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Abstract

The grand L
p

space L
p)

(Ω) (1<p<+∞) introduced by Iwaniec-Sbordone is
defined as the Banach Function Space of the measurable functions f on Ω such
that

‖f‖
p)

= sup
0<ε<p−1

(
ε

1
| Ω |

∫
Ω

| f |p−ε dx

)1/(p−ε)

< +∞ .

We introduce the small L
p′

space denoted by L
p)′

(Ω) and we prove that the

associate space of L
p)

(Ω) is L
p)′

(Ω). It turns out that L
p)′

(Ω) is a Banach
Function Space whose norm satisfy the Fatou property, and that it is the dual

of the closure of L
∞

(Ω) in L
p)

(Ω). Moreover, we give a characterization of

L
p)

(Ω) as dual space, and we prove that for any 1<p<+∞ the spaces L
p)

(Ω) and

L
p)′

(Ω) are not reflexive.
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1. Introduction

Let Ω ⊂ R
N (N ≥ 1) be a set of Lebesgue measure | Ω |< +∞ and let 1 < p < +∞.

The grand L
p space, that will be denoted by L

p)(Ω), introduced by Iwaniec-Sbordone
in [8] is defined as the space of the measurable functions f on Ω such that

‖f‖
p)

= sup
0<ε<p−1

(
ε

1
| Ω |

∫
Ω

| f |p−ε dx

)1/(p−ε)

< +∞ .

Grand L
p spaces have been considered in various fields: in the theory of Partial

Differential Equations (see e.g. [9], [10], [13], [14]), in the study of maximal operators
and, more generally, quasilinear operators, and in interpolation theory (see e.g. [4],
[2]). In particular, in the theory of Partial Differential Equations, it turns out that
they are the right spaces in which some nonlinear equations have to be considered
(see [7], [5]). Also, they have been studied in their own, various properties have been
developed e.g. in [6], [3].

The aim of this paper is to find an explicit expression of the “best” functional
Np′ , usually called the associate norm of ‖ · ‖

p)
, such that the following Hölder

inequality holds ∫
−
Ω

fgdx ≤ ‖f‖
p)
Np′(g)

where the symbol
∫
−
Ω

stands for
1
|Ω|

∫
Ω

. Namely, the problem we solve is to find an

expression of the associate norm free from the definition of the norm in grand L
p

spaces. It turns out that the solution of this problem gives also a characterization
of the dual of the closure of L∞(Ω) in L

p)(Ω).
Many concepts from the theory of Banach Function Spaces are used: we refer

to the books by Zaanen ([15]) and Bennett-Sharpley ([1]) for the main results of this
theory.

After introducing in Section 2 the auxiliary Banach space L
(p′

(Ω), in Section 3
we study the small Lp′

space denoted by L
p)′(Ω) and we prove that the associate

space of Lp)(Ω) is L
p)′(Ω). In particular, the following Hölder inequality holds∫

−
Ω

fgdx ≤ ‖f‖
p)
‖g‖

p)′
∀f ∈ L

p)
(Ω), g ∈ L

p)′
(Ω) .
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Finally, the fundamental function of the grand Lebesgue Space is estimated, and,
as a consequence, the spaces L

p)(Ω) and L
p)′(Ω) are characterized as dual spaces.

Moreover, we show that L
p)(Ω) and L

p)′(Ω) are not reflexive.
In order to have a simpler notation, unless differently specified, all the spaces

considered in the sequel have to be intended as spaces of functions on Ω, therefore
for instance we will write L

p) instead of Lp)(Ω), L∞ instead of L∞(Ω), etc.

2. The space L(p′

Let Ω ⊂ R
N (N ≥ 1), | Ω |< +∞, and let M

0
be the set of all measurable functions,

whose values lie in [−∞,+∞], finite a.e. in Ω. Also, let M+

0
be the class of functions

in M
0

whose values lie in [0,+∞].
Let us begin by proving the following

Lemma 2.1

If f, g ∈ M+

0
and g ≤ f =

∑∞
k=1 fk with fk ≥ 0 ∀k ∈ N then the functions

defined in Ω by

hk =

[
fk − max

(
g −

k−1∑
j=1

fj , 0
)]

χ{∑k

j=1
fj>g

} ∀k ∈ N

are such that

(2.1) 0 ≤ hk ≤ fk ∀k ∈ N

and

(2.2) g =
∞∑
k=1

(fk − hk).

Proof. For a.e. x ∈ Ω such that g(x) = f(x) we have hk(x) = 0 ∀k ∈ N and
therefore (2.1) and (2.2) are obvious.

For a.e. x ∈ Ω such that g(x) < f(x) let

k̂ = k̂x = min

{
k :

k∑
j=1

fj(x) > g(x)

}
.
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If k < k̂ we have
∑k

j=1 fj(x) ≤ g(x) and therefore hk(x) = 0 from which (2.1)
follows.

If k = k̂ we have
∑k̂−1

j=1 fj(x) ≤ g(x) and
∑k̂

j=1 fj(x) > g(x), therefore

h
k̂
(x) = f

k̂
(x) −

(
g(x) −

k̂−1∑
j=1

fj(x)

)

satisfies (2.1).
If k > k̂ then hk(x) = fk(x) and therefore (2.1) is immediate.
Inequalities (2.1) are proved for any k ∈ N.
On the other hand equality (2.2) holds because for a.e. x ∈ Ω such that g(x) <

f(x) we have

∞∑
k=1

(
fk(x) − hk(x)

)
=

∑
k<k̂

(
fk(x) − hk(x)

)
+ f

k̂
(x) − h

k̂
(x) +

∑
k>k̂

(
fk(x) − hk(x)

)
=

∑
k<k̂

fk(x) + f
k̂
(x) −

(
f
k̂
(x) − g(x) +

∑
k<k̂

fk(x)

)

+
∑
k>k̂

(
fk(x) − fk(x)

)
= g(x) . �

For each g ∈ M+

0
let us pose

‖g‖
(p′ = inf

g=
∑∞

k=1
gk

{ ∞∑
k=1

inf
0<ε<p−1

ε−1/(p−ε)
(∫
−
Ω

| gk |(p−ε)′ dx
)1/((p−ε)′)

}

where 1 < p < +∞, p′ = p/(p− 1) and gk ∈ M
0

∀k ∈ N.

Corollary 2.2

For each g ∈ M+

0
we have

‖g‖
(p′ = inf

g=
∑∞

k=1
gk

gk≥0

{ ∞∑
k=1

inf
0<ε<p−1

ε−1/(p−ε)
(∫
−
Ω

g
(p−ε)′

k dx
)1/((p−ε)′)

}
.



Duality and reflexivity in grand Lebesgue spaces 135

Proof. For any sequence (gk) in M
0

put

(2.3) S
(
(gk)

)
=

∞∑
k=1

inf
0<ε<p−1

ε−1/(p−ε)

(∫
−
Ω

| gk |(p−ε)′ dx

)1/((p−ε)′)

.

We have to show that for any g ∈ M+

0
and for any decomposition g =

∑∞
k=1 gk

with gk ∈ M
0

there exists a decomposition g =
∑∞

k=1 γk with γk ∈ M+

0
∀k ∈ N

such that S
(
(gk)

)
≥ S

(
(γk)

)
.

Let us apply Lemma 2.1 replacing fk by g+
k = max {gk, 0} ∀k ∈ N, and let us

set γk = g+
k −hk ∀k ∈ N. Since | g+

k +g−k |=| g+
k +(−g−k ) | where g−k = min {gk, 0},

we have
S

(
(gk)

)
= S

(
(g+

k + g−k )
)

= S
(
(g+

k + (−g−k ))
)

≥ S
(
(g+

k )
)
≥ S

(
(g+

k − hk)
)

= S
(
(γk)

)
from which the assertion of Corollary 2.2 follows. �

Theorem 2.3
The space defined by

L
(p′

=
{
g ∈ M

0
: ‖ | g | ‖

(p′ < +∞
}

is a Banach Function Space.

Proof. Most of the properties of ‖ | · | ‖
(p′ needed to show that L

(p′
is a Banach

Function Space are trivial or easy to prove. Here we show only that the following
properties hold for all f , g, g(n) (n ∈ N), in M+

0
:

(i)
∥∥∑∞

n=1 g
(n)

∥∥
(p′

≤
∑∞

n=1

∥∥g(n)
∥∥

(p′
.

(ii) If g ≤ f a.e. in Ω, then ‖g‖
(p′ ≤ ‖f‖

(p′ .

Proof of (i). Let us assume that the functions g
(n)
k ∈ M+

0
are such that

∞∑
n=1

∥∥∥g(n)
∥∥∥

(p′
< +∞ ∀n ∈ N ,

otherwise the assertion is trivial. Let ε > 0 and let g(n)
k ∈ M+

0
(the existence follows

from Corollary 2.2) be such that

g(n) =
∞∑
k=1

g
(n)
k ∀n ∈ N
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and
∞∑
k=1

inf
0<ε<p−1

ε−1/(p−ε)

(∫
−
Ω

(g(n)
k )(p−ε)′dx

)1/((p−ε)′)

< ‖g(n)‖
(p′ +

ε

2n
.

We have∥∥∥∥∥
∞∑

n=1

g(n)

∥∥∥∥∥
(p′

=

∥∥∥∥∥
∞∑

n=1

∞∑
k=1

g
(n)
k

∥∥∥∥∥
(p′

=

∥∥∥∥∥∥
∞∑

n,k=1

g
(n)
k

∥∥∥∥∥∥
(p′

≤
∞∑

n,k=1

inf
0<ε<p−1

ε−1/(p−ε)

(∫
−
Ω

(g(n)
k )(p−ε)′dx

)1/((p−ε)′)

=
∞∑

n=1

∞∑
k=1

inf
0<ε<p−1

ε−1/(p−ε)

(∫
−
Ω

(g(n)
k )(p−ε)′dx

)1/((p−ε)′)

≤
∞∑

n=1

∥∥∥g(n)
∥∥∥

(p′
+ ε ∀ε > 0 .

Proof of (ii). For any decomposition f =
∑∞

k=1 fk with fk ∈ M+

0
∀k ∈ N let (hk)

in M+

0
∀k ∈ N be given by Lemma 2.1, such that g =

∑∞
k=1(fk − hk). By using

Corollary 2.2 we have

‖f‖
(p′ = inf

f=
∑∞

k=1
fk

fk≥0

S ((fk)) ≥ inf
f=

∑∞
k=1

fk

fk≥0

S ((fk − hk)) ≥ inf
g=

∑∞
k=1

gk

gk≥0

S ((gk)) = ‖g‖
(p′

and the proof of (ii) is now complete. �

After Theorem 2.3 L
(p′

is a Banach space under the norm

‖g‖
(p′ = inf

|g|=
∑∞

k=1
gk

{ ∞∑
k=1

inf
0<ε<p−1

ε−1/(p−ε)
(∫
−
Ω

| gk |(p−ε)′ dx
)1/((p−ε)′)

}
where gk ∈ M

0
∀k ∈ N. We remark that in the right hand side it is possible to

replace | g | simply by g, in fact we have

Proposition 2.4

For any g ∈ L
(p′

‖g‖
(p′ = inf

g=
∑∞

k=1
gk

{ ∞∑
k=1

inf
0<ε<p−1

ε−1/(p−ε)
(∫
−
Ω

| gk |(p−ε)′ dx
)1/((p−ε)′)

}
where gk ∈ M

0
∀k ∈ N.
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Proof. Let | g |=
∑∞

k=1 hk be any decomposition of | g | in M+

0
. We have g(x) =

sgn(g(x)) | g(x) | a.e. in Ω (where sgn = χ]0,+∞[ − χ]−∞,0[) and therefore

g(x) = sgn
(
g(x)

) ∞∑
k=1

hk(x) =
∞∑
k=1

sgn
(
g(x)

)
hk(x) a.e. in Ω

from which
inf

g=
∑∞

k=1
gk

gk∈M0

S ((gk)) ≤ S ((sgn(g)hk)) = S ((hk))

where S ((gk)) is given by (2.3). Therefore

inf
g=

∑∞
k=1

gk

gk∈M0

S ((gk)) ≤ inf
|g|=

∑∞
k=1

hk

hk∈M+
0

S ((hk)) = inf
|g|=

∑∞
k=1

hk

hk∈M0

S ((hk)) .

On the other hand, let g =
∑∞

k=1 gk be any decomposition of g in M
0
, and let

γ(gk) =
∞∑
k=1

| gk | .

We have | g |≤ γ(gk) and therefore

inf
|g|=

∑∞
k=1

hk

hk∈M0

S ((hk)) ≤ inf
γ(gk)=

∑∞
k=1

hk

hk∈M0

S ((hk)) ≤ S ((gk))

from which
inf

|g|=
∑∞

k=1
hk

hk∈M0

S ((hk)) ≤ inf
g=

∑∞
k=1

gk

gk∈M0

S ((gk)) .

Proposition 2.4 is therefore proved. �

We remark that the following inclusions are easy to prove

L
p′+ε ⊂ L

(p′
⊂ L

p′
∀ε > 0 .

In particular, we have that L
∞ ⊂ L

(p′
.

Next theorem is the main result of this section.
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Theorem 2.5

The following Hölder-type inequality holds∫
−
Ω

fgdx ≤ ‖f‖
p)
‖g‖

(p′ ∀f ∈ L
p)
, g ∈ L

(p′
.

Proof. Let | g |=
∑∞

k=1 gk be any decomposition with gk ≥ 0 ∀k ∈ N and let
f ∈ L

p). For each k ∈ N and for each 0 < ε < p− 1 we have

∫
−
Ω

fgkdx ≤
(∫
−
Ω

| f |p−ε dx

)1/(p−ε)(∫
−
Ω

| gk |(p−ε)′ dx

)1/((p−ε)′)

=

(
ε

∫
−
Ω

| f |p−ε dx

)1/(p−ε)

· ε−1/(p−ε)

(∫
−
Ω

| gk |(p−ε)′ dx

)1/((p−ε)′)

≤ ε−1/(p−ε)

(∫
−
Ω

| gk |(p−ε)′ dx

)1/((p−ε)′)

‖f‖
p)

and therefore

∫
−
Ω

fgkdx ≤ inf
0<ε<p−1

ε−1/(p−ε)

(∫
−
Ω

| gk |(p−ε)′ dx

)1/((p−ε)′)

‖f‖
p)

from which

∫
−
Ω

fgdx ≤
∫
−
Ω

| f |
∣∣∣∣∣
∞∑
k=1

gk

∣∣∣∣∣ dx ≤
∞∑
k=1

∫
−
Ω

| f | gkdx

≤
∞∑
k=1

inf
0<ε<p−1

ε−1/(p−ε)

(∫
−
Ω

| gk |(p−ε)′ dx

)1/((p−ε)′)

‖f‖
(p′ .

Hence ∫
−
Ω

fgdx ≤ ‖g‖
(p′‖f‖p) .

Theorem 2.5 is therefore proved. �
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We will need in the following some other properties of the space L
(p′

. Let us
begin with the following

Lemma 2.6

Let Fn ⊂ Ω, n ∈ N, be such that χ
Fn

↓ 0 a.e. in Ω and let g be any function

in L
(p′

. Then

‖gχ
Fn

‖
(p′ → 0 .

Proof. Without loss of generality we can assume that g is nonnegative. Let g =∑∞
k=1 gk be a decomposition with gk ≥ 0 ∀k ∈ N such that

∞∑
k=1

inf
0<ε<p−1

ε−1/(p−ε)

(∫
−
Ω

g
(p−ε)′

k dx

)1/((p−ε)′)

< +∞ .

Setting

ak,n = inf
0<ε<p−1

ε−1/(p−ε)

(∫
−
Ω

g
(p−ε)′

k χ
Fn

dx

)1/((p−ε)′)

∀k ∈ N,∀n ∈ N

we have

‖gχ
Fn

‖
(p′ ≤

∞∑
k=1

ak,n < +∞ ∀n ∈ N .

Since
∑∞

k=1 ak,1 < +∞ and ak,n ↓ 0 ∀k ∈ N, the lemma is proved. �

Corollary 2.7

Let En ⊂ Ω, n ∈ N, be such that χ
En

↑ χ
Ω

a.e. in Ω and let g be any function

in L
(p′

. Then

gχ
En

→ g in L
(p′

.

Proof. It suffices to apply Lemma 2.6 with Fn = Ω − En. �

Corollary 2.8

Let g ≥ 0 be any function in L
(p′

and let (gn) be an increasing sequence of

nonnegative functions converging to g a.e. in Ω. Then ‖gn‖
(p′ ↑ ‖g‖

(p′ .
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Proof. Because of the order-preserving property of ‖ · ‖
(p′ it is clear that ‖gn‖

(p′

is an increasing sequence and limn→∞ ‖gn‖
(p′ ≤ ‖g‖

(p′ . On the other hand, by

Corollary 2.7, for any ε > 0 there exists M such that

‖g‖
(p′ − ε ≤ ‖min {M, g}‖

(p′ ≤ ‖g‖
(p′ .

Obviously 0 ≤ min {M, gn} ↑ min {M, g} a.e. in Ω and, since min {M, g} ∈
L
∞, we have also min {M, gn} → min {M, g} in L

p′+1 therefore min {M, gn} →
min {M, g} in L

(p′
. This means that there exists ν ∈ N such that

‖min {M, g}‖
(p′ − ε ≤ ‖min {M, gν}‖

(p′ ≤ ‖min {M, g}‖
(p′ .

Therefore for any ε > 0 we found ν ∈ N such that

‖g‖
(p′ − 2ε ≤ ‖min {M, gν}‖

(p′ ≤ ‖gν‖
(p′ ≤ ‖g‖

(p′ . �

Lemma 2.9

Let f be any function in L
∞

. Then there exists g ∈ L
∞

such that∫
−
Ω

fgdx = ‖f‖
p)
‖g‖

p)′
.

Proof. If f ∈ L
∞ then

lim
ε→0

(
ε

∫
−
Ω

|f |p−εdx

)1/(p−ε)

= 0

therefore

sup
0<ε<p−1

(
ε

∫
−
Ω

|f |p−εdx

)1/(p−ε)

=

(
σ

∫
−
Ω

|f |p−σdx

)1/(p−σ)

= ‖f‖
p)

where σ = σ(f) ∈]0, p− 1[.
Let g ∈ L

∞ be such that

∫
−
Ω

fgdx =

(∫
−
Ω

|f |p−σdx

)1/(p−σ)(∫
−
Ω

|g|(p−σ)′dx

)1/((p−σ)′)
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we have

∫
−
Ω

fgdx ≤ ‖f‖
p)
‖g‖

(p′ ≤ ‖f‖
p)

inf
0<ε<p−1

ε−1/(p−ε)

(∫
−
Ω

| g |(p−ε)′ dx

)1/((p−ε)′)

≤ ‖f‖
p)
σ−1/(p−σ)

(∫
−
Ω

| g |(p−σ)′ dx

)1/((p−σ)′)

= σ1/(p−σ)

(∫
−
Ω

| f |p−σ dx

)1/(p−σ)

σ−1/(p−σ)

(∫
−
Ω

| g |(p−σ)′ dx

)1/((p−σ)′)

=
∫
−
Ω

fgdx .

Therefore the inequalities are in fact equalities, the first inequality is equality and
the lemma is proved. �

In the following result we will consider the closure of L∞ in L
p), denoted by Σp

in literature (see [6]). In order to use a notation closer to that one of the Banach
Function Space theory, we will denote this space by L

p)

b
. It is known that L

p)

b
is

strictly contained in L
p), therefore, the space L

p)

b
is not a Banach Function Space.

Corollary 2.10

Let f be any function in L
p)

b
. Then

‖f‖p) = sup
g �=0

g∈L(p′

∫
−
Ω

fgdx

‖g‖
(p′

.

Proof. The inequality ≥ is true by virtue of the Hölder inequality for grand L
p

spaces, already proved in Theorem 2.5. On the other hand, previous Lemma 2.9
gives the reversed inequality. �
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3. The associate space of the grand Lebesgue space

For each g ∈ M
0

let us set

‖g‖
p)′

= sup
0≤ψ≤|g|
ψ∈L(p′

‖ψ‖
(p′ .

We remark that
‖g‖

p)′
≤ ‖g‖

(p′ ∀g ∈ M
0

‖g‖
p)′

= ‖g‖
(p′ < +∞ ∀g ∈ L

(p′
.

Let us begin by proving the following

Proposition 3.1

The small Lp′
space defined by

L
p)′

=
{
g ∈ M

0
: ‖g‖

p)′
< +∞

}
is a Banach Function Space.

Proof. All the properties of ‖g‖
p)′

which have to be satisfied in order that L
p)′ be a

Banach space are easy to prove, by using simply Theorem 2.3. It remains to prove
only that the space L

p)′ satisfies the Fatou property

0 ≤ gn ↑ g a. e. in Ω ⇒ ‖gn‖
p)′

↑ ‖g‖
p)′

.

Because of the order-preserving property of ‖ · ‖
p)′

it is clear that ‖gn‖
p)′

is an

increasing sequence and
lim
n→∞

‖gn‖
p)′

≤ ‖g‖
p)′

.

Now let us consider the following two possibilities: g ∈ L
p)′

, g /∈ L
p)′ .

First case : g ∈ L
p)′

.

Fix ε > 0, let ψ ∈ L
(p′

be such that 0 ≤ ψ ≤ |g| and

‖g‖
p)′

− ε ≤ ‖ψ‖
(p′ ≤ ‖g‖

p)′
.
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Obviously 0 ≤ min {ψ, gn} ↑ ψ a.e. in Ω and therefore by Corollary 2.8
‖min{ψ, gn}‖

(p′ ↑ ‖ψ‖
(p′ . Let ν ∈ N be such that

‖ψ‖
(p′ − ε ≤ ‖min {ψ, gν}‖

(p′ ≤ ‖ψ‖
(p′

then for any ε > 0 we find ν ∈ N such that

‖g‖
p)′

− 2ε ≤ ‖min{ψ, gν}‖
(p′ ≤ ‖gν‖

p)′
≤ ‖g‖

p)′
.

Second case : g /∈ L
p)′

.

Fix M > 0, let ψ ∈ L
(p′

be such that 0 ≤ ψ ≤ |g| and ‖ψ‖
(p′ > M . Obviously

0 ≤ min {ψ, gn} ↑ ψ a.e. in Ω and therefore by Corollary 2.8 ‖min {ψ, gn}‖
(p′ ↑

‖ψ‖
(p′ . Let ν ∈ N be such that ‖min {ψ, gν}‖

(p′ > M , then for any ε > 0 we find

ν ∈ N such that
‖gν‖

p)′
≥ ‖min{ψ, gν}‖

(p′ > M . �

We prove now the Hölder inequality for Grand Lebesgue spaces.

Theorem 3.2

Let 1 < p < +∞ and Ω ⊂ R
N (N ≥ 1), | Ω |< +∞.

The following Hölder inequality holds∫
−
Ω

fgdx ≤ ‖f‖
p)
‖g‖

p)′
∀f ∈ L

p)
, g ∈ L

p)′
.

Proof. For any f ∈ L
p) and for any g ∈ M

0
we have, by Theorem 2.5,∫

−
Ω

| f || g | dx = sup
0≤ψ≤|g|
ψ∈L∞

∫
−
Ω

| f | ψdx ≤ sup
0≤ψ≤|g|
ψ∈L(p′

∫
−
Ω

| f | ψdx

≤ sup
0≤ψ≤|g|
ψ∈L(p′

‖f‖
p)
‖ψ‖

(p′ = ‖f‖
p)
‖g‖

p)′
.

Theorem 3.2 is proved. �

The proof of next result is analogous to that one of Corollary 2.10.
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Corollary 3.3
Let f be any function in L

p)

b
. Then

‖f‖
p)

= sup
g �=0

g∈Lp)′

∫
−
Ω

fgdx

‖g‖
p)′

= ‖f‖(
L
p)′)′ .

Proposition 3.4

The spaces L
p)′

and (Lp)′)′ are rearrangement-invariant spaces and (Lp)′)′ =
L
p)

.

Proof. Since the associate space of a rearrangement - invariant space is a rear-
rangement - invariant space, it is sufficient to prove that (Lp)′)′ is rearrangement -
invariant.

Let f ∈ (Lp)′)′, and let us set fn = min {n, f} ∈ L
∞.

We have

(3.1) 0 ≤ fn ↑ f a.e. in Ω

and therefore 0 ≤ (fn)∗ ↑ f∗ a.e. in [0,Ω[, where (fn)∗ and f∗ denote the decreasing
rearrangements of fn and f , respectively. Since the space (Lp)′)′ satisfies the Fatou
property, from (3.1) we get

(3.2) ‖fn‖(
L
p)′)′ ↑ ‖f‖(

L
p)′)′ .

On the other hand we have also

(3.3) ‖(fn)∗‖
L
p)

(0,|Ω|)
↑ ‖f∗‖

L
p)

(0,|Ω|)
.

By Corollary 3.3

(3.4) ‖fn‖(
L
p)′)′ = ‖fn‖

L
p) = ‖(fn)∗‖

L
p)

(0,|Ω|)
.

¿From (3.2), (3.3) and (3.4) we obtain ‖f‖(
L
p)′)′ = ‖f∗‖

Lp)(0,|Ω|)
and therefore the

assertion is proved. �
Consequence of Proposition 3.4 and of the classical Lorentz-Luxemburg theorem

(see [1], Theorem 2.7 p. 10) is the following

Theorem 3.5
The space L

p)
is associate to L

p)′
and vice versa.
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Now we deal with the reflexivity problem for L
p) and L

p)′ . The space L
p) is

not reflexive, as established in the following simple

Proposition 3.6

The space L
p)

is not reflexive.

Proof. It suffices to construct a function which has not absolute continuous norm.
Without loss of generality we can consider the space L

p)(0, 1).
It is easy to verify that the function f(x) = x−1/p has not absolute continuous

norm, therefore the assertion follows.

In order to show that the same result is true for the space L
p)′ , we need next

result, due to J. Lang and L. Pick ([12]).

Theorem 3.7

Let ϕ be the fundamental function of the grand L
p

space. Then we have

(3.5) ϕ(t) ≈ t1/p

[
log

(1
t

)]−1/p

as t → 0.

Proof. The fundamental function of the grand L
p space reads as

(3.6) ϕ(t) = sup
0<ε<p−1

(εt)1/(p−ε) .

Defining F (ε) = (εt)1/(p−ε), we get

F ′(ε) = (εt)1/(p−ε)(p− ε)−2
(p

ε
− 1 + log ε + log t

)
.

Hence

(3.7) F ′(0+) = +∞ and F ′(p− 1) < 0

if t is small enough.
The function

G(ε) =
p

ε
− 1 + log ε + log t
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satisfies, for every fixed t, G′(ε) = ε−1(−pε−1 + 1) < 0 for ε < p, hence G is strictly
decreasing for every fixed t. Thus, for every fixed t, there exists an unique εt such
that G(εt) = 0, hence F ′(εt) = 0. By (3.7), εt is a point of maximum of F , the
point where the supremum at (3.6) is attained, that is, F (εt) = ϕ(t).

Now let β be a small number and let t = β−1 exp(1−pβ−1). We have G(β) = 0,
therefore, for such t, εt = β and

ϕ(t) = (βt)1/(p−β) = exp
(
− 1
β

)
.

Hence, asymptotically, we see that if β is small and

t =
e

p
· p
β

exp
(
− p

β

)
.

then ϕ(t) = exp
(
− 1

β

)
.

Now we claim that

ϕ(t) ≈ t1/p
[
log

(1
t

)]−1/p

.

Indeed, for β small let t be given by t = β−1 exp(1 − pβ−1). Then

t1/p

[
log

(1
t

)]−1/p

≈
(

1
β

)1/p [
exp

(
− p

β

)]1/p [
log

(
β exp(

p

β
)
)]−1/p

≈ exp
(
− 1

β

)
= ϕ(t)

proving (3.5). �

Theorem 3.7 enables us to estimate the limit of the fundamental functions
ϕ = ϕ(t) of L

p) and L
p)′ . For both fundamental functions we have lim

t→0
ϕ(t) = 0,

therefore we can state the following

Corollary 3.8

The dual of L
p)

b
is isometrically isomorphic to L

p)′
and the dual of L

p)′

b
is

isometrically isomorphic to L
p)

.
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Remark 1. Corollary 3.8 shows that the spaces Lp) and L
p)′ form a complementary

pair. Complementary pairs of Banach spaces were introduced in papers by T.K.
Donaldson, T.K. Donaldson and N.S. Trudinger, J.P. Gossez. For references on the
subject we refer to [11].

Next proposition deals with the problem of the reflexivity of Lp)

b
.

Proposition 3.9

The space L
p)

b
is not reflexive.

Proof. We have (Lp)′)′ ⊂ (Lp)′)∗, therefore

(3.8) Lp) ⊂ (L
p)′

)∗ .

If the space L
p)

b
were reflexive we would have (Lp)

b
)∗∗ = L

p)

b
. On the other hand, by

Corollary 3.8, (Lp)

b
)∗ = L

p)′ and passing to the duals

(3.9) (L
p)′

)∗ = L
p)

b
.

Equality (3.9) contradicts (3.8), therefore L
p)

b
is not reflexive. �

After Proposition 3.9 we can conclude that also the dual of Lp)

b
is not reflexive,

therefore we have also

Corollary 3.10

The space L
p)′

is not reflexive.

Remark 2. After Theorem 3.5 we know that the associate space of Lp) is L
p)′ . We

claim that the space L
p)′ is not isometrically isomorphic to the dual space of Lp),

since L
p) is not of absolutely continuous norm (because, for instance, the function

f(x) = x−1/p is in L
p)(0, 1) and has not absolute continuous norm).
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