma)} \left(\int_{\Omega} |g|^{(p-\sigma)'} dx \right)^{1/(p-\sigma')}
$$
\n
$$
= \int_{\Omega} fg dx.
$$

Therefore the inequalities are in fact equalities, the first inequality is equality and the lemma is proved. \square

In the following result we will consider the closure of L^{∞} in L^{p} , denoted by Σ^{p} in literature (see [6]). In order to use a notation closer to that one of the Banach Function Space theory, we will denote this space by L_b^p . It is known that L_b^p is *strictly* contained in L^p , therefore, the space L_b^p is not a Banach Function Space.

Corollary 2.10

Let *f* be any function in L_b^p . Then

$$
||f||_p = \sup_{g \neq 0 \atop g \in L(p')} \frac{\displaystyle\int\limits_{\Omega} fg dx}{||g||_{(p')}}.
$$

Proof. The inequality \geq is true by virtue of the Hölder inequality for grand L^p spaces, already proved in Theorem 2.5. On the other hand, previous Lemma 2.9 gives the reversed inequality. \square

3. The associate space of the grand Lebesgue space

For each $g \in \mathcal{M}_0$ let us set

$$
\|g\|_{p)'} = \sup_{\substack{0 \le \psi \le |g| \\ \psi \in L^{(p')}}} \|\psi\|_{(p')}.
$$

We remark that

$$
||g||_{p)' \leq ||g||_{(p' - \forall g \in \mathcal{M}_0)}
$$

$$
||g||_{p)' = ||g||_{(p'} < +\infty \qquad \forall g \in L^{(p')}.
$$

Let us begin by proving the following

Proposition 3.1

The small *Lp* space *defined by*

$$
L^{p)'}=\left\{g\in\mathcal{M}_{0}:\left\Vert g\right\Vert _{p)'}<+\infty\right\}
$$

is a Banach Function Space.

Proof. All the properties of $||g||_{p}$, which have to be satisfied in order that L^{p} be a Banach space are easy to prove, by using simply Theorem 2.3. It remains to prove only that the space $L^{p'}$ satisfies the Fatou property

$$
0 \le g_n \uparrow g \quad \text{a. e. in } \Omega \qquad \Rightarrow \qquad \left\|g_n\right\|_{p'} \uparrow \left\|g\right\|_{p'}.
$$

Because of the order-preserving property of $\|\cdot\|_{p}$ it is clear that $\|g_n\|_{p}$ is an increasing sequence and

$$
\lim_{n\to\infty}||g_n||_{p)'}\leq ||g||_{p)'}.
$$

Now let us consider the following two possibilities: $g \in L^{p'}$, $g \notin L^{p'}$. *First case* : $g \in L^{p}$. Fix $\varepsilon > 0$, let $\psi \in L^{(p')}$ be such that $0 \leq \psi \leq |g|$ and

$$
\left\|g\right\|_{p)'}-\varepsilon\leq \left\|\psi\right\|_{(p'}\leq \left\|g\right\|_{p)'}.
$$

Obviously $0 \le \min{\{\psi, g_n\}} \uparrow \psi$ a.e. in Ω and therefore by Corollary 2.8 $\|\min\{\psi, g_n\}\|_{(p'} \uparrow \|\psi\|_{(p')}.$ Let $\nu \in \mathbb{N}$ be such that

$$
\left\Vert \psi\right\Vert_{(p^{'}}-\varepsilon\leq\left\Vert \min\left\{ \psi,g_{\nu}\right\} \right\Vert_{(p^{'}}\leq\left\Vert \psi\right\Vert_{(p^{'}}
$$

then for any $\varepsilon > 0$ we find $\nu \in \mathbb{N}$ such that

$$
\left\|g\right\|_{p)'}-2\varepsilon\leq\left\|\min\{\psi,g_\nu\}\right\|_{(p'}\leq \left\|g_\nu\right\|_{p)'}\leq \left\|g\right\|_{p)'}.
$$

Second case : $g \notin L^{p'}$.

Fix $M > 0$, let $\psi \in L^{(p')}$ be such that $0 \leq \psi \leq |g|$ and $\|\psi\|_{(p')} > M$. Obviously $0 \le \min \{\psi, g_n\} \uparrow \psi$ a.e. in Ω and therefore by Corollary 2.8 $\|\min \{\psi, g_n\}\|_{(p)}$ \uparrow $\|\psi\|_{(p')}$. Let $\nu \in \mathbb{N}$ be such that $\|\min \{\psi, g_{\nu}\}\|_{(p')} > M$, then for any $\varepsilon > 0$ we find $\nu \in \mathbb{N}$ such that

$$
\|g_{\nu}\|_{p)^{'}} \ge \|\min\{\psi, g_{\nu}\}\|_{(p^{'}} > M \,.\, \Box
$$

We prove now the Hölder inequality for Grand Lebesgue spaces.

Theorem 3.2

Let $1 < p < +\infty$ *and* $\Omega \subset \mathbb{R}^N$ $(N \ge 1)$ *,* $|\Omega| < +\infty$ *. The following H¨older inequality holds*

$$
\int_{\Omega} fg dx \leq ||f||_{p)} ||g||_{p'} \qquad \forall f \in L^{p)}, g \in L^{p'}.
$$

Proof. For any $f \in L^{p}$ and for any $g \in M_0$ we have, by Theorem 2.5,

$$
\begin{aligned}\n\int_{\Omega} \parallel f \parallel g \parallel dx &= \sup_{\substack{0 \le \psi \le \lfloor g \rfloor \\ \psi \in L^{\infty}}} \int_{\Omega} \parallel f \parallel \psi dx &\le \sup_{\substack{0 \le \psi \le \lfloor g \rfloor \\ \psi \in L^{(p')}}} \int_{\Omega} \parallel f \parallel \psi dx \\
&\le \sup_{\substack{0 \le \psi \le \lfloor g \rfloor \\ \psi \in L^{(p')}}} \left\|f \right\|_{p} \left\|\psi\right\|_{(p')} = \left\|f \right\|_{p} \left\|g\right\|_{p}.\n\end{aligned}
$$

Theorem 3.2 is proved. \square

The proof of next result is analogous to that one of Corollary 2.10.

Corollary 3.3

Let *f* be any function in L_b^{p} . Then

$$
\left\|f\right\|_{p)}=\sup\limits_{g\neq 0\atop g\in L^{p} \hbox{\tiny p}}\frac{\displaystyle\int\limits_{\Omega}fgdx}{\left\|g\right\|_{p} \hbox{\tiny p}},\qquad \left\|f\right\|_{\left(L^{p} \hbox{\small $)^{'}$}}.
$$

Proposition 3.4

The spaces $L^{p'}$ and $(L^{p''})'$ are rearrangement-invariant spaces and $(L^{p''})'$ = *Lp*) *.*

Proof. Since the associate space of a rearrangement - invariant space is a rearrangement - invariant space, it is sufficient to prove that $(L^{p)'})'$ is rearrangement invariant.

Let $f \in (L^{p})'$, and let us set $f_n = \min\{n, f\} \in L^{\infty}$. We have

(3.1)
$$
0 \le f_n \uparrow f \quad \text{a.e. in } \Omega
$$

and therefore $0 \leq (f_n)^* \uparrow f^*$ a.e. in $[0, \Omega]$, where $(f_n)^*$ and f^* denote the decreasing rearrangements of f_n and f , respectively. Since the space $(L^{p)}')'$ satisfies the Fatou property, from (3.1) we get

(3.2)
$$
||f_n||_{(L^{p)'}')'} \uparrow ||f||_{(L^{p)'}')'}.
$$

On the other hand we have also

(3.3)
$$
\|(f_n)^*\|_{L^{p}(0,|\Omega|)} \uparrow \|f^*\|_{L^{p}(0,|\Omega|)}
$$

By Corollary 3.3

(3.4)
$$
||f_n||_{(L^{p)'}')'} = ||f_n||_{L^{p}} = ||(f_n)^*||_{L^{p}(0, |\Omega|)}.
$$

i; From (3.2), (3.3) and (3.4) we obtain $||f||_{(L^{p)'})'} = ||f^*||_{L^{p}(0, |\Omega|)}$ and therefore the assertion is proved. \Box

.

Consequence of Proposition 3.4 and of the classical Lorentz-Luxemburg theorem (see [1], Theorem 2.7 p. 10) is the following

Theorem 3.5

The space L^{p} *is associate to* L^{p} ^{*i*} *and vice versa.*

Now we deal with the reflexivity problem for L^{p} and $L^{p'}$. The space L^{p} is not reflexive, as established in the following simple

Proposition 3.6

The space Lp) *is not reflexive.*

Proof. It suffices to construct a function which has not absolute continuous norm. Without loss of generality we can consider the space $L^{p}(0,1)$.

It is easy to verify that the function $f(x) = x^{-1/p}$ has not absolute continuous norm, therefore the assertion follows.

In order to show that the same result is true for the space $L^{p'}$, we need next result, due to J. Lang and L. Pick ([12]).

Theorem 3.7

Let φ be the fundamental function of the grand L^p space. Then we have

(3.5)
$$
\varphi(t) \approx t^{1/p} \left[\log \left(\frac{1}{t} \right) \right]^{-1/p}
$$

 $as t \rightarrow 0.$

Proof. The fundamental function of the grand L^p space reads as

(3.6)
$$
\varphi(t) = \sup_{0 < \varepsilon < p-1} (\varepsilon t)^{1/(p-\varepsilon)}.
$$

Defining $F(\varepsilon) = (\varepsilon t)^{1/(p-\varepsilon)}$, we get

$$
F'(\varepsilon) = (\varepsilon t)^{1/(p-\varepsilon)}(p-\varepsilon)^{-2}\left(\frac{p}{\varepsilon} - 1 + \log \varepsilon + \log t\right).
$$

Hence

(3.7)
$$
F'(0+) = +\infty
$$
 and $F'(p-1) < 0$

if *t* is small enough.

The function

$$
G(\varepsilon) = \frac{p}{\varepsilon} - 1 + \log \varepsilon + \log t
$$

146 FIORENZA

satisfies, for every fixed t , $G'(\varepsilon) = \varepsilon^{-1}(-p\varepsilon^{-1} + 1) < 0$ for $\varepsilon < p$, hence *G* is strictly decreasing for every fixed *t*. Thus, for every fixed *t*, there exists an unique ε_t such that $G(\varepsilon_t) = 0$, hence $F'(\varepsilon_t) = 0$. By (3.7), ε_t is a point of maximum of F, the point where the supremum at (3.6) is attained, that is, $F(\varepsilon_t) = \varphi(t)$.

Now let β be a small number and let $t = \beta^{-1} \exp(1-p\beta^{-1})$. We have $G(\beta) = 0$, therefore, for such $t, \varepsilon_t = \beta$ and

$$
\varphi(t) = (\beta t)^{1/(p-\beta)} = \exp\left(-\frac{1}{\beta}\right).
$$

Hence, asymptotically, we see that if β is small and

$$
t = \frac{e}{p} \cdot \frac{p}{\beta} \exp\left(-\frac{p}{\beta}\right).
$$

then $\varphi(t) = \exp\left(-\frac{1}{\beta}\right)$. Now we claim that

$$
\varphi(t) \approx t^{1/p} \left[\log \left(\frac{1}{t} \right) \right]^{-1/p}
$$

.

Indeed, for *β* small let *t* be given by $t = \beta^{-1} \exp(1 - p\beta^{-1})$. Then

$$
t^{1/p} \left[\log \left(\frac{1}{t} \right) \right]^{-1/p} \approx \left(\frac{1}{\beta} \right)^{1/p} \left[\exp \left(-\frac{p}{\beta} \right) \right]^{1/p} \left[\log \left(\beta \exp \left(\frac{p}{\beta} \right) \right) \right]^{-1/p}
$$

$$
\approx \exp \left(-\frac{1}{\beta} \right) = \varphi(t)
$$

proving (3.5) . \Box

Theorem 3.7 enables us to estimate the limit of the fundamental functions $\varphi = \varphi(t)$ of L^{p} and $L^{p'}$. For both fundamental functions we have lim *t*→0 $\varphi(t)\,=\,0,$ therefore we can state the following

Corollary 3.8

The dual of L_b^p is isometrically isomorphic to $L^{p'}$ and the dual of $L_b^{p'}$ is *isometrically isomorphic to Lp*) *.*

Remark 1. Corollary 3.8 shows that the spaces L^{p} and L^{p} form a *complementary pair*. Complementary pairs of Banach spaces were introduced in papers by T.K. Donaldson, T.K. Donaldson and N.S. Trudinger, J.P. Gossez. For references on the subject we refer to [11].

Next proposition deals with the problem of the reflexivity of L_b^p .

Proposition 3.9

The space $L_b^{(p)}$ *is not reflexive.*

Proof. We have $(L^{p})' \subset (L^{p})'$ ^{*}, therefore

$$
(3.8) \tLp) \subset (Lp)')*.
$$

If the space L_b^p were reflexive we would have $(L_b^p)^{**} = L_b^p$. On the other hand, by Corollary 3.8, $(L_b^p)^* = L^{p'}$ and passing to the duals

(3.9)
$$
(L^{p})'')^* = L_b^{p}.
$$

Equality (3.9) contradicts (3.8), therefore $L_b^{(p)}$ is not reflexive. \Box

After Proposition 3.9 we can conclude that also the dual of $L_b^{(p)}$ is not reflexive, therefore we have also

Corollary 3.10

The space $L^{p'}$ *is not reflexive.*

Remark 2. After Theorem 3.5 we know that the associate space of L^{p} is L^{p} . We claim that the space $L^{p'}$ is *not* isometrically isomorphic to the dual space of L^{p} , since L^{p} is not of absolutely continuous norm (because, for instance, the function $f(x) = x^{-1/p}$ is in $L^{p}(0, 1)$ and has not absolute continuous norm).

Acknowledgments. The author wishes to thank Prof. David Cruz-Uribe, SFO for the stimulating discussions on the subject, and Dr. Jan Lang for the helpful remarks on the paper.

References

- 1. C. Bennett and R. Sharpley, *Interpolation of Operators*, Academic Press, 1988.
- 2. D. Cruz-Uribe, SFO and A. Fiorenza, in preparation.
- 3. M. Carozza and C. Sbordone, The distance to L^{∞} in some function spaces and applications, *Differential Integral Equations*, **10** (1997), 599–607.
- 4. A. Fiorenza and M. Krbec, On the domain and range of the maximal operator, Preprint Academy of Sciences of the Czech Rep. **122**, 1997, to appear on *Nagoya Math. J.* (2000).
- 5. A. Fiorenza and C. Sbordone, Existence and uniqueness results for solutions of nonlinear equations with right hand side in L^1 , *Studia Math.* **127**(3) (1998), 223–231.
- 6. L. Greco, A remark on the equality det $Df =$ Det Df , *Differential Integral Equations* **6** (1993), 1089–1100.
- 7. L. Greco, T. Iwaniec and C. Sbordone, Inverting the p-harmonic operator, *Manuscripta Math.* **92** (1997), 249–258.
- 8. T. Iwaniec and C. Sbordone, On the integrability of the Jacobian under minimal hypotheses, *Arch. Rational Mech. Anal.* **119** (1992), 129–143.
- 9. T. Iwaniec and C. Sbordone, Weak minima of variational integrals, *J. Reine Angew. Math.* **454** (1994), 143–161.
- 10. T. Iwaniec and C. Sbordone, Riesz Transforms and elliptic pde's with VMO coefficients, *J. Analyse Math.* **74** (1998), 183–212.
- 11. A. Kufner, O. John and S. Fucik, *Function Spaces*, Noordhoff International Publishingr, Leyden, 1977.
- 12. J. Lang and L. Pick, personal communication.
- 13. C. Sbordone, Grand Sobolev spaces and their applications to variational problems, *Le Matematiche* **LI(2)** (1996), 335–347.
- 14. C. Sbordone, Nonlinear elliptic equations with right hand side in nonstandard spaces, *Rend. Sem. Mat. Fis. Modena*, Supplemento al **XLVI** (1998), 361–368.
- 15. A. C. Zaanen, *Integration*, North-Holland, 1967.