Collectanea Mathematica (electronic version): http://www.mat.ub.es/CM

Collect. Math. **50**, 3 (1999), 229–241 © 1999 Universitat de Barcelona

On the genus of $\mathbb{R}P^3 \times \mathbb{S}^{1*}$

Fulvia Spaggiari

Dipartimento di Matematica Pura ed Applicata, Università di Modena, via Campi 213/B, 41100 Modena, Italy E-mail: spaggiar@unimo.it

Received November 5, 1997. Revised September 21, 1998

Abstract

We continue the topological classification of closed connected orientable 4-manifolds according to the (regular) genus, as developed in a series of papers (see [3], [4], [5]). In particular, we prove that any closed prime orientable PL 4-manifold of genus six is topologically homeomorphic to a lens-fiber bundle over the 1-sphere. There are good reasons to conjecture that the genus six characterizes the topological product $\mathbb{RP}^3 \times \mathbb{S}^1$ of the real projective 3-space by the 1-sphere among closed connected prime orientable 4-manifolds.

1. Introduction

Through the paper we shall work in the piecewise linear (PL) category [16] and represent (PL) manifolds by means of edge-colored graphs, as shown for example in [1] and [8]. We recall now the main concepts and definitions used in the paper. For more details on graph theory and on the combinatorics of colored triangulations of manifolds see for example [1], [8] and [12]. An (n+1)-colored graph is a pair (Γ, γ) , where $\Gamma = (V, E)$ is a finite multigraph, regular of degree n + 1, and $\gamma : E \to \Delta_n =$

^{*} Work performed under the auspices of the G.N.S.A.G.A. of the National Research Council of Italy and partially supported by the Ministero per la Ricerca Scientifica e Tecnologica of Italy within the project "Geometria Reale e Complessa".

 $0 \leq i \leq n$ is a coloring of the edges of Γ , i.e. any two adjacent edges $\{i \in \mathbb{Z} :$ of Γ have different colors. An *n*-pseudocomplex $K(\Gamma)$ can be associated to (Γ, γ) by the following rules. We consider an *n*-simplex $\sigma^n(v)$ for each vertex v of Γ and label its vertices by Δ_n . If two vertices v and w are joined in Γ by a c-colored edge, then we identify the (n-1)-faces of the simplexes $\sigma^n(v)$ and $\sigma^n(w)$ opposite to the vertex labeled by c, so that equally labeled vertices are identified. Let \hat{c} denote the set $\Delta_n \setminus \{c\}$. For any subset $B \subset \Delta_n$, we set $\Gamma_B = (V, \gamma^{-1}(B))$. An (n+1)-colored graph (Γ, γ) is said to be a *crystallization* of a closed connected PL *n*-manifold M if $\Gamma_{\hat{c}}$ is connected for any color $c \in \Delta_n$ and the polyhedron $|K(\Gamma)|$, underlying $K(\Gamma)$, is (PL) homeomorphic to M, i.e. $|K(\Gamma)| \cong M$. We say that $K(\Gamma)$ is a contracted triangulation of M and that Γ represents M and every homeomorphic space. It is well-known that any closed connected PL n-manifold admits a crystallization (see for example [8]). A 2-cell embedding $f: |\Gamma| \to F$ of an (n+1)-colored graph (Γ, γ) into a closed connected surface F is called *regular* if there exists a cyclic permutation $\epsilon = (\epsilon_0, \epsilon_1, \cdots, \epsilon_n)$ of Δ_n such that each region of f is bounded by a cycle with edges alternatively colored by ϵ_i , ϵ_{i+1} (indices mod n+1). The genus of Γ , written $g(\Gamma)$, is the minimum genus of a closed connected surface into which Γ regularly embeds. The regular genus q(M) of a closed connected PL n-manifold M is the smallest $g(\Gamma)$ over all crystallizations Γ of M. In this paper, we construct a 5-colored graph which represents the topological product $\mathbb{R}P^3 \times \mathbb{S}^1$. Then eliminating dipoles (see [8]) from this graph yields a crystallization of $\mathbb{R}P^3 \times \mathbb{S}^1$, which has order 40 and genus 6. This implies that $q(\mathbb{R}P^3 \times \mathbb{S}^1) \leq 6$. Then we show that the regular genus of this manifold equals 6 by using some results proved in [5]. Moreover, we classify the topological structure of closed connected prime orientable 4-manifolds of genus six. Indeed, these manifolds are proved to be homeomorphic to lens-fiber bundles over the 1-sphere. If further the manifold is spin, i.e. the second Stiefel-Whitney class vanishes, then the bundle is trivial so it is homeomorphic to either $L(p,q) \times \mathbb{S}^1$, $q \neq 0$, or $\mathbb{S}^1 \times \mathbb{S}^2 \times \mathbb{S}^1$. Finally we conjecture that $\mathbb{R}P^3 \times \mathbb{S}^1$ is the unique, up to homeomorphism, closed connected prime orientable 4-manifold of genus six.

2. A crystallization of $L(p,q) \times \mathbb{S}^1$

Let L(p,q) be the lens space of type (p,q), where p, q are coprime integers such that $p > q \ge 1$. In this section we shall construct a simple crystallization of the topological product $L(p,q) \times \mathbb{S}^1$, whose genus is less or equal to 6p-6. This implies that $g(\mathbb{RP}^3 \times \mathbb{S}^1) \le 6$ as $\mathbb{RP}^3 \cong L(2,1)$. Let K = K(p,q) denote the standard contracted triangulation of the lens space L(p,q), as given in [1]. We triangulate each 4-cell of $K \times I$, I = [0, 1], by taking the join over a complex from an opposite vertex, in some standard way. Then we label the vertices of each 4-cell by the elements of Δ_4 in a standard way, so that all vertices of each simplex of the previous triangulation are differently labeled. It is not yet convenient to identify the top of $K \times I$ with the bottom of it because the quotient would not be a pseudocomplex. Therefore we consider a copy $K \times J$, J = [1, 2], of $K \times I$, which is triangulated as the previous one and label its vertices by the elements of Δ_4 too. Then we identify the top of $K \times J$ with the bottom of $K \times I$ in order to obtain a pseudocomplex $\tilde{K} = \tilde{K}(p,q)$ triangulating the topological product $L(p,q) \times \mathbb{S}^1$. In Figure 1 we show the 5-colored graphs representing the pseudocomplexes $K \times I$ and $K \times J$ respectively, for the case (p,q) = (2,1).

We obtain now a (noncontracted) 5-colored graph $\Gamma = \Gamma(p, q)$ representing \tilde{K} by using the rules discussed in Section 1. The graph Γ is isomorphic to the 1-skeleton of the dual cellular subdivision of \tilde{K} . Thus Γ has exactly 32*p* vertices, which are the barycenters of the *n*-cells of \tilde{K} . The coloring of Γ is obtained by assigning to each edge the color of the vertex opposite to its dual 3-cell in \tilde{K} . For each cyclic permutation ϵ of Δ_4 , the graph Γ regularly embeds into a closed connected orientable surface of genus *g*, according to the following table:

e	g
(01234)	10p - 7
(01243)	8p-3
(01324)	8p-3
(01342)	5p + 1
(01423)	5p + 1
(01432)	4p + 1
(02134)	11p - 7
(02143)	8p-3
(02314)	8p-3
(02413)	6p + 1
(03124)	12p - 7
(03214)	11p - 7.

We simplify now Γ by deleting some dipoles (see [8]) in order to obtain a crystallization of $L(p,q) \times \mathbb{S}^1$. Eliminating dipoles of type 1 and the induced dipoles of types 2 and 3 produces a contracted graph (crystallization) representing $L(p,q) \times \mathbb{S}^1$, as shown in Figure 2 for the case (p,q) = (2,1).

Now it is very easy to check that the genus of this crystallization equals 6p-6 by using the cyclic permutation $\epsilon = (01432)$. This implies that $g(L(p,q) \times \mathbb{S}^1) \leq 6p-6$.

Fig. 1a: A noncontracted 5-colored graph representing $\mathbb{R}\mathrm{P}^3\times[0,1]$

In particular, we have $g(L(2,1) \times \mathbb{S}^1) \leq 6$ as claimed. In summary, we have obtained the following result (use also [5] and [9] and Theorem 2 below).

Proposition 1

Let L(p,q) be the lens space of type (p,q), $p > q \ge 1$. Then the regular genus of the topological product $L(p,q) \times \mathbb{S}^1$ satisfies the inequalities

$$6 \le g(L(p,q) \times S^1) \le \min\{6p - 6, 4p + 1\}.$$

Furthermore, the regular genus of $\mathbb{R}P^3 \times \mathbb{S}^1$ is exactly 6.

Fig. 1b: A noncontracted 5-colored graph representing $\mathbb{R}P^3 \times [1,2]$

3. Main results

In this section we shall study the topological structure of closed connected prime orientable (PL) 4-manifolds of genus 5 and 6. The closed 4-manifolds of genus $g \leq 4$ are completely classified in [3], [4], [5]. Other results concerning the classification of closed connected orientable PL 5-manifolds up to regular genus seven can be found in [2]. We state our main results.

Fig. 2: A genus six crystallization of $\mathbb{R}\mathbf{P^3}\times\mathbb{S}^1$

Theorem 2

Let M be a smooth closed connected orientable prime 4-manifold of genus 5. Then M is homeomorphic to one of the following manifolds: $\#_5(\mathbb{S}^1 \times \mathbb{S}^3), \#_3(\mathbb{S}^1 \times \mathbb{S}^3) \# \mathbb{C}P^2, \mathbb{C}P^2 \# \mathbb{C}P^2 \# (\mathbb{S}^1 \times \mathbb{S}^3), (\mathbb{S}^2 \times \mathbb{S}^2) \# (\mathbb{S}^1 \times \mathbb{S}^3), (\mathbb{S}^2 \times \mathbb{S}^2) \# (\mathbb{S}^1 \times \mathbb{S}^3).$

Theorem 3

Let M be a smooth closed connected orientable prime 4-manifold. If g(M) = 6, then M is homeomorphic to a lens-fiber bundle over the 1-sphere. If further Mis spin, then M is homeomorphic to the topological product $L(p,q) \times \mathbb{S}^1$, $q \neq 0$, possibly including the case $L(0,1) = \mathbb{S}^1 \times \mathbb{S}^2$.

In order to prove these theorems, we recall some constructions and results given in [3], [4], [5]. Let M be a closed connected orientable smooth (or PL) 4-manifold. Let (Γ, γ) be a crystallization of M and $\{v_i \mid i \in \Delta_4\}$ the vertex-set of $K = K(\Gamma)$. If $\{i, j\} = \Delta_4 \setminus \{r, s, t\}$, then K(i, j) (resp. K(r, s, t)) represents the subcomplex of K generated by the vertices v_i, v_j (resp. v_r, v_s, v_t). By g_{rst} (resp. g_{ij}) we denote the number of edges (resp. triangles) of K(i, j) (resp. K(r, s, t)). Note that g_{rst} and g_{ij} also represent the number of components of the subgraphs $\Gamma_{\{r,s,t\}}$ and $\Gamma_{\{i,j\}}$ respectively. If N = N(i, j) and N' = N(r, s, t) are regular neighborhoods of K(i, j) and K(r, s, t) respectively, then N and N' are complementary bordered 4-manifolds, i.e. $M = N \cup N'$ and $N \cap N' = \partial N = \partial N'$. Following [3] and [4], we can always assume that (Γ, γ) regular embeds into the closed orientable surface of genus g = g(M) and of Euler characteristic $\chi(M) = g_{01} + g_{12} + g_{23} + g_{34} + g_{40} - 3p$, where p is the order of Γ divided by 2. As proved in [3], we have the following relations:

$1) g_{013} = 1 + g - g_{\hat{2}} - g_{\hat{4}}$	$6) g_{14} = g_{014} + g - g_{\hat{0}}$
$2) g_{023} = 1 + g - g_{\hat{1}} - g_{\hat{4}}$	$7) g_{02} = g_{012} + g - g_{\hat{1}}$
$3) g_{024} = 1 + g - g_{\hat{1}} - g_{\hat{3}}$	$8) g_{13} = g_{123} + g - g_{\hat{2}}$
$4) g_{124} = 1 + g - g_{\hat{0}} - g_{\hat{3}}$	9) $g_{24} = g_{234} + g - g_{\hat{3}}$
$5) g_{134} = 1 + g - g_{\hat{0}} - g_{\hat{2}}$	$10) g_{03} = g_{034} + g - g_{\hat{4}}$

Furthermore, it was also proved that $\chi(M) = 2 - 2g + \sum_i g_i$, where $g_i \ (0 \le g_i \le g)$ is the genus of an orientable closed surface into which the subgraph $\Gamma_i \ (i \in \Delta_4)$ regularly embeds.

Spaggiari

Proof of Theorem 2. If g = 5, then the sum $R = g_{013} + g_{023} + g_{024} + g_{124} + g_{134} = 5 + 5g - 2\sum_i g_i$ belongs to the set $\{2h : 3 \le h \le 15, h \in \mathbb{N}\}$. For $12 \le R \le 30$, the manifolds are topologically classified in [5]. In particular, if R = 30, then $M \cong \#_5 \mathbb{S}^1 \times \mathbb{S}^3$; if R = 20, then $M \cong \#_3 \mathbb{S}^1 \times S^3 \# \mathbb{C}P^2$. The other cases in that range give a contradiction. We are going to consider the cases $R \in \{6, 8, 10\}$. If R = 6, then $\sum_i g_i = 12$ and $\chi(M) = 4$. Because at least one of the g_{ijk} 's in R equals 1, the 4-manifold M is simply-connected, hence $\chi(M) = 4$ implies that $\beta_2(M) = 2$. Here $\beta_i(M)$ denotes the *i*-th Betti number of M. Now we consider the intersection form λ_M as a pairing $H^2(M) \otimes H^2(M) \to \mathbb{Z}$ so defined: $\lambda_M(x, y) = \langle x \bigcup y, [M] \rangle$, where \cup and [M] denote the cup product and the fundamental class of M respectively. By Donaldson's theorems and Freedman's classification of simply-connected 4-manifolds (see for example [10], [11], [15]), we may have only the following cases:

- 1) If λ_M is positive (resp. negative) definite, then λ_M is isomorphic over the integers to $(1) \oplus (1)$ (resp. $(-1) \oplus (-1)$). Thus M is (TOP) homeomorphic to either $\mathbb{C}P^2 \#\mathbb{C}P^2$ or $(-\mathbb{C}P^2) \#(-\mathbb{C}P^2)$ respectively.
- 2) If λ_M is an odd indefinite form, then λ_M is isomorphic to $(1) \oplus (-1)$, hence $M \cong \mathbb{C}P^2 \# (-\mathbb{C}P^2) \cong \mathbb{S}^2 \times \mathbb{S}^2$.
- 3) If λ_M is an even indefinite form, then λ_M is isomorphic to the form

$$\omega = 2aE_8 + b\begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix},$$

where rank $(\omega)=16|a|+2|b|$. Since rank $(\lambda_M)=\operatorname{rank}(\omega)=\operatorname{rank}H_2(M)=2$, we obtain a=0 and b=1, i.e. $\lambda_M \cong \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. Now the Freedman theorem (see [10], [11]) implies that M is (TOP) homeomorphic to $\mathbb{S}^2 \times \mathbb{S}^2$. All the cases give a contradiction because the above 4-manifolds have genus 4, as shown in [5].

If R = 8, then $\sum_i g_i = 11$ and $\chi(M) = 3$. Because at least one of g_{ijk} 's in R equals 1, the 4-manifold M is simply-connected. The relation $\chi(M) = 3$ implies that $\beta_2(M) = 1$, i.e. $H_2(M) \simeq H^2(M) \simeq FH_2(M) \simeq \mathbb{Z}$. Thus $\lambda_M \cong (\pm 1)$, hence $M \cong \pm \mathbb{C}P^2$. This gives a contradiction because $g(\mathbb{C}P^2) = 2$, as proved in [4].

If R = 10, then $\sum_i g_i = 10$ and $\chi(M) = 2$. If at least one of g_{ijk} 's in R equals 1, then $\Pi_1(M) = 0$, hence $\chi(M) = 2$ and $\beta_2(M) = 0$. Thus $H_2(M) = 0$, $\lambda_M \cong 0$ and M is homeomorphic to the 4-sphere \mathbb{S}^4 . This gives a contradiction because $g(\mathbb{S}^4) = 0$.

If $g_{ijk} \geq 2$, then we obtain $g_{013} = g_{023} = g_{024} = g_{124} = g_{134} = 2$. Thus $1 \leq \operatorname{rank}\Pi_1(M) \leq 1 = g_{013} - 1$, i.e. we have either $\Pi_1(M) \cong \mathbb{Z}$ or $\Pi_1(M) \cong \mathbb{Z}_n$. If $\Pi_1(M) \cong \mathbb{Z} \cong H_1(M)$, then $\chi(M) = 2$ implies that $\beta_2(M) = 2$, hence $H_2(M) = \mathbb{Z} \oplus \mathbb{Z}$. By $(1), \dots, (5)$ we obtain $g_0 = g_1 = g_2 = g_3 = g_4 = 2$. By $(6), \dots, (10)$ it follows that $g_{14} = g_{014} + 3$, $g_{02} = g_{012} + 3$, $g_{13} = g_{123} + 3$, $g_{24} = g_{234} + 3$ and $g_{03} = g_{034} + 3$. Since $g_{024} = 2$, then K(1,3) is formed by two vertices joined by exactly two edges, hence N(1,3) is homeomorphic to $\mathbb{S}^1 \times B^3$. Furthermore, K(0,2)and K(2,4) are formed by two edges each one as $g_{134} = g_{013} = 2$. Because $g_{13} =$ $g_{123} + 3$, the pseudocomplex K(0,2,4) has many triangles, but three, as there are edges in K(0,4). The Mayer-Vietoris sequence of the triple (M, N, N') becomes 0 = $H_3(N) \oplus H_3(N') \to H_3(M) \cong \mathbb{Z} \to H_2(\partial N) \cong \mathbb{Z} \to H_2(N) \oplus H_2(N') \to H_2(M) \cong$ $\mathbb{Z} \oplus \mathbb{Z} \to H_1(\partial N) \cong \mathbb{Z} \to H_1(N) \oplus H_1(N') \to H_1(M) \cong \mathbb{Z} \to 0$. Since $H_2(N) \cong 0$ and $H_1(N) \cong \mathbb{Z}$, it follows that $H_2(N') \cong \mathbb{Z}$. Now the arguments discussed in [5] implies that M is homeomorphic to the connected sum $\mathbb{S}^1 \times \mathbb{S}^3 \# \mathbb{C}P^2 \# \mathbb{C}P^2$.

If $\Pi_1(M) \cong \mathbb{Z}_n \cong H_1(M)$, then we have $H_3(M) \cong H^1(M) \cong FH_1(M) \oplus TH_0(M) \cong 0$. Since $\chi(M) = 2$, it follows that $\beta_2(M) = 0$, hence $H_2(M) \cong H^2(M) \cong FH_2(M) \oplus TH_1(M) \cong \mathbb{Z}_n$. The Mayer-Vietoris sequence yields $H_3(M) \cong 0 \to H_2(\partial N) \cong \mathbb{Z} \to H_2(N) \oplus H_2(N') \cong \mathbb{Z} \oplus \mathbb{Z} \to H_2(M) \cong \mathbb{Z}_n \xrightarrow{\alpha} H_1(\partial N) \cong \mathbb{Z} \to H_1(N) \oplus H_1(N') \cong \mathbb{Z} \oplus \mathbb{Z} \to \mathbb{Z}_n \to 0$. This easily implies that $\alpha = 0$. Now the exact sequence $0 \to \mathbb{Z} \to \mathbb{Z} \oplus \mathbb{Z} \to \mathbb{Z}_n \to 0$ yields n = 1, i.e. $\Pi_1(M) \cong \mathbb{Z}_1 \cong 0$. It follows that M is homeomorphic to \mathbb{S}^4 , which is a contradiction. This completes the proof of Theorem 2. \Box

Proof of Theorem 3. If g = 6, then the sum $R = 5 + 5g - 2\sum_i g_i$ belongs to the set $\{2h + 1 : 2 \le h \le 17, h \in \mathbb{N}\}$. In [5], it was shown that: if R = 35, then $M \cong \#_6 \mathbb{S}^1 \times \mathbb{S}^3$; if R = 25, then $M \cong \#_4(\mathbb{S}^1 \times \mathbb{S}^3) \# \mathbb{C}P^2$; if 15 < R < 35 and $R \neq 25$, there is a contradiction. So we have only to examine the cases $R \in \{5, 7, 9, 11, 13, 15\}$.

If R = 5, then $\sum_i g_i^2 = 15$ and $\chi(M) = 5$. Because at least one of the g_{ijk} 's in R equals 1, the manifold M is simply-connected, hence $\chi(M) = 5$ implies that $\beta_2(M) = 3$. Thus we have $H_2(M) \cong H^2(M) \cong FH_2(M) \oplus TH_1(M) = FH_2(M)$, i.e. $H_2(M) \cong \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}$. The only possible values for the addendum of R are $g_{013} = g_{023} = g_{024} = g_{124} = g_{134} = 1$. Then the relations $(1), \dots, (5)$ imply that $g_0^2 = g_1^2 = g_3^2 = g_4^2 = 3$. By $(6), \dots, (10)$ we obtain $g_{14} = g_{014} + 3, g_{02} = g_{012} + 3,$ $g_{13} = g_{123} + 3, g_{24} = g_{234} + 3$ and $g_{03} = g_{034} + 3$. Since $g_{023} = 1$, the complex K(1, 4)consists of one edge, hence N(1, 4) is a 4-cell. Furthermore, K(0, 2) and K(0, 3) are formed by one edge each one as $g_{134} = g_{124} = 1$. Because $g_{14} = g_{014} + 3$, the complex K(0, 2, 3) contains many triangles, but three, as there are edges in K(2, 3). The Mayer-Vietoris sequence of the triple (M, N, N') yields $0 \to H_2(N) \oplus H_2(N') \to$ $H_2(M) \cong \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} \to H_1(\partial N) \cong 0 \to H_1(N) \oplus H_1(N') \to H_1(M) \cong 0$, hence $H_1(N') \cong 0$ and $H_2(N') \cong \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}$. Then the arguments developed in [3], [4] and [5] imply that M is homeomorphic to the connected sum $\#_3(\pm \mathbb{C}P^2)$.

If R = 7, then $\sum_i g_i = 14$ and $\chi(M) = 4$. Because at least one of g_{ijk} 's in R equals 1, we have $\Pi_1(M) \cong 0$, hence $\chi(M) = 4$ implies that $\beta_2(M) = 2$. Thus it

Spaggiari

follows that $H_2(M) \cong H^2(M) \cong \mathbb{Z} \oplus \mathbb{Z}$, and hence M is homeomorphic to $\#_2(\pm \mathbb{C}P^2)$ by [10], [11] and [15].

If R = 9, then $\sum_{i} g_{i} = 13$ and $\chi(M) = 3$. Because at least one of the g_{ijk} 's in R equals 1, we have $\Pi_1(M) \cong 0$, hence $\chi(M) = 3$ implies that $\beta_2(M) = 1$. Thus we obtain $H_2(M) \cong FH_2(M) \cong \mathbb{Z}$. The addendum of R may assume the following values (up to circular permutations):

case	g_{013}	g_{023}	g_{024}	g_{124}	g_{134}
9.1	1	1	1	1	5
9.2	3	3	1	1	1
9.3	3	1	3	1	1
9.4	4	2	1	1	1
9.5	4	1	2	1	1
9.6	3	2	2	1	1
9.7	3	2	1	2	1
9.8	3	1	2	2	1
9.9	3	2	1	1	2
9.10	2	2	2	2	1

Case 9.1). We have the relations $g_{\hat{0}} = g_{\hat{1}} = g_{\hat{2}} = 1$, $g_{\hat{3}} = g_{\hat{4}} = 5$, $g_{14} = g_{014} + 5$, $g_{02} = g_{012} + 5$, $g_{13} = g_{123} + 5$, $g_{24} = g_{234} + 1$ and $g_{03} = g_{034} + 1$. Since $g_{013} = 1$, the pseudocomplex K(2, 4) consists of only one edge, hence N(2, 4) is a 4-cell. Furthermore, K(0, 3) and K(1, 3) are also formed by one edge each one as $g_{124} = g_{024} = 1$. Thus all triangles of K(0, 1, 3) have two edges in common. Because $g_{24} = g_{234} + 1$, the complex K(0, 1, 3) has many triangles, but one, as there are edges in K(0, 1). Therefore K(0, 1, 3) collapses to a combinatorial 2-sphere formed by exactly two triangles T_1 , T_2 with common boundary. Thus M is homeomorphic to $\pm \mathbb{C}P^2$ as proved in [4]. This gives a contradiction as $g(\mathbb{C}P^2) = 2$. Now one can easily verify that the other cases yield the same result.

If R = 11, then $\sum_i g_i = 12$ and $\chi(M) = 2$. If at least one of the g_{ijk} 's in R equals 1, then we have $\Pi_1(M) \cong 0$, hence $\chi(M) = 2$ implies that $\beta_2(M) = 0$, i.e. $H_2(M) \cong FH_2(M) \cong 0$. Thus M is homeomorphic to \mathbb{S}^4 which is a contradiction as $g(\mathbb{S}^4) = 0$. If $g_{ijk} \ge 2$, then we have the unique case $g_{013} = g_{024} = g_{124} = g_{134} = 2$ and $g_{023} = 3$ (up to circular permutations). Thus it follows that $1 \le \operatorname{rank} \Pi_1(M) \le 1 = g_{ijk} - 1$, hence we have either $\Pi_1(M) \cong \mathbb{Z}$ or $\Pi_1(M) \cong \mathbb{Z}_n$. If $\Pi_1(M) \cong H_1(M) \cong \mathbb{Z}$, then $\chi(M) = 2$ implies that $\beta_2(M) = 2$, hence $H_2(M) \cong \mathbb{Z} \oplus \mathbb{Z}$. Let M' be the closed 4-manifold obtained by killing the generator of $\Pi_1(M)$. It is well-known that the intersection forms $\lambda_{M'}$ and λ_M are isomorphic (see for example[6]). Since $H_2(M') \cong$ $H_2(M) \cong \mathbb{Z} \oplus \mathbb{Z}$ and $\Pi_1(M') \cong 0$, the Freedman-Donaldson theorems imply that either $M' \cong (\pm \mathbb{C}P^2) \# (\pm \mathbb{C}P^2)$ or $M' \cong \mathbb{S}^2 \times \mathbb{S}^2$. Now it was proved in [7] that Mis homeomorphic to the connected sum $M' \# (\mathbb{S}^1 \times \mathbb{S}^3)$. If $\Pi_1(M) \cong H_1(M) \cong \mathbb{Z}_n$, then we have $H_3(M) \cong H^1(M) \cong FH_1(M) \oplus TH_0(M) = 0$. Since $\chi(M) = 2$, we obtain $\beta_2(M) = 0$, that is $H_2(M) \cong H^2(M) \cong FH_2(M) \oplus TH_1(M) \cong \mathbb{Z}_n$. These facts produce a contradiction as shown in the proof of Theorem 2.

If R = 13, then $\sum_i g_i = 11$ and $\chi(M) = 1$. If at least one of the g_{ijk} 's in Requals 1, then we have $\Pi_1(M) \cong 0$ and $H_3(M) \cong 0$. Thus it follows that $\chi(M) = 2 + \beta_2(M) \ge 2 \ne 1$, which is a contradiction. Therefore $g_{ijk} \ge 2$, rank $\Pi_1(M) \le 1$ and either $\Pi_1(M) \cong \mathbb{Z}$ or $\Pi_1(M) \cong \mathbb{Z}_n$. If $\Pi_1(M) \cong \mathbb{Z}_n$, then we obtain a contradiction as before. If $\Pi_1(M) \cong H_1(M) \cong \mathbb{Z}$, then $\chi(M) = 1$ implies that $\beta_2(M) = 1$, hence $H_2(M) \cong FH_2(M) \cong \mathbb{Z}$. The addendum of R may only assume the following values:

case	g_{013}	g_{023}	g_{024}	g_{124}	g_{134}
13.1	5	2	2	2	2
13.2	2	2	3	3	3
13.3	2	3	2	3	3
13.4	4	3	2	2	2
13.5	4	2	3	2	2

Case 13.1). We have $g_{\hat{0}} = g_{\hat{1}} = 4$, $g_{\hat{2}} = g_{\hat{3}} = g_{\hat{4}} = 1$, $g_{14} = g_{014} + 2$, $g_{02} = g_{012} + 2$, $g_{13} = g_{123} + 5$, $g_{24} = g_{234} + 5$ and $g_{03} = g_{034} + 5$. Since $g_{023} = 2$, the pseudocomplex K(1,4) consists of two edges, hence N(1,4) is homeomorphic to $\mathbb{S}^1 \times B^3$. Furthermore, K(0,2) and K(0,3) are also formed by two edges each one as $g_{134} = g_{124} = 2$. Because $g_{14} = g_{014} + 2$, the pseudocomplex K(0,2,3) contains many triangles, but two, as there are edges in K(2,3). The Mayer-Vietoris sequence of the triple (M, N, N') yields $H_2(N') \cong \mathbb{Z}$. Thus K(0,2,3) collapses to a combinatorial 2-sphere \mathbb{S}^2 , formed by exactly two triangles T_1, T_2 of K(0,2,3) with common boundary plus an edge e such that Int $e \cap \mathbb{S}^2 = \emptyset$ and $e \cap \mathbb{S}^2 = \partial e$. Following [4] we obtain that M is homeomorphic to the connected sum $(\pm \mathbb{C}P^2) \#(\mathbb{S}^1 \times \mathbb{S}^3)$ which is a contradiction as this manifold has genus 3. Now one can verify that the other cases give the same contradiction.

If R = 15, then $\sum_i g_i = 10$ and $\chi(M) = 0$. If all the g_{ijk} 's in R are greater than 3, then $R \ge 20$, which is a contradiction. Thus at least one of the g_{ijk} 's in R is less or equal 3, hence $\beta_1(M) \le 2$ and rank $\Pi_1(M) \le 2$. If $\beta_1(M) = 0$, then $\chi(M) = 2 + \beta_2(M) \ge 2 \ne 0$ which contradicts the relation $\chi(M) = 0$. If $\beta_1(M) = 1$, then $FH_1(M) \cong \mathbb{Z}$ so $\chi(M) = 0$ implies $\beta_2(M) = 0$. Since there is an epimorphism $\Pi_1(M) \to \mathbb{Z}$, the fundamental group $\Pi_1(M)$ is an extension of \mathbb{Z} by a normal cyclic (finite or not) subgroup \mathbb{Z}_n as rank $\Pi_1(M) \le 2$ (note that $\mathbb{Z}_0 \cong \mathbb{Z}$). But such an extension splits: a choice of element $t \in \Pi_1(M)$ which projects to a generator of \mathbb{Z} determines a right inverse to the epimorphism $\Pi_1(M) \to \mathbb{Z}$. Let $\theta \in Aut(\mathbb{Z}_n)$ determined by conjugation by t in $\Pi_1(M)$. Then $\Pi_1(M)$ is isomorphic to either the semidirect product $\mathbb{Z}_n \times_{\theta} \mathbb{Z}$, $n \neq 0$, or $\mathbb{Z} \times \mathbb{Z}$ as M is orientable. Thus $\Pi_1(M)$ has exactly two (resp. one) ends if $\Pi_1(M) \cong \mathbb{Z}_n \times_{\theta} \mathbb{Z}, n \neq 0$ (resp. $\Pi_1(M) \cong \mathbb{Z} \times \mathbb{Z}$). If $\Pi_1(M)$ has two ends, then the universal covering space \tilde{M} of M is homotopy equivalent to \mathbb{S}^3 as $\chi(M) = 0$ (see [13], Theorem 10). Let \hat{M} be the *n*-fold covering space of M. Since \hat{M} is a closed connected orientable 4-manifold with $\chi(\hat{M}) = 0$, $\Pi_1(\hat{M}) \cong \mathbb{Z}$ and $\Pi_2(\hat{M}) \cong \Pi_2(\tilde{M}) \cong 0$, it was proved in [6] that \hat{M} is homotopy equivalent to $\mathbb{S}^1 \times \mathbb{S}^3$. Now the results of [7] imply that \hat{M} is s-cobordant to $\mathbb{S}^1 \times \mathbb{S}^3$, and hence these manifolds are also topologically homeomorphic by [10]. Now the only possibilities for M are the finite quotients of $\mathbb{S}^1 \times \mathbb{S}^3$, i.e. M is topologically homeomorphic to a lens-fiber bundle over the 1-sphere as claimed. In particular, if $\Pi_1(M) \cong \mathbb{Z}$, then M is homeomorphic to $\mathbb{S}^3 \times \mathbb{S}^1$ by [10]. This fact gives a contradiction as $q(\mathbb{S}^3 \times \mathbb{S}^1) = 1$ (see [3]). If $\beta_1(M) = 2$, then $\Pi_1(M) \cong H_1(M) \cong$ $\mathbb{Z} \oplus \mathbb{Z}$ and $\chi(M) = 0$ implies $\beta_2(M) = 2$. Since $\chi(M) = 0$ and $\Pi_1(M) \cong \mathbb{Z} \oplus \mathbb{Z}$ has one end, it follows from [13] that $H^1(M;\Lambda) \cong H_3(M;\Lambda) \cong H_3(\tilde{M}) \cong 0$ and $H^2(M;\Lambda) \cong H_2(M;\Lambda) \cong H_2(\tilde{M}) \cong \Pi_2(\tilde{M}) \cong \mathbb{Z}$, where $\Lambda = \mathbb{Z}[\Pi_1]$ is the integral group ring of $\Pi_1(M)$. Thus the universal covering space \tilde{M} is homotopy equivalent to the standard 2-sphere \mathbb{S}^2 (see [13]). Furthermore, the manifold M is homotopy equivalent to an $(\mathbb{S}^1 \times \mathbb{S}^2)$ -bundle over \mathbb{S}^1 , as shown in [13], Corollary C, p.35. Now the results of [6] and [7] imply that M is also s-cobordant to an $(\mathbb{S}^1 \times \mathbb{S}^2)$ -bundle over \mathbb{S}^1 . Since $\Pi_1(M) \cong \mathbb{Z} \times \mathbb{Z}$ is a polycyclic group, the orientable manifold M is just homeomorphic to the product $\mathbb{S}^1 \times \mathbb{S}^2 \times \mathbb{S}^1$ since any s-cobordism is topologically a product for this class of fundamental groups. Thus, if M is a prime spin closed orientable 4-manifold of genus 6, then M is topologically homeomorphic to the product $L(p,q) \times \mathbb{S}^1$, $q \neq 0$, possibly including the case $L(0,1) = \mathbb{S}^1 \times \mathbb{S}^2$. This completes the proof of Theorem 3. \Box

Finally, we conjecture that the unique closed connected orientable prime 4manifold of genus six is really the topological product $\mathbb{RP}^3 \times \mathbb{S}^1$. In fact, nowadays we are not able to construct a genus six crystallization for any lens-fiber bundles over \mathbb{S}^1 which is different from $\mathbb{RP}^3 \times \mathbb{S}^1$.

References

1. J. Bracho and L. Montejano, The combinatorics of coloured triangulations of manifolds, *Geom. Dedicata* **22** (1987), 303–328.

- M.R. Casali and C. Gagliardi, Classifying PL 5-manifolds up to regular genus seven, *Proc. Amer. Math. Soc.* 120 (1994), 275–283.
- 3. A. Cavicchioli, A combinatorial characterization of S³ × S¹ among closed 4-manifolds, *Proc. Amer. Math. Soc.* **105** (1989), 1008–1014.
- 4. A. Cavicchioli, On the genus of smooth 4-manifolds, *Trans. Amer. Math. Soc.* **331** (1992), 203–214.
- 5. A. Cavicchioli and M. Meschiari, On classification of 4-manifolds according to the genus, *Cahiers Topologie Géom. Différentielle Catégoriques* **34** (1993), 37–56.
- 6. A. Cavicchioli and F. Hegenbarth, On 4-manifolds with free fundamental group, *Forum Math.* **6** (1994), 415–429.
- A. Cavicchioli, F. Hegenbarth and D. Repovš, On stable classification of certain 4-manifolds, Bull. Austral. Math. Soc. 52 (1995), 385–398.
- M. Ferri, C. Gagliardi and L. Grasselli, A graph-theoretical representation of PL-manifolds. A survey on cristallizations, *Aequationes Math.* 31 (1986), 121–141.
- 9. M. Ferri and C. Gagliardi, On the genus of 4-dimensional products of manifolds, *Geom. Dedicata* **13** (1982), 331–345.
- 10. M.H. Freedman and F.S. Quinn, *Topology of 4-manifolds*, Princeton Univ. Press, Princeton, New Jersey, 1989.
- 11. M.H. Freedman and F. Luo, Selected Applications of Geometry to Low-Dimensional Topology, Marker Lect. in Math. Sciences, *Amer. Math. Soc.* Providence, Rhode Island, 1989.
- 12. F. Harary, Graph theory, Addison-Wesley Ed., Reading, Massachussets, 1969.
- 13. J.A. Hillman, The Algebraic Characterization of Geometric 4-Manifolds, London Math. Soc. Lect. Note Ser. 198, Cambridge Univ. Press, Cambridge, 1994.
- 14. J.A. Hillman, A homotopy fibration theorem in dimension four, *Topology Appl.* **33** (1989), 151–161.
- 15. R.C. Kirby, The topology of 4-manifolds, Springer-Verlag, Berlin-Heidelberg-New York, 1989.
- 16. C.P. Rourke and B.J. Sanderson, *Introduction to piecewise-linear topology*, Springer-Verlag, Berlin-Heidelberg-New York, 1972.