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Abstract

In this paper we obtainLp versions of the classical theorems of induced represen-
tations, namely, the inducing in stages theorem, the Kronecker product theorem,
the Frobenius Reciprocity theorem and the subgroup theorem. In doing so we
adopt the tensor product approach of Rieffel to inducing.

1. Introduction

The aim of the present paper is to carry over the theory of induced representations of
locally compact groups on Hilbert spaces to more general Banach spaces. The cor-
nerstone of this theory is the work of Mackey. Several generalizations have already
been considered by various authors (cf. [1], [12], [22]). However these treatments do
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not give a complete and coherent account of the basic theorems of induced repre-
sentations: the Inducing-in-stages Theorem, the Kronecker Product Theorem, the
Frobenius Reciprocity Theorem and the Subgroup Theorem, in this context. This
statement is slightly misleading; in fact, [12] does contain an inducing-in-stages the-
orem and [19], [22] contain Frobenius Reciprocity Theorems for “1-inducing”. Our
aim here is to investigate the problems involved in finding such theorems in the
more general context of p-inducing, rather than the classical 2-inducing. We obtain
versions of all of these theorems. To do this, we follow the philosophy of Rieffel in
using tensor products as the mechanism for inducing. In doing this, we have as does
Rieffel to impose restrictions which prevent us from obtaining an inducing in stages
theorem as sharp as that of [12]. On the other hand, our version of the Frobenius
Reciprocity Theorem is valid for 1 < p <∞ instead of p = 1 from [19], [22]. We also
obtain a version of the subgroup theorem and of the Kronecker product theorem,
neither of which are, to our knowledge, available in the literature.

It turns out that the extension of the basic theorems to this context relies
heavily on properties of the Banach spaces involved and that a full theory requires
the Banach spaces on which the groups are represented to be close to Lp-spaces.
Accordingly we spend some time discussing the properties of these spaces in the
next section of the paper, followed by the new definition of p-inducing as a tensor
product in Section 3. In Section 4, we prove the inducing in stages theorem, the
Kronecker product theorem and the Frobenius Reciprocity theorem. Finally we give
a version of the subgroup theorem.

2. Preliminaries

All groups considered here will be locally compact and separable. All Banach spaces
considered will be complex, separable and reflexive. In particular they have the
Radon-Nikodym property. We will also assume that they have the approximation
property. Let us also define what we mean by a representation of a group G on a
Banach space X.

2.1 Representations of groups

Definition. Let G be a group and X a Banach space. A representation π of G on
X is a set (πg)g∈G of linear mappings πg : X �→ X such that

1. πe = I and for all g1, g2 ∈ G, πg1g2 = πg1πg2 ;
2. for every g ∈ G, πg is continuous ;
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3. for every x ∈ X the map G �→ X
g �→ πgx is continuous (i.e. π is strongly

continuous).
A representation π is said to be uniformly bounded if supg∈G ‖πg‖ < ∞, π is iso-
metric if every πg is an isometry.

Remark. Assume π is a uniformly bounded representation of a group G on a Banach
space X. Define a new norm on X by

‖x‖π = sup
g∈G

‖πgx‖

then ‖.‖π is equivalent to ‖.‖ on X and π is an isometric representation of G on
(X, ‖.‖π).

In the sequel, every representation considered will be isometric.

Example: Let (M, µ) be a measured space and let G be a group of transformations
of M (M is then called a G-space). Assume that G leaves µ invariant (i.e. µ(gM) =
µ(M) for every g ∈ G and every measurable M ⊂ M). Let 1 ≤ p ≤ ∞ and define,
for g ∈ G, πg : Lp(M, µ) �→ Lp(M, µ) by πgf(x) = f(g−1x), then (πg)g∈G is an
isometric representation of G on Lp(M, µ).

2.2 p-spaces

We first describe some results on Banach spaces and tensor products that we
will need. They can all be found in [3], Ch. 23 and 25.6.

Let X be a Banach space, Ω a locally compact space and µ a Radon measure
on Ω. We shall be considering the spaces Lp(µ), Lp(µ,X), defined in the usual way.

Define ip(µ) : Lp(µ)⊗X �→ Lp(µ,X) by

f ⊗ x �→
(
t �→ f(t)x

)
.

Then ip produces on Lp(µ) ⊗ X a norm ∆p induced by the norm of Lp(µ,X).
We denote by Lp(µ)⊗̂∆pX the completion of Lp(µ) ⊗ X under this norm, so that
Lp(µ)⊗̂∆pX � Lp(µ,X).

For X and Y two Banach spaces, we define two norms dp and gp on the tensor
product X ⊗ Y as follows. For y1, . . . , yn ∈ Y , 1 < p′ <∞ define

εp′(y1, . . . , yn) = sup


(

n∑
i=1

|ψ(yi)|p
′
)1/p′

: ψ ∈ Y ′, ‖ψ‖ = 1

 .
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For z ∈ X ⊗ Y and 1 < p <∞, 1
p + 1

p′ = 1 let

dp(z) = inf


(

n∑
i=1

‖xi‖p
)1/p

εp′(y1, . . . , yn)


where the infimum is taken over all representations of z of the form z =

n∑
i=1

xi ⊗ yi.

The norm gp(z) is defined by exchanging the roles of xi and yi in the above
definition. We write X ⊗dp Y (resp. X ⊗gp Y ) for the completion of X ⊗ Y with
respect to the norm dp (resp. gp).

This norms have been introduced independently by S. Chevet [2] and P.
Saphar [21] in order to generalize the projective tensor product norm. If we identify
z ∈ X ⊗ Y with an operator Tz : X ′ �→ Y then, under this identification, operators
corresponding to elements of X⊗dp

Y will be called right p-nuclear and those corres-
ponding to elements of X⊗gp Y will be called left p-nuclear . We write Np(X ′, Y ) for
the class of all right p-nuclear operators from X ′ to Y and Np(X ′, Y ) for the class
of all left p-nuclear operators. The following result from [8] (Corollary 1.6) tells us
that the dp tensor norm is the nearest ideal norm to ∆p:

Theorem 2.1.1

Let X be a Banach space and 1 < p <∞. The following are equivalent:

1. X is isomorphic to a quotient of a subspace of an Lp space (a QSLp space);

2. there exists an infinite dimensional Lp(µ) and an ideal norm α equivalent to ∆p

on Lp(µ)⊗X;

3. for every infinite dimensional Lp(µ) there exists an ideal norm α equivalent to

∆p on Lp(µ)⊗X.

Moreover, the ideal norm α can be chosen to be the dp norm.

Specialists of representation theory may be more familiar with p-spaces as de-
fined by Herz [10]. We refrain from giving this definition, since it turns out that
QSLp spaces and p-spaces are the same. The following result follows at once from
the preceding one and the observation that a p-space is a subspace of a quotient of
an Lp space, by Proposition 0 of [10] and Theorem 2’ of [13].

Theorem 2.1.2

Let X be a Banach space and 1 < p <∞. Then X is a QSLp space if and only

if it is a p-space.
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The dp and gp tensor products are also of particular interest when X and Y are
both Lp spaces. Indeed, if (Ω, µ) and (Ω′, µ′) are two measure spaces, we have

Lp(Ω)⊗dp L
p(Ω′) = Lp(Ω)⊗gp L

p(Ω′) � Lp(Ω× Ω′) � Np

(
Lp′(Ω), Lp(Ω′)

)
. (1)

It is then obvious from (1) that, if R,S, T are measure spaces, then

Lp(R)⊗dp

(
Lp(S)⊗dp L

p(T )
)
�

(
Lp(R)⊗dp L

p(S)
)
⊗dp L

p(T ). (2)

In other words, if X,Y, Z are all Lp spaces, then

X ⊗dp
Y � Y ⊗dp

X

X ⊗dp
(Y ⊗dp

Z) � (X ⊗dp
Y )⊗dp

Z.

We will now generalize these two identities to a larger class of Banach spaces.

Definition. Let λ > 1 and 1 < p < ∞. We will say that a Banach space X is an
Lg
pλ space if there exists a projection P of norm ‖P‖ ≤ λ from an Lp-space onto X.

X is called an Lg
p space if it is an Lg

pλ for some λ.

It turns out that this spaces have a local characterization close to the Lp spaces
investigated by Lindenstrauss and Pelczyński [14].

Proposition 2.1.3 (cf. [3])

A Banach space X is an Lg
pλ if and only if, for every ε > 0, and every finite

dimensional subspace M of X, there exists operators R : M �→ !mp and S : !mp �→ X

that factors the inclusion map IXM = SR and such that ‖S‖‖R‖ ≤ λ+ ε.

These spaces have a few nice properties:

Proposition 2.1.4 (cf. [3])

For 1 < p <∞:

1) If X is an Lg
p space, then it has the Radon Nikodym property and the bounded

approximation property;

2) X is an Lg
pλ space if and only if X ′ is an Lg

p′λ space;

3) if X is an Lg
p space then either it is an Lp space or it is isomorphic to a Hilbert

space;

4) if X and Y are Lg
p then X ⊗dp Y is an Lg

p space.
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Proposition 2.1.5 (cf. [3])

Let 1 < p <∞. The following propositions are equivalent:

1) X is isomorphic to a quotient of an Lp space;

2) Lp ⊗dp
X � Lp ⊗gp X = X ⊗dp

Lp.

In particular, this is true for complemented subspaces of Lp spaces i.e. Lg
p spaces.

Since an Lg
p space X is a (complemented) subspace of an Lp space, we have, by

Proposition 2.1.1,

Lp(µ)⊗dp
X � Lp(µ)⊗∆p

X = Lp(µ,X).

Using local techniques we can derive from (2) and Proposition 2.1.4 (1) and (5),
that if X,Y, Z are Lg

p spaces then

X ⊗dp
(Y ⊗dp

Z) � (X ⊗dp
Y )⊗dp

Z. (3)

This identity has an operator counterpart:

Lemma 2.1.6

Let 1 < p <∞ and R be a measure space and let X and Y be Lg
p spaces. Then

Np′
(
Lp(R)⊗dp X,Y

′) � Np′

(
X,Np′(Lp(R), Y ′)

)
(4)

where the operator T : Lp(R)⊗dp
X �→ Y ′ is identified with the operator T̃ : X �→

Np′(Lp(R), Y ′) via T̃ (ϕ)(ψ) = T (ψ ⊗ ϕ).

Proof. Equation (3) can be read, using the identification of tensor products and
operators as:

Np′
(
Lp(R)⊗dp

X,Y ′) = Np′
(
Lp(R,X), Y ′) = Lp(R,X)′ ⊗dp′ Y

′

= Lp′(R,X ′)⊗dp′ Y
′ =

(
Lp′(R)⊗dp′ X

′)⊗dp′ Y
′

=
(
X ′ ⊗dp′ L

p′(R)
)
⊗dp′ Y

′ = X ′ ⊗dp′

(
Lp′(R)⊗dp′ Y

′)
= Np′(X,Lp′(R)⊗dp′ Y

′) = Np′

(
X,Np′(Lp(R), Y ′)

)
. �

Remark. For a fixed p (1 < p <∞), Lg
p is a rather large class of Banach spaces. In

particular, it contains the Lp spaces, the Hilbert spaces and the Hardy spaces Hp.
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2.3 p-induction

The concept of p-induction has been defined in various places, eg. [5], [12],
and [22]. Here we will follow Anker [1]. To fix notation we repeat the definitions
of that paper. Let G be a separable locally compact group and H be a closed
subgroup. Let 1 ≤ p < ∞. Let νG (resp. νH) denote the (left) Haar measure on G

(resp. H). Denote by ∆G (resp. ∆H) the modular function of G (resp. H), and let
δ(h) = ∆H(h)

∆G(h) .
Let q be a continuous positive function defined on G that satisfies the covariance

condition q(xh) = q(x)δ(h) for all x ∈ G, h ∈ H. We write µ for the quasi-invariant
measure1 on G/H that is associated to q by∫

G/H

[∫
H

f(xh)
q(xh)

dνH(h)
]
dµ(xH) =

∫
G

f(x)dνG(x)

for all f ∈ Cc(G). The fact that such a measure exists can be found in [16].
Let β be a Bruhat function for the pair H ⊂ G, that is, a non-negative conti-

nuous function on G that satisfies
1) supp β ∩ CH is compact for every compact set C in G;
2)

∫
H
β(xh)dνH(h) = 1 for every x ∈ G.

(For details, see for instance [6] Chapter 5 or [18] Chapter 8.)
Let π be a strongly continuous isometric representation of the subgroup H in a

Banach space X. For 1 ≤ p < ∞, we denote by Lp(G,H, π) the space of functions
f : G �→ X that satisfy the following conditions:

1) for every ξ ∈ X∗, x �→< f(x), ξ > is measurable;
2) for every x ∈ G, h ∈ H,

f(xh) = δ(h)1/pπ−1
h f(x).

This condition is called the covariance condition. Note that it implies that
‖f(x)‖p

q(x) is constant on the cosets xH. Thus, the following condition makes sense

3)

‖f‖p =

[∫
G|H

‖f(x)‖p
q(x)

dµ(xH)

]1/p

=
[∫

G

‖f(x)‖pβ(x)dνG(x)
]1/p

<∞.

1 Recall that a measure µ on a G-space M is quasi-invariant if for every g ∈ G, and every

measurable M ⊂M, µ(gM) = 0 if and only if µ(M) = 0.
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This space is the completion for the norm ‖f‖p of the space Cpc (G;H;π) of all
continuous functions f : G �→ X with compact support that satisfy the covariance
condition.

We recall also Mackey’s Mapping f �→ Mpf from Cc(G,X) (the space of all
continuous functions G �→ X with compact support) to Cpc (G,H, π) defined by the
integral

Mpf(x) =
∫
H

1
δ(h)1/p

πhf(xh)dνH(h).

The p-induced representation IndGH (p, π) then operates on Lp(G;H;π) by left
translation: for g ∈ G (

IndGH (p, π)gf
)
(x) = f(g−1x).

The first result on p-induction follows as in the L2 case and is given in detail in [12].

Theorem 2.2.1 (Induction In Stages)
Let G be a locally compact group, K a closed subgroup of G and H a closed

subgroup of K. Let π be a representation of H in a Banach space X. Then the
representations IndGK (p, IndKH(p, π)) and IndGH (p, π) are equivalent.

2.4 Modules

We recall a few properties of Banach modules over groups and Banach algebras.
The reader is referred to [19] for basic definitions. For a locally compact group G,
every Banach G-module V becomes a Banach L1(G)-module under the action

f.v =
∫
G

f(g)g.vdνG(g) f ∈ L1(G), v ∈ V.

Notation. If V and W are two G-modules (thus L1(G)-modules) and if α is a
tensor norm, let K (resp. K1) be the closed subspace of V ⊗α W spanned by
elements of the form g.v ⊗ w − v ⊗ g.w with v ∈ V,w ∈W, g ∈ G (resp. spanned by
elements of the form f.v ⊗w− v ⊗ f.w with v ∈ V,w ∈W, f ∈ L1(G)). Define then
V ⊗α

G W = (V ⊗α W ) |K and V ⊗α
L1(G) W = (V ⊗α W ) |K1 .

We need a definition from Rieffel:

Definition 2.3.1. Let A be a Banach algebra and let V be a Banach G-module.
We say that V is essential if the space {a.v : a ∈ A, v ∈ V } is dense in V .

Then, following Rieffel ([19] Theorem 4.14) every Banach G-module is an es-
sential L1(G) module and

V ⊗dp

G W = V ⊗dp

L1(G) W.

The remaining of this section is taken from [17].
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Proposition 2.3.2
Let G be a compact group and let V and W be two Banach G-modules. Then

V ⊗dp

G W is isometrically isomorphic to the 1-complemented linear subspace (V ⊗dp

W )G consisting of those z in V ⊗dp W for which g⊗ e(z) = e⊗ g(z) for all g ∈ G (e
the unit element of G), that is,

V ⊗dp

G W = (V ⊗dp W )G

isometrically isomorphic. Moreover, the projection from V ⊗dp
W onto (V ⊗dp

W )G

is given by

P (v ⊗ w) =
∫
G

g−1.v ⊗ g.wdνG(g).

We will also need the following version of Proposition 2.4 in [17]:

Proposition 2.3.3
Let G be a compact group and let V and W be two Banach G-modules, V being

a reflexive Banach space with the approximation property. Denote by NG
p (V,W )

the set of all right p-nuclear operators T such that for every g ∈ G and every v ∈ V ,
T (g.v) = g.Tv, then

NG
p (V,W ) = V ′ ⊗dp

G W.

From (3) and (4) we then immediately obtain the two following identities:

Lemma 2.3.4
Let 1 < p < ∞. Let H,K be compact groups, let R be a measure space, and

let V,W be Lg
p spaces such that V is an H-module, W is a K-module and Lp(R) is

an H −K-bimodule, then(
Lp(R)⊗H

dp
V

)
⊗K
dp
W = Lp(R)⊗H

dp
(V ⊗K

dp
W ) (5)

and
NK
p′

(
Lp(R)⊗H

dp
V,W ′) = NH

p′

(
V,NK

p′
(
Lp(R),W ′)). (6)

2.5 Rieffel’s 1-induction

We summarize here Chapter 10 of [19].
Grothendieck [9] has shown that L1(G)⊗̂πV can be naturally and isometrically

identified with L1(G,V ) through the mapping f ⊗ v �→
(
x �→ f(x)v

)
. We will

not distinguish between L1(G)⊗̂πV and L1(G,V ). For f ∈ L1(G) and s ∈ H, let
(fs)(x) = ∆G(s−1)f(xs−1) (x ∈ G) and let K̃ be the closed subspace of L1(G)⊗̂πV
spanned by the elements of the form fs⊗v−f ⊗πsv (s ∈ H, f ∈ L1(G) and v ∈ V ).
We define L1(G)⊗̂H

π V = L1(G)⊗̂πV |K̃ .
Mackey’s transform defined in Section 2.2 will allow us to identify the spaces

L1(G;H;π) and L1(G)⊗̂H
π V . This is Theorem 10.4 of [19]:
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Theorem 2.4

For g ∈ L1(G,V ), recall that Mg has been defined on G by

Mg(x) =
∫
H

1
δ(h)

πhg(xh) dνH(h).

Then Mg is defined almost everywhere, Mg ∈ L1(G;H;π), and M is a G-module

homomorphism from L1(G,V ) to L1(G;H;π). Moreover, the kernel of M is exactly

K̃ and the norm in L1(G;H;π) can be regarded as the quotient norm in L1(G,V )|K .

Thus L1(G;H;π) is isometrically G-module isomorphic to L1(G)⊗̂H
π V .

We shall extend this result to the case p ≥ 1.

3. p-induction using tensor products

In this section we will show that the Mackey mapping allows us to define Lp(G;H;π)
as a tensor product. The proves will be adapted from [19], [20].

Let 1 < p < ∞. We will now assume that V is a reflexive Banach space. In
particular V has the Radon-Nikodým property.

Let G be a locally compact group, and let H be a compact subgroup of G. Note
that since H is compact, ∆H = 1. Let β be a Bruhat function of the pair H ⊂ G.

Let q be the function on G defined by

q(x) =
∫
H

β(xs)∆G(s)dνH(s).

Then q satisfies, for all x ∈ G and all h ∈ H,

q(xh) =
1

∆G(h)
q(x) = δ(h) q(x).

Let µ be the quasi-invariant measure on G/H associated with q, defined in the
following way: ∫

G|H

[∫
H

f(xh)
q(xh)

dνH(h)
]
dµ(xH) =

∫
G

f(x) dνG(x) (7)

for every continuous compactly supported function f : G �→ C. The existence of
such a measure has been established in various places, eg. [19] Proposition 10.1.
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Let π be a representation of H on the Banach space V . This space being
reflexive, we can define the coadjoint representation π∗ of H on V ∗ by letting π∗

h =
(πh−1)∗.

Remember that we defined the Mackey map f �→ Mpf from Cc(G,B) to
Cpc (G,H, π) by

Mpf(x) =
∫
H

1
δ(h)1/p

πhf(xh)dνH(h) =
∫
H

∆G(s)1/pπsf(xs)dνH(s).

We want to show that this defines a continuous projection

Mp : Lp(G,V ) �→ Lp(G;H;π).

Let f ∈ Lp(G,V ). We show that Mpf ∈ Lp(G;H;π). Observe first that Mpf

is defined a.e., is measurable and satisfies the covariance condition. The argument
is strictly similar to [19] pp. 484–486 and will not be reproduced here.

We now show that Mp is continuous (with norm ≤ 1).

‖Mpf‖p =
∫
G|H

‖Mpf(x)‖pV
q(x)

dµ(xH)

=
∫
G|H

1
q(x)

∥∥∥∥∫
H

∆G(h)1/pπhf(xh)dνH(h)
∥∥∥∥p
V

dµ(xH)

≤
∫
G|H

1
q(x)

∫
H

∆G(h)1/p‖πhf(xh)‖pV dνH(h)dµ(xH).

But ‖πhf(xh)‖V = ‖f(xh)‖V . Thus, by disintegration of measures (i.e. the defini-
tion of µ), we obtain ‖Mpf‖p ≤ ‖f‖p.

Next, we identify the kernel of Mp. First, define the following representation of
G on Lp(G):

ρtf(x) = ∆G(t)1/pf(xt)

and note that for f ∈ Lp(G), v ∈ V, t ∈ H

Mp

(
f(.)πtv

)
(x) =

∫
H

∆G(s)1/pf(xs)πsπtvdνH(s)

=
∫
H

∆G(st−1)1/pf(xst−1)πsvdνH(s)

=
∫
H

∆G(s)1/pπs
(
∆G(t−1)1/pf(xst−1)v

)
dνH(s)

= Mp

(
ρt−1f(.)v

)
(x).
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Now, let K be the closed linear span of all the elements of the form x �→ f(x)πtv −
ρt−1f(x)v with f ∈ Lp(G), v ∈ V and t ∈ H. By linearity and continuity of Mp we
see that kerMp ⊃ K. It is now possible to adapt the proof of Rieffel [20] for Hilbert
spaces (i.e. QSL2) to yield kerMp = K for reflexive Banach spaces.

First consider Lp(G,V ) and Lp(G;H;π) as G-modules where the action of G
is defined by left translation, i.e. g.f(x) = f(g−1x). It is then clear, as in [19], that
Mp is a G-module homomorphism, that is, Mp(g.f) = g.Mpf.

Assume now that kerMp �= K. Then, there exists a ϕ such that Mpϕ = 0 but
ϕ /∈ K. By the Hahn-Banach theorem and the Radon-Nikodým property of V (V is
reflexive), we can find a functional

Q ∈ K⊥ ⊂
(
Lp(G,V )

)′ = Lp′(G,V ′)

such that < Q,ϕ >�= 0. Since Lp(G,V ) is a G-module, it is an essential L1(G)-
module. Therefore, there exists an i ∈ L1(G) such that < Q, iϕ >�= 0, and if we use
a continuous compactly supported approximation of unity we can even assume that
i is continuous and compactly supported. Thus < iQ,ϕ >=< Q, iϕ >�= 0.

Now, K is G invariant, and hence so is K⊥, so that K⊥ is invariant under
convolution by continuous compactly supported functions, from which it follows
that, for all ψ ∈ K, < iQ,ψ >= 0.

By [11] Theorem 20.6, since iQ is a convolution involving a continuous com-
pactly supported function, iQ is a continuous function F . Arguing as in [20],
page 168, it follows from F = iQ ∈ K⊥ that

F (xh) =
1

∆G(h)1/p′
π∗
h

(
F (x)

)
for all h ∈ H,x ∈ G.

Note too that

< F (xh), ϕ(xh) >=
1

∆G(h)1/p′
< π∗

h

(
F (x)

)
, ϕ(xh) >

=
1

∆G(h)1/p′
< F (x), πh

(
ϕ(xh)

)
> .
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Now, by disintegration of measures (7),

< Q,ϕ >=
∫
G

< F (x), ϕ(x) > dνG(x)

=
∫
G|H

[∫
H

< F (xh), ϕ(xh) >
q(xh)

dνH(h)
]
dµ(xH)

=
∫
G|H

[∫
H

1
∆G(h)1/p′

< F (x), h
(
ϕ(xh)

)
>

δ(h)q(x)
dνH(h)

]
dµ(xH)

=
∫
G|H

1
q(x)

< F (x),
∫
H

1
∆G(h)1/p′

h
(
ϕ(xh)

)
δ(h)

dνH(h) > dµ(xH)

=
∫
G|H

1
q(x)

< F (x),Mpϕ(x) > dµ(xH) = 0

since Mpϕ = 0. This contradicts the assumption < Q,ϕ >�= 0 and the kernel of Mp

is exactly K.
Note that the proof of [19], Lemma 10.9 carries over to yield thatMp is surjective

and that the norm on Lp(G;H;π) is the quotient norm of Lp(G,V )/K �
(
Lp(G)⊗∆p

V
)
/K. We leave the details to the reader.

We summarize the preceding discussion in the following theorem.

Theorem 3.1

Let 1 < p <∞. Let G be a locally compact group and H a compact subgroup

of G. Let V be a reflexive Banach space and let π be a representation of H on V , for

which V is an H-module. Let K be the closed linear subspace of Lp(G,V ) spanned

by the elements of the form x �→ f(x)πtv −
(
ρt−1f

)
(x)v with f ∈ Lp(G), v ∈ V and

t ∈ H. Identifying Lp(G,V ) and Lp(G)⊗∆p V , we also regard K as being spanned

by elements of the form x �→ f(x)⊗ πtv − ρt−1f(x)⊗ v and write Lp(G)⊗H
∆p

V for(
Lp(G)⊗∆p V

)
/K. Moreover, if for f ∈ Lp(G,V ) we define Mpf by

Mpf(x) =
∫
H

1
δ(h)1/p

πhf(xh) dνH(h) =
∫
H

∆G(h)1/pπh f(xh) dνH(h),

thenMp is aG-module homeomorphism from Lp(G,V ) onto Lp(G;H;π). The kernel

of Mp is exactly K and the norm of Lp(G;H;π) is the quotient norm. Consequently,

Lp(G;H;π) is isometrically G-module homeomorphic to Lp(G)⊗H
∆p

V .

If V is a QSLp space, then Lp(G;H;π) is in fact isometrically G-module homeo-

morphic to Lp(G)⊗H
dp
V .
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4. Applications to classical theorems on induction

The previous theorem allows us to define p-induction via tensor products. We now
use that point of view to prove the results about induction in stages and a Kronecker
product theorem. Finally we also obtain a new Frobenius reciprocity theorem.

At this stage, we will need various restrictions on the spaces on which we rep-
resent our groups. They will be QSLp spaces or Lg

p spaces.
Let 1 < p <∞, let G be a locally compact group, H a compact subgroup of G,

and V a QSLp space. Fix a representation π of H on V so that V can be seen as
an H-module.

We have seen in Section 3 that the p-induced representation of π can be iden-
tified with Lp(G)⊗H

dp
V . We write G,pV = Lp(G)⊗H

dp
V and call this the p-induced

module.
We are now in a position to prove an inducing-in-stages theorem, the Kronecker

product theorem and a new Frobenius reciprocity theorem. But first, we will need
the following technical result:

Theorem 4.1.1

Let 1 < p <∞ and let V be a QSLp space. Assume that G is a compact group.

Assume also that V is a G-module and let us consider Lp′(G) as a G−G-bimodule,

then NG
p

(
Lp′(G), V

)
� V as G-module. The identification is given by

v ∈ V �→ Tv(f) =
∫
G

f(x)x.vdνG(x).

Equivalently, Lp(G)⊗G
dp
V � V .

Proof. Let v ∈ V and define for f ∈ Lp′(G)

Tv(f) =
∫
G

f(x)x.vdνG(x).

As G is compact, x �→ x.v ∈ C(G,V ) ⊂ Lp(G,V ) thus Tv ∈ Np

(
Lp′(G), V

)
.

Further, if g ∈ G and f ∈ Lp′(G)

Tv(g.f) =
∫
G

(g.f)(x)x.vdνG(x) =
∫
G

f(g−1x)x.vdνG(x)

=
∫
G

f(x)g.(x.v)dνG(x) = g.

∫
G

f(x)x.vdνG(x) = g.Tv(f).
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Thus Tv ∈ NG
p

(
Lp′(G), V

)
. In the same way,

Tg.v(f) =
∫
G

f(x)x.(g.v)dνG(x) =
∫
G

f(xg−1)x.vdνG(x)

=
∫
G

(f.g)(x)x.vdνG(x) = (Tv.g)(f).

Moreover

‖Tv‖p =
∫
G

‖x.v‖pdνG(x) =
∫
G

‖v‖pdνG(x) = ‖v‖p

as the action of G has been assumed to be isometric and G is compact. Thus v �→ Tv
is an isometric G-module homomorphism from V to NG

p

(
Lp′(G), V

)
.

We just have to prove that v �→ Tv is onto to complete the proof. For T ∈
NG
p

(
Lp′(G), V

)
, we want to find v ∈ V such that T = Tv. As Np

(
Lp′(G), V

)
�

Lp(G,V ) (V is a QSLp space), there exists F ∈ Lp(G,V ) such that, for all f ∈
Lp′(G)

T (f) =
∫
G

f(x)F (x) dνG(x).

But, as T is a G-module homomorphism, for all g ∈ G and all f ∈ Lp′(G),∫
G

f(g−1x)F (x) dνG(x) = g.

∫
G

f(x)F (x) dνG(x),

that is, ∫
G

f(x)F (gx) dνG(x) =
∫
G

f(x)g.F (x)dνG(x).

Therefore, for all g ∈ G, F (gx) = g.
(
F (x)

)
, x a.e. It is easy, however, to see that

F (gx)− g.F (x) is measurable in (x, g) and by Fubini’s theorem

Q = {(x, g) : F (gx) �= g.F (x)}

is of measure zero. By Fubini’s theorem again, except for x in a set of measure
zero, F (gx) = gF (x), g almost everywhere. Let x0 be any x from this set and let
v = x−1

0

(
F (x0)

)
. Then we have, for almost all x,

F (x) = F
(
(xx−1

0 )x0

)
= (xx−1

0 ).F (x0) = x.
[
x−1

0 .F (x0)
]

= x.v

in other words, F (x) = x.v almost everywhere, and T = Tv. �

Before we go on, we indicate what happens if H is not compact.
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Theorem 4.1.2

Let 1 < p <∞ and let V be a QSLp space. Let G be a locally compact group

and let H be a closed non-compact subgroup. Let π be a representation of H on V ,

making V into a H-module. Then

NH
p

(
Lp′(G), V

)
= 0 and Lp(G)⊗dp

H V = 0.

Proof. Let T ∈ NH
p

(
Lp′(G), V

)
. Then, as in the end of the proof of Theorem 4.1,

there exists F ∈ Lp(G,V ) such that T = TF and then F (sx) = s.F (x) for all
s ∈ H and almost all x. But then F is of constant norm on cosets of H, and so
is integrable if and only if it is identically zero. The second assertion is just the
standard identification between the two spaces under consideration. �

We can now give a new proof of the theorem of Inducing-In-Stages. This proof
is simpler then the proof given in [12], but we need some restrictive hypothesis on
the subgroup H and on the Banach space V .

Theorem 4.1.3 (Inducing-In-Stages)

Let 1 < p <∞ and let V be an Lg
p space. Let G be a locally compact group, K

a compact subgroup of G and H a closed subgroup of K. Let π be a representation

of H on V allowing us to consider V as an H-module. Then

G,p
(
K,pV

)
� G,pV.

Proof. Using the definition, the associativity of the dp tensor product ,i.e. (5), and
Theorem 4.1, it is immediate that

G,p
(
K,pV

)
= Lp(G)⊗K

dp

(
Lp(K)⊗H

dp
V

)
�

(
Lp(G)⊗K

dp
Lp(K)

)
⊗H
dp
V

�
(
Lp(G)⊗K

dp
Lp(K)

)
⊗H
dp
V � Lp(G)⊗H

dp
V = G,pV. �

We now define the p-Kronecker product of two representations. Let H and K

be two locally compact groups and V and W be two Banach spaces. Fix π to be a
representation of H on V and γ to be a representation of K on W . We define the
p-Kronecker product of π and γ as the representation of H×K on V ⊗dp

W defined
by

π × γ(h,k)v ⊗ w = πhv ⊗ γkw.

The next theorem asserts that taking p-Kronecker products and p-inducing are
two commutative operations. This theorem is new to our knowledge.
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Theorem 4.1.4 (p-Kronecker Product)

Let 1 < p <∞ and let V1, V2 be Lg
p spaces. Let G1, G2 be two locally compact

groups, let H1 be a compact subgroup of G1 and H2 a compact subgroup of G2 and

let πi (i = 1, 2) be representations of Hi on Vi. Then

G1×G2,p(V1 ⊗dp
V2) � G1,pV1 ⊗dp

G2,pV2.

Proof. Using properties of the dp tensor product, we have

G1×G2,p(V1 ⊗dp
V2) = Lp(G1 ×G2)⊗H1×H2

dp
(V1 ⊗dp

V2)

�
(
Lp(G1)⊗dp L

p(G2)
)
⊗H1×H2
dp

(V1 ⊗dp V2)

�
(
Lp(G1)⊗H

dp
V1

)
⊗dp

(
Lp(G2)⊗H

dp
V2

)
� G1,pV1 ⊗dp

G2,pV2. �

For W a G-module and H a subgroup of G, we write WH for W seen as a
H-module. We will now prove the following version of the Frobenius Reciprocity
Theorem.

Theorem 4.1.5 (Frobenius Reciprocity)

Let 1 < p < ∞ and let V be an Lg
p space and W an Lg

p′ space. Let G be a

compact group and H be a closed subgroup of G. Let π be a representation of H

on V , making V an H-module, and let γ be a representation of G on W making W

a G-module, so that W is also an H-module WH . Then

NG
p′ (

G,pV,W ) � NH
p′ (V,WH).

and

NG
p (W,G,pV ) � NH

p (WH , V ).

Proof. By definition

NG
p′ (

G,pV,W ) = NG
p′

(
Lp(G)⊗H

dp
V,W

)
� NG

p′
(
V ⊗H

dp
Lp(G),W

)
and by Theorem 2.3.4, NG

p′
(
V ⊗H

dp
Lp(G),W

)
� NH

p′

(
V,NG

p′
(
Lp(G),W

))
. But,

according to Theorem 4.1, NG
p′

(
Lp(G),W

)
�W , so that,

NG
p′ (

G,pV,W ) � NH
p′ (V,WH).

The other identity is obtained in a similar way. �
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5. The Subgroup Theorem

We shall now generalize Mackey’s subgroup theorem ([16] Theorem 12.1) to the
context of p-inducing. For technical reasons, we will restrict to the case when the
group is unimodular , one subgroup considered is compact and the other one is also
unimodular.

We will make extensive use of regularly related subgroups and their measure
theoretic properties as may be found in [16] Section 11. For sake of completeness,
we will now recall those that we shall use.

Let µ be a finite measure on a set X and suppose there is an equivalence
relation R given on X. For x ∈ X, let r(x) ∈ X/R be the equivalence class of x.
The equivalence relation is said to be measurable if there exists a countable family
E1, E2, . . . of subsets of X/R such that r−1(Ei) is measurable for each i and such
that each point in X/R is the intersection of the Ei’s which contain it.

Let G be a locally compact group and let G1 and G2 be two subgroups of G.
We say that G1 and G2 are regularly related if there exists a sequence E0, E1, E2, . . .

of measurable subsets of G each of which is a union of G1 : G2 double cosets such
that E0 has Haar measure zero and each double coset not in E0 is the intersection of
the Ei’s which contain it. Hence G1 and G2 are regularly related if and only if the
orbits of X = G/G1 under the action of G2, outside a certain set of measure zero,
form the equivalence classes of a measurable equivalence relation. In other words,
there is a measurable cross-section ψ of the set D of all G1 : G2 double cosets in G

i.e. ψ : D �→ G measurable. The following lemma ([16] Lemma 11.1) states that a
measure µ defined on X may be decomposed as an integral over X/R of measures
µy concentrated on the equivalence classes.

Lemma 5.1

Let µ̃ be the measure in X/R such that a subset E of X/R is measurable if

and only if r−1(E) is µ measurable and that µ̃(E) = µ
(
r−1(E)

)
. Then for each y in

X/R there exists a finite Borel measure µy on X such that µy
(
X \ r−1({y})

)
= 0

and ∫
X/R

f(y)
∫
r−1(y)

g(x) dµy(x) dµ̃(y) =
∫
X

f
(
r(x)

)
g(x) dµ (x),

whenever f is in L1(X/R, µ̃) and g is bounded and measurable on X.

Lemma 5.2

Let X be a G-space, and assume that the measure µ on X is quasi-invariant.

Then, in the decomposition of µ in the previous lemma, almost all of the µy’s are

also quasi-invariant under the action of G.
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Notation. In what follows, G will be a locally compact group, G1 a compact subgroup
of G and G2 a closed subgroup of G. We will also assume that G and G2 are
unimodular . We will further assume that G1 and G2 are regularly related.

Let D be the set of all G1 : G2 double cosets. For x ∈ G, we will note s(x) =
G1xG2 the G1 : G2 double coset to which x belongs. If ν is any finite measure on
G with the same null sets as the Haar measure on G, we may define a measure ν0
on D by setting ν0(E) = ν

(
s−1(E)

)
. Such a measure is called ([16] Section 12) an

admissible measure on D (associated to ν).
Let 1 < p < ∞ and let V be a QSLp Banach space. Fix a representation π of

G1 on V , and consider V as a G1 module. Let G,pV = Lp(G)⊗G1
dp
V be the induced

module. For x ∈ G write Gx = G2 ∩ (x−1G1x) and denote πx the representation
of Gx on V defined by η �→ πxηx−1 . We can consider V as a Gx-module (denoted
by V x) with the action defined by this representation. Furthermore, we define the
module induced on G2: G2,pV x = Lp(G2)⊗Gx

dp
V x.

Lemma 5.3
G2,pV x depends only (up to equivalence) on the coset s(x) = G1xG2.

Proof. By definition G2,pV x = Lp(G2)x ⊗Gx

dp
V x where Lp(G2)x = Lp(G2) seen as a

Gx-module with the action of s ∈ Gx defined as s.ϕ(t) = ϕ(s−1t) and V x = V also
seen as a Gx-module with the action of s ∈ Gx defined by s • v = (xsx−1).v. Thus
G2,pV x =

(
Lp(G2)x ⊗dp V

x
)
|Kx with Kx the closed linear span of all

s.ϕ⊗ v − ϕ⊗ s • v

such that ϕ ∈ Lp(G2), v ∈ V and s ∈ Gx.
We want to show that G2,pV x depends only on the double coset s(x). In other

words, we want to show that for all g1 ∈ G1, g2 ∈ G2,

G2,pV x � G2,pV g1xg2 .

It is enough to prove that Kg1xg2 � Kx.
First, note that

Gg1xg2 = G2 ∩ (g−1
2 x−1g−1

1 G1g1xg2) = g−1
2

(
G2 ∩ (x−1G1x)

)
g2.

Define the group isomorphism ag2 : Gx �→ Gg1xg2 by ag2s = g−1
2 sg2. We can now

regard Lp(G2) as a Gg1xg2-module where the action is defined as s�ϕ = (g2sg−1
2 ).ϕ,

and also regard V as a Gg1xg2-module with action

s � v = (xg2sg−1
2 x−1).v.
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By definition

Kg1xg2 = span{s � ϕ⊗ v − ϕ⊗ s � v : ϕ ∈ Lp(G2), v ∈ V, s ∈ Gg1xg2}
= span{ag2(s) � ϕ⊗ v − ϕ⊗ ag2(s) � v : ϕ ∈ Lp(G2), v ∈ V, s ∈ Gx}
= span{s.ϕ⊗ v − ϕ⊗ s • v : ϕ ∈ Lp(G2), v ∈ V, s ∈ Gx} = Kx

which completes the proof. �

It now makes sense to write G2,pV x for x a G1 : G2 double coset. Recall that
G2,pV x = Lp(G2)⊗Gx

dp
V x can be seen as a complemented subspace of Lp(G2)⊗dp V

via the projections

Px(f ⊗ v) =
∫
Gx

ρtfπx−1txvdνGx(t)

where νGx is a Haar measure on Gx. As V is QSLp,(
Lp(G2)⊗dp

V
)∗ =

(
Lp(G2, V )

)∗ = Lp′(G2, V
∗) = Lp′(G2)⊗dp′ V

∗,

and
(
G2,pV x

)∗ will be complemented in Lp′(G2)⊗dp′ V
∗ via P ∗

x .
We will now show that the P ∗

x (g⊗ ξ) =
∫
Gx

ρt−1gπ∗
x−1txξdνGx

(t) can be chosen
to be “measurable”. For this, we will need a few more definitions and lemmas.

Notation. Let G be a locally compact group. Let X (G) be the set of closed subsets
of G and let S(G) be the set of all closed subgroups of G.

For K a compact subset of G and U1, . . . , Un a finite family of open subsets of
G, define

U(K,U1, . . . , Un) = {F ∈ X (G) : F ∩K = ∅,∀ i = 1 . . . , n, F ∩ Ui �= ∅}.

The compact open topology on X (G) is then the topology generated by the sets of
the form

U(K,U1, . . . , Un).

We will also call compact open topology on S(G) the induced topology. (cf. [4]).

Lemma 5.4

Let G be a locally compact group, G1 a compact subgroup and G2 a closed

subgroup. Endow S(G) with the compact open topology. Then the mapping ψ :
G �→ S(G) defined by x �→ (xG1 x

−1)∩G2 is of the Baire first class, and is therefore

measurable.
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Proof. We will need two steps.

First step: Let U be a compact neighborhood of G1, that is the closure of an
open neighborhood of G1 (in G) and let V be the closure of an open neighborhood
of G2. Then ϕ : G �→ X (G) defined by x �→ xU x−1 ∩ V is continuous with respect
of the topology of G and the compact open topology of X (G):

Let x ∈ G and xn ∈ G be a sequence that converges to x, let K be a compact
subset of G and U1, . . . , Uk a finite family of open subset of G such that

xU x−1 ∩ V ∩K = ∅ and for i = 1, . . . , k; xU x−1 ∩ V ∩ Ui �= ∅.

If there exists a subsequence of xn, that for convenience we will still call xn,
such that xnU x−1

n ∩ V ∩ K �= ∅, then there exists a sequence kn ∈ U such that
xn kn x

−1
n ∈ xnU x−1

n ∩ V ∩ K. U being compact, we can assume without loss of
generality that kn converges to k ∈ U , but then xkx−1 ∈ xU x−1∩V ∩K contradicting
the emptiness of that set. Thus, for n big enough, xnU x−1

n ∩ V ∩K = ∅.
As U1 intersects xU x−1∩V , U1 intersects the interior xU̇ x−1∩V̇ of xU x−1∩V .

Let k ∈ U̇ be such that xkx−1 ∈ xU̇ x−1 ∩ V̇ ∩ U1. Then xn kx
−1
n → xkx−1 thus

is in
◦
V ∩ U1 for n big enough. Therefore, there exists N1 such that, for n ≥ N1,

xnU x−1
n ∩ V ∩U1 �= ∅. There exists then N2 ≥ N1 such that for n ≥ N2, xnU x−1

n ∩
V ∩ U2 �= ∅... thus, for n big enough and i = 1, . . . , k we get xnU x−1

n ∩ V ∩ Ui �= ∅.
Second step: Let Un be a decreasing sequence of compact neighborhoods of G1

such that
⋂
Un = G1 and let Vn be a decreasing sequence of closed neighborhoods of

G2 such that
⋂
Vn = G2. Let ψn : G �→ X (G) be defined by ψn(x) = xUnx−1 ∩ Vn.

According to the first step, ψn is continuous. Further, for each x ∈ G, ψn(x) → ψ(x)
thus ψ is in Baire’s first class:

Let x ∈ G, K be a compact subset of G and U1, . . . , Uk a finite family of open
subsets of G such that

xG1x
−1 ∩G2 ∩K = ∅ and for i = 1, . . . , k; xG1 x

−1 ∩G2 ∩ Ui �= ∅.

Then as Un ⊃ G1 and Vn ⊃ G2, for i = 1, . . . , k

xUn x−1 ∩ Vn ∩ Ui ⊃ xG1 x
−1 ∩G2 ∩ Ui �= ∅.

Further xUnx−1 ∩Vn ∩K is a decreasing sequence of compact sets whose inter-
section xG1 x

−1 ∩G2 ∩K is empty, thus for n big enough, xUn x−1 ∩ Vn ∩K = ∅,
which concludes the proof of the convergence of ψn (x) towards ψ(x). �
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Definition. For each K ∈ S(G), let νK be a Haar measure on K. The map
K �→ νK is said to be a continuous choice of Haar measures if, for every continuous
compactly supported function f on G, the map S(G) �→ C defined by

K �→
∫
K

f(t) dνK(t)

is continuous.

We will need the following lemma du to Fell (cf. [7]).

Lemma 5.5
Let f0 be a non-negative continuous compactly supported function on G such

that f0(e) > 0 (e being the unit element of G). For each closed subgroup K of G
let νK be the Haar measure on K such that

∫
K
f0(t) dνK(t) = 1. Then K �→ νK is

a continuous choice of Haar measure.

Notation. In what follows, f0 will be a fixed non-negative continuous compactly
supported function on G such that f0(e) > 0 and K �→ νK will denote the continuous
choice of Haar measures associated to f0.

Lemma 5.6
There exists M > 0 such that for every x ∈ G, νGx

(Gx) ≤M .

Proof. Let ε > 0 and let U be a neighborhood of e such that f0(t) > ε > 0 for t ∈ U .
For each s ∈ G1, let Us be a neighborhood of s such that U−1

s Us ⊂ U . As G1

is compact, G1 is covered by a finite subfamily U1, . . . , Un of the {Us}s∈G1 . Then,
xU1x

−1 ∩G2, . . . , x Un x
−1 ∩G2 is a cover of xG1 x

−1 ∩G2. Thus

νGx (Gx) =
∫
Gx

dνGx ≤
n∑
i=1

∫
xUi x−1∩G2

dνGx .

Now choose a yi in each Ui, and note that, for t ∈ U , 1 ≤ 1
εf0(t). Then if s ∈

xUi x
−1, y−1

i x−1 sx ∈ U−1
i Ui ⊂ U thus 1 ≤ 1

ε f0(y
−1
i x−1 sx) and therefore

νGx (Gx) ≤
n∑
i=1

1
ε

∫
xUi x−1∩G2

f0(y−1
i x−1 sx) dνGx ≤

n∑
i=1

1
ε

∫
Gx

f0(y−1
i x−1 sx) dνGx

as f0 ≥ 0. But νGx is a Haar measure of the compact (thus unimodular) group Gx

so ∫
Gx

f0(y−1
i x−1 sx) dνGx

=
∫
Gx

f0(s) dνGx
= 1

(by the definition of νGx). But then νGx (Gx) ≤ n
ε . �

We are now able to prove the following
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Proposition 5.7

For every f ∈ Lp(G2), g ∈ Lp′(G2), v ∈ V, ξ ∈ V ∗,

x �→< f ⊗ v, P ∗
x (g ⊗ ξ) >=

∫
Gx

< f, ρt−1 g >< v, π∗
x−1tx ξ > dνGx

(t).

is measurable.

Proof. It is of course enough to prove that

x �→
∫
Gx

< f, ρt−1g > π∗
x−1 tx ξdνGx (t)

is measurable.
Let ε > 0. As G1 is compact and t �→ π∗

t ξ is continuous, there exists a disjoint
relatively compact cover U1, . . . , Un of G1 and t1 ∈ U1, . . . tn ∈ Un such that for
each i = 1, . . . , n and each t ∈ Ui,

∥∥π∗
t ξ − π∗

tiξ
∥∥ < ε. Let χUi be the characteristic

function of Ui, then, the norm of∥∥∥∫
Gx

< f, ρt−1 g > π∗
x−1txξdνGx

(t)−
∫
Gx

< f, ρt−1g >

n∑
i=1

χx−1Uix(t)π
∗
x−1tix

ξdνGx
(t)

∥∥∥
=

∥∥∥ n∑
i=1

∫
xUix−1∩G2

< f, ρt−1g > (π∗
x−1txξ − π∗

x−1tix
ξ)dνGx

(t)
∥∥∥

≤
n∑
i=1

∫
xUix−1∩G2

‖f‖ ‖g‖
∥∥π∗

x−1txξ − π∗
x−1tix

ξ
∥∥ dνGx(t)

≤ ε‖f‖ ‖g‖ νGx(Gx) ≤ ε‖f‖ ‖g‖M

by Lemma 5.6. It is thus enough to prove measurability for

x �→
∫
Gx

< f, ρt−1 g > χx−1 Ui x(t) dνGx
(t)π∗

x−1 ti x
ξ.

Further, as x �→ π∗
x−1tix

ξ is continuous, and as χx−1 Ui x(t) = χUi (xtx−1), we will
just consider

x �→
∫
Gx

< f, ρt−1 g > χU (xtx−1) dνGx
(t)

where U is a relatively compact measurable subset of G1. Consider now a sequence
ϕn of continuous compactly supported functions on G such that ϕn converges almost
everywhere to χU and such that 0 ≤ ϕn ≤ 1. Then, as for every x ∈ G,∫

Gx

< f, ρt−1 g > ϕn (xtx−1) dνGx
(t) →

∫
Gx

< f, ρt−1g > χU (xtx−1) dνGx
(t)
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we just need to consider

x �→
∫
Gx

< f, ρt−1g > ϕ(xtx−1)dνGx
(t)

where ϕ is a continuous compactly supported function on G. But, K �→ νK is a
continuous choice of Haar measures, so

(K,x) �→
∫
K

< f, ρt−1g > ϕ(xtx−1)dνK(t)

is continuous, and as x �→ Gx is measurable,

x �→ (Gx, x) �→
∫
Gx

< f, ρt−1g > ϕ(xtx−1)dνGx
(t)

is measurable. Finally x is in D and not in G. To overcome that difficulty, recall
that G1 and G2 are assumed regularly related so that there exists a measurable
cross-section ψ of D in G, thus we just have to compose the previous map and ψ. �
Notation. Let µ1 be the quasi-invariant measure on G/G1 defined by∫

G/G1

(∫
G1

f(st)dνG1(t)
)
dµ1(sG1) =

∫
G

f(s)dνG(s).

For D ∈ D, let µD be the quasi-invariant measure on D obtained from µ1 via
Lemma 5.1 and 5.2: ∫

D

∫
D

f(t)dµDdµ̃1 =
∫
G/G1

f(t)dµ1(t).

For x ∈ G, let µx be the measure on G2/Gx defined by∫
G2/Gx

(∫
Gx

f(st)dνGx(t)
)
dµx(sGx) =

∫
G2

f(s)dνG2(s).

Note that G2 being unimodular, every quasi-invariant measure on G2/Gx is pro-
portional to µx. Thus, identifying G2xG1 with G2/Gx we may assume that
µx = µG2xG1 .

Let {ϕn}n∈N be a dense family of elements of Lp′(G2) ⊗dp′ V
∗ of the form

gn ⊗ ξn where the gn’s are continuous compactly supported functions on G2. Let
ψn(x) = P ∗

x (ϕn). According to Proposition 5.7, x �→ ψn(x) is weakly measurable.
Further, for fixed x, {ψn(x)}n∈N is dense in (G2,pV x)∗.

First let B =
∏
x∈D

G2,pV x, an element of B is thus a mapping ϕ : x �→ ϕ(x) such

that for every x ∈ D, ϕ(x) ∈ G2,pV x.
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Definition. Let Lp(D, µ,B) be the linear subset of B consisting of all ϕ such that
1) for every n ∈ N , x �→< ϕ(x), ψn(x) > is measurable, and
2) ‖ϕ‖p =

(∫
D ‖ϕ(x)‖pG2,pV xdµ(x)

)1/p
<∞.

We will of course identify two elements if they are equal almost everywhere.
Then Lp(D, µ,B) is a Banach space and a G2-module if we define the action of G2

by g2ϕ : x �→ g2ϕ(x).

Theorem 5.8

Under the above notations, G,pVG2 is isometrically G2-module homomorphic to

Lp(D, µ,B).

Proof. Recall from Section 2 that we can identify G2,pV x as the set of all functions
f : G2 �→ V such that

1) x �→< f(x), v′ > is measurable for every v′ ∈ V ∗,
2) f(sh) = π−1

xhx−1f(s) for all s ∈ G2, h ∈ Gx,
3) ‖f‖pp =

∫
G2|Gx

‖f(t)‖pdµ(tH) <∞.
Note that conditions (2) and (3) are simplified by the assumption that G2 is

unimodular.
We will take advantage of disintegration of measures (Lemma 5.1) to complete

the proof. To do this we first need to write G2,pV x as a set of functions on the
double coset G2xG1 instead of functions on G2. This is done in the next lemma.

Lemma 5.9

Let x ∈ G and define Epx to be the set of all f : G2xG1 �→ V such that

1) s �→< f(s), v′ > is measurable for all v′ ∈ V ∗,

2) f(sξ) = π−1
ξ f(s) for all ξ ∈ G1, s ∈ G2xG1,

3)
∫
G2|Gx

‖f(t)‖pdµx(t) <∞.

Then G2,pV x and Epx are G2-module homomorphic and isometric.

Proof. Note first that π being isometric, the condition (2) implies that ‖f(t)‖p is
constant on Gx-cosets of G2, thus condition (3) makes sense.

Let f ∈ Epx so that f is defined on G2xG1. We define f̃(t) = f(tx) for t ∈ G2.
For all v′ ∈ V ∗, t �→< f̃(t), v′ >=< f(tx), v′ > is clearly measurable. Further, let
η ∈ Gx and let ξ = xηx−1, then

f̃(tη) = f̃(txξx−1) = f(txξ) = π−1
ξ f(tx) = π−1

ξ f̃(t) = π−1
x−1ηxf̃(t).
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Now let g ∈ G2,pV x (seen as a function G2 �→ V ). Define a function f on G2xG1

by f(txξ) = π−1
ξ g(t) for t ∈ G2 and ξ ∈ G1.

Let us first check that f is unambiguously defined. Thus, assume that t1xξ1 =
t2xξ2 with t1, t2 ∈ G2 and ξ1, ξ2 ∈ G1. Then t1 = t2 xξ2 ξ

−1
1 x−1 and xξ2 ξ

−1
1 x−1 ∈

G2 ∩ (xG1 x
−1) = Gx thus

g(t1) = π−1

(ξ1ξ
−1
2 )−1 g(t2) = π−1

ξ2ξ
−1
1
g(t2) = πξ1π

−1
ξ2
g(t2)

thus π−1
ξ1
g(t1) = π−1

ξ2
g(t2) and f(t1 xξ1) = f(t2 xξ2) and f is unambiguously defined.

Fix v′ ∈ V ∗ and define for (ξ, η) ∈ G1 ×G2, f1(ξ, η) = π−1
ξ g(η), then

< f1(ξ, η), v′ >=< g(η), (πξ−1)∗v′ >

is a Borel function of (ξ, η) ∈ G1 × G2. We can now finish the proof of the lemma
in exactly the same way as the proof of the Lemma 6.1 of [16]. �

We have just established Lemma 5.9 for functions defined on G2xG1 double
cosets in order to remain close to the proof of [16] Lemma 6.1. It is then obvious
that a similar result is true for G1xG2.

Proof. (of the theorem) Recall from Section 2 that we can identify G,pV as the set
of all functions f : G �→ V such that

1) s �→< f(s), v′ > is a Borel function for all v′ ∈ V ∗,
2) F (sξ) = π−1

ξ f(s) for every ξ ∈ G1, s ∈ G,
3)

∫
G/G1

‖f(t)‖∗dµ1(t) <∞.
We can now finish the proof of the theorem simply by using disintegration of

measures as in [16]. Let f ∈ G,pV (seen as a function on G) then with Lemma 5.1,∫
D∈D

∫
D

‖f(t)‖pdµD dµ̃1(D) =
∫
G/G1

‖f‖pdµ1 <∞. (8)

Thus, for almost all D ∈ D,∫
D

‖f(t)‖pdµD <∞.

Define then, for D ∈ D, fD to be the restriction of f to D. For almost all D ∈ D, we
then have that fD ∈ Epx (where x is such that D = G1xG2) so that, by Lemma 5.3,
we may assume that fD ∈ G2,pV x.

Equation (8) then asserts that G,pV is isometric to Lp(D, µ,B). �
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