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Abstract

We consider an algebraic curve X ⊂ P
N (N ≥ 3) defined over a finite field of

characteristic p > 0 which possesses an order-sequence in the sense of [6]. Let
N, an odd prime number p and an integer I(1 ≤ I ≤ N) be arbitrarily given.
Then we shall give an example of a curve as above whose q′−Frobenius index
in the sense of [1] equals I, which is a complete intersection in P

N of N − I
Fermat equations and I−1 Artin-Schreier equations over a finite field Fq′ with
q′ elements, where q′ is some power of p (see the Theorem of Section 1). In the
case of N = 3 and I = 1, our example is the same one as Example 3 in [1]
or [2].

1. Introduction

Let X ⊂ P
N be an algebraic curve lying in an N−dimensional projective space

P
N with N ≥ 3 defined over a finite field Fq′ of the given characteristic p, which

possesses an order-sequence in the sense of [6].
In the present paper, we are concerned with the index, which is called the

q′−Frobenius index in [1], of a certain order in the order-sequence, for a curve as
above X ⊂ P

N .
According to [1], notions of “order-sequence, q′−Frobenius order-sequence (resp.

index )” will be as follows.
Let x0 : x1 : x2 : · · · : xN be the coordinate functions of X ⊂ P

N , and
{D(r); 0 ≤ r ∈ Z} be the system of Hasse-Schmidt derivatives with respect to some
separating variable on the curve X, where Z denotes the set of integers.
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The order-sequence of the curve X ⊂ P
N

(1.1) 0 = ε0 < ε1 < ε2 < · · · < εN

means the minimal sequence consisting of integers, in the lexicographic order, such
that the N + 1 row-vectors D(εi) · r(0 ≤ i ≤ N) are linearly independent over the
function-field k(X) of the curve X, where

r = (x0, x1, x2, . . . , xN ),

D(εi) · r =
(
D(εi)(x0), D(εi)(x1), D(εi)(x2), . . . , D(εi)(xN )

)
; 0 ≤ i ≤ N.

And the q′−Frobenius order-sequence of the curve X ⊂ P
N

(1.2) 0 = ν0 < ν1 < ν2 < · · · < νN−1

means the minimal sequence consisting of integers, in the lexicographic order, such
that the N +1 row-vectors rq

′
, D(νi) · r(0 ≤ i ≤ N − 1) are linearly independent over

k(X), where

rq
′
=

(
xq′

0 , xq′

1 , xq′

2 , . . . , xq′

N

)
,

D(νi) · r =
(
D(νi)(x0), D(νi)(x1), . . . , D(νi)(xN )

)
; 0 ≤ i ≤ N − 1 .

For the relationship between (1.1) and (1.2), it is known that there exists an integer
I depending on q′, with 1 ≤ I ≤ N, such that

(1.3) νi =

{
εi whenever i < I

εi+1 whenever i ≥ I

(cf. Proposition 2.1 in [6]).
Hereafter, for the given curve X ⊂ P

N as above, we put

ι(q′;X): = the integer I as in (1.3).

Then ι(q′;X) is called the q′−Frobenius index of the curve X ⊂ P
N . For example,

we know the following:

(a) Example 3 in [1] or [2] satisfies ι(q′;X) = 1 for some q′ (a curve which is a
complete intersection of Fermat equations, in N = 3),

(b) The monomial curve in Theorem 3 of [1] satisfies ι(q′;X) = N for any q′,
any N (a curve which is an image of P

1),
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(c) Example 9 in [1] satisfies ι(q′;X) = N−1 for some q′, any N (a curve which
is an image of P

1).
Now, let an integer N ≥ 3 and an odd prime number p be arbitrarily given.

We take arbitrarily an integer I with 1 ≤ I ≤ N. Then it is our object to give an
example of X ⊂ P

N over Fq′ satisfying ι(q′;X) = I, which is a complete intersection
in P

N , where q′ is some power of p. Precisely speaking, our result is as follows:

Theorem
Let the triplet {N, p, I} as above be given. We consider the following cases

[A], [B], [C].

[A] Case I = 1.

Let a positive integer e satisfy N ≤ pe. Let pi’s (1 ≤ i ≤ N − 2) be elements in
Fq such that “ pi 
= 0, 1 for each i” and “ pi 
= pj for i 
= j”. We put

x =
x1

x0
, y =

x2

x0
, zi =

xi+2

x0
(1 ≤ i ≤ N − 2) .

We consider the curve X in P
N defined by N − 1 Fermat equations over Fq:

xq+1 + yq+1 = 1, xq+1 + zq+1
i = pi(1 ≤ i ≤ N − 2) ,

where q = pe.

[B] Case I = N.

Let a positive integer e satisfy N ≤ pe. We take the sequence of successively
increasing integers

2 = m1 < m2 < m3 < · · · , where mi 
≡ 0 (mod p)

for i ≥ 1. We put

x =
x1

x0
, ui =

xi+1

x0
(1 ≤ i ≤ N − 1) .

(B1); I ≤ pe−pe−1 +1 Case. We consider the curve X in P
N defined by N −1

Artin-Schreier equations over Fq :

uq
i + ui = xmi(1 ≤ i ≤ N − 2), uq2

N−1 + uN−1 = xq2+1 ,

where q = pe.

(B2); I > pe−pe−1 +1 Case. We consider the curve X in P
N defined by N −1

Artin-Schreier equations over Fq:

uq
i + ui = xmi(1 ≤ i ≤ pe − pe−1 − 1) ,

uqi+2

pe−pe−1+i + upe−pe−1+i = xqi+2+1(0 ≤ i ≤ N − pe + pe−1 − 1) ,

where q = pe.
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[C] Case 1 < I < N.

Let a positive integer e0 satisfy e0 > 1 and N ≤ pe0 − pe0−1 + 1. We put

x =
x1

x0
, y =

x2

x0
, zi =

xi+2

x0
(1 ≤ i ≤ N − I − 1) ,

uj =
xN−I+j+1

x0
(1 ≤ j ≤ I − 1) .

We consider the curve X in P
N defined by N − I Fermat equations and I − 1

Artin-Schreier equations over Fq0 :

xq0+1 + yq0+1 = 1, xq0+1 + zq0+1
i = pi(1 ≤ i ≤ N − I − 1) ,

uq0
j + uj = xmj (1 ≤ j ≤ I − 1) ,

where q0 = pe0 , the pi’s being elements in Fq0 such that “ pi 
= 0, 1 for each i” and
“ pi 
= pj for i 
= j”, the mj ’s being as in [B].

Then, in each of the cases [A], [B], [C], the curve X ⊂ P
N possesses the order-

sequence, and it is obtained that

ι(q′;X) = I if q′ = q2, in Cases [A], [B]

ι(q′;X) = I if q′ = q2
0 , in Case [C] .

Note. The author is thankful to Mr. Takasi Masuda who has indicated the choice
for “pi’s” in the Theorem.

The above cited example (a) has become a hint of this theorem. In order to
prove the Theorem, we need to find the order-sequence of X ⊂ P

N in each of the
cases [A], [B], [C]. For the sake of it, we shall use the “Hasse-Schmidt derivatives
with respect to x”, which are denoted by “D(r)

x ; 0 ≤ r ∈ Z”. We use the following
known properties:

D(0)
x = id.,D(r)

x (c) = 0 for any constant c(r ≥ 1) ,(1.4)

D(r)
x (xm) =

(
m

r

)
xm−r for 0 < m ∈ Z ,

where
(
m
r

)
is the binomial coefficient,

D(r)
x

(
D(r′)

x (h)
)

=
(
r + r′

r′

)
D(r+r′)

x (h) ,

D(r)
x (g + h) = D(r)

x (g) + D(r)
x (h) ,

D(r)
x (g · h) =

r∑
i=0

D(i)
x (g)D(r−i)

x (h) ,

D(r)
x (hq′) =




(
D

(r/q′)
x (h)

)q′ if r ≡ 0 (mod q′) ,

0 if r 
≡ 0 (mod q′) ,

for any functions g, h on the curve X (cf. [2], [4], [6]).
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Moreover, for the congruence modulo a prime number p of the binomial coeffi-
cient

(
α
β

)
with 0 ≤ α, β ∈ Z, we use the following known property:

(1.5)
(
α

β

)
≡

n∏
i=0

(
ai
bi

)
mod p ,

where α =
∑n

i=0 aip
i, β =

∑n
i=0 bip

i, 0 ≤ ai, bi ≤ p− 1(0 ≤ i ≤ n) in Z.

In Section 2, we shall find the order-sequence of the curve X ⊂ P
N in the

Theorem, through direct computation.
In Section 3, we shall give a proof of the Theorem. In both Sections 2, 3, the

formulas (1.4), (1.5) will be chiefly useful.
In Section 4, we shall apply the estimation-formula on the number of rational

points on curves, which has been given in [3], to the curve of Case [A] in the Theorem,
and show the number itself.

The author wishes to express his hearty thanks to Professor M. Homma who
has told him about notions and known-facts on the “order-sequences, q′−Frobenius
order-sequences” of space curves.

2. The order-sequences

In this section, we shall find the sequence (1.1) for the curve X ⊂ P
N in the Theorem.

We put ξi = xi

x0
(0 ≤ i ≤ N) and

f: =
(
ξ0, ξ1, ξ2, . . . , ξN

)
.

Then two row-vectors D
(0)
x · f, D(1)

x · f are obviously linearly independent over k(X).
To find the sequence (1.1) is to find the minimal one in the lexicographic order

such that N + 1 row-vectors D
(εi)
x · f(0 ≤ i ≤ N) are linearly independent over k(X)

(cf. Proposition 1.4 in [6]).
Now, we shall carry out this procedure, in each of the cases [A], [B], [C] in the

Theorem.

Case [A].

By using (1.4) and (1.5), we obtain the following:

(2.1) D(1)
x (y) = (−1)

xq

yq
, D(1)

x (zi) = (−1)
xq

zqi
(1 ≤ i ≤ N − 2) ;
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(2.2) D(r)
x (y) = D(r)

x (zi) = 0 (2 ≤ r ≤ q − 1, 1 ≤ i ≤ N − 2) ;

D(q)
x (y) =

xq2 − x

yq(1 − xq2+q)
,(2.3)

D(q)
x (zi) =

pi(xq2 − x)
zqi (pi − xq2+q)

(1 ≤ i ≤ N − 2) ;

D(q+1)
x (y) =

(−1)
yq(1 − xq2+q)

,(2.4)

D(q+1)
x (zi) =

(−pi)
zqi (pi − xq2+q)

(1 ≤ i ≤ N − 2) ;

(2.5) D(q)
x (y) ·D(q+1)

x (zi) = D(q)
x (zi) ·D(q+1)

x (y) (1 ≤ i ≤ N − 2) ;

(2.6) D(q+j)
x (y) = D(q+j)

x (zi) = 0 (2 ≤ j ≤ q − 1, 1 ≤ i ≤ N − 2) ;

D(nq)
x (y) =

(−1)
yq

(
D(1)

x (y)
)q ·D((n−1)q)

x (y)(2.7)

=
xnq2 − x(n−1)q2+1

yq(1 − xq2+q)n
,

D(nq)
x (zi) =

(−1)
zqi

(
D(1)

x (zi)
)q ·D((n−1)q)

x (zi)

=
pi(xnq2 − x(n−1)q2+1)

zqi (pi − xq2+q)n(
2 ≤ n ≤ N − 2(n ∈ Z), 1 ≤ i ≤ N − 2

)
;

D(nq+1)
x (y) =

(−1)
yq

(
D(1)

x (y)
)q ·D((n−1)q+1)

x (y) ,(2.8)

D(nq+1)
x (zi) =

(−1)
zqi

(
D(1)

x (zi)
)q ·D((n−1)q+1)(zi)(

2 ≤ n ≤ N − 2(n ∈ Z), 1 ≤ i ≤ N − 2
)
;
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D(nq)
x (y) ·D(nq+1)

x (zi) = D(nq)
x (zi) ·D(nq+1)

x (y)(2.9) (
2 ≤ n ≤ N − 2(n ∈ Z), 1 ≤ i ≤ N − 2) ;

D(nq+j)
x (y) = D(nq+j)

x (zi) = 0(2.10) (
2 ≤ n ≤ N − 2(n ∈ Z), 2 ≤ j ≤ q − 1, 1 ≤ i ≤ N − 2

)
;

D((N−1)q)
x (y) =

x(N−1)q2 − x(N−2)q2+1

yq(1 − xq2+q)N−1
,(2.11)

D((N−1)q)
x (zi) =

pi(x(N−1)q2 − x(N−2)q2+1)
zqi (pi − xq2+q)N−1

(1 ≤ i ≤ N − 2) .

By (2.5), (2.9), the following assertion

“D(sq)
x · f, D(sq+1)

x · f are linearly dependent over k(X), for(2.12)

1 ≤ s ≤ N − 2(s ∈ Z)”

is true. Moreover, from (2.2), (2.6), (2.10), we get, for s, t ∈ Z,

(2.13) D(sq+t)
x · f = 0 if 0 ≤ s ≤ N − 2, 2 ≤ t ≤ q − 1 .

In addition to (2.12) and (2.13), it will be shown that the following assertion

(2.14) “N + 1 row-vectors D(0)
x · f, D(1)

x · f, D(sq)
x · f

(
1 ≤ s ≤ N − 1(s ∈ Z)

)
are linearly independent over k(X)” is true.

By (2.12), (2.13), (2.14), the set of linearly independent vectors in (2.14) be-
comes the minimal one in the lexicographic order.

¿From now, we shall show the truth of the assertion (2.14).
For 1 ≤ m ≤ N − 1, we get gm = (y, z1, z2, . . . , zm−1) which is the row-vector

with coordinates y, zi(1 ≤ i ≤ m− 1). Then we denote by ∆m, the m×m−matrix
whose row vectors are m vectors D

(sq)
x · gm(1 ≤ s ≤ m). Then we have

(2.15) det ∆m =

∣∣∣∣∣∣∣∣∣∣∣

D
(q)
x (y) D

(q)
x (z1) · · · D

(q)
x (zm−1)

D
(2q)
x (y) D

(2q)
x (z1) · · · D

(2q)
x (zm−1)

...
...

. . .
...

D
(mq)
x (y) D

(mq)
x (z1) · · · D

(mq)
x (zm−1)

∣∣∣∣∣∣∣∣∣∣∣
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and

= 0 in k(X), for 1 ≤ m ≤ N − 1 .

In fact, through (2.3), (2.7), (2.11), we shall compute the determinant of (2.15).
Then we get

(2.16) det ∆m =

∏m−1
i=1 pi

∏m
j=1(x

jq2 − x(j−1)q2+1)

(yz1z2 · · · zm−1)q
{ ∏m−1

i=0 (pi − xq2+q)
}m · Φm(x) ,

Φm(x) =

∣∣∣∣∣∣∣∣∣∣∣

ϕ11(x) ϕ12(x) · · · ϕ1m(x)

ϕ21(x) ϕ22(x) · · · ϕ2m(x)
...

...
. . .

...

ϕm1(x) ϕm2(x) · · · ϕmm(x)

∣∣∣∣∣∣∣∣∣∣∣
where p0 = 1 and ϕij(x) = (pj−1 − xq2+q)m−i for 1 ≤ i, j ≤ m.

Moreover, by using the assumption for the pi’s, it is obtained that

Φm(0) =
m−1∏
i=1

(1 − pi) ·
∏

1≤i<j≤m−1

(pi − pj)


= 0 ,

through computing the determinant-expression of Φm(0). Therefore the polynomial
Φm(x) is an non-zero element in Fq[x]. And then det ∆m 
= 0 in k(X), by (2.16) and
the assumption for the pi’s.

On the other hand, when we consider the (N + 1) × (N + 1)−matrix ∆ (resp.
2 × 2−matrix ∆0) whose row vectors are N + 1 vectors in (2.14) (resp. two vectors
(1, x), (0, 1)), we have

det ∆ = det ∆0 · det ∆N−1 
= 0

by (2.15) and “det ∆0 = 1”.
Consequently, the truth of the assertion (2.14) has been shown. Thus the order-

sequence of the curve X ⊂ P
N in Case [A] is as follows:

ε0 = 0, ε1 = 1, ε1+i = iq(1 ≤ i ≤ N − 1) .

Case [B].

First, we consider the case (B1). We divide this case into the following subcases
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I = N ≤ 2p− 1 ,(B1 − 1) :

αp− α + 2 ≤ I = N ≤ αp− α + p , where(B1 − α) :

2 ≤ α ≤ pe−1 − 1(α ∈ Z) .

Case (B1 − 1). In this case, we have

if I ≤ p then mi = i + 1(1 ≤ i ≤ I − 2) ,

if p < I ≤ 2p− 1 then

mi = i + 1(1 ≤ i ≤ p− 2), mp−2+i = p + i(1 ≤ i ≤ N − p) .

We set, in case I ≤ p, for 1 ≤ i ≤ I − 2 ,

Ui =




D
(2)
x (u1) D

(2)
x (u2) · · · D

(2)
x (ui)

D
(3)
x (u1) D

(3)
x (u2) · · · D

(3)
x (ui)

...
...

. . .
...

D
(i+1)
x (u1) D

(i+1)
x (u2) · · · D

(i+1)
x (ui)




and set, in case p < I ≤ 2p− 1,

Vj =




D
(p)
x (up−1) D

(p)
x (up) · · · D

(p)
x (up−1+j)

D
(p+1)
x (up−1) D

(p+1)
x (up) · · · D

(p+1)
x (up−1+j)

...
...

. . .
...

D
(p+j)
x (up−1) D

(p+j)
x (up) · · · D

(p+j)
x (up−1+j)




for 0 ≤ j ≤ I − p− 1.
Then the types of these matrices are as follows:

(2.17) “Ui is of i× i−triangular type with all 1 (resp. all 0) on the principal diago-
nal (resp. below the principal diagonal), and hence detUi 
= 0(1 ≤ i ≤
I − 2)”.

(2.18) “Vj is of (j + 1) × (j + 1)−type with its transposal such that

1st-row:
((

1
0

)
x,

(
1
1

)
, 0, 0, . . . , 0

)
,
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2nd-row:
((

2
0

)
x2,

(
2
1

)
x,

(
2
2

)
, 0, . . . , 0

)
,

· · · · · · · · ·
jth-row:

((
j
0

)
xj ,

(
j
1

)
xj−1 ,

(
j
2

)
xj−2, · · · ,

(
j

j−1

)
x,

(
j
j

))
,

(j+1)th-row:
((

j+1
0

)
xj+1,

(
j+1
1

)
xj ,

(
j+1
2

)
xj−1, . . . ,

(
j+1
j

)
x
)
,

and hence it is verified that detVj 
= 0 (0 ≤ j ≤ I − p− 1)”.

Now we shall verify the claim of “det . 
= 0” in (2.18). Consider the linear
relation

∑j
i=0 λiui = 0 of the row-vectors ui(0 ≤ i ≤ j) of Vj over k(X). Then we

have
λ1 = (−1)λ0x, λ2 = (−1)2λ0x

2, . . . , λj = (−1)jλ0x
j

and
j∑

i=0

(
j + 1

i

)
λix

j+1−i = 0 .

Hence, from these equations, we get

(−1)j+2

(
j + 1
j + 1

)
λ0x

j+1 =

(
j∑

i=0

(−1)i
(
j + 1

i

))
λ0x

j+1 = 0 .

Therefore λ0 = 0 and hence λi = 0(0 ≤ i ≤ j). Then the ui’s(0 ≤ i ≤ j) are linearly
independent over k(X) and hence detVj 
= 0(0 ≤ j ≤ p− 2).

Let Mh be the h× (N + 1)−matrix whose row vectors are h vectors D
(i)
x · f(0 ≤

i ≤ h− 1). Then it is easily seen that some I−minor of MI equals

det ∆0 · detUI−2 if I ≤ p ,

det ∆0 · detUp−2 · detVI−p−1 if p < I ≤ 2p− 1 .

Hence, by “det ∆0 = 1”, (2.17), (2.18), the following assertion

(2.19) “I row-vectors D
(i)
x · f(0 ≤ i ≤ I − 1) are linearly independent over k(X)”

is true.
For I ≤ j ≤ q2 − 1, let MI,j be the matrix whose row vectors are I + 1 vectors

D
(i)
x · f(0 ≤ i ≤ I − 1), D(j)

x · f. Then MI,j is a square matrix by I = N, and it is also
easily seen that

(2.20) “detMI,j = 0 for I ≤ j ≤ q2 − 1, and hence these N + 1 row-vectors are
linearly dependent over k(X)”.



Frobenius indices of certain curves over finite fields 253

On the other hand, for j = q2, we have

detMI,q2 = det ∆0 · detUI−2 · detVI−p−1 · (x− xq4
) ,

because the transposed (I + 1)−th column vector of MI,q2 equals

(
uI−1, x

q2
, 0, 0, . . . , 0, x− xq4

) .

Since the left-hand side of this equality is not zero by “det ∆0 = 1”, (2.17), (2.18),
we obtain the truth of the following assertion

(2.21) “N + 1 row-vectors D
(i)
x · f(0 ≤ i ≤ N − 1), D(q2)

x · f are linearly independent
over k(X)”.

By (2.19), (2.20), (2.21), the set of N +1 row-vectors in (2.21) becomes the minimal
one in the lexicographic order. Thus the order-sequence of the curve X ⊂ P

N in
Case (B1 − 1) is as follows:

εi = i(0 ≤ i ≤ N − 1), εN = q2.

Case (B1 − α). In this case, at each α, we have, for r ∈ Z ,

mi = i + 1 (1 ≤ i ≤ p− 2) ,

mrp−r−1+i = rp + i (1 ≤ i ≤ p− 2, 1 ≤ r ≤ α− 1) ,

mαp−α−1+i = αp + i (1 ≤ i ≤ I − 1 + α− αp) .

We set, for 0 ≤ j ≤ p− 2, 0 < s, r ≤ α,

U
(s)
j =




u
(s)
11 u

(s)
12 · · · u

(s)
1p−2

u
(s)
21 u

(s)
22 · · · u

(s)
2p−2

...
...

. . .
...

u
(s)
j+11 u

(s)
j+12 · · · u

(s)
j+1p−2




where u
(s)
i′j′ = D

(sp+i′−1)
x (uj′) for 1 ≤ i′ ≤ j + 1, 1 ≤ j′ ≤ p− 2 ,

Vp−2,j =




v
(1)
11 v

(1)
12 · · · v

(1)
1j+1

v
(1)
21 v

(1)
22 · · · v

(1)
2j+1

...
...

. . .
...

v
(1)
p−11 v

(1)
p−12 · · · v

(1)
p−1j+1



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where v
(1)
i′j′ = D

(p+i′−1)
x (up−2+j′) for 1 ≤ i′ ≤ p− 1, 1 ≤ j′ ≤ j + 1 ,

V
(s,r)
p−2,j =




v
(s,r)
11 v

(s,r)
12 · · · v

(s,r)
1j+1

v
(s,r)
21 v

(s,r)
22 · · · v

(s,r)
2j+1

...
...

. . .
...

v
(s,r)
p−11 v

(s,r)
p−12 · · · v

(s,r)
p−1j+1




where v
(s,r)
i′j′ = D

(sp+i′−1)
x (urp−r+j′−1) for 1 ≤ i′ ≤ p− 1, 1 ≤ j′ ≤ j + 1 .

Then we have, for 0 ≤ j ≤ p− 2,

U
(s)
j = 0, V (s,r)

p−2,j = 0(s > r) ,(2.22)

V
(s,r)
p−2,j =

(
r

s

)
x(r−s)p · Vp−2,j for s ≤ r ,

V
(r,r)
p−2,p−2 = Vp−2,p−2 = Vp−2 in case of s = r .

It is seen that the following assertion

(2.23)1 “For 2p row-vectors D
(i)
x · f(0 ≤ i ≤ 2p−2) , D(j)

x · f , these are linearly depen-
dent (j = 2p− 1), linearly independent (j = 2p) over k(X)” is true.

In fact, in case j = 2p− 1, we consider the linear relation

2p−1∑
i=0

λiD
(i)
x · f = 0 over k(X) .

Then, since D
(2p−1)
x · f equals the unit-vector with the (2p− 1)−th coordinate 1, we

have
λ0 = λ1 = . . . = λp−1 = 0, λp+i ∈ k(X) · λp (1 ≤ i ≤ p− 1)

by (2.17), (2.18). Therefore 2p row-vectors as above are linearly dependent over
k(X). However, in case j = 2p, some 2p−minor of the matrix M ′

2p whose row
vectors are 2p vectors as above equals

det ∆0 · detUp−2 · detVp−2 · x .

Therefore 2p row-vectors as above are linearly independent over k(X), by “det ∆0 =
1”, (2.17), (2.18). Moreover we can show the truth of the following assertions at
r(2 ≤ r < α), α:
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(2.23)r “For (r+1)p−r+1 row-vectors D
(i)
x · f (0 ≤ i ≤ 2p−2); D(2p)

x · f, D(2p+i)
x · f

(1 ≤ i ≤ p− 2); · · · ;D(rp)
x · f, D(rp+i)

x · f(1 ≤ i ≤ p− 2); D(j)
x · f, these are

linearly dependent (j = (r + 1)p− 1), linearly independent (j = (r + 1)p)
over k(X)” and

(2.23)α “For I + 1 row-vectors D
(i)
x · f(0 ≤ i ≤ 2p− 2); D(2p)

x · f, D(2p+i)
x · f(1 ≤ i ≤

p−2); D(rp)
x ·f, D(rp+i)

x ·f(1 ≤ i ≤ p−2, 2 < r ≤ α−1);D(αp)
x ·f, D(αp+i)

x ·f(1 ≤
i ≤ I + α− 2 − αp);D(j)

x · f , these are linearly dependent (I + α− 1 ≤ j ≤
q2 − 1), linearly independent (j = q2) over k(X)”.

In fact, in case (2.23)r with j = (r+1)p−1, we consider the linear relation over
k(X) of (r + 1)p− r + 1 row-vectors as above. Then, since D

((r+1)p−1)
x · f equals the

unit-vectors with the ((r+1)p−r)−th coordinate 1, it is seen that these row-vectors
are linearly dependent over k(X). This is similar to the verification of “(2.23)1 with
j = 2p− 1”. In case (2.23)r with j = (r + 1)p, some ((r + 1)p− r + 1)−minor of the
matrix M ′′

(r+1)p−r+1 whose row vectors are (r + 1)p− r + 1 vectors as above equals

det ∆0 · detUp−2 ·
(
detVp−2

)r · x .

Therefore these row-vectors are linearly independent over k(X), by “det ∆0 = 1”,
(2.17), (2.18).

In case (2.23)α with I + α − 1 ≤ j ≤ q2 − 1, since D
(I+α−1)
x · f equals the

unit-vector with I−th coordinate 1 and each D
(I+α−1+i)
x · f(1 ≤ i ≤ q2 − 1) equals

the zero-vector, I + 1 row-vectors as above are linearly dependent over k(X). In
case (2.23)α with j = q2, the square matrix M ′′

I,q2 whose row vectors are I+1 vectors
as above satisfies that detM ′′

I,q2 equals

det ∆0 · detUp−2 ·
(
detVp−2

)α−1 · detVI−αp+α−2 · (x− xq4
) .

Therefore I + 1 row-vectors as above are linearly independent over k(X), by
“det ∆0 = 1”, (2.17), (2.18).

By (2.23)1, (2.23)r, (2.23)α, the set of N + 1 row-vectors in (2.23)α becomes
the minimal one in the lexicographic order. Thus the order-sequence of the curve
X ⊂ P

N in Case (B1 − α) with 2 ≤ α ≤ pe−1 − 1 is as follows:

εi = i (0 ≤ i ≤ 2p− 2) ,

εrp−r+1+i = rp + i (0 ≤ i ≤ p− 2, 2 ≤ r ≤ α− 1) ,

εαp−α+1+i = αp + i (0 ≤ i ≤ N − 2 + α− αp) ,

εN = q2 .
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Second, we consider the case (B2). In this case, we have, for r ∈ Z,

mi = i + 1 (1 ≤ i ≤ p− 2) ,

mrp−r−1+i = rp + i (1 ≤ i ≤ p− 1, 1 ≤ r ≤ pe−1 − 1) .

Let M ′′
N+1 be the square matrix whose row vectors are N + 1 vectors:

D(i)
x · f (0 ≤ i ≤ 2p− 2) ,(2.24)

D(rp)
x · f, D(rp+i)

x · f (1 ≤ i ≤ p− 2, 2 ≤ r ≤ pe−1 − 1) ,

D(qi)
x · f (2 ≤ i ≤ I − pe + pe−1 + 1) .

Then we obtain

detM ′′
N+1 = det ∆0 · detUp−2 ·

(
detVp−2

)pe−1−1

×
I−pe+pe−1+1∏

i=2

(x− xq2i
)

by (2.22).
Hence, by (2.17), (2.18), we obtain the truth of the following assertion

(2.25) “N + 1 row-vectors in (2.24) are linearly independent over k(X)”.

Moreover, we note that

(2.26) D(qj+i)
x · f = 0 for 1 ≤ i < qj+1 − qj , 2 ≤ j ≤ I − pe + pe−1 .

Through the same argument as in the case (B1), with considering (2.25), (2.26),
the set of N + 1 row-vectors in (2.24) becomes the minimal one in the lexicographic
order. Thus the order-sequence of the curve X ⊂ P

N in Case (B2) is as follows:

εi = i (0 ≤ i ≤ 2p− 2) ,

εrp−r+1+i = rp + i (0 ≤ i ≤ p− 2, 2 ≤ r ≤ pe−1 − 1) ,

εpe−pe−1+1+i = qi+2 (0 ≤ i ≤ N − pe + pe−1 − 2) ,

εN = qN−pe+pe−1+1 .

Case [C].
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At first, we note that “the (p−2)× (N−I)−matrix whose row vectors are p−2
vectors D

(i)
x ·gN−I(2 ≤ i ≤ p−1)” and the “the (j+1)× (N −I)−matrix whose row

vectors are j + 1 vectors D
(sp+i)
x · gN−I(0 ≤ i ≤ j) at each {j, s} (0 ≤ j ≤ p− 2, 1 ≤

s ≤ pe0−1 − 1)” are zero-matrices, by (2.2).
Let hr be the row-vector with coordinates 1, x, ui(1 ≤ i ≤ r − 1) defined by

hr =
(
1, x, u1, u2, . . . , ur−1

)
.

(Cα) Let αp− α + 1 ≤ I ≤ αp− α + p− 1, where

0 ≤ α ≤ pe0−1 − 1 (α ∈ Z) :

α = 0 Case. In this case, we have

mi = i + 1 (1 ≤ i ≤ I − 1) .

Let Hr be the (r+1)×(r+1)−matrix whose row vectors are r+1 vectors D
(i)
x ·hr(0 ≤

i ≤ r). Then we have
detHI = det ∆0 · detUI−1 .

Hence the left-hand side of this equality is not zero. Therefore I + 1 row-vectors
D

(i)
x · f(0 ≤ i ≤ I) are linearly independent over k(X).

α = 1 Case. In this case, we have

mi = i + 1(1 ≤ i ≤ p− 2), mp−2+i = p + i(1 ≤ i ≤ I + 1 − p)

and
detHI = detHp−1 · detVI−p .

Therefore I + 1 row-vectors D
(i)
x · f(0 ≤ i ≤ I) are linearly independent over k(X).

α = 2 Case. In this case, we have

mi = i + 1(1 ≤ i ≤ p− 2),mp−2+i = p + i(1 ≤ i ≤ p− 1) ,

m2p−3+i = 2p + i(1 ≤ i ≤ I + 2 − 2p) .

By “α = 1 Case”, the 2p − 1 row-vectors D
(i)
x · f(0 ≤ i ≤ 2p − 2) are linearly

independent over k(X). However it is seen that 2p row-vectors D
(i)
x ·f(0 ≤ i ≤ 2p−1)

are linearly dependent over k(X), by the same way as in (2.23)1 with j = 2p − 1.
And, for the (I +1)× (I +1)−matrix HI,I−2p+1 whose row vectors are I +1 vectors

D(i)
x · hI(0 ≤ i ≤ 2p− 2), D(2p+i)

x · hI(0 ≤ i ≤ I − 2p + 1) ,
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we have
detHI,I−2p+1 = detH2p−2 · detVI−2p+1 .

Hence the left-hand side of this equality is not zero. Therefore I + 1 row-vectors

D(i)
x · f(0 ≤ i ≤ 2p− 2) , D(2p+i)

x · f(0 ≤ i ≤ I − 2p + 1)

are linearly independent over k(X).

α ≥ 3 Case. In this case, we have, for r ∈ Z,

mi = i + 1 (1 ≤ i ≤ p− 2) ,

mrp−r−1+i = rp + i (1 ≤ i ≤ p− 1, 1 ≤ r ≤ α− 1) ,

mαp−α−1+i = αp + i (1 ≤ i ≤ I + α− αp) .

Moreover it will be verified that I + 1 row-vectors

D(i)
x · f (0 ≤ i ≤ 2p− 2) ;

D(2p)
x · f, D(2p+i)

x · f (1 ≤ i ≤ p− 2) ;

. . . . . . . . .

D((α−1)p)
x · f, D((α−1)p+i)

x · f (1 ≤ i ≤ p− 2) ;

D(αp)
x · f, D(αp+i)

x · f (1 ≤ i ≤ I + α− 1 − αp)

are linearly independent over k(X) and the set of these I + 1 row-vectors is the
minimal one in the lexicographic order.

In I +1 row-vectors as above, we write hI for f and denote by KI , the (I +1)×
(I + 1)−matrix whose row-vectors are these I + 1 vectors. Then we note that

detKI = detHp−1 ·
(
detVp−2

)α−1 · detVI+α−1−αp .

¿From the defining-equation of the curve X, it is seen that

D(i)
x · gN−I = 0(2 ≤ i ≤ q0 − 1), D(i)

x · f = 0(I + α + 1 ≤ i ≤ q0 − 1) .

We add N − I row-vectors D
(jq0)
x · f (1 ≤ j ≤ N − I) to I + 1 row-vectors as above.

Let M be the (N +1)× (N +1)−matrix whose row vectors are these N +1 vectors.
Then we have

detM = ±det ∆N−I · detKI .

Through (2.5), (2.6), (2.9), (2.10), (2.22), the set of these N +1 row-vectors becomes
the minimal one in the lexicographic order. Thus the order-sequence of the curve
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X ⊂ P
N in Case [C] is as follows: In case (Cα); 0 ≤ α ≤ pe0−1 − 1, for α = 0, 1

Case, we have

εi = i (0 ≤ i ≤ I), εI+i = iq0 (1 ≤ i ≤ N − I) .

for α ≥ 2 Case, we have

εi = i (0 ≤ i ≤ 2p− 2) ,

εrp−r+1+i = rp + i (0 ≤ i ≤ p− 2, 2 ≤ r ≤ α− 1) ,

εαp−α+1+i = αp + i (0 ≤ i ≤ I − 1 + α− αp) ,

εI+i = iq0 (1 ≤ i ≤ N − I) .

3. Proof of the Theorem

Let q′ be a positive integer power of the characteristic p. By (1.3), in order to show
“ι(q′;X) = I”, it is sufficient to show the truth of the following assertions:

(3.1) “I + 1 row-vectors fq
′
, D

(εi)
x · f(0 ≤ i ≤ I − 1) are linearly independent over

k(X)”

and

(3.2) “I + 2 row-vectors fq
′
, D

(εi)
x · f(0 ≤ i ≤ I) are linearly dependent over k(X)”.

Case [A]. Let q′ = q2.

Since x − xq′ 
= 0, two row-vectors fq
′
, D

(0)
x · f are linearly independent over

k(X). Then the assertion (3.1) is true.

Now we shall show the truth of the assertion (3.2). Let Dijk with i < j < k, be
the 3-minor consisting of the i−th column, the j−th column, the k−th column of
3 × (N + 1)−matrix whose row vectors are three vectors fq

′
, D

(0)
x · f, D(1)

x · f. Then
each Dijk is as follows:
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D123 = (x− xq′)Dx(y) − (y − yq
′
) ,

D12k = (x− xq′)Dx(zk) − (zk − zq
′

k ) ,

D13k = (y − yq
′
)Dx(zk) − (zk − zq

′

k )Dx(y) ,

D1kk′ = (zk − zq
′

k )Dx(zk′) − (zk′ − zq
′

k′)Dx(zk) ,

D23k =
(
yq

′ − xq′Dx(y)
)(

zk − xDx(zk)
)

−
(
y − xDx(y)

)(
zq

′

k − xq′Dx(zk)
)
,

D2kk′ =
(
zq

′

k − xq′Dx(zk)
)(

zk′ − xDx(zk′)
)

−
(
zk − xDx(zk)

)(
zq

′

k′ − xq′Dx(zk′)
)
,

D3kk′ =
(
zq

′

k zk′ − zkz
q′

k′
)
Dx(y)

−
(
yq

′
zk′ − yzq

′

k′
)
Dx(zk)

+
(
yq

′
zk − yzq

′

k

)
Dx(zk′) ,

Dkk′k′′ =
(
zq

′

k′zk′′ − zk′zq
′

k′′
)
Dx(zk)

−
(
zq

′

k zk′′ − zkz
q′

k′′
)
Dx(zk′)

+
(
zq

′

k zk′ − zkz
q′

k′
)
Dx(zk′′)(

Dx = D
(1)
x , 4 ≤ k < k′ < k′′).

By using (2.1), we have, for q′ = q2,

D123 =
−1
yq

{
1 − (xq+1 + yq+1)q

}
,(3.3)

D12k =
−1
zqk

{
(xq+1 + zq+1

k ) − (xq+1 + zq+1
k )q

}
,

D13k =
−xq

(yzk)q
{
(yq+1 − zq+1

k ) − (yq+1 − zq+1
k )q

}
,

D1kk′ =
−xq

(zkzk′)q
{
(zq+1

k − zq+1
k′ ) − (zq+1

k − zq+1
k′ )q

}
,
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D23k =
1

(yzk)q
{
(xq+1 + yq+1)q(xq+1 + zq+1

k )

− (xq+1 + yq+1)(xq+1 + zq+1
k )q

}
,

D2kk′ =
1

(zkzk′)q
{
(xq+1 + zq+1

k )q(xq+1 + zq+1
k′ )

− (xq+1 + zq+1
k )(xq+1 + zq+1

k′ )q
}
,

D3kk′ =
−xq

(yzkzk′)q
{
(zq+1

k − yq+1
k )q(zq+1

k′ − yq+1)

− (zq+1
k − yq+1)(zq+1

k′ − yq+1)q
}
,

Dkk′k′′ =
−xq

(zkzk′zk′′)q
{
(zq+1

k′ − zq+1
k )q(zq+1

k′′ − zq+1
k )

− (zq+1
k′ − zq+1

k )(zq+1
k′′ − zq+1

k )q
}
.

Therefore, from the defining-equation of the curve, it is seen that these Dijk are all
vanished. Thus, for q′ = q2, three row-vectors fq

′
, D

(0)
x · f, D(1)

x · f are linearly depen-
dent over k(X). Therefore the assertion (3.2) is true. Consequently, in Case [A], we
have obtained

ι(q′;X) = I if q′ = q2.

Case [B]. Let q′ = q2.

In this case, since I = N, the assertion (3.2) is true. Now we shall show the
truth of the assertion (3.1), i.e., detM (q′) 
= 0, where M (q′) denotes the (N + 1) ×
(N + 1)−matrix whose row vectors are N + 1 vectors fq

′
, D

(εi)
x · f(0 ≤ i ≤ N − 1).

We put

n: =

{
2 in Case (B1)

N − pe + pe−1 + 1 in Case (B2),

∆(q′): =




1 xq′ uq′

N−1

1 x uN−1

0 1 Dx(uN−1)


 .

By Section 2, it is seen that

D(εi)
x (uN−1) = 0 for 2 ≤ i ≤ N − 1 .
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Then it is obtained that, in Case (B1 − 1);

detM (q′) = ±det ∆(q′) · detUI−2 if I ≤ p ,

detM (q′) = ±det ∆(q′) · detUp−2 · detVI−p−1 if p < I ≤ 2p− 1 ,

in Case (B1 − α) for 2 ≤ α ≤ pe−1;

detM (q′) = ±det ∆(q′) · detUp−2 ·
(
detVp−2)α−1 · detVI−αp+α−2 ,

in Case (B2);

detM (q′) = ±det ∆(q′) · detUp−2 ·
(
detVp−2)p

e−1−1

×
I−pe+pe−1∏

i=2

(x− xq2i
) .

By Dx(uN−1) = xqn ,

det ∆(q′) = (x− xq′)xqn − uN−1 + uq′

N−1 .

Therefore the left-hand side of this equality equals

2xq2+1 − x2q2 − 2uN−1 in Case (B1) ,

xqn+1 − xq2+qn − uN−1 + uq2

N−1 in Case (B2)

(n = I − pe + pe−1 + 1 ≥ 3).
Hence det ∆(q′) 
= 0. Therefore, in Case [B], by (2.17), (2.18), we get detM (q′) 
=

0. Consequently, in Case [B], we have obtained

ι(q′;X) = I if q′ = q2.

Case [C]. Let q′ = q2
0 .

Let M
(q′)
h be the (h+ 2)× (N + 1)−matrix whose row vectors are h+ 2 vectors

fq
′
, D

(εi)
x · f (0 ≤ i ≤ h).
In the matrix M

(q′)
I , we take arbitrarily s vectors in the set of 1st-column, 2nd-

column, 3rd-column,. . .,(N − I + 2)th-column vectors, and t vectors in the set of
(N − I + 3)th-column, (N − I + 4)th-column,. . .,(N + 1)th-column vectors, where
s + t = I + 2.
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Then, since s ≥ 3 by 0 ≤ t ≤ I − 1, s columns in the former set are linearly
dependent over k(X) by (3.3). Hence s + t vectors as above are linearly dependent
over k(X). Therefore all (I + 2)−minors of M

(q′)
I are vanished, and hence the

assertion (3.2) is true.
Now we shall show the truth of the assertion (3.1). We put

S
(q′)
I = M

(q′)
I

(
1, 2, 3, . . . , I + 1

1, 2, N − I + 3, . . . , N + 1

)
,

where the right-hand side denotes a (I + 1) × (I + 1)−matrix whose row vectors
(resp. column vectors) are 1st-row, 2nd-row, 3rd-row,. . . , (I + 1)th-row (resp. 1st-
column, 2nd-column, (N − I + 3)th-column,. . . , (N + 1)th-column) of M

(q′)
I . Then

we shall see that detS(q′)
I 
= 0. Let S′ be the (I + 1) × (I + 1)−matrix obtained by

subtracting 1st-row from 2nd-row in S
(q′)
I , and let T

(q′)
I be the I×I−matrix obtained

by taking off 1st-row and 1st-column in S′. Then we have detS(q′)
I = detT (q′)

I . For
our purpose, it is sufficient to show that detT (q′)

I 
= 0. Now we put TI = T
(q′)
I .

Case 1 < I ≤ p− 1:

The coordinates of 1st-row vector of TI are x − xq2
0 , ui − u

q2
0

i (1 ≤ i ≤ I − 1)

respectively, and each ui − u
q2
0

i equals xi+1 − x(i+1)q0(1 ≤ i ≤ I − 1). Since the
determinant of (I−1)×(I−1)−submatrix of TI consisting of “i-th row, j-th column”
elements (2 ≤ i ≤ I, 1 ≤ j ≤ I − 1) equals detUI−2, the set of 2nd-row, 3rd-row,
4th-row,. . . , I th-row vectors of TI are linearly independent over k(X), by (2.17).

Suppose that the 1st-row vector of TI is a linear combination of these I − 1
row-vectors with coefficients λi(1 ≤ i ≤ I − 1) in k(X). Then we have

λ1 = x− xq2
0 , λi = (xi − xiq0) −

i−1∑
j=1

(
i

j

)
λjx

i−j(2 ≤ i ≤ I − 1) ,

and moreover we have the equality

I−1∑
i=1

(
I

i

)
λix

I−i = xI − xIq0 .

The left-hand side of this equality is in Fp[x] and does not contain the term xIq0 .
This is absurd. Thus we see that I row-vectors of TI are linearly independent over
k(X). Hence we have detTI 
= 0.
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Case αp− α + 1 ≤ I ≤ αp− α + p− 1, where

1 ≤ α ≤ pe0−1 − 1 (α ∈ Z):

The coordinates of 1st-row vector of TI are x−xq2
0 , ui−u

q2
0

i (1 ≤ i ≤ p−2); up−2+i−
u
q2
0

p−2+i; . . . ;u(α−1)p−α+i − u
q2
0

(α−1)p−α+i(1 ≤ i ≤ p− 1); uαp−α−1+i − u
q2
0

αp−α−1+i(1 ≤
i ≤ I + α − αp) respectively, and we have, by the defining-equation of the curve in
Case [C],

ui − u
q2
0

i = xi+1 − x(i+1)q0(1 ≤ i ≤ p− 2) ;

up−2+i − u
q2
0

p−2+i = xp+i − x(p+i)q0(1 ≤ i ≤ p− 1) ;

· · · · · · · · ·

u(α−1)p−α+i − u
q2
0

(α−1)p−α+i = x(α−1)p+i − x((α−1)p+i)q0(1 ≤ i ≤ p− 1) ;

uαp−α−1+i − u
q2
0

αp−α−1+i = xαp+i − x(αp+i)q0(1 ≤ i ≤ I + α− αp) .

Since the determinant of (I − 1) × (I − 1)−submatrix of TI consisting of “i-th row,
j-th column” elements (2 ≤ i ≤ I, 1 ≤ j ≤ I − 1) equals

detUp−2 ·
(
detVp−2)α−1 · detVI−2+α−αp ,

the set of 2nd-row, 3rd-row, 4th-row,. . . , Ith-row vectors of TI are linearly indepen-
dent over k(X), by (2.17), (2.18). Suppose that the 1st-row vector of TI is a linear
combination of these I − 1 row-vectors with coefficients λi(1 ≤ i ≤ I − 1) in k(X).

“α = 1 and I = p” Case. Then, in this case, we have

λ1 = x− xq2
0 and

(
p + 1

1

)
λ1 = xp+1 − x(p+1)q0 .

Therefore xq2
0+p = x(p+1)q0 . Since q0 = pe0 with e0 > 1, this is absurd. Thus

we see that detTI 
= 0.

“α = 1 and I = p + 1” Case. Then, in this case, we have

λ1 = x− xq2
0 , λ2 = (x2 − x2q0) −

(
2
1

)
λ1x,(

p + 1
1

)
λ1x

p +
(
p + 1
p

)
λpx = xp+1 − x(p+1)q0 ,(

p + 2
1

)
λ1x

p+1 +
(
p + 2

2

)
λ2x

p +
(
p + 2
p

)
λpx

2 = xp+2 − x(p+2)q0 .
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The left-hand sides of these equalities are in Fp[x] and the left-hand side of the
4th equality does not contain the term x(p+2)q0 . This is absurd. Thus we see that
detTI 
= 0.

We shall proceed with the similar argument. Consequently, we shall obtain that
detTI 
= 0 in each of the cases for {α, I}.

Thus, in Case [C], we have obtained

ι(q′;X) = I if q′ = q2
0 .

4. The number of rational points in Case [A]

Let the curve X ⊂ P
N be as in Case [A] of the Theorem. First, we shall show that X

is smooth. Expressing the equations defining this curve by the homogeneous forms,
we have

h0: = xq+1
1 + xq+1

2 − p0x
q+1
0 = 0 ,

h1: = xq+1
1 + xq+1

3 − p1x
q+1
0 = 0 ,

h2: = xq+1
1 + xq+1

4 − p2x
q+1
0 = 0 ,

· · · · · ·
hi: = xq+1

1 + xq+1
i+2 − pix

q+1
0 = 0 ,

· · · · · ·
hN−2: = xq+1

1 + xq+1
N − pN−2x

q+1
0 = 0 ,

(p0 = 1).

Then the Jacobian-matrix J : =
(

∂hi

∂xj

)
0≤i≤N−2,0≤j≤N

of the curve X ⊂ P
N

becomes

J =




−p0x
q
0 xq

1 xq
2 0 0 · · · 0

−p1x
q
0 xq

1 0 xq
3 0 · · · 0

−p2x
q
0 xq

1 0 0 xq
4 · · · 0

...
...

...
...

...
. . .

...

−PN−2x
q
0 xq

1 0 0 0 · · · xq
N




.

Let the field k be an algebraic closure of Fq. We shall verify that “rank J =
N − 1” at any point P = (x0 : x1 : · · · : xN ) in X(k), as follows.
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Suppose that rank J < N − 1 at some point P in X(k). Then, at P , there
exists a linear relation

∑N−2
i=0 λiui = 0 of “row-vectors ui’s in the matrix J”, with

coefficients λi in k, where some one of the λi’s is not zero.
Now, suppose that λi 
= 0. Then xi+2 = 0 by λix

q
i+2 = 0. Moreover, suppose

that there exist some j(
= i) such that λj 
= 0. Then, since xi+2 = xj+2 = 0, we
have pix

q+1
0 = pjx

q+1
0 by hi(P ) = hj(P ) = 0. Hence x0 = 0 by pi 
= pj . Therefore,

assuming the existence of j as above, we get x0 = xi+2 = 0 and hence x0 = x1 = 0
by hi(P ) = 0. Consequently, it occurs that “x0 = x1 = xr = 0 for any r with
2 ≤ r ≤ N”, from “hs(P ) = 0 for any s with 0 ≤ s ≤ N − 2”. This is absurd.
Thus j as above does not exist. Then it occurs that if λi 
= 0 then λj = 0 for any
j(
= i). And, in this case, we get λix

q
1 = λipix

q
0 = 0 and hence x0 = x1 = 0 by

“λi 
= 0, pi 
= 0”, from the above linear relation. Similarly to the above, it occurs
that “x0 = x1 = xr = 0 for any r with 2 ≤ r ≤ N”. This is absurd.

Through the above argument, it has been obtained that all coefficients λi of the
above linear relation are zeroes, and hence the row-vectors ui’s (0 ≤ i ≤ N − 2) of
J are linearly independent over k. Thus we get rank J = N − 1 at any P. Therefore
X is smooth.

Let g be the genus of X, and d1, d2, . . . , dN−1 be the degrees of equations defining
X, respectively. Then through the known genus-formula:

g = 1 +
1
2
·
N−1∏
i=1

di ·
(

N−1∑
i=1

di −N − 1

)

(cf. Chapter IV, §2-7 in [5]), we have

g = 1 +
1
2
(q + 1)N−1

[
(N − 1)q − 2

]
,

by di = q + 1(1 ≤ i ≤ N − 1).
On the other hand, let d be the degree of X and Γq′,N be the number of Fq′ -

rational points on the curve X. In Case [A], since ι(q′;X) = 1 for q′ = q2, we
have

Γq′,N = d(q′ − 1) − (2g − 2) for q′ = q2,

through the formula of Theorem 1 in [3].
Therefore, for the curve X ⊂ P

N in Case [A] of the Theorem, it is obtained
that

Γq′,N = (q + 1)N−1
[
q2 + 1 − (N − 1)q

]
for q′ = q2,

by d = (q + 1)N−1.
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