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ABSTRACT

We consider an algebraic curve X C PV (N > 3) defined over afinitefield of
characteristic p > 0 which possesses an order-sequencein the sense of [6]. Let
N, an odd prime number p and aninteger (1 < I < N) bearbitrarily given.
Then we shall give an example of a curve as above whose ¢’ —Frobenius index
in the sense of [1] equals I, which is a complete intersection in P of N — I
Fermat equationsand / — 1 Artin-Schreier equations over afinitefield IF,» with
q' elements, where ¢’ is some power of p (seethe Theorem of Section 1). Inthe
caseof N = 3and I = 1, our example is the same one as Example 3 in [1]
or[2].

1. Introduction

Let X C PV be an algebraic curve lying in an N —dimensional projective space
PN with N > 3 defined over a finite field F,/ of the given characteristic p, which
possesses an order-sequence in the sense of [6].

In the present paper, we are concerned with the index, which is called the
q'—Frobenius index in [1], of a certain order in the order-sequence, for a curve as
above X C PV,

According to [1], notions of “order-sequence, ¢'—Frobenius order-sequence (resp.
indez)” will be as follows.

Let 9 : 1 : 9 : --- : &y be the coordinate functions of X < PV, and
{D™;0 < r € Z} be the system of Hasse-Schmidt derivatives with respect to some
separating variable on the curve X, where Z denotes the set of integers.
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The order-sequence of the curve X C PV
(11) O=¢eg<e1 << - <en

means the minimal sequence consisting of integers, in the lexicographic order, such
that the N + 1 row-vectors D(€) -t(0 <4 < N) are linearly independent over the
function-field k£(X) of the curve X, where

t = (z0,21,%2,...,2N),
D(sl) Tt = (D(El)(I'O)a D(Ei)($1)7 D(Ei)($2)a s aD(El)(l‘N))’ 0<i<N.

And the ¢'— Frobenius order-sequence of the curve X c PV
(1.2) O=vg <11 << - <UN_1

means the minimal sequence consisting of integers, in the lexicographic order, such
that the NV 4+ 1 row-vectors tq/,D(Vi) -t(0 <4 < N —1) are linearly independent over
kE(X), where

’ ’

o = (2 2] 28, 2%),
D) v = (DY) (xg), D) (x1),..., D" (zy));0<i < N —1.

For the relationship between (1.1) and (1.2), it is known that there exists an integer
I depending on ¢’, with 1 < I < N, such that

€; whenever ¢ < [

€i+1 Whenever ¢>1

(cf. Proposition 2.1 in [6]).
Hereafter, for the given curve X C PV as above, we put

(q'; X): = the integer I asin (1.3).

Then ¢(q’; X) is called the ¢’ — Frobenius indez of the curve X C PV. For example,
we know the following:

(a) Example 3 in [1] or [2] satisfies ¢(¢'; X) = 1 for some ¢’ (a curve which is a
complete intersection of Fermat equations, in N = 3),

(b) The monomial curve in Theorem 3 of [1] satisfies ¢(¢’; X) = N for any ¢,
any N (a curve which is an image of P1),
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(c) Example 9 in [1] satisfies ¢(¢’; X) = N —1 for some ¢/, any N (a curve which
is an image of P!).

Now, let an integer N > 3 and an odd prime number p be arbitrarily given.
We take arbitrarily an integer I with 1 < I < N. Then it is our object to give an
example of X C PV over F, satisfying +(¢'; X) = I, which is a complete intersection
in PV, where ¢’ is some power of p. Precisely speaking, our result is as follows:

Theorem
Let the triplet {N,p,1} as above be given. We consider the following cases

[A], [B], [C].

[A] Case I = 1.

Let a positive integer e satisfy N < p®. Let p;’s (1 < i < N — 2) be elements in
F, such that “p; # 0,1 for each i” and “p; # p; for i # j7. We put
k2! T2 Lit2

o o i)

Tr =

We consider the curve X in PV defined by N — 1 Fermat equations over Fy:
g oyt =1 g0 0T — (1 <i < N —2),

e

where q = p°.

[B] Case I = N.
Let a positive integer e satisfy N < p°. We take the sequence of successively
increasing integers

2=my <mg<mz<---, where m; Z0 (mod p)
for ¢ > 1. We put
x:ﬂ,ui:xlﬂ(lgigN—l).
Zo Zo

(B1); I <p®—p°~!t+1 Case. We consider the curve X in PV defined by N —1
Artin-Schreier equations over IF :

2 2
i ; — 1
ul +u;=2™(1<i<N-2),ul_ | +uy_qg =271

e

where q = p°.

(By); I > p®—p° 141 Case. We consider the curve X in PV defined by N — 1
Artin-Schreier equations over [Fy:

ug—I—ui:xmi(l§i§p€—p€71—1),

i+2 i+2
q _ 1 . -1
Upe _pe—144 T Upe—pe=14i = z? 0 <i < N —p° +p° 1),

where q = p°.
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[C] Case 1 <I< N.
Let a positive integer eq satisfy eg > 1 and N < p® — p®~1 + 1. We put

p=t =12 L 2T i N T 1),
Zo Zo Zo
wj = NI < <),
Zo

We consider the curve X in PV defined by N — I Fermat equations and I — 1
Artin-Schreier equations over F:

glotl g0t — 7 gao+l 4 ,zquJrl =p(1<i<N-I1-1),

ul® fuy =™ (1<j<I-1),
where qo = p®°, the p;’s being elements in F,, such that “p; # 0,1 for each ¢” and
“pi # p; for i # j”, the m;’s being as in [B].

Then, in each of the cases [A], [B], [C], the curve X C P¥ possesses the order-

sequence, and it is obtained that

(d;X)=1 if ¢ =¢* in Cases[A],[B]

(d;X)=1 if ¢ =4q, inCaselC].
Note. The author is thankful to Mr. Takasi Masuda who has indicated the choice

for “p;’s” in the Theorem.

The above cited example (a) has become a hint of this theorem. In order to
prove the Theorem, we need to find the order-sequence of X C P¥ in each of the
cases [A], [B], [C]. For the sake of it, we shall use the “Hasse-Schmidt derivatives
with respect to x”, which are denoted by “Dg(f); 0 <reZ”. We use the following

known properties:
(1.4) D® =id., D (c) =0 for any constant ¢(r > 1),

D =
where (T) is the binomial coefficient,

!
Dg") (Dgfl)(h)) _ (r +/7“ >D¥+r )(h) ’

r

m

>xm_r for 0O<meZ,
-

D (g +h) = D (g) + DY (h),
DI (g-h) =Y DP(g) DI (n),
=0

(DO W) i r=0 (modg),

0 if r#0 (modd),
for any functions g, h on the curve X (cf. [2], [4], [6]).

DY) =
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Moreover, for the congruence modulo a prime number p of the binomial coeffi-
cient (g) with 0 < «, 8 € Z, we use the following known property:

(6 a;
(1.5) (ﬁ) _£[0<bi> mod p,
where a = Y"1 jaip’, B=>1 obip’, 0 <a;,b; <p—1(0<i<n)inZ.

In Section 2, we shall find the order-sequence of the curve X C P in the
Theorem, through direct computation.

In Section 3, we shall give a proof of the Theorem. In both Sections 2, 3, the
formulas (1.4), (1.5) will be chiefly useful.

In Section 4, we shall apply the estimation-formula on the number of rational
points on curves, which has been given in [3], to the curve of Case [A] in the Theorem,
and show the number itself.

The author wishes to express his hearty thanks to Professor M. Homma who
has told him about notions and known-facts on the “order-sequences, ¢’ —Frobenius
order-sequences” of space curves.

2. The order-sequences

In this section, we shall find the sequence (1.1) for the curve X C P¥ in the Theorem.
We put & = ;—;(OSiSN) and

f:: (£0>€1a£2>"'7£N)-

Then two row-vectors D_»(ﬂo) -, Dg(gl) - f are obviously linearly independent over k(X).
To find the sequence (1.1) is to find the minimal one in the lexicographic order
such that N + 1 row-vectors D) (0 < i < N) are linearly independent over k(X)
(cf. Proposition 1.4 in [6]).
Now, we shall carry out this procedure, in each of the cases [A], [B], [C] in the
Theorem.

Case [A].
By using (1.4) and (1.5), we obtain the following:

@) DO = ()5 DY) = () (1< i< N =)
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(2.2) DM (y) =DM (z)=002<r<q—1,1<i<N-2);
Wy~ L
(23) D:E (y) - yq(l . xq2+q) 9
(pd®
DW () = L@ =) oy gy,

2} (pi — x9°+a)

(2.4) DY (y) = ﬁ )

(—pi) .

(25) D) DI () = DO (=)  DE(y) (1 i < N~ )

(2.6) D) (y) = DI () =0(2<j<g—1,1<i <N -2);
1 B

(2.7 Do) = S (00)" - D )

LUan _ :L,(n—l)q2+1

y1(1 — xq2+q)n

)

D () = SR (0007 D192

1

pi(and — g(n— a1
2} (pi — xF+a)n

(2<n<N-2neZ),1<i<N-2);

(2.8) Dg(cm”l)(y) _ (;—;)(Df)(y))q . D;(nfl)qul)(y)’
~1)

Dt () = ( (Dg(cl)(zi))q - D=1+ (5

)

q
K3
(2<n<N-2neZ),1<i<N-2);
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(29)  DI(y)- DY (=) = DI (z) - DD (y)
(2<n<N-2neZ),1<i<N-2);

(2.10) D) (y) = D) (z;) = 0
(2<n<N-2n€Z),2<j<q-1,1<i<N-2);

x(N_l)qQ — x(N_Q)qQJ’_l
y‘I(l — $q2+q)N—1 ’
pi(azWN -1 _ p(N=2)a’+1)
Ty~ wray

(1<i<N-2).

(21) DN (y) =

DN (2, =

By (2.5), (2.9), the following assertion

(2.12) “Dgfq) -, Dg(csqﬂ) -f are linearly dependent over k(X), for
1<s<N-2s€Z)

is true. Moreover, from (2.2), (2.6), (2.10), we get, for s,t € Z,

(2.13) DY) s =0 if 0<s<N-2 2<t<q-—1.

In addition to (2.12) and (2.13), it will be shown that the following assertion
(2.14)  “N +1 row-vectors D -, DV .§, D9 f(1<s<N-1(seZ))

are linearly independent over k(X)” is true.

By (2.12), (2.13), (2.14), the set of linearly independent vectors in (2.14) be-
comes the minimal one in the lexicographic order.

JFrom now, we shall show the truth of the assertion (2.14).

For 1 <m < N —1, we get g, = (v, 21, 22,...,2m—1) which is the row-vector
with coordinates y, z;(1 <7 < m — 1). Then we denote by A,,, the m x m—matrix
whose row vectors are m vectors Dé“” - gm (1 < s <m). Then we have

D) D) o D ()
DEN(y)  DEV(z1) o DED (o)

(2.15) det A, =

DY (y) DY (z) - DM (z1)
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and
#0 in k(X), for 1<m<N-1.

In fact, through (2.3), (2.7), (2.11), we shall compute the determinant of (2.15).
Then we get

175" pi |- (294" — gU-1a*+1)

2].6 de Am: 1 2 m q)mx )
( ) ' (1/2122"'Zm—1)q{1_[;7:0 (ps — x4 +q)} (@)
pr1(z)  p2(@) 0 pim(@)
p21(x)  p2a(z) o pam()
O (7) =
Om1(T)  Pm2(z) - Pmm(T)

where po = 1 and ¢;;(z) = (pj—1 — :1:‘12+‘1)m_i for 1 <i,j<m.
Moreover, by using the assumption for the p;’s, it is obtained that

m—1

on=[0-p)- T @i-n)
=1 1<i<j<m—1
0,

through computing the determinant-expression of ®,,,(0). Therefore the polynomial
®,,,(x) is an non-zero element in Fy[z]. And then det A,, # 0 in k(X), by (2.16) and
the assumption for the p;’s.
On the other hand, when we consider the (N 4 1) x (N + 1)—matrix A (resp.
2 x 2—matrix Ag) whose row vectors are N 4 1 vectors in (2.14) (resp. two vectors
(1,2),(0,1)), we have
det A =det Ag-det Ay_1 #0

by (2.15) and “det Ag = 1".
Consequently, the truth of the assertion (2.14) has been shown. Thus the order-
sequence of the curve X C PN in Case [A] is as follows:

6020,61:1,61+i:iq<1§i§N—1).

Case [B].

First, we consider the case (B1). We divide this case into the following subcases
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(B; — 1) : I=N<2p-1,
(B —a): ap—a+2<I=N<ap—a+p, where
2<a<pt—1(ae7).

Case (By — 1). In this case, we have

if I<p then m=i+11<i<I-2),
if p<I<2p—1 then
m;=1+11<i<p—2), mpor;i=p+i(l<i<N—p).

We set, incase I < p,for1 <¢:< -2,

D (w)  DP(us) - D (w)

D (w)  DP(us) - DY (w)
U, =

Dg(CiJrl)(ul) Dg(ci+l)(u2) Dg(CiJrl)(ui)

and set, in case p < [ < 2p — 1,

DY (upr) DY (wy) o DY (uporsy)
Dg«"pﬂ)(“p—l) DépH)(up) e Da(cp+1)(up—1+j)
Vi= . , ,
D;(Ep+j) (up_1) Dg(gp-i—j) (up) - D§p+j)(up71+j)

for0<j<I—p-—1.
Then the types of these matrices are as follows:

(2.17)  “U; is of i x i—triangular type with all 1 (resp. all 0) on the principal diago-
nal (resp. below the principal diagonal), and hence detU; # 0(1 < i <
I-2)".

(2.18)  “Vjis of (j +1) x (j + 1)—type with its transposal such that

1st-row: (((1))95, (}), 0,0,... ,O) ,
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2nd-row: ((g)ﬁ, @)m, @), 0,...,0),

jth-rows (), (Pai=t, (Q)ad 2, (7)), (),

) o N iy i .
(j+1)th-row: ((hg A G F I Cha P 1,...,(337 )a:),
and hence it is verified that det V; #0 (0<j<I—p—1)".

Now we shall verify the claim of “det. # 0” in (2.18). Consider the linear
relation > 7_, Aju; = 0 of the row-vectors u;(0 < ¢ < j) of V; over k(X). Then we
have

)\1 = (*1))\056, )\2 = (*1)2>\0£C2, . .,)\j = (*1)j)\0$j

and A
7 .
1 ) .
> (T eni=o
(3
1=0

Hence, from these equations, we get

(—1)i+? (; 1 1) AozdH! = <Zj:(_1)i <j Jlr 1)) Aozt =0,

i=0
Therefore Ay = 0 and hence \; = 0(0 <4 < j). Then the u;’s(0 <14 < j) are linearly
independent over k(X) and hence det V; # 0(0 < j < p —2).
Let Mj, be the h x (N 4+ 1)—matrix whose row vectors are h vectors DY f(0 <
i < h —1). Then it is easily seen that some [—minor of M; equals
detAo . detU[_g if I Sp,
det Ag-detU,_o-detVi_p,—1 if p<I<2p—-1.

Hence, by “det Ag =17, (2.17), (2.18), the following assertion
(2.19)  “I row-vectors D . f(0 <i <I—1) are linearly independent over k(X)”

is true.
For I < j <¢*—1, let My ; be the matrix whose row vectors are I + 1 vectors

)% FO<i<I—1), DY) -f. Then My ; is a square matrix by I = N, and it is also
easily seen that

(2.20) “detM;; =0 for 1 <j< q®> — 1, and hence these N + 1 row-vectors are
linearly dependent over k(X)".
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On the other hand, for j = ¢, we have
det My 2 = det Ag - det Ur—o - det Vi1 - (z — xq4) ,
because the transposed (I + 1)—th column vector of M; ;2 equals
(ul,l,xQQ,O,O, o, 0,2 — xq4) .

Since the left-hand side of this equality is not zero by “det Ag = 17, (2.17), (2.18),
we obtain the truth of the following assertion

(2.21)  “N +1 row-vectors Dy f0<i<N-1), Dgff) -f are linearly independent
over k(X)”.

By (2.19), (2.20), (2.21), the set of N 4 1 row-vectors in (2.21) becomes the minimal
one in the lexicographic order. Thus the order-sequence of the curve X C PN in
Case (By — 1) is as follows:

gi=i(0<i<N—-1), ey =¢>
Case (B — «). In this case, at each a, we have, for r € Z,

m;=i+1 (1<i<p-2),
Myp—p_14i=1p+1i (1<i<p—-21<r<a-1),
Map—a—1+i=0ap+i (1<i<I—-14+a—ap).

Weset, for 0 <j<p—-2,0<s,r<a,

uf o uly e ),
BN U C
Uj =

“5‘211 “5'1)12 “5‘2113—2

where u\?), = D;(ESPHI_I)(uj/) for1<¢ <j+1,1<5 <p-2,

i/j/ —

1 1 1
U§1) U§2) T Ugj)+1

1 1 1
051) v§2) T Uéj)ﬂ

V-2 =
1 1 1
U;(y—)n ”1(9—)12 T U;Qljﬂ
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where 0, = DT D (wy_pup) for 1< <p-1,1< 7 <j+1,

i’j/ -
(8,7) (8,7) (s,7)
V11 V12 o U4
(s,7) (8,7) (s,7)
(5.7) Va1 Va2 T Vg
‘/17_27] =
(s,7) (8,7) (5,7)
Up—11 Yp—12 """ VUp_1jt1

where 07 = DS () for 1</ <p—1,1< ' < j+1.

i/

Then we have, for 0 < j < p— 2,
(2.22) U =0,V = 0(s > ),
= (e as s
‘/,fﬁ’;”?p,g =Vpop-2=V,_ 2 incaseof s=r.
It is seen that the following assertion

(2.23)1 “For 2p row-vectors D;i) F0<i<2p—2) ,ng) -f, these are linearly depen-

dent (j = 2p — 1), linearly independent (j = 2p) over k(X)” is true.

In fact, in case j = 2p — 1, we consider the linear relation

2p—1
Z MDW . f=0 over k(X).
=0

Then, since Dg(gzp -, f equals the unit-vector with the (2p — 1)—th coordinate 1, we
have
A=A=...=X1=0 A €kX) A 1<i<p-1)

by (2.17), (2.18). Therefore 2p row-vectors as above are linearly dependent over
k(X). However, in case j = 2p, some 2p—minor of the matrix Mép whose row
vectors are 2p vectors as above equals

det Ag -det Up_o -det V,_o - .

Therefore 2p row-vectors as above are linearly independent over k(X), by “det Ag =
17, (2.17), (2.18). Moreover we can show the truth of the following assertions at
r2<r<a)a
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(2.23),  “For (r+1)p—r+1 row-vectors Dg) F(0<i<2p—2); D:(fp) -, DT -f
(1<i<p—2);--:DVP .5, DIP 51 <i<p—2): DY -, these are
linearly dependent (j = (r + 1)p — 1), linearly independent (j = (r + 1)p)
over k(X)” and

(2.23)0  “For I+ 1 row-vectors DS - §(0 < i < 2p—2); D& .5, DI (1 < i
p—2); DY), D;”’”)-fg <i<p-2,2<r<a-1);DFf, DYV 5(1
i<I+a—2-—ap); Dg(f -f, these are linearly dependent (I +a—1<j
q*> — 1), linearly independent (j = ¢*) over k(X)”.

VARRVARVAN

In fact, in case (2.23), with j = (r+1)p—1, we consider the linear relation over
kE(X) of (r+1)p —r 41 row-vectors as above. Then, since p{rir=b., f equals the
unit-vectors with the ((r+1)p—r)—th coordinate 1, it is seen that these row-vectors
are linearly dependent over k(X). This is similar to the verification of “(2.23); with
Jj=2p—1". In case (2.23), with j = (r +1)p, some ((r +1)p —r + 1)—minor of the
matrix M ), Whose row vectors are (r + 1)p —r + 1 vectors as above equals

det Ag - det Up_s - (det ‘/20_2)7. T,

Therefore these row-vectors are linearly independent over k(X), by “det Ag = 17,
(2.17), (2.18).

In case (2.23), with [ +a — 1 < j < ¢® — 1, since p{te=b. f equals the
unit-vector with I—th coordinate 1 and each DY T+ . f(1 <i < q?—1) equals
the zero-vector, I + 1 row-vectors as above are linearly dependent over k(X). In
case (2.23), with j = ¢?, the square matrix M 7 42 Whose row vectors are I +1 vectors
as above satisfies that det M }’ 42 equals

det A - det Up_3 - (det Vp_g)af1 ~det Vi—apta—2 - (@ — af:q4) )

Therefore I + 1 row-vectors as above are linearly independent over k(X), by
“det Ag =17, (2.17), (2.18).

By (2.23)1, (2.23),, (2.23),, the set of N + 1 row-vectors in (2.23), becomes
the minimal one in the lexicographic order. Thus the order-sequence of the curve
X C PY in Case (B; —a) with2 < a < p*~! —1 is as follows:

€ =1 0<i<2p-—2),
Erpertiri =rp+1 (0<i<p-—-22<r<a-1),
Cap—ativi=ap+i (0<i<N-2+a—ap),

2
EN =Qq .
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Second, we consider the case (Bz). In this case, we have, for r € Z,

mi=i+1 (1<i<p-2),
Mypr—14i =Tp+i(1<i<p—1,1<r<pt—1).

Let My, be the square matrix whose row vectors are N + 1 vectors:

(2.24) DW.f (0<i<2p—2),
DiP) - f, DUPH) f (1<i<p-22<r<p™'—1),
DY) f 2<i<T—p°4pt+1).

Then we obtain

6—171

det My, = det Ag - det Up_5 - (det Vp_Q)p

Iﬁpe+pe—1+1

X H (x — xq2i)

=2
by (2.22).
Hence, by (2.17), (2.18), we obtain the truth of the following assertion

(2.25)  “N + 1 row-vectors in (2.24) are linearly independent over k(X)”.

Moreover, we note that
(2.26) DWW . §=0 for 1<i<q¢™ —¢,2<j<I—p°+pt.

Through the same argument as in the case (B;), with considering (2.25), (2.26),
the set of N 4 1 row-vectors in (2.24) becomes the minimal one in the lexicographic
order. Thus the order-sequence of the curve X C PN in Case (By) is as follows:

=i (0<i<2p—2),
Erprtiri =TDp+1 (0<i<p—22<r<p'—1),
Epe—pe—l41+44 — qi+2 (0 S i < N _pe +p671 - 2)7

_N_c+c—1+1
EN = (@ pp .

Case [C].
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At first, we note that “the (p—2) x (N —I)—matrix whose row vectors are p —2
vectors D gN-1(2 <i < p—1)” and the “the (j+1) x (N — I)—matrix whose row
vectors are j + 1 vectors D;Sp“) gn—1(0<i<j)ateach {j,s}(0<j<p—21<
s < p®~1 —1)” are zero-matrices, by (2.2).

Let b, be the row-vector with coordinates 1, x,u;(1 <i <r — 1) defined by

b, = (L LyUp, U2, .. 7“7“—1) .
(Co) Let ap—a+1<I<ap—a-+p-—1, where

0<a<p®!-1(acZ):
a=0 Case. In this case, we have

mi=i+1 (1<i<I—1).

Let H, be the (r+1) x (r+1)—matrix whose row vectors are r+1 vectors D (0 <
i <r). Then we have
detH[ = detAo : detU[,1 .

Hence the left-hand side of this equality is not zero. Therefore I + 1 row-vectors
DY . f(0 <4 < I) are linearly independent over k(X).

a =1 Case. In this case, we have
mi=i+11<i<p—=2), mpoyi=p+i(l1<i<I+1-p)

and
det Hy = det Hy,_1 -det V7_,,.
Therefore T + 1 row-vectors DS - f(0 <14 < I) are linearly independent over k(X).
a =2 Case. In this case, we have
m; :’L—l-l(l Sigp—2),mp_2+i :p+2<1 Sigp—l),
Mop—344 :2p—|—z(1 <1 < I+2—2p).
By “a = 1 Case”, the 2p — 1 row-vectors Dg) -f(0 <4 < 2p —2) are linearly
independent over k(X). However it is seen that 2p row-vectors D F(0<i<2p-1)

are linearly dependent over k(X), by the same way as in (2.23); with j = 2p — 1.
And, for the (I +1) x (I +1)—matrix Hr ;2,41 whose row vectors are I + 1 vectors

D{ p(0<i<2p—2), DT h(0<i<T—2p+1),
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we have
det H[7],2p+1 = det ngfg - det V],2p+1 .

Hence the left-hand side of this equality is not zero. Therefore I + 1 row-vectors
DY §(0<i<2p—2), DPP*) {0 <i<T—2p+1)

are linearly independent over k(X).

a >3 Case. In this case, we have, for r € Z,

mi:’i—l-l ( Sigp—2),

1
m'rp—'r—l+i:rp+i (1§'L§p_1> ].S’I"é()é—].),

Map—a—1+i = ap +1 (1 <1< I+a_ap)'
Moreover it will be verified that I + 1 row-vectors

DO . f (0<i<2p—2);
DPP) -, DPPHD L f (1<i<p—2);
D{e=Dp) 5 plla=bpti) £ (] <4 <p—2);
DP) . f Dlert) 5 (1 <i<T+a—1—ap)
are linearly independent over k(X) and the set of these I 4+ 1 row-vectors is the
minimal one in the lexicographic order.

In I+ 1 row-vectors as above, we write h; for f and denote by K7, the (I +1) x
(I + 1)—matrix whose row-vectors are these I 4+ 1 vectors. Then we note that

det K7 = det Hy, 1 - (det V,_5)* ™" - det Vita_1_ap-
JFrom the defining-equation of the curve X, it is seen that
DW.gn 1=02<i<q—1),D0 f=0I+a+1<i<qg—1).

We add N — I row-vectors Dg(cj%) f(1 <7< N-—1I)toI+1row-vectors as above.
Let M be the (N +1) x (N 4 1)—matrix whose row vectors are these N 4 1 vectors.
Then we have

det M = j:detAN_I . detK] .

Through (2.5), (2.6), (2.9), (2.10), (2.22), the set of these N +1 row-vectors becomes
the minimal one in the lexicographic order. Thus the order-sequence of the curve
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X C P¥ in Case [C] is as follows: In case (Cp);0 < a < p®~ !t —1, for a = 0,1

Case, we have
g, =1(0<i<I), erpi=1iq 1<i<N-1I).

for a >2 Case, we have

=i (0<i<2p—2),
Erprtiri =Tp+1 (0<i<p—2,2<r<a-1),
Eap—atiti=ap+i (0<i<T—1+a—ap),
erri=1iq (1<i<N-1I).

3. Proof of the Theorem

Let ¢’ be a positive integer power of the characteristic p. By (1.3), in order to show

“u(¢'; X) = I, it is sufficient to show the truth of the following assertions:

(3.1) “I'+1 row-vectors ¢, DY f(0 <i<I—1) are linearly independent over
k,(X)”

and

(3.2) “I +2 row-vectors {7, D -f(0 <i < I) are linearly dependent over k(X)”.

Case [A]. Let ¢’ = ¢°.

Since 2 — 29 # 0, two row-vectors fq/,D;gO) - f are linearly independent over
k(X). Then the assertion (3.1) is true.

Now we shall show the truth of the assertion (3.2). Let D;j;, with i < j < k, be
the 3-minor consisting of the i—th column, the j—th column, the k—th column of
3 X (N + 1)—matrix whose row vectors are three vectors fq/, Déo) -, Dg(cl) - f. Then

each D;j, is as follows:
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Dawgsr = (5] — 2% Da(2)) (51 — 2Da(2))
— (zk — xDm(zk)) (zgi — quDx(zk/)) ,

DSkk/ = (ZZ/Zk/ — ZkZZ:)Dz(y)
— (yq/zk/ — yzgi)Dw(zk)
+ (yqlzk - yZZ,)DI(Zk’) )

Dyprr = (zgizkn — zk/zgi,)Dw(zk)
— (2 210 — 22) Dal2)
+ (zg/zk/ - zkzg:)Dx(zkn)
(D, =DM, 4 <k <k <K").
By using (2.1), we have, for ¢’ = ¢2,

-1
(3.3) Dio3 = E {1 — (29 yq+1)q} ,

—1
Dok = —¢ {29 + 2011 — (@9 4 2 Th)
k

Dy = atl _ patly e+l atlyg
13 (y2n)9 {(y v~y AR
—z1 +1 +1 +1 +1
D1jre 4)(1 {(Z;Z —zp ) = (2 = 2 )q} )
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Dasy, = (yzlk)q {(@T 4yt e (@0 4 20T
_ (xq—l—l + yq+1)(xq+1 + ZZ+1)q} 7
Doy = o) {(a:qul + zZ+1)‘1(mq+1 + ZZ,’Ll)
— (4 ) ),
Dy — g+l a+lyg(atl _ gl
3kk! = (yznow ) {(Zk ye )z Yy
— (T =y T =yt
4
Dy = (ZZ/H - Z;‘iﬂ)q(zgil - ZZH)

(zkzk/zku)q
+1 +1 +1 +1
= (=T =) =2

Therefore, from the defining-equation of the curve, it is seen that these D;;j are all
vanished. Thus, for ¢’ = ¢2, three row-vectors fq/, Dg(go) -, Dg(cl) -f are linearly depen-
dent over k(X). Therefore the assertion (3.2) is true. Consequently, in Case [A], we
have obtained

s X) =1 if ¢ =q"
Case [B]. Let ¢’ = ¢%.

In this case, since I = N, the assertion (3.2) is true. Now we shall show the
truth of the assertion (3.1), i.e., det M(@) £ 0, where M) denotes the (N +1)x
(N + 1)—matrix whose row vectors are N + 1 vectors §7 DE . f(0<i< N-1).
We put

{ 2 in Case (By)
n:=

N —p®+p~t4+1 inCase (Ba),

/7

1 z7 ul
A= 11 2 UN_1
0 1 Di(un-1)
By Section 2, it is seen that

DE(upy_1) =0 for 2<i<N-—1.
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Then it is obtained that, in Case (By — 1);

det M) = £det A) . detU;_o if I<p,
det M) = £ det Al4) . det Up—o-detVi_,—1 if p<I<2p-—-1,

in Case (B — «) for 2 < a < p¢1;
det M@ = £ det Al4) . det Up—s - ( det Vp_g)"“_1 ~det Vi—apta—2,

in Case (Ba);

det M7) = £ det A4 . det Up—2 - (det ‘/1,,2)”671_1
I_pc_,’_pc—l .
X H (x—a7).
i=2

By D,(un-1) = zd",
det A) = (2 — 29)29" —uy_1 + u?\/,_l .

Therefore the left-hand side of this equality equals

2 2 .
229 T — 22T _2yn ;1 in Case (B),

n 2 n 2 .
Ty g +ud_, in Case (Bo)

(n=1-p°+p~t+12>3).

Hence det A(@) % 0. Therefore, in Case [B], by (2.17), (2.18), we get det M(4) #

0. Consequently, in Case [B], we have obtained

g X)=1 if ¢ =q¢°

Case [C]. Let ¢ = ¢2.

Let M}(Lq/) be the (h+2) x (N + 1)—matrix whose row vectors are h + 2 vectors

j, DS F0< i < h).

In the matrix M I(q/), we take arbitrarily s vectors in the set of 1st-column, 2nd-
column, 3rd-column,...,(N — I + 2)th-column vectors, and ¢ vectors in the set of
(N — I + 3)th-column, (N — I 4 4)th-column,...,(N + 1)th-column vectors, where

s+t=1+2.
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Then, since s > 3 by 0 <t < I —1,s columns in the former set are linearly
dependent over k(X) by (3.3). Hence s + t vectors as above are linearly dependent
over k(X). Therefore all (I + 2)—minors of M I(q,) are vanished, and hence the
assertion (3.2) is true.

Now we shall show the truth of the assertion (3.1). We put

) p 1,2,3,...,1+1
S(Q)_M(Q)
I - I )
1,2,N—I+3,....,N+1

where the right-hand side denotes a (I + 1) x (I + 1)—matrix whose row vectors
(resp. column vectors) are lst-row, 2nd-row, 3rd-row,..., (I 4+ 1)th-row (resp. 1st-
column, 2nd-column, (N — I 4+ 3)th-column,. .., (N + 1)th-column) of Mf(q/). Then
we shall see that det S}q/) # 0. Let S’ be the (I +1) x (I + 1)—matrix obtained by
subtracting 1st-row from 2nd-row in S§q’), and let TI(q,) be the I x [ —matrix obtained
by taking off 1st-row and 1lst-column in S’. Then we have det S}q/) = det Tf(q,). For
our purpose, it is sufficient to show that det Tl(ql) # 0. Now we put 17 = Tl(q/).

Case 1<I<p-—1:
2
The coordinates of 1st-row vector of T; are x — xqg,ui — ugo(l <i<I-1)
2 . .

respectively, and each u; — uf® equals x'*! — z(i+Do(1 < 4§ < [ — 1). Since the
determinant of (I —1) x (I —1)—submatrix of T consisting of “i-th row, j-th column”
elements (2 < i < I,1 <j <I-—1)equals detUs_s, the set of 2nd-row, 3rd-row,
Ath-row,. .., I th-row vectors of T are linearly independent over k(X), by (2.17).

Suppose that the lst-row vector of 17 is a linear combination of these I — 1
row-vectors with coefficients \;(1 <i < I —1) in k(X). Then we have

i—1 .
A1 :x—xqg,)\i = (z% — z'0) —Z <;>)\jxij(2 <i<I-1),

j=1
and moreover we have the equality
-1
I .
Z <,>)\ix1_l =gl — gl
=1 ¢

The left-hand side of this equality is in F,[z] and does not contain the term z!%.
This is absurd. Thus we see that I row-vectors of T} are linearly independent over
k(X). Hence we have det T7 # 0.
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Case ap—a+1<I<ap—a+p—1, where
I<a<p®t —1(ae?):

. 2 2 .
The coordinates of 1st-row vector of Tt are © — x% , u; — u?o (1<i<p—2); up_oyi—
2

2 2
q, . . q - . q
upO_Q_H'y s Ua—1)p—ati — U(g_l)p_a+i(1 <i1<p-— 1)7 Uap—a—1+i — Uaop_a_l_;,_i(l <

i < I+ a — ap) respectively, and we have, by the defining-equation of the curve in
Case [C],

p
a ; j :
Up—oi — Uy gy = 2P — PO < i < p—1);

2

Ula—1)p—ati ~ ul(zgz—l)P—oa—H' = glompti _ glle=pta (1 <4 < p—1);

2
q i i .
Uap—a—11i — ua%_a_lﬂ — popti _ x(ap—&-z)qo(l <i<I4+a- ap) )

Since the determinant of (I — 1) x (I — 1)—submatrix of 7 consisting of “i-th row,
j-th column” elements (2 <i<I, 1 <j<I—1)equals

det Up_s - (det V,—2)* " - det Vi—ota—ap,

the set of 2nd-row, 3rd-row, 4th-row,. .., Ith-row vectors of T are linearly indepen-
dent over k(X), by (2.17), (2.18). Suppose that the 1st-row vector of T; is a linear
combination of these I — 1 row-vectors with coefficients \;(1 <i¢ <1 —1) in k(X).

“a=1and I =p” Case. Then, in this case, we have
A= — 2% and <p * 1> A\ = 2Pt — gt
1

Therefore 2% +7 = P+ Since qo = p® with eg > 1, this is absurd. Thus
we see that detT7 # 0.

“a=1and I =p+1” Case. Then, in this case, we have
2 o o 2
M =x—a% A= (2°—2°?)— 1 Az,

(p + 1) AP + <p + 1> ApT = 2Pt _ L (p+Dao
1 P ’

2 2 2
T



Frobenius indices of certain curves over finite fields 265

The left-hand sides of these equalities are in F,[z] and the left-hand side of the
4th equality does not contain the term x(PT2)%. This is absurd. Thus we see that
det T7 # 0.

We shall proceed with the similar argument. Consequently, we shall obtain that
det T7 # 0 in each of the cases for {«, I}.

Thus, in Case [C], we have obtained

g X) =1 if ¢ = ¢

4. The number of rational points in Case [A]

Let the curve X C P¥ be as in Case [A] of the Theorem. First, we shall show that X
is smooth. Expressing the equations defining this curve by the homogeneous forms,

we have
. atl g+1 q+1 __
ho:=2]"" + 25" —pozry =0,
+1 +1 +1
hii=ai" 4+ 28 —pral™ =0,
+1 +1 +1
ho:=ai 4+ 28" —poal™ =0,
. atl q+1 q+1 __
hi:=x1"" +x; [y —pizg. =0,
+1 +1 +1
hN_Q:: iL'(ll +.%'(]IV —pN_Ql'g = 0,
(po =1).
Then the Jacobian-matrix J:= <gh?> of the curve X c PV
%3/ 0<i<N-2,0<j<N
becomes
—poxd 2 i 0 0O -+ 0O
—pxzd 2 0 28 0 -+ 0O
J= —poxt 2y 0 O i -+ 0
—Py_ozf 2z{ 0 0 0 - z%

Let the field £ be an algebraic closure of F,. We shall verify that “rank J =
N —1” at any point P = (xg : z1 : -+ : xy) in X(k), as follows.
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Suppose that rank J < N — 1 at some point P in X (k). Then, at P, there
exists a linear relation Ei\];og Aiu; = 0 of “row-vectors u;’s in the matrix J”, with
coefficients ); in k, where some one of the A;’s is not zero.

Now, suppose that A; # 0. Then ;12 = 0 by Az 2 = 0. Moreover, suppose
that there exist some j(# i) such that A; # 0. Then, since z;42 = z;42 = 0, we
have p;zd™ = p;azd™ by h;(P) = h;(P) = 0. Hence ¢ = 0 by p; # p;. Therefore,
assuming the existence of j as above, we get g = x;42 = 0 and hence zg = 1 =0
by h;(P) = 0. Consequently, it occurs that “xqg = z1 = x, = 0 for any r with
2 <r < N7”, from “hs(P) = 0 for any s with 0 < s < N —2”. This is absurd.
Thus j as above does not exist. Then it occurs that if A\; # 0 then \; = 0 for any
j(# i). And, in this case, we get \;z{ = \ip;zd = 0 and hence xyp = z; = 0 by
“Ni # 0,p; # 07, from the above linear relation. Similarly to the above, it occurs
that “xg = x1 = x,, = 0 for any r with 2 < r < N”. This is absurd.

Through the above argument, it has been obtained that all coefficients A; of the
above linear relation are zeroes, and hence the row-vectors u;’s (0 < i < N — 2) of
J are linearly independent over k. Thus we get rank J = N — 1 at any P. Therefore
X is smooth.

Let g be the genus of X, and dy,ds, ..., dy_1 be the degrees of equations defining
X, respectively. Then through the known genus-formula:

| N N-1
g=1+3" 1:[1 d; - (Z}diNl)
(cf. Chapter IV, §2-7 in [5]), we have
1
g=1+5(@+ D" [N - 1)g-2],

byd;=q+1(1<i<N-1).

On the other hand, let d be the degree of X and I'y/ y be the number of F /-
rational points on the curve X. In Case [A], since ¢(¢/; X) = 1 for ¢ = ¢%, we
have

Tyn=dd—1)—(29—-2) for ¢ =¢

through the formula of Theorem 1 in [3].
Therefore, for the curve X C PV in Case [A] of the Theorem, it is obtained
that
Lyn=@+D)" ¢ +1-(N—-1)q] for ¢ =¢

by d=(¢+1)N-1
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