Collectanea Mathematica (electronic version): http://www.mat.ub.es/CM

Collect. Math. 50, 3 (1999), 243-267
(c) 1999 Universitat de Barcelona

Frobenius indices of certain curves over finite fields

Keisuke Toki

Kōyama 3-5-5, Nerima-ku, Tokyo 176-0022, Japan

Received November 11, 1997. Revised June 11, 1998

Abstract

We consider an algebraic curve $X \subset \mathbb{P}^{N}(N \geq 3)$ defined over a finite field of characteristic $p>0$ which possesses an order-sequence in the sense of [6]. Let N, an odd prime number p and an integer $I(1 \leq I \leq N)$ be arbitrarily given. Then we shall give an example of a curve as above whose $q^{\prime}-$ Frobenius index in the sense of [1] equals I, which is a complete intersection in \mathbb{P}^{N} of $N-I$ Fermat equations and $I-1$ Artin-Schreier equations over a finite field $\mathbb{F}_{q^{\prime}}$ with q^{\prime} elements, where q^{\prime} is some power of p (see the Theorem of Section 1). In the case of $N=3$ and $I=1$, our example is the same one as Example 3 in [1] or [2].

1. Introduction

Let $X \subset \mathbb{P}^{N}$ be an algebraic curve lying in an N-dimensional projective space \mathbb{P}^{N} with $N \geq 3$ defined over a finite field $\mathbb{F}_{q^{\prime}}$ of the given characteristic p, which possesses an order-sequence in the sense of [6].

In the present paper, we are concerned with the index, which is called the $q^{\prime}-$ Frobenius index in [1], of a certain order in the order-sequence, for a curve as above $X \subset \mathbb{P}^{N}$.

According to [1], notions of "order-sequence, q^{\prime}-Frobenius order-sequence (resp. index)" will be as follows.

Let $x_{0}: x_{1}: x_{2}: \cdots: x_{N}$ be the coordinate functions of $X \subset \mathbb{P}^{N}$, and $\left\{D^{(r)} ; 0 \leq r \in \mathbb{Z}\right\}$ be the system of Hasse-Schmidt derivatives with respect to some separating variable on the curve X, where \mathbb{Z} denotes the set of integers.

The order-sequence of the curve $X \subset \mathbb{P}^{N}$

$$
\begin{equation*}
0=\varepsilon_{0}<\varepsilon_{1}<\varepsilon_{2}<\cdots<\varepsilon_{N} \tag{1.1}
\end{equation*}
$$

means the minimal sequence consisting of integers, in the lexicographic order, such that the $N+1$ row-vectors $D^{\left(\varepsilon_{i}\right)} \cdot \mathfrak{r}(0 \leq i \leq N)$ are linearly independent over the function-field $k(X)$ of the curve X, where

$$
\begin{aligned}
\mathfrak{r} & =\left(x_{0}, x_{1}, x_{2}, \ldots, x_{N}\right), \\
D^{\left(\varepsilon_{i}\right)} \cdot \mathfrak{r} & =\left(D^{\left(\varepsilon_{i}\right)}\left(x_{0}\right), D^{\left(\varepsilon_{i}\right)}\left(x_{1}\right), D^{\left(\varepsilon_{i}\right)}\left(x_{2}\right), \ldots, D^{\left(\varepsilon_{i}\right)}\left(x_{N}\right)\right) ; 0 \leq i \leq N .
\end{aligned}
$$

And the q^{\prime}-Frobenius order-sequence of the curve $X \subset \mathbb{P}^{N}$

$$
\begin{equation*}
0=\nu_{0}<\nu_{1}<\nu_{2}<\cdots<\nu_{N-1} \tag{1.2}
\end{equation*}
$$

means the minimal sequence consisting of integers, in the lexicographic order, such that the $N+1$ row-vectors $\mathfrak{r}^{q^{\prime}}, D^{\left(\nu_{i}\right)} \cdot \mathfrak{r}(0 \leq i \leq N-1)$ are linearly independent over $k(X)$, where

$$
\begin{aligned}
\mathfrak{r}^{q^{\prime}} & =\left(x_{0}^{q^{\prime}}, x_{1}^{q^{\prime}}, x_{2}^{q^{\prime}}, \ldots, x_{N}^{q^{\prime}}\right), \\
D^{\left(\nu_{i}\right)} \cdot \mathfrak{r} & =\left(D^{\left(\nu_{i}\right)}\left(x_{0}\right), D^{\left(\nu_{i}\right)}\left(x_{1}\right), \ldots, D^{\left(\nu_{i}\right)}\left(x_{N}\right)\right) ; 0 \leq i \leq N-1 .
\end{aligned}
$$

For the relationship between (1.1) and (1.2), it is known that there exists an integer I depending on q^{\prime}, with $1 \leq I \leq N$, such that

$$
\nu_{i}=\left\{\begin{array}{lll}
\varepsilon_{i} & \text { whenever } & i<I \tag{1.3}\\
\varepsilon_{i+1} & \text { whenever } & i \geq I
\end{array}\right.
$$

(cf. Proposition 2.1 in [6]).
Hereafter, for the given curve $X \subset \mathbb{P}^{N}$ as above, we put

$$
\iota\left(q^{\prime} ; X\right):=\text { the integer } I \text { as in (1.3). }
$$

Then $\iota\left(q^{\prime} ; X\right)$ is called the q^{\prime}-Frobenius index of the curve $X \subset \mathbb{P}^{N}$. For example, we know the following:
(a) Example 3 in [1] or [2] satisfies $\iota\left(q^{\prime} ; X\right)=1$ for some q^{\prime} (a curve which is a complete intersection of Fermat equations, in $N=3$),
(b) The monomial curve in Theorem 3 of $[1]$ satisfies $\iota\left(q^{\prime} ; X\right)=N$ for any q^{\prime}, any N (a curve which is an image of \mathbb{P}^{1}),
(c) Example 9 in [1] satisfies $\iota\left(q^{\prime} ; X\right)=N-1$ for some q^{\prime}, any N (a curve which is an image of \mathbb{P}^{1}).

Now, let an integer $N \geq 3$ and an odd prime number p be arbitrarily given. We take arbitrarily an integer I with $1 \leq I \leq N$. Then it is our object to give an example of $X \subset \mathbb{P}^{N}$ over $\mathbb{F}_{q^{\prime}}$ satisfying $\iota\left(q^{\prime} ; X\right)=I$, which is a complete intersection in \mathbb{P}^{N}, where q^{\prime} is some power of p. Precisely speaking, our result is as follows:

Theorem

Let the triplet $\{N, p, I\}$ as above be given. We consider the following cases $[A],[B],[C]$.
[A] Case $I=1$.
Let a positive integer e satisfy $N \leq p^{e}$. Let p_{i} 's $(1 \leq i \leq N-2)$ be elements in \mathbb{F}_{q} such that " $p_{i} \neq 0,1$ for each i " and " $p_{i} \neq p_{j}$ for $i \neq j$ ". We put

$$
x=\frac{x_{1}}{x_{0}}, y=\frac{x_{2}}{x_{0}}, z_{i}=\frac{x_{i+2}}{x_{0}}(1 \leq i \leq N-2)
$$

We consider the curve X in \mathbb{P}^{N} defined by $N-1$ Fermat equations over \mathbb{F}_{q} :

$$
x^{q+1}+y^{q+1}=1, x^{q+1}+z_{i}^{q+1}=p_{i}(1 \leq i \leq N-2)
$$

where $q=p^{e}$.
[B] Case $I=N$.
Let a positive integer e satisfy $N \leq p^{e}$. We take the sequence of successively increasing integers

$$
2=m_{1}<m_{2}<m_{3}<\cdots, \quad \text { where } m_{i} \not \equiv 0(\bmod p)
$$

for $i \geq 1$. We put

$$
x=\frac{x_{1}}{x_{0}}, u_{i}=\frac{x_{i+1}}{x_{0}}(1 \leq i \leq N-1)
$$

$\left(B_{1}\right) ; \quad I \leq p^{e}-p^{e-1}+1$ Case. We consider the curve X in \mathbb{P}^{N} defined by $N-1$ Artin-Schreier equations over \mathbb{F}_{q} :

$$
u_{i}^{q}+u_{i}=x^{m_{i}}(1 \leq i \leq N-2), u_{N-1}^{q^{2}}+u_{N-1}=x^{q^{2}+1}
$$

where $q=p^{e}$.
$\left(B_{2}\right) ; \quad I>p^{e}-p^{e-1}+1$ Case. We consider the curve X in \mathbb{P}^{N} defined by $N-1$ Artin-Schreier equations over \mathbb{F}_{q} :

$$
\begin{aligned}
u_{i}^{q}+u_{i} & =x^{m_{i}}\left(1 \leq i \leq p^{e}-p^{e-1}-1\right) \\
u_{p^{e}-p^{e-1}+i}^{q^{i+2}}+u_{p^{e}-p^{e-1}+i} & =x^{q^{i+2}+1}\left(0 \leq i \leq N-p^{e}+p^{e-1}-1\right)
\end{aligned}
$$

where $q=p^{e}$.
[C] Case $1<I<N$.
Let a positive integer e_{0} satisfy $e_{0}>1$ and $N \leq p^{e_{0}}-p^{e_{0}-1}+1$. We put

$$
\begin{aligned}
x=\frac{x_{1}}{x_{0}}, y & =\frac{x_{2}}{x_{0}}, z_{i}=\frac{x_{i+2}}{x_{0}}(1 \leq i \leq N-I-1), \\
u_{j} & =\frac{x_{N-I+j+1}}{x_{0}}(1 \leq j \leq I-1)
\end{aligned}
$$

We consider the curve X in \mathbb{P}^{N} defined by $N-I$ Fermat equations and $I-1$ Artin-Schreier equations over $\mathbb{F}_{q_{0}}$:

$$
\begin{aligned}
x^{q_{0}+1}+y^{q_{0}+1} & =1, x^{q_{0}+1}+z_{i}^{q_{0}+1}=p_{i}(1 \leq i \leq N-I-1) \\
u_{j}^{q_{0}}+u_{j} & =x^{m_{j}}(1 \leq j \leq I-1)
\end{aligned}
$$

where $q_{0}=p^{e_{0}}$, the p_{i} 's being elements in $\mathbb{F}_{q_{0}}$ such that " $p_{i} \neq 0,1$ for each i " and " $p_{i} \neq p_{j}$ for $i \neq j$ ", the m_{j} 's being as in $[B]$.

Then, in each of the cases $[A],[B],[C]$, the curve $X \subset \mathbb{P}^{N}$ possesses the ordersequence, and it is obtained that

$$
\begin{array}{lll}
\iota\left(q^{\prime} ; X\right)=I & \text { if } \quad q^{\prime}=q^{2}, & \text { in Cases }[A],[B] \\
\iota\left(q^{\prime} ; X\right)=I \quad \text { if } \quad q^{\prime}=q_{0}^{2}, \quad \text { in Case }[C] .
\end{array}
$$

Note. The author is thankful to Mr. Takasi Masuda who has indicated the choice for " p_{i} 's" in the Theorem.

The above cited example (a) has become a hint of this theorem. In order to prove the Theorem, we need to find the order-sequence of $X \subset \mathbb{P}^{N}$ in each of the cases $[\mathrm{A}],[\mathrm{B}],[\mathrm{C}]$. For the sake of it, we shall use the "Hasse-Schmidt derivatives with respect to x ", which are denoted by " $D_{x}^{(r)} ; 0 \leq r \in \mathbb{Z}$ ". We use the following known properties:

$$
\begin{align*}
D_{x}^{(0)} & =i d ., D_{x}^{(r)}(c)=0 \quad \text { for any constant } \quad c(r \geq 1) \tag{1.4}\\
D_{x}^{(r)}\left(x^{m}\right) & =\binom{m}{r} x^{m-r} \quad \text { for } \quad 0<m \in \mathbb{Z}
\end{align*}
$$

where $\binom{m}{r}$ is the binomial coefficient,

$$
\begin{aligned}
D_{x}^{(r)}\left(D_{x}^{\left(r^{\prime}\right)}(h)\right) & =\binom{r+r^{\prime}}{r^{\prime}} D_{x}^{\left(r+r^{\prime}\right)}(h), \\
D_{x}^{(r)}(g+h) & =D_{x}^{(r)}(g)+D_{x}^{(r)}(h), \\
D_{x}^{(r)}(g \cdot h) & =\sum_{i=0}^{r} D_{x}^{(i)}(g) D_{x}^{(r-i)}(h), \\
D_{x}^{(r)}\left(h^{q^{\prime}}\right) & =\left\{\begin{array}{llll}
\left(D_{x}^{\left(r / q^{\prime}\right)}(h)\right)^{q^{\prime}} & \text { if } & r \equiv 0 & \left(\bmod q^{\prime}\right), \\
0 & \text { if } & r \not \equiv 0 & \left(\bmod q^{\prime}\right),
\end{array}\right.
\end{aligned}
$$

for any functions g, h on the curve X (cf. [2], [4], [6]).

Moreover, for the congruence modulo a prime number p of the binomial coeffi$\operatorname{cient}\binom{\alpha}{\beta}$ with $0 \leq \alpha, \beta \in \mathbb{Z}$, we use the following known property:

$$
\begin{equation*}
\binom{\alpha}{\beta} \equiv \prod_{i=0}^{n}\binom{a_{i}}{b_{i}} \quad \bmod p \tag{1.5}
\end{equation*}
$$

where $\alpha=\sum_{i=0}^{n} a_{i} p^{i}, \beta=\sum_{i=0}^{n} b_{i} p^{i}, 0 \leq a_{i}, b_{i} \leq p-1(0 \leq i \leq n)$ in \mathbb{Z}.
In Section 2, we shall find the order-sequence of the curve $X \subset \mathbb{P}^{N}$ in the Theorem, through direct computation.

In Section 3, we shall give a proof of the Theorem. In both Sections 2, 3, the formulas (1.4), (1.5) will be chiefly useful.

In Section 4, we shall apply the estimation-formula on the number of rational points on curves, which has been given in [3], to the curve of Case [A] in the Theorem, and show the number itself.

The author wishes to express his hearty thanks to Professor M. Homma who has told him about notions and known-facts on the "order-sequences, q^{\prime}-Frobenius order-sequences" of space curves.

2. The order-sequences

In this section, we shall find the sequence (1.1) for the curve $X \subset \mathbb{P}^{N}$ in the Theorem.
We put $\xi_{i}=\frac{x_{i}}{x_{0}}(0 \leq i \leq N)$ and

$$
\mathfrak{f}:=\left(\xi_{0}, \xi_{1}, \xi_{2}, \ldots, \xi_{N}\right)
$$

Then two row-vectors $D_{x}^{(0)} \cdot \mathfrak{f}, D_{x}^{(1)} \cdot \mathfrak{f}$ are obviously linearly independent over $k(X)$.
To find the sequence (1.1) is to find the minimal one in the lexicographic order such that $N+1$ row-vectors $D_{x}^{\left(\varepsilon_{i}\right)} \cdot \mathfrak{f}(0 \leq i \leq N)$ are linearly independent over $k(X)$ (cf. Proposition 1.4 in [6]).

Now, we shall carry out this procedure, in each of the cases $[A],[B],[C]$ in the Theorem.

Case [A].
By using (1.4) and (1.5), we obtain the following:

$$
\begin{equation*}
D_{x}^{(1)}(y)=(-1) \frac{x^{q}}{y^{q}}, D_{x}^{(1)}\left(z_{i}\right)=(-1) \frac{x^{q}}{z_{i}^{q}}(1 \leq i \leq N-2) \tag{2.1}
\end{equation*}
$$

$$
\begin{equation*}
D_{x}^{(q)}(y) \cdot D_{x}^{(q+1)}\left(z_{i}\right)=D_{x}^{(q)}\left(z_{i}\right) \cdot D_{x}^{(q+1)}(y)(1 \leq i \leq N-2) ; \tag{2.5}
\end{equation*}
$$

$$
\begin{equation*}
D_{x}^{(q+j)}(y)=D_{x}^{(q+j)}\left(z_{i}\right)=0(2 \leq j \leq q-1,1 \leq i \leq N-2) ; \tag{2.6}
\end{equation*}
$$

$$
\begin{align*}
D_{x}^{(n q)}(y)= & \frac{(-1)}{y^{q}}\left(D_{x}^{(1)}(y)\right)^{q} \cdot D_{x}^{((n-1) q)}(y) \tag{2.7}\\
= & \frac{x^{n q^{2}}-x^{(n-1) q^{2}+1}}{y^{q}\left(1-x^{q^{2}+q}\right)^{n}}, \\
D_{x}^{(n q)}\left(z_{i}\right)= & \frac{(-1)}{z_{i}^{q}}\left(D_{x}^{(1)}\left(z_{i}\right)\right)^{q} \cdot D_{x}^{((n-1) q)}\left(z_{i}\right) \\
= & \frac{p_{i}\left(x^{n q^{2}}-x^{(n-1) q^{2}+1}\right)}{z_{i}^{q}\left(p_{i}-x^{\left.q^{2}+q\right)^{n}}\right.} \\
& (2 \leq n \leq N-2(n \in \mathbb{Z}), 1 \leq i \leq N-2) ; \\
D_{x}^{(n q+1)}(y)= & \frac{(-1)}{y^{q}}\left(D_{x}^{(1)}(y)\right)^{q} \cdot D_{x}^{((n-1) q+1)}(y), \tag{2.8}\\
D_{x}^{(n q+1)}\left(z_{i}\right)= & \frac{(-1)}{z_{i}^{q}}\left(D_{x}^{(1)}\left(z_{i}\right)\right)^{q} \cdot D^{((n-1) q+1)}\left(z_{i}\right) \\
& (2 \leq n \leq N-2(n \in \mathbb{Z}), 1 \leq i \leq N-2) ;
\end{align*}
$$

$$
\begin{align*}
D_{x}^{(n q)}(y) \cdot D_{x}^{(n q+1)}\left(z_{i}\right) & =D_{x}^{(n q)}\left(z_{i}\right) \cdot D_{x}^{(n q+1)}(y) \tag{2.9}\\
& (2 \leq n \leq N-2(n \in \mathbb{Z}), 1 \leq i \leq N-2)
\end{align*}
$$

$$
\begin{align*}
D_{x}^{(n q+j)}(y) & =D_{x}^{(n q+j)}\left(z_{i}\right)=0 \tag{2.10}\\
& (2 \leq n \leq N-2(n \in \mathbb{Z}), 2 \leq j \leq q-1,1 \leq i \leq N-2) ;
\end{align*}
$$

$$
\begin{align*}
D_{x}^{((N-1) q)}(y)= & \frac{x^{(N-1) q^{2}}-x^{(N-2) q^{2}+1}}{y^{q}\left(1-x^{q^{2}+q}\right)^{N-1}}, \tag{2.11}\\
D_{x}^{((N-1) q)}\left(z_{i}\right)= & \frac{p_{i}\left(x^{(N-1) q^{2}}-x^{(N-2) q^{2}+1}\right)}{z_{i}^{q}\left(p_{i}-x^{q^{2}+q}\right)^{N-1}} \\
& (1 \leq i \leq N-2) .
\end{align*}
$$

By (2.5), (2.9), the following assertion

$$
\begin{align*}
& " D_{x}^{(s q)} \cdot \mathfrak{f}, D_{x}^{(s q+1)} \cdot \mathfrak{f} \text { are linearly dependent over } k(X) \text {, for } \tag{2.12}\\
& 1 \leq s \leq N-2(s \in \mathbb{Z}) \text { " }
\end{align*}
$$

is true. Moreover, from (2.2), (2.6), (2.10), we get, for $s, t \in \mathbb{Z}$,

$$
\begin{equation*}
D_{x}^{(s q+t)} \cdot \mathfrak{f}=0 \quad \text { if } \quad 0 \leq s \leq N-2,2 \leq t \leq q-1 \tag{2.13}
\end{equation*}
$$

In addition to (2.12) and (2.13), it will be shown that the following assertion

$$
\begin{equation*}
" N+1 \text { row-vectors } D_{x}^{(0)} \cdot \mathfrak{f}, D_{x}^{(1)} \cdot \mathfrak{f}, D_{x}^{(s q)} \cdot \mathfrak{f}(1 \leq s \leq N-1(s \in \mathbb{Z})) \tag{2.14}
\end{equation*}
$$

are linearly independent over $k(X)$ " is true.
By (2.12), (2.13), (2.14), the set of linearly independent vectors in (2.14) becomes the minimal one in the lexicographic order.
¿From now, we shall show the truth of the assertion (2.14).
For $1 \leq m \leq N-1$, we get $\mathfrak{g}_{m}=\left(y, z_{1}, z_{2}, \ldots, z_{m-1}\right)$ which is the row-vector with coordinates $y, z_{i}(1 \leq i \leq m-1)$. Then we denote by Δ_{m}, the $m \times m$-matrix whose row vectors are m vectors $D_{x}^{(s q)} \cdot \mathfrak{g}_{m}(1 \leq s \leq m)$. Then we have

$$
\operatorname{det} \Delta_{m}=\left|\begin{array}{cccc}
D_{x}^{(q)}(y) & D_{x}^{(q)}\left(z_{1}\right) & \cdots & D_{x}^{(q)}\left(z_{m-1}\right) \tag{2.15}\\
D_{x}^{(2 q)}(y) & D_{x}^{(2 q)}\left(z_{1}\right) & \cdots & D_{x}^{(2 q)}\left(z_{m-1}\right) \\
\vdots & \vdots & \ddots & \vdots \\
D_{x}^{(m q)}(y) & D_{x}^{(m q)}\left(z_{1}\right) & \cdots & D_{x}^{(m q)}\left(z_{m-1}\right)
\end{array}\right|
$$

and

$$
\neq 0 \quad \text { in } \quad k(X), \quad \text { for } \quad 1 \leq m \leq N-1
$$

In fact, through (2.3), (2.7), (2.11), we shall compute the determinant of (2.15). Then we get

$$
\begin{gather*}
\operatorname{det} \Delta_{m}=\frac{\prod_{i=1}^{m-1} p_{i} \prod_{j=1}^{m}\left(x^{j q^{2}}-x^{(j-1) q^{2}+1}\right)}{\left(y z_{1} z_{2} \cdots z_{m-1}\right)^{q}\left\{\prod_{i=0}^{m-1}\left(p_{i}-x^{q^{2}+q}\right)\right\}^{m}} \cdot \Phi_{m}(x) \tag{2.16}\\
\Phi_{m}(x)=\left|\begin{array}{cccc}
\varphi_{11}(x) & \varphi_{12}(x) & \cdots & \varphi_{1 m}(x) \\
\varphi_{21}(x) & \varphi_{22}(x) & \cdots & \varphi_{2 m}(x) \\
\vdots & \vdots & \ddots & \vdots \\
\varphi_{m 1}(x) & \varphi_{m 2}(x) & \cdots & \varphi_{m m}(x)
\end{array}\right|
\end{gather*}
$$

where $p_{0}=1$ and $\varphi_{i j}(x)=\left(p_{j-1}-x^{q^{2}+q}\right)^{m-i}$ for $1 \leq i, j \leq m$.
Moreover, by using the assumption for the p_{i} 's, it is obtained that

$$
\begin{aligned}
\Phi_{m}(0) & =\prod_{i=1}^{m-1}\left(1-p_{i}\right) \cdot \prod_{1 \leq i<j \leq m-1}\left(p_{i}-p_{j}\right) \\
& \neq 0
\end{aligned}
$$

through computing the determinant-expression of $\Phi_{m}(0)$. Therefore the polynomial $\Phi_{m}(x)$ is an non-zero element in $\mathbb{F}_{q}[x]$. And then $\operatorname{det} \Delta_{m} \neq 0$ in $k(X)$, by (2.16) and the assumption for the p_{i} 's.

On the other hand, when we consider the $(N+1) \times(N+1)$-matrix Δ (resp. $2 \times 2-$ matrix Δ_{0}) whose row vectors are $N+1$ vectors in (2.14) (resp. two vectors $(1, x),(0,1))$, we have

$$
\operatorname{det} \Delta=\operatorname{det} \Delta_{0} \cdot \operatorname{det} \Delta_{N-1} \neq 0
$$

by (2.15) and "det $\Delta_{0}=1$ ".
Consequently, the truth of the assertion (2.14) has been shown. Thus the ordersequence of the curve $X \subset \mathbb{P}^{N}$ in Case [A] is as follows:

$$
\varepsilon_{0}=0, \varepsilon_{1}=1, \varepsilon_{1+i}=i q(1 \leq i \leq N-1)
$$

Case [B].
First, we consider the case $\left(B_{1}\right)$. We divide this case into the following subcases

$$
\begin{array}{cl}
\left(B_{1}-1\right): & I=N \leq 2 p-1 \\
\left(B_{1}-\alpha\right): & \alpha p-\alpha+2 \leq I=N \leq \alpha p-\alpha+p, \text { where } \\
& 2 \leq \alpha \leq p^{e-1}-1(\alpha \in \mathbb{Z})
\end{array}
$$

Case $\left(B_{1}-1\right)$. In this case, we have

$$
\begin{aligned}
& \text { if } I \leq p \text { then } m_{i}=i+1(1 \leq i \leq I-2) \\
& \quad \text { if } p<I \leq 2 p-1 \text { then } \\
& m_{i}=i+1(1 \leq i \leq p-2), m_{p-2+i}=p+i(1 \leq i \leq N-p)
\end{aligned}
$$

We set, in case $I \leq p$, for $1 \leq i \leq I-2$,

$$
U_{i}=\left(\begin{array}{cccc}
D_{x}^{(2)}\left(u_{1}\right) & D_{x}^{(2)}\left(u_{2}\right) & \cdots & D_{x}^{(2)}\left(u_{i}\right) \\
D_{x}^{(3)}\left(u_{1}\right) & D_{x}^{(3)}\left(u_{2}\right) & \cdots & D_{x}^{(3)}\left(u_{i}\right) \\
\vdots & \vdots & \ddots & \vdots \\
D_{x}^{(i+1)}\left(u_{1}\right) & D_{x}^{(i+1)}\left(u_{2}\right) & \cdots & D_{x}^{(i+1)}\left(u_{i}\right)
\end{array}\right)
$$

and set, in case $p<I \leq 2 p-1$,

$$
V_{j}=\left(\begin{array}{cccc}
D_{x}^{(p)}\left(u_{p-1}\right) & D_{x}^{(p)}\left(u_{p}\right) & \cdots & D_{x}^{(p)}\left(u_{p-1+j}\right) \\
D_{x}^{(p+1)}\left(u_{p-1}\right) & D_{x}^{(p+1)}\left(u_{p}\right) & \cdots & D_{x}^{(p+1)}\left(u_{p-1+j}\right) \\
\vdots & \vdots & \ddots & \vdots \\
D_{x}^{(p+j)}\left(u_{p-1}\right) & D_{x}^{(p+j)}\left(u_{p}\right) & \cdots & D_{x}^{(p+j)}\left(u_{p-1+j}\right)
\end{array}\right)
$$

for $0 \leq j \leq I-p-1$.
Then the types of these matrices are as follows:
(2.17) " U_{i} is of $i \times i-$ triangular type with all 1 (resp. all 0) on the principal diagonal (resp. below the principal diagonal), and hence $\operatorname{det} U_{i} \neq 0(1 \leq i \leq$ $I-2) "$.
(2.18) " V_{j} is of $(j+1) \times(j+1)$-type with its transposal such that

1st-row: $\left(\binom{1}{0} x,\binom{1}{1}, 0,0, \ldots, 0\right)$,

2nd-row: $\left(\binom{2}{0} x^{2},\binom{2}{1} x,\binom{2}{2}, 0, \ldots, 0\right)$,
jth-row: $\left(\binom{j}{0} x^{j},\binom{j}{1} x^{j-1},\binom{j}{2} x^{j-2}, \cdots,\binom{j}{j-1} x,\binom{j}{j}\right)$,
$(\mathrm{j}+1)$ th-row: $\left(\begin{array}{c}\left.\binom{j+1}{0} x^{j+1},\binom{j+1}{1} x^{j},\binom{j+1}{2} x^{j-1}, \ldots,\binom{j+1}{j} x\right), ~\end{array}\right.$
and hence it is verified that $\operatorname{det} V_{j} \neq 0(0 \leq j \leq I-p-1)$ ".
Now we shall verify the claim of "det. $\neq 0$ " in (2.18). Consider the linear relation $\sum_{i=0}^{j} \lambda_{i} \mathfrak{u}_{i}=0$ of the row-vectors $\mathfrak{u}_{i}(0 \leq i \leq j)$ of V_{j} over $k(X)$. Then we have

$$
\lambda_{1}=(-1) \lambda_{0} x, \lambda_{2}=(-1)^{2} \lambda_{0} x^{2}, \ldots, \lambda_{j}=(-1)^{j} \lambda_{0} x^{j}
$$

and

$$
\sum_{i=0}^{j}\binom{j+1}{i} \lambda_{i} x^{j+1-i}=0
$$

Hence, from these equations, we get

$$
(-1)^{j+2}\binom{j+1}{j+1} \lambda_{0} x^{j+1}=\left(\sum_{i=0}^{j}(-1)^{i}\binom{j+1}{i}\right) \lambda_{0} x^{j+1}=0
$$

Therefore $\lambda_{0}=0$ and hence $\lambda_{i}=0(0 \leq i \leq j)$. Then the $\mathfrak{u}_{i}{ }^{\prime} s(0 \leq i \leq j)$ are linearly independent over $k(X)$ and hence $\operatorname{det} V_{j} \neq 0(0 \leq j \leq p-2)$.

Let M_{h} be the $h \times(N+1)$-matrix whose row vectors are h vectors $D_{x}^{(i)} \cdot \mathfrak{f}(0 \leq$ $i \leq h-1)$. Then it is easily seen that some I-minor of M_{I} equals

$$
\begin{aligned}
\operatorname{det} \Delta_{0} \cdot \operatorname{det} U_{I-2} & \text { if } \quad I \leq p \\
\operatorname{det} \Delta_{0} \cdot \operatorname{det} U_{p-2} \cdot \operatorname{det} V_{I-p-1} & \text { if } \quad p<I \leq 2 p-1
\end{aligned}
$$

Hence, by "det $\Delta_{0}=1 ",(2.17),(2.18)$, the following assertion
(2.19) "I row-vectors $D_{x}^{(i)} \cdot \mathfrak{f}(0 \leq i \leq I-1)$ are linearly independent over $k(X)$ "
is true.
For $I \leq j \leq q^{2}-1$, let $M_{I, j}$ be the matrix whose row vectors are $I+1$ vectors $D_{x}^{(i)} \cdot \mathfrak{f}(0 \leq i \leq I-1), D_{x}^{(j)} \cdot \mathfrak{f}$. Then $M_{I, j}$ is a square matrix by $I=N$, and it is also easily seen that
(2.20) "det $M_{I, j}=0$ for $I \leq j \leq q^{2}-1$, and hence these $N+1$ row-vectors are linearly dependent over $k(X)$ ".

On the other hand, for $j=q^{2}$, we have

$$
\operatorname{det} M_{I, q^{2}}=\operatorname{det} \Delta_{0} \cdot \operatorname{det} U_{I-2} \cdot \operatorname{det} V_{I-p-1} \cdot\left(x-x^{q^{4}}\right)
$$

because the transposed $(I+1)$ - th column vector of $M_{I, q^{2}}$ equals

$$
\left(u_{I-1}, x^{q^{2}}, 0,0, \ldots, 0, x-x^{q^{4}}\right) .
$$

Since the left-hand side of this equality is not zero by "det $\Delta_{0}=1 ",(2.17),(2.18)$, we obtain the truth of the following assertion
(2.21) " $N+1$ row-vectors $D_{x}^{(i)} \cdot \mathfrak{f}(0 \leq i \leq N-1), D_{x}^{\left(q^{2}\right)} \cdot \mathfrak{f}$ are linearly independent over $k(X)$ ".
By (2.19), (2.20), (2.21), the set of $N+1$ row-vectors in (2.21) becomes the minimal one in the lexicographic order. Thus the order-sequence of the curve $X \subset \mathbb{P}^{N}$ in Case $\left(B_{1}-1\right)$ is as follows:

$$
\varepsilon_{i}=i(0 \leq i \leq N-1), \varepsilon_{N}=q^{2}
$$

Case $\left(B_{1}-\alpha\right)$. In this case, at each α, we have, for $r \in \mathbb{Z}$,

$$
\begin{aligned}
m_{i} & =i+1 \quad(1 \leq i \leq p-2) \\
m_{r p-r-1+i} & =r p+i \quad(1 \leq i \leq p-2,1 \leq r \leq \alpha-1) \\
m_{\alpha p-\alpha-1+i} & =\alpha p+i \quad(1 \leq i \leq I-1+\alpha-\alpha p)
\end{aligned}
$$

We set, for $0 \leq j \leq p-2,0<s, r \leq \alpha$,

$$
U_{j}^{(s)}=\left(\begin{array}{cccc}
u_{11}^{(s)} & u_{12}^{(s)} & \cdots & u_{1 p-2}^{(s)} \\
u_{21}^{(s)} & u_{22}^{(s)} & \cdots & u_{2 p-2}^{(s)} \\
\vdots & \vdots & \ddots & \vdots \\
u_{j+11}^{(s)} & u_{j+12}^{(s)} & \cdots & u_{j+1 p-2}^{(s)}
\end{array}\right)
$$

where $u_{i^{\prime} j^{\prime}}^{(s)}=D_{x}^{\left(s p+i^{\prime}-1\right)}\left(u_{j^{\prime}}\right)$ for $1 \leq i^{\prime} \leq j+1,1 \leq j^{\prime} \leq p-2$,

$$
V_{p-2, j}=\left(\begin{array}{cccc}
v_{11}^{(1)} & v_{12}^{(1)} & \cdots & v_{1 j+1}^{(1)} \\
v_{21}^{(1)} & v_{22}^{(1)} & \cdots & v_{2 j+1}^{(1)} \\
\vdots & \vdots & \ddots & \vdots \\
v_{p-11}^{(1)} & v_{p-12}^{(1)} & \cdots & v_{p-1 j+1}^{(1)}
\end{array}\right)
$$

where $v_{i^{\prime} j^{\prime}}^{(1)}=D_{x}^{\left(p+i^{\prime}-1\right)}\left(u_{p-2+j^{\prime}}\right)$ for $1 \leq i^{\prime} \leq p-1,1 \leq j^{\prime} \leq j+1$,

$$
V_{p-2, j}^{(s, r)}=\left(\begin{array}{cccc}
v_{11}^{(s, r)} & v_{12}^{(s, r)} & \cdots & v_{1 j+1}^{(s, r)} \\
v_{21}^{(s, r)} & v_{22}^{(s, r)} & \cdots & v_{2 j+1}^{(s, r)} \\
\vdots & \vdots & \ddots & \vdots \\
v_{p-11}^{(s, r)} & v_{p-12}^{(s, r)} & \cdots & v_{p-1 j+1}^{(s, r)}
\end{array}\right)
$$

where $v_{i^{\prime} j^{\prime}}^{(s, r)}=D_{x}^{\left(s p+i^{\prime}-1\right)}\left(u_{r p-r+j^{\prime}-1}\right)$ for $1 \leq i^{\prime} \leq p-1,1 \leq j^{\prime} \leq j+1$.
Then we have, for $0 \leq j \leq p-2$,

$$
\begin{align*}
U_{j}^{(s)} & =0, V_{p-2, j}^{(s, r)}=0(s>r) \tag{2.22}\\
V_{p-2, j}^{(s, r)} & =\binom{r}{s} x^{(r-s) p} \cdot V_{p-2, j} \quad \text { for } \quad s \leq r \\
V_{p-2, p-2}^{(r, r)} & =V_{p-2, p-2}=V_{p-2} \quad \text { in case of } \quad s=r
\end{align*}
$$

It is seen that the following assertion
$(2.23)_{1}$ "For $2 p$ row-vectors $D_{x}^{(i)} \cdot \mathfrak{f}(0 \leq i \leq 2 p-2), D_{x}^{(j)} \cdot \mathfrak{f}$, these are linearly dependent $(j=2 p-1)$, linearly independent $(j=2 p)$ over $k(X) "$ is true.

In fact, in case $j=2 p-1$, we consider the linear relation

$$
\sum_{i=0}^{2 p-1} \lambda_{i} D_{x}^{(i)} \cdot \mathfrak{f}=0 \quad \text { over } \quad k(X)
$$

Then, since $D_{x}^{(2 p-1)} \cdot \mathfrak{f}$ equals the unit-vector with the $(2 p-1)$-th coordinate 1 , we have

$$
\lambda_{0}=\lambda_{1}=\ldots=\lambda_{p-1}=0, \lambda_{p+i} \in k(X) \cdot \lambda_{p} \quad(1 \leq i \leq p-1)
$$

by (2.17), (2.18). Therefore $2 p$ row-vectors as above are linearly dependent over $k(X)$. However, in case $j=2 p$, some $2 p$-minor of the matrix $M_{2 p}^{\prime}$ whose row vectors are $2 p$ vectors as above equals

$$
\operatorname{det} \Delta_{0} \cdot \operatorname{det} U_{p-2} \cdot \operatorname{det} V_{p-2} \cdot x
$$

Therefore $2 p$ row-vectors as above are linearly independent over $k(X)$, by "det $\Delta_{0}=$ $1 ",(2.17),(2.18)$. Moreover we can show the truth of the following assertions at $r(2 \leq r<\alpha), \alpha$:
"For $(r+1) p-r+1$ row-vectors $D_{x}^{(i)} \cdot \mathfrak{f}(0 \leq i \leq 2 p-2) ; D_{x}^{(2 p)} \cdot \mathfrak{f}, D_{x}^{(2 p+i)} \cdot \mathfrak{f}$ $(1 \leq i \leq p-2) ; \cdots ; D_{x}^{(r p)} \cdot \mathfrak{f}, D_{x}^{(r p+i)} \cdot \mathfrak{f}(1 \leq i \leq p-2) ; D_{x}^{(j)} \cdot \mathfrak{f}$, these are linearly dependent $(j=(r+1) p-1)$, linearly independent $(j=(r+1) p)$ over $k(X)$ " and
"For $I+1$ row-vectors $D_{x}^{(i)} \cdot \mathfrak{f}(0 \leq i \leq 2 p-2) ; D_{x}^{(2 p)} \cdot \mathfrak{f}, D_{x}^{(2 p+i)} \cdot \mathfrak{f}(1 \leq i \leq$ $p-2) ; D_{x}^{(r p)} \cdot \mathfrak{f}, D_{x}^{(r p+i)} \cdot \mathfrak{f}(1 \leq i \leq p-2,2<r \leq \alpha-1) ; D_{x}^{(\alpha p)} \cdot \mathfrak{f}, D_{x}^{(\alpha p+i)} \cdot \mathfrak{f}(1 \leq$ $i \leq I+\alpha-2-\alpha p) ; D_{x}^{(j)} \cdot \mathfrak{f}$, these are linearly dependent $(I+\alpha-1 \leq j \leq$ $\left.q^{2}-1\right)$, linearly independent $\left(j=q^{2}\right)$ over $k(X)$ ".

In fact, in case $(2.23)_{r}$ with $j=(r+1) p-1$, we consider the linear relation over $k(X)$ of $(r+1) p-r+1$ row-vectors as above. Then, since $D_{x}^{((r+1) p-1)} \cdot \mathfrak{f}$ equals the unit-vectors with the $((r+1) p-r)$-th coordinate 1 , it is seen that these row-vectors are linearly dependent over $k(X)$. This is similar to the verification of " $(2.23)_{1}$ with $j=2 p-1$ ". In case $(2.23)_{r}$ with $j=(r+1) p$, some $((r+1) p-r+1)-$ minor of the matrix $M_{(r+1) p-r+1}^{\prime \prime}$ whose row vectors are $(r+1) p-r+1$ vectors as above equals

$$
\operatorname{det} \Delta_{0} \cdot \operatorname{det} U_{p-2} \cdot\left(\operatorname{det} V_{p-2}\right)^{r} \cdot x
$$

Therefore these row-vectors are linearly independent over $k(X)$, by " $\operatorname{det} \Delta_{0}=1$ ", (2.17), (2.18).

In case $(2.23)_{\alpha}$ with $I+\alpha-1 \leq j \leq q^{2}-1$, since $D_{x}^{(I+\alpha-1)} \cdot \mathfrak{f}$ equals the unit-vector with I-th coordinate 1 and each $D_{x}^{(I+\alpha-1+i)} \cdot \mathfrak{f}\left(1 \leq i \leq q^{2}-1\right)$ equals the zero-vector, $I+1$ row-vectors as above are linearly dependent over $k(X)$. In case $(2.23)_{\alpha}$ with $j=q^{2}$, the square matrix $M_{I, q^{2}}^{\prime \prime}$ whose row vectors are $I+1$ vectors as above satisfies that $\operatorname{det} M_{I, q^{2}}^{\prime \prime}$ equals

$$
\operatorname{det} \Delta_{0} \cdot \operatorname{det} U_{p-2} \cdot\left(\operatorname{det} V_{p-2}\right)^{\alpha-1} \cdot \operatorname{det} V_{I-\alpha p+\alpha-2} \cdot\left(x-x^{q^{4}}\right) .
$$

Therefore $I+1$ row-vectors as above are linearly independent over $k(X)$, by $" \operatorname{det} \Delta_{0}=1 ",(2.17),(2.18)$.

By $(2.23)_{1},(2.23)_{r},(2.23)_{\alpha}$, the set of $N+1$ row-vectors in $(2.23)_{\alpha}$ becomes the minimal one in the lexicographic order. Thus the order-sequence of the curve $X \subset \mathbb{P}^{N}$ in Case $\left(B_{1}-\alpha\right)$ with $2 \leq \alpha \leq p^{e-1}-1$ is as follows:

$$
\begin{aligned}
\varepsilon_{i} & =i \quad(0 \leq i \leq 2 p-2) \\
\varepsilon_{r p-r+1+i} & =r p+i \quad(0 \leq i \leq p-2,2 \leq r \leq \alpha-1), \\
\varepsilon_{\alpha p-\alpha+1+i} & =\alpha p+i \quad(0 \leq i \leq N-2+\alpha-\alpha p) \\
\varepsilon_{N} & =q^{2} .
\end{aligned}
$$

Second, we consider the case $\left(B_{2}\right)$. In this case, we have, for $r \in \mathbb{Z}$,

$$
\begin{aligned}
m_{i} & =i+1 \quad(1 \leq i \leq p-2) \\
m_{r p-r-1+i} & =r p+i\left(1 \leq i \leq p-1,1 \leq r \leq p^{e-1}-1\right)
\end{aligned}
$$

Let $M_{N+1}^{\prime \prime}$ be the square matrix whose row vectors are $N+1$ vectors:

$$
\begin{align*}
D_{x}^{(i)} \cdot \mathfrak{f} & (0 \leq i \leq 2 p-2) \tag{2.24}\\
D_{x}^{(r p)} \cdot \mathfrak{f}, D_{x}^{(r p+i)} \cdot \mathfrak{f} & \left(1 \leq i \leq p-2,2 \leq r \leq p^{e-1}-1\right) \\
D_{x}^{\left(q^{i}\right)} \cdot \mathfrak{f} & \left(2 \leq i \leq I-p^{e}+p^{e-1}+1\right)
\end{align*}
$$

Then we obtain

$$
\begin{aligned}
\operatorname{det} M_{N+1}^{\prime \prime}= & \operatorname{det} \Delta_{0} \cdot \operatorname{det} U_{p-2} \cdot\left(\operatorname{det} V_{p-2}\right)^{p^{e-1}-1} \\
& \times \prod_{i=2}^{I-p^{e}+p^{e-1}+1}\left(x-x^{q^{2 i}}\right)
\end{aligned}
$$

by (2.22).
Hence, by (2.17), (2.18), we obtain the truth of the following assertion
(2.25) " $N+1$ row-vectors in (2.24) are linearly independent over $k(X)$ ".

Moreover, we note that

$$
\begin{equation*}
D_{x}^{\left(q^{j}+i\right)} \cdot \mathfrak{f}=0 \quad \text { for } \quad 1 \leq i<q^{j+1}-q^{j}, 2 \leq j \leq I-p^{e}+p^{e-1} \tag{2.26}
\end{equation*}
$$

Through the same argument as in the case $\left(B_{1}\right)$, with considering (2.25), (2.26), the set of $N+1$ row-vectors in (2.24) becomes the minimal one in the lexicographic order. Thus the order-sequence of the curve $X \subset \mathbb{P}^{N}$ in Case $\left(B_{2}\right)$ is as follows:

$$
\begin{aligned}
\varepsilon_{i} & =i \quad(0 \leq i \leq 2 p-2) \\
\varepsilon_{r p-r+1+i} & =r p+i \quad\left(0 \leq i \leq p-2,2 \leq r \leq p^{e-1}-1\right) \\
\varepsilon_{p^{e}-p^{e-1}+1+i} & =q^{i+2} \quad\left(0 \leq i \leq N-p^{e}+p^{e-1}-2\right) \\
\varepsilon_{N} & =q^{N-p^{e}+p^{e-1}+1}
\end{aligned}
$$

Case [C].

At first, we note that "the $(p-2) \times(N-I)-$ matrix whose row vectors are $p-2$ vectors $D_{x}^{(i)} \cdot \mathfrak{g}_{N-I}(2 \leq i \leq p-1)$ " and the "the $(j+1) \times(N-I)$-matrix whose row vectors are $j+1$ vectors $D_{x}^{(s p+i)} \cdot \mathfrak{g}_{N-I}(0 \leq i \leq j)$ at each $\{j, s\}(0 \leq j \leq p-2,1 \leq$ $\left.s \leq p^{e_{0}-1}-1\right) "$ are zero-matrices, by (2.2).

Let \mathfrak{h}_{r} be the row-vector with coordinates $1, x, u_{i}(1 \leq i \leq r-1)$ defined by

$$
\mathfrak{h}_{r}=\left(1, x, u_{1}, u_{2}, \ldots, u_{r-1}\right) .
$$

$\left(C_{\alpha}\right) \quad$ Let $\alpha p-\alpha+1 \leq I \leq \alpha p-\alpha+p-1$, where

$$
0 \leq \alpha \leq p^{e_{0}-1}-1(\alpha \in \mathbb{Z}):
$$

$\alpha=0 \quad$ Case. In this case, we have

$$
m_{i}=i+1 \quad(1 \leq i \leq I-1)
$$

Let H_{r} be the $(r+1) \times(r+1)-$ matrix whose row vectors are $r+1$ vectors $D_{x}^{(i)} \cdot \mathfrak{h}_{r}(0 \leq$ $i \leq r)$. Then we have

$$
\operatorname{det} H_{I}=\operatorname{det} \Delta_{0} \cdot \operatorname{det} U_{I-1}
$$

Hence the left-hand side of this equality is not zero. Therefore $I+1$ row-vectors $D_{x}^{(i)} \cdot \mathfrak{f}(0 \leq i \leq I)$ are linearly independent over $k(X)$.
$\alpha=1$ Case. In this case, we have

$$
m_{i}=i+1(1 \leq i \leq p-2), m_{p-2+i}=p+i(1 \leq i \leq I+1-p)
$$

and

$$
\operatorname{det} H_{I}=\operatorname{det} H_{p-1} \cdot \operatorname{det} V_{I-p}
$$

Therefore $I+1$ row-vectors $D_{x}^{(i)} \cdot \mathfrak{f}(0 \leq i \leq I)$ are linearly independent over $k(X)$. $\alpha=2$ Case. In this case, we have

$$
\begin{aligned}
m_{i} & =i+1(1 \leq i \leq p-2), m_{p-2+i}=p+i(1 \leq i \leq p-1) \\
m_{2 p-3+i} & =2 p+i(1 \leq i \leq I+2-2 p)
\end{aligned}
$$

By " $\alpha=1$ Case", the $2 p-1$ row-vectors $D_{x}^{(i)} \cdot \mathfrak{f}(0 \leq i \leq 2 p-2)$ are linearly independent over $k(X)$. However it is seen that $2 p$ row-vectors $D_{x}^{(i)} \cdot \mathfrak{f}(0 \leq i \leq 2 p-1)$ are linearly dependent over $k(X)$, by the same way as in $(2.23)_{1}$ with $j=2 p-1$. And, for the $(I+1) \times(I+1)$-matrix $H_{I, I-2 p+1}$ whose row vectors are $I+1$ vectors

$$
D_{x}^{(i)} \cdot \mathfrak{h}_{I}(0 \leq i \leq 2 p-2), D_{x}^{(2 p+i)} \cdot \mathfrak{h}_{I}(0 \leq i \leq I-2 p+1)
$$

we have

$$
\operatorname{det} H_{I, I-2 p+1}=\operatorname{det} H_{2 p-2} \cdot \operatorname{det} V_{I-2 p+1}
$$

Hence the left-hand side of this equality is not zero. Therefore $I+1$ row-vectors

$$
D_{x}^{(i)} \cdot \mathfrak{f}(0 \leq i \leq 2 p-2), D_{x}^{(2 p+i)} \cdot \mathfrak{f}(0 \leq i \leq I-2 p+1)
$$

are linearly independent over $k(X)$.
$\alpha \geq 3$ Case. In this case, we have, for $r \in \mathbb{Z}$,

$$
\begin{aligned}
m_{i} & =i+1 \quad(1 \leq i \leq p-2) \\
m_{r p-r-1+i} & =r p+i \quad(1 \leq i \leq p-1,1 \leq r \leq \alpha-1) \\
m_{\alpha p-\alpha-1+i} & =\alpha p+i \quad(1 \leq i \leq I+\alpha-\alpha p)
\end{aligned}
$$

Moreover it will be verified that $I+1$ row-vectors

$$
\left.\begin{array}{rl}
D_{x}^{(i)} \cdot \mathfrak{f} & (0 \leq i \leq 2 p-2) \\
D_{x}^{(2 p)} \cdot \mathfrak{f}, & D_{x}^{(2 p+i)} \cdot \mathfrak{f} \quad(1 \leq i \leq p-2) \\
\cdots \cdots \cdots
\end{array}\right] \begin{aligned}
& D_{x}^{((\alpha-1) p)} \cdot \mathfrak{f}, D_{x}^{((\alpha-1) p+i)} \cdot \mathfrak{f} \quad(1 \leq i \leq p-2) \\
& D_{x}^{(\alpha p)} \cdot \mathfrak{f}, D_{x}^{(\alpha p+i)} \cdot \mathfrak{f} \quad(1 \leq i \leq I+\alpha-1-\alpha p)
\end{aligned}
$$

are linearly independent over $k(X)$ and the set of these $I+1$ row-vectors is the minimal one in the lexicographic order.

In $I+1$ row-vectors as above, we write \mathfrak{h}_{I} for \mathfrak{f} and denote by K_{I}, the $(I+1) \times$ $(I+1)$-matrix whose row-vectors are these $I+1$ vectors. Then we note that

$$
\operatorname{det} K_{I}=\operatorname{det} H_{p-1} \cdot\left(\operatorname{det} V_{p-2}\right)^{\alpha-1} \cdot \operatorname{det} V_{I+\alpha-1-\alpha p}
$$

¿From the defining-equation of the curve X, it is seen that

$$
D_{x}^{(i)} \cdot \mathfrak{g}_{N-I}=0\left(2 \leq i \leq q_{0}-1\right), D_{x}^{(i)} \cdot \mathfrak{f}=0\left(I+\alpha+1 \leq i \leq q_{0}-1\right)
$$

We add $N-I$ row-vectors $D_{x}^{\left(j q_{0}\right)} \cdot \mathfrak{f}(1 \leq j \leq N-I)$ to $I+1$ row-vectors as above. Let M be the $(N+1) \times(N+1)$-matrix whose row vectors are these $N+1$ vectors. Then we have

$$
\operatorname{det} M= \pm \operatorname{det} \Delta_{N-I} \cdot \operatorname{det} K_{I}
$$

Through (2.5), (2.6), (2.9), (2.10), (2.22), the set of these $N+1$ row-vectors becomes the minimal one in the lexicographic order. Thus the order-sequence of the curve
$X \subset \mathbb{P}^{N}$ in Case [C] is as follows: In case $\left(C_{\alpha}\right) ; 0 \leq \alpha \leq p^{e_{0}-1}-1$, for $\alpha=0,1$ Case, we have

$$
\varepsilon_{i}=i(0 \leq i \leq I), \quad \varepsilon_{I+i}=i q_{0}(1 \leq i \leq N-I)
$$

for $\quad \alpha \geq 2$ Case, we have

$$
\begin{aligned}
\varepsilon_{i} & =i \quad(0 \leq i \leq 2 p-2) \\
\varepsilon_{r p-r+1+i} & =r p+i \quad(0 \leq i \leq p-2,2 \leq r \leq \alpha-1) \\
\varepsilon_{\alpha p-\alpha+1+i} & =\alpha p+i \quad(0 \leq i \leq I-1+\alpha-\alpha p) \\
\varepsilon_{I+i} & =i q_{0} \quad(1 \leq i \leq N-I)
\end{aligned}
$$

3. Proof of the Theorem

Let q^{\prime} be a positive integer power of the characteristic p. By (1.3), in order to show $" \iota\left(q^{\prime} ; X\right)=I$ ", it is sufficient to show the truth of the following assertions:
(3.1)" $I+1$ row-vectors $\mathfrak{f}^{q^{\prime}}, D_{x}^{\left(\varepsilon_{i}\right)} \cdot \mathfrak{f}(0 \leq i \leq I-1)$ are linearly independent over

$$
k(X) "
$$

and
(3.2)" $I+2$ row-vectors $\mathfrak{f}^{q^{\prime}}, D_{x}^{\left(\varepsilon_{i}\right)} \cdot \mathfrak{f}(0 \leq i \leq I)$ are linearly dependent over $k(X)$ ".

Case [A]. Let $q^{\prime}=q^{2}$.
Since $x-x^{q^{\prime}} \neq 0$, two row-vectors $\mathfrak{f}^{q^{\prime}}, D_{x}^{(0)} \cdot \mathfrak{f}$ are linearly independent over $k(X)$. Then the assertion (3.1) is true.

Now we shall show the truth of the assertion (3.2). Let $D_{i j k}$ with $i<j<k$, be the 3 -minor consisting of the $i-$ th column, the $j-$ th column, the k-th column of $3 \times(N+1)$-matrix whose row vectors are three vectors $\mathfrak{f}^{q^{\prime}}, D_{x}^{(0)} \cdot \mathfrak{f}, D_{x}^{(1)} \cdot \mathfrak{f}$. Then each $D_{i j k}$ is as follows:

$$
\begin{aligned}
& D_{123}=\left(x-x^{q^{\prime}}\right) D_{x}(y)-\left(y-y^{q^{\prime}}\right), \\
& D_{12 k}=\left(x-x^{q^{\prime}}\right) D_{x}\left(z_{k}\right)-\left(z_{k}-z_{k}^{q^{\prime}}\right), \\
& D_{13 k}=\left(y-y^{q^{\prime}}\right) D_{x}\left(z_{k}\right)-\left(z_{k}-z_{k}^{q^{\prime}}\right) D_{x}(y) \text {, } \\
& D_{1 k k^{\prime}}=\left(z_{k}-z_{k}^{q^{\prime}}\right) D_{x}\left(z_{k^{\prime}}\right)-\left(z_{k^{\prime}}-z_{k^{\prime}}^{q^{\prime}}\right) D_{x}\left(z_{k}\right), \\
& D_{23 k}=\left(y^{q^{\prime}}-x^{q^{\prime}} D_{x}(y)\right)\left(z_{k}-x D_{x}\left(z_{k}\right)\right) \\
& -\left(y-x D_{x}(y)\right)\left(z_{k}^{q^{\prime}}-x^{q^{\prime}} D_{x}\left(z_{k}\right)\right), \\
& D_{2 k k^{\prime}}=\left(z_{k}^{q^{\prime}}-x^{q^{\prime}} D_{x}\left(z_{k}\right)\right)\left(z_{k^{\prime}}-x D_{x}\left(z_{k^{\prime}}\right)\right) \\
& -\left(z_{k}-x D_{x}\left(z_{k}\right)\right)\left(z_{k^{\prime}}^{q^{\prime}}-x^{q^{\prime}} D_{x}\left(z_{k^{\prime}}\right)\right), \\
& D_{3 k k^{\prime}}=\left(z_{k}^{q^{\prime}} z_{k^{\prime}}-z_{k} z_{k^{\prime}}^{q^{\prime}}\right) D_{x}(y) \\
& -\left(y^{q^{\prime}} z_{k^{\prime}}-y z_{k^{\prime}}^{q^{\prime}}\right) D_{x}\left(z_{k}\right) \\
& +\left(y^{q^{\prime}} z_{k}-y z_{k}^{q^{\prime}}\right) D_{x}\left(z_{k^{\prime}}\right), \\
& D_{k k^{\prime} k^{\prime \prime}}=\left(z_{k^{\prime}}^{q^{\prime}} z_{k^{\prime \prime}}-z_{k^{\prime}} z_{k^{\prime \prime}}^{q^{\prime}}\right) D_{x}\left(z_{k}\right) \\
& -\left(z_{k}^{q^{\prime}} z_{k^{\prime \prime}}-z_{k} z_{k^{\prime \prime}}^{q^{\prime}}\right) D_{x}\left(z_{k^{\prime}}\right) \\
& +\left(z_{k}^{q^{\prime}} z_{k^{\prime}}-z_{k} z_{k^{\prime}}^{q^{\prime}}\right) D_{x}\left(z_{k^{\prime \prime}}\right)
\end{aligned}
$$

$\left(D_{x}=D_{x}^{(1)}, 4 \leq k<k^{\prime}<k^{\prime \prime}\right)$.
By using (2.1), we have, for $q^{\prime}=q^{2}$,

$$
\begin{align*}
D_{123} & =\frac{-1}{y^{q}}\left\{1-\left(x^{q+1}+y^{q+1}\right)^{q}\right\}, \tag{3.3}\\
D_{12 k} & =\frac{-1}{z_{k}^{q}}\left\{\left(x^{q+1}+z_{k}^{q+1}\right)-\left(x^{q+1}+z_{k}^{q+1}\right)^{q}\right\}, \\
D_{13 k} & =\frac{-x^{q}}{\left(y z_{k}\right)^{q}}\left\{\left(y^{q+1}-z_{k}^{q+1}\right)-\left(y^{q+1}-z_{k}^{q+1}\right)^{q}\right\}, \\
D_{1 k k^{\prime}} & =\frac{-x^{q}}{\left(z_{k} z_{k^{\prime}}\right)^{q}}\left\{\left(z_{k}^{q+1}-z_{k^{\prime}}^{q+1}\right)-\left(z_{k}^{q+1}-z_{k^{\prime}}^{q+1}\right)^{q}\right\},
\end{align*}
$$

$$
\begin{aligned}
D_{23 k}= & \frac{1}{\left(y z_{k}\right)^{q}}\left\{\left(x^{q+1}+y^{q+1}\right)^{q}\left(x^{q+1}+z_{k}^{q+1}\right)\right. \\
& \left.-\left(x^{q+1}+y^{q+1}\right)\left(x^{q+1}+z_{k}^{q+1}\right)^{q}\right\}, \\
D_{2 k k^{\prime}}= & \frac{1}{\left(z_{k} z_{k^{\prime}}\right)^{q}}\left\{\left(x^{q+1}+z_{k}^{q+1}\right)^{q}\left(x^{q+1}+z_{k^{\prime}}^{q+1}\right)\right. \\
& \left.-\left(x^{q+1}+z_{k}^{q+1}\right)\left(x^{q+1}+z_{k^{\prime}}^{q+1}\right)^{q}\right\}, \\
D_{3 k k^{\prime}}= & \frac{-x^{q}}{\left(y z_{k} z_{k^{\prime}}\right)^{q}}\left\{\left(z_{k}^{q+1}-y_{k}^{q+1}\right)^{q}\left(z_{k^{\prime}}^{q+1}-y^{q+1}\right)\right. \\
& \left.-\left(z_{k}^{q+1}-y^{q+1}\right)\left(z_{k^{\prime}}^{q+1}-y^{q+1}\right)^{q}\right\}, \\
D_{k k^{\prime} k^{\prime \prime}}= & \frac{-x^{q}}{\left(z_{k} z_{k^{\prime}} z_{k^{\prime \prime}}\right)^{q}}\left\{\left(z_{k^{\prime}}^{q+1}-z_{k}^{q+1}\right)^{q}\left(z_{k^{\prime \prime}}^{q+1}-z_{k}^{q+1}\right)\right. \\
& \left.-\left(z_{k^{\prime}}^{q+1}-z_{k}^{q+1}\right)\left(z_{k^{\prime \prime}}^{q+1}-z_{k}^{q+1}\right)^{q}\right\} .
\end{aligned}
$$

Therefore, from the defining-equation of the curve, it is seen that these $D_{i j k}$ are all vanished. Thus, for $q^{\prime}=q^{2}$, three row-vectors $\mathfrak{f}^{q^{\prime}}, D_{x}^{(0)} \cdot \mathfrak{f}, D_{x}^{(1)} \cdot \mathfrak{f}$ are linearly dependent over $k(X)$. Therefore the assertion (3.2) is true. Consequently, in Case [A], we have obtained

$$
\iota\left(q^{\prime} ; X\right)=I \quad \text { if } \quad q^{\prime}=q^{2}
$$

Case [B]. Let $q^{\prime}=q^{2}$.
In this case, since $I=N$, the assertion (3.2) is true. Now we shall show the truth of the assertion (3.1), i.e., $\operatorname{det} M^{\left(q^{\prime}\right)} \neq 0$, where $M^{\left(q^{\prime}\right)}$ denotes the $(N+1) \times$ $(N+1)$-matrix whose row vectors are $N+1$ vectors $\mathfrak{f}^{q^{\prime}}, D_{x}^{\left(\varepsilon_{i}\right)} \cdot \mathfrak{f}(0 \leq i \leq N-1)$. We put

$$
\begin{gathered}
n:= \begin{cases}2 & \text { in Case }\left(B_{1}\right) \\
N-p^{e}+p^{e-1}+1 & \text { in Case } \quad\left(B_{2}\right)\end{cases} \\
\Delta^{\left(q^{\prime}\right)}:=\left(\begin{array}{ccc}
1 & x^{q^{\prime}} & u_{N-1}^{q^{\prime}} \\
1 & x & u_{N-1} \\
0 & 1 & D_{x}\left(u_{N-1}\right)
\end{array}\right)
\end{gathered}
$$

By Section 2, it is seen that

$$
D_{x}^{\left(\varepsilon_{i}\right)}\left(u_{N-1}\right)=0 \quad \text { for } \quad 2 \leq i \leq N-1
$$

Then it is obtained that, in Case $\left(B_{1}-1\right)$;

$$
\begin{aligned}
\operatorname{det} M^{\left(q^{\prime}\right)} & = \pm \operatorname{det} \Delta^{\left(q^{\prime}\right)} \cdot \operatorname{det} U_{I-2} \quad \text { if } \quad I \leq p \\
\operatorname{det} M^{\left(q^{\prime}\right)} & = \pm \operatorname{det} \Delta^{\left(q^{\prime}\right)} \cdot \operatorname{det} U_{p-2} \cdot \operatorname{det} V_{I-p-1} \quad \text { if } \quad p<I \leq 2 p-1
\end{aligned}
$$

in Case $\left(B_{1}-\alpha\right)$ for $2 \leq \alpha \leq p^{e-1}$;

$$
\operatorname{det} M^{\left(q^{\prime}\right)}= \pm \operatorname{det} \Delta^{\left(q^{\prime}\right)} \cdot \operatorname{det} U_{p-2} \cdot\left(\operatorname{det} V_{p-2}\right)^{\alpha-1} \cdot \operatorname{det} V_{I-\alpha p+\alpha-2}
$$

in Case $\left(B_{2}\right)$;

$$
\begin{aligned}
\operatorname{det} M^{\left(q^{\prime}\right)}= & \pm \operatorname{det} \Delta^{\left(q^{\prime}\right)} \cdot \operatorname{det} U_{p-2} \cdot\left(\operatorname{det} V_{p-2}\right)^{p^{e-1}-1} \\
& \times \prod_{i=2}^{I-p^{e}+p^{e-1}}\left(x-x^{q^{2 i}}\right)
\end{aligned}
$$

By $D_{x}\left(u_{N-1}\right)=x^{q^{n}}$,

$$
\operatorname{det} \Delta^{\left(q^{\prime}\right)}=\left(x-x^{q^{\prime}}\right) x^{q^{n}}-u_{N-1}+u_{N-1}^{q^{\prime}}
$$

Therefore the left-hand side of this equality equals

$$
\begin{array}{ll}
2 x^{q^{2}+1}-x^{2 q^{2}}-2 u_{N-1} \quad \text { in Case } \quad\left(B_{1}\right) \\
x^{q^{n}+1}-x^{q^{2}+q^{n}}-u_{N-1}+u_{N-1}^{q^{2}} & \text { in Case } \quad\left(B_{2}\right)
\end{array}
$$

$\left(n=I-p^{e}+p^{e-1}+1 \geq 3\right)$.
Hence $\operatorname{det} \Delta^{\left(q^{\prime}\right)} \neq 0$. Therefore, in Case [B], by (2.17), (2.18), we get $\operatorname{det} M^{\left(q^{\prime}\right)} \neq$ 0 . Consequently, in Case [B], we have obtained

$$
\iota\left(q^{\prime} ; X\right)=I \quad \text { if } \quad q^{\prime}=q^{2}
$$

Case [C]. Let $q^{\prime}=q_{0}^{2}$.
Let $M_{h}^{\left(q^{\prime}\right)}$ be the $(h+2) \times(N+1)$-matrix whose row vectors are $h+2$ vectors $\mathfrak{f}^{q^{\prime}}, D_{x}^{\left(\varepsilon_{i}\right)} \cdot \mathfrak{f}(0 \leq i \leq h)$.

In the matrix $M_{I}^{\left(q^{\prime}\right)}$, we take arbitrarily s vectors in the set of 1st-column, 2ndcolumn, 3rd-column,..., $(N-I+2)$ th-column vectors, and t vectors in the set of $(N-I+3)$ th-column, $(N-I+4)$ th-column,..., $(N+1)$ th-column vectors, where $s+t=I+2$.

Then, since $s \geq 3$ by $0 \leq t \leq I-1, s$ columns in the former set are linearly dependent over $k(X)$ by (3.3). Hence $s+t$ vectors as above are linearly dependent over $k(X)$. Therefore all $(I+2)$-minors of $M_{I}^{\left(q^{\prime}\right)}$ are vanished, and hence the assertion (3.2) is true.

Now we shall show the truth of the assertion (3.1). We put

$$
S_{I}^{\left(q^{\prime}\right)}=M_{I}^{\left(q^{\prime}\right)}\binom{1,2,3, \ldots, I+1}{1,2, N-I+3, \ldots, N+1}
$$

where the right-hand side denotes a $(I+1) \times(I+1)$-matrix whose row vectors (resp. column vectors) are 1st-row, 2nd-row, 3rd-row,..., $(I+1)$ th-row (resp. 1stcolumn, 2nd-column, $(N-I+3)$ th-column,..., $(N+1)$ th-column $)$ of $M_{I}^{\left(q^{\prime}\right)}$. Then we shall see that $\operatorname{det} S_{I}^{\left(q^{\prime}\right)} \neq 0$. Let S^{\prime} be the $(I+1) \times(I+1)$-matrix obtained by subtracting 1st-row from 2nd-row in $S_{I}^{\left(q^{\prime}\right)}$, and let $T_{I}^{\left(q^{\prime}\right)}$ be the $I \times I$-matrix obtained by taking off 1st-row and 1 st-column in S^{\prime}. Then we have $\operatorname{det} S_{I}^{\left(q^{\prime}\right)}=\operatorname{det} T_{I}^{\left(q^{\prime}\right)}$. For our purpose, it is sufficient to show that $\operatorname{det} T_{I}^{\left(q^{\prime}\right)} \neq 0$. Now we put $T_{I}=T_{I}^{\left(q^{\prime}\right)}$.

Case $\quad 1<I \leq p-1$:
The coordinates of 1 st-row vector of T_{I} are $x-x^{q_{0}^{2}}, u_{i}-u_{i}^{q_{0}^{2}}(1 \leq i \leq I-1)$ respectively, and each $u_{i}-u_{i}^{q_{0}^{2}}$ equals $x^{i+1}-x^{(i+1) q_{0}}(1 \leq i \leq I-1)$. Since the determinant of $(I-1) \times(I-1)$-submatrix of T_{I} consisting of "i-th row, j-th column" elements $(2 \leq i \leq I, 1 \leq j \leq I-1)$ equals det U_{I-2}, the set of 2 nd-row, 3rd-row, 4th-row,..., I th-row vectors of T_{I} are linearly independent over $k(X)$, by (2.17).

Suppose that the 1st-row vector of T_{I} is a linear combination of these $I-1$ row-vectors with coefficients $\lambda_{i}(1 \leq i \leq I-1)$ in $k(X)$. Then we have

$$
\lambda_{1}=x-x^{q_{0}^{2}}, \lambda_{i}=\left(x^{i}-x^{i q_{0}}\right)-\sum_{j=1}^{i-1}\binom{i}{j} \lambda_{j} x^{i-j}(2 \leq i \leq I-1)
$$

and moreover we have the equality

$$
\sum_{i=1}^{I-1}\binom{I}{i} \lambda_{i} x^{I-i}=x^{I}-x^{I q_{0}}
$$

The left-hand side of this equality is in $\mathbb{F}_{p}[x]$ and does not contain the term $x^{I q_{0}}$. This is absurd. Thus we see that I row-vectors of T_{I} are linearly independent over $k(X)$. Hence we have $\operatorname{det} T_{I} \neq 0$.

Case $\quad \alpha p-\alpha+1 \leq I \leq \alpha p-\alpha+p-1$, where

$$
1 \leq \alpha \leq p^{e_{0}-1}-1(\alpha \in \mathbb{Z})
$$

The coordinates of 1st-row vector of T_{I} are $x-x^{q_{0}^{2}}, u_{i}-u_{i}^{q_{0}^{2}}(1 \leq i \leq p-2) ; u_{p-2+i}-$ $u_{p-2+i}^{q_{0}^{2}} ; \ldots ; u_{(\alpha-1) p-\alpha+i}-u_{(\alpha-1) p-\alpha+i}^{q_{0}^{2}}(1 \leq i \leq p-1) ; u_{\alpha p-\alpha-1+i}-u_{\alpha p-\alpha-1+i}^{q_{0}^{2}}(1 \leq$ $i \leq I+\alpha-\alpha p)$ respectively, and we have, by the defining-equation of the curve in Case [C],

$$
\begin{gathered}
u_{i}-u_{i}^{q_{0}^{2}}=x^{i+1}-x^{(i+1) q_{0}}(1 \leq i \leq p-2) \\
u_{p-2+i}-u_{p-2+i}^{q_{0}^{2}}=x^{p+i}-x^{(p+i) q_{0}}(1 \leq i \leq p-1) \\
\cdots \cdots \cdots \\
u_{(\alpha-1) p-\alpha+i}-u_{(\alpha-1) p-\alpha+i}^{q_{0}^{2}}=x^{(\alpha-1) p+i}-x^{((\alpha-1) p+i) q_{0}}(1 \leq i \leq p-1) \\
u_{\alpha p-\alpha-1+i}-u_{\alpha p-\alpha-1+i}^{q_{0}^{2}}=x^{\alpha p+i}-x^{(\alpha p+i) q_{0}}(1 \leq i \leq I+\alpha-\alpha p)
\end{gathered}
$$

Since the determinant of $(I-1) \times(I-1)$-submatrix of T_{I} consisting of "i-th row, j-th column" elements $(2 \leq i \leq I, 1 \leq j \leq I-1)$ equals

$$
\operatorname{det} U_{p-2} \cdot\left(\operatorname{det} V_{p-2}\right)^{\alpha-1} \cdot \operatorname{det} V_{I-2+\alpha-\alpha p}
$$

the set of 2 nd-row, 3 rd-row, 4 th-row, .., I th-row vectors of T_{I} are linearly independent over $k(X)$, by (2.17), (2.18). Suppose that the 1st-row vector of T_{I} is a linear combination of these $I-1$ row-vectors with coefficients $\lambda_{i}(1 \leq i \leq I-1)$ in $k(X)$.
" $\alpha=1$ and $I=p$ " Case. Then, in this case, we have

$$
\lambda_{1}=x-x^{q_{0}^{2}} \quad \text { and } \quad\binom{p+1}{1} \lambda_{1}=x^{p+1}-x^{(p+1) q_{0}}
$$

Therefore $x^{q_{0}^{2}+p}=x^{(p+1) q_{0}}$. Since $q_{0}=p^{e_{0}}$ with $e_{0}>1$, this is absurd. Thus we see that $\operatorname{det} T_{I} \neq 0$.
" $\alpha=1$ and $I=p+1$ " Case. Then, in this case, we have

$$
\begin{aligned}
& \lambda_{1}=x-x^{q_{0}^{2}}, \lambda_{2}=\left(x^{2}-x^{2 q_{0}}\right)-\binom{2}{1} \lambda_{1} x \\
& \binom{p+1}{1} \lambda_{1} x^{p}+\binom{p+1}{p} \lambda_{p} x=x^{p+1}-x^{(p+1) q_{0}} \\
& \binom{p+2}{1} \lambda_{1} x^{p+1}+\binom{p+2}{2} \lambda_{2} x^{p}+\binom{p+2}{p} \lambda_{p} x^{2}=x^{p+2}-x^{(p+2) q_{0}}
\end{aligned}
$$

The left-hand sides of these equalities are in $\mathbb{F}_{p}[x]$ and the left-hand side of the 4 th equality does not contain the term $x^{(p+2) q_{0}}$. This is absurd. Thus we see that $\operatorname{det} T_{I} \neq 0$.

We shall proceed with the similar argument. Consequently, we shall obtain that $\operatorname{det} T_{I} \neq 0$ in each of the cases for $\{\alpha, I\}$.

Thus, in Case [C], we have obtained

$$
\iota\left(q^{\prime} ; X\right)=I \quad \text { if } \quad q^{\prime}=q_{0}^{2}
$$

4. The number of rational points in Case [A]

Let the curve $X \subset \mathbb{P}^{N}$ be as in Case $[\mathrm{A}]$ of the Theorem. First, we shall show that X is smooth. Expressing the equations defining this curve by the homogeneous forms, we have

$$
\begin{gathered}
h_{0}:=x_{1}^{q+1}+x_{2}^{q+1}-p_{0} x_{0}^{q+1}=0 \\
h_{1}:=x_{1}^{q+1}+x_{3}^{q+1}-p_{1} x_{0}^{q+1}=0 \\
h_{2}:=x_{1}^{q+1}+x_{4}^{q+1}-p_{2} x_{0}^{q+1}=0 \\
\cdots \cdots \\
h_{i}:=x_{1}^{q+1}+x_{i+2}^{q+1}-p_{i} x_{0}^{q+1}=0 \\
\quad \cdots \cdots \\
h_{N-2}:=x_{1}^{q+1}+x_{N}^{q+1}-p_{N-2} x_{0}^{q+1}=0
\end{gathered}
$$

$\left(p_{0}=1\right)$.
Then the Jacobian-matrix $J:=\left(\frac{\partial h_{i}}{\partial x_{j}}\right)_{0 \leq i \leq N-2,0 \leq j \leq N}$ of the curve $X \subset \mathbb{P}^{N}$ becomes

$$
J=\left(\begin{array}{ccccccc}
-p_{0} x_{0}^{q} & x_{1}^{q} & x_{2}^{q} & 0 & 0 & \cdots & 0 \\
-p_{1} x_{0}^{q} & x_{1}^{q} & 0 & x_{3}^{q} & 0 & \cdots & 0 \\
-p_{2} x_{0}^{q} & x_{1}^{q} & 0 & 0 & x_{4}^{q} & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
-P_{N-2} x_{0}^{q} & x_{1}^{q} & 0 & 0 & 0 & \cdots & x_{N}^{q}
\end{array}\right) .
$$

Let the field k be an algebraic closure of \mathbb{F}_{q}. We shall verify that "rank $J=$ $N-1 "$ at any point $P=\left(x_{0}: x_{1}: \cdots: x_{N}\right)$ in $X(k)$, as follows.

Suppose that rank $J<N-1$ at some point P in $X(k)$. Then, at P, there exists a linear relation $\sum_{i=0}^{N-2} \lambda_{i} \mathfrak{u}_{i}=0$ of "row-vectors \mathfrak{u}_{i} 's in the matrix J ", with coefficients λ_{i} in k, where some one of the λ_{i} 's is not zero.

Now, suppose that $\lambda_{i} \neq 0$. Then $x_{i+2}=0$ by $\lambda_{i} x_{i+2}^{q}=0$. Moreover, suppose that there exist some $j(\neq i)$ such that $\lambda_{j} \neq 0$. Then, since $x_{i+2}=x_{j+2}=0$, we have $p_{i} x_{0}^{q+1}=p_{j} x_{0}^{q+1}$ by $h_{i}(P)=h_{j}(P)=0$. Hence $x_{0}=0$ by $p_{i} \neq p_{j}$. Therefore, assuming the existence of j as above, we get $x_{0}=x_{i+2}=0$ and hence $x_{0}=x_{1}=0$ by $h_{i}(P)=0$. Consequently, it occurs that " $x_{0}=x_{1}=x_{r}=0$ for any r with $2 \leq r \leq N$ ", from " $h_{s}(P)=0$ for any s with $0 \leq s \leq N-2$ ". This is absurd. Thus j as above does not exist. Then it occurs that if $\lambda_{i} \neq 0$ then $\lambda_{j}=0$ for any $j(\neq i)$. And, in this case, we get $\lambda_{i} x_{1}^{q}=\lambda_{i} p_{i} x_{0}^{q}=0$ and hence $x_{0}=x_{1}=0$ by " $\lambda_{i} \neq 0, p_{i} \neq 0$ ", from the above linear relation. Similarly to the above, it occurs that " $x_{0}=x_{1}=x_{r}=0$ for any r with $2 \leq r \leq N$ ". This is absurd.

Through the above argument, it has been obtained that all coefficients λ_{i} of the above linear relation are zeroes, and hence the row-vectors \mathfrak{u}_{i} 's $(0 \leq i \leq N-2)$ of J are linearly independent over k. Thus we get $\operatorname{rank} J=N-1$ at any P. Therefore X is smooth.

Let g be the genus of X, and $d_{1}, d_{2}, \ldots, d_{N-1}$ be the degrees of equations defining X, respectively. Then through the known genus-formula:

$$
g=1+\frac{1}{2} \cdot \prod_{i=1}^{N-1} d_{i} \cdot\left(\sum_{i=1}^{N-1} d_{i}-N-1\right)
$$

(cf. Chapter IV, $\S 2-7$ in [5]), we have

$$
g=1+\frac{1}{2}(q+1)^{N-1}[(N-1) q-2]
$$

by $d_{i}=q+1(1 \leq i \leq N-1)$.
On the other hand, let d be the degree of X and $\Gamma_{q^{\prime}, N}$ be the number of $\mathbb{F}_{q^{\prime}}$ rational points on the curve X. In Case $[\mathrm{A}]$, since $\iota\left(q^{\prime} ; X\right)=1$ for $q^{\prime}=q^{2}$, we have

$$
\Gamma_{q^{\prime}, N}=d\left(q^{\prime}-1\right)-(2 g-2) \quad \text { for } \quad q^{\prime}=q^{2}
$$

through the formula of Theorem 1 in [3].
Therefore, for the curve $X \subset \mathbb{P}^{N}$ in Case [A] of the Theorem, it is obtained that

$$
\Gamma_{q^{\prime}, N}=(q+1)^{N-1}\left[q^{2}+1-(N-1) q\right] \quad \text { for } \quad q^{\prime}=q^{2}
$$

by $d=(q+1)^{N-1}$.

References

1. A. García and M. Homma, Frobenius Order-Sequences of Curves, in "Proceeding of the Conference on Algebra and Number Theory held at the Institute for Experimental Mathematics, University of Essen (Germany), December 2-4, 1992", pp. 1-15.
2. A. García and J.F. Voloch, Duality for projective curves, Bol. Soc. Bras. Mat. 21(2) (1991), 159-175.
3. A. Hefez and J.F. Voloch, Frobenius non classical curves, Arch. Math. 54 (1990), 263-273.
4. F.K. Schmidt, Die Wronskische Determiante in beliebigen differenzierbaren Funktionenkörpern, Math. Z. 45 (1939), 62-74.
5. J.-P. Serre, Groupes algébriques et corps de classes, Actualités Sci. Ind. Hermann, 1959.
6. K.-O. Stöhr and J.F. Voloch, Weierstrass points and curves over finite fields, Proc. London Math. Soc. 52(3) (1986), 1-19.
