Collectanea Mathematica (electronic version): http://www.mat.ub.es/CM

Collect. Math. 50, 3 (1999), 229-241
(c) 1999 Universitat de Barcelona

On the genus of $\mathbb{R} \mathbf{P}^{\mathbf{3}} \times \mathbb{S}^{1 *}$

Fulvia Spaggiari
Dipartimento di Matematica Pura ed Applicata, Università di Modena, via Campi 213/B, 41100 Modena, Italy
E-mail: spaggiar@unimo.it

Received November 5, 1997. Revised September 21, 1998

Abstract

We continue the topological classification of closed connected orientable 4-manifolds according to the (regular) genus, as developed in a series of papers (see [3], [4], [5]). In particular, we prove that any closed prime orientable PL 4-manifold of genus six is topologically homeomorphic to a lens-fiber bundle over the 1 -sphere. There are good reasons to conjecture that the genus six characterizes the topological product $\mathbb{R P}^{3} \times \mathbb{S}^{1}$ of the real projective 3-space by the 1 -sphere among closed connected prime orientable 4 -manifolds.

1. Introduction

Through the paper we shall work in the piecewise linear (PL) category [16] and represent (PL) manifolds by means of edge-colored graphs, as shown for example in [1] and [8]. We recall now the main concepts and definitions used in the paper. For more details on graph theory and on the combinatorics of colored triangulations of manifolds see for example [1], [8] and [12]. An $(n+1)$-colored graph is a pair (Γ, γ), where $\Gamma=(V, E)$ is a finite multigraph, regular of degree $n+1$, and $\gamma: E \rightarrow \Delta_{n}=$

[^0]$\{i \in \mathbb{Z}: \quad 0 \leq i \leq n\}$ is a coloring of the edges of Γ, i.e. any two adjacent edges of Γ have different colors. An n-pseudocomplex $K(\Gamma)$ can be associated to (Γ, γ) by the following rules. We consider an n-simplex $\sigma^{n}(v)$ for each vertex v of Γ and label its vertices by Δ_{n}. If two vertices v and w are joined in Γ by a c-colored edge, then we identify the $(n-1)$-faces of the simplexes $\sigma^{n}(v)$ and $\sigma^{n}(w)$ opposite to the vertex labeled by c, so that equally labeled vertices are identified. Let \hat{c} denote the set $\Delta_{n} \backslash\{c\}$. For any subset $B \subset \Delta_{n}$, we set $\Gamma_{B}=\left(V, \gamma^{-1}(B)\right)$. An $(n+1)$-colored graph (Γ, γ) is said to be a crystallization of a closed connected PL n-manifold M if $\Gamma_{\hat{c}}$ is connected for any color $c \in \Delta_{n}$ and the polyhedron $|K(\Gamma)|$, underlying $K(\Gamma)$, is (PL) homeomorphic to M, i.e. $|K(\Gamma)| \cong M$. We say that $K(\Gamma)$ is a contracted triangulation of M and that Γ represents M and every homeomorphic space. It is well-known that any closed connected PL n-manifold admits a crystallization (see for example [8]). A 2-cell embedding $f:|\Gamma| \rightarrow F$ of an $(n+1)$-colored graph (Γ, γ) into a closed connected surface F is called regular if there exists a cyclic permutation $\epsilon=\left(\epsilon_{0}, \epsilon_{1}, \cdots, \epsilon_{n}\right)$ of Δ_{n} such that each region of f is bounded by a cycle with edges alternatively colored by $\epsilon_{i}, \epsilon_{i+1}($ indices $\bmod n+1)$. The genus of Γ, written $g(\Gamma)$, is the minimum genus of a closed connected surface into which Γ regularly embeds. The regular genus $g(M)$ of a closed connected PL n-manifold M is the smallest $g(\Gamma)$ over all crystallizations Γ of M. In this paper, we construct a 5 -colored graph which represents the topological product $\mathbb{R} \mathrm{P}^{3} \times \mathbb{S}^{1}$. Then eliminating dipoles (see [8]) from this graph yields a crystallization of $\mathbb{R} P^{3} \times \mathbb{S}^{1}$, which has order 40 and genus 6. This implies that $g\left(\mathbb{R} \mathrm{P}^{3} \times \mathbb{S}^{1}\right) \leq 6$. Then we show that the regular genus of this manifold equals 6 by using some results proved in [5]. Moreover, we classify the topological structure of closed connected prime orientable 4-manifolds of genus six. Indeed, these manifolds are proved to be homeomorphic to lens-fiber bundles over the 1-sphere. If further the manifold is spin, i.e. the second Stiefel-Whitney class vanishes, then the bundle is trivial so it is homeomorphic to either $L(p, q) \times \mathbb{S}^{1}$, $q \neq 0$, or $\mathbb{S}^{1} \times \mathbb{S}^{2} \times \mathbb{S}^{1}$. Finally we conjecture that $\mathbb{R} P^{3} \times \mathbb{S}^{1}$ is the unique, up to homeomorphism, closed connected prime orientable 4 -manifold of genus six.

2. A crystallization of $\mathbf{L}(\mathbf{p}, \mathbf{q}) \times \mathbb{S}^{\mathbf{1}}$

Let $L(p, q)$ be the lens space of type (p, q), where p, q are coprime integers such that $p>q \geq 1$. In this section we shall construct a simple crystallization of the topological product $L(p, q) \times \mathbb{S}^{1}$, whose genus is less or equal to $6 p-6$. This implies that $g\left(\mathbb{R} \mathrm{P}^{3} \times \mathbb{S}^{1}\right) \leq 6$ as $\mathbb{R} \mathrm{P}^{3} \cong L(2,1)$. Let $K=K(p, q)$ denote the standard contracted triangulation of the lens space $L(p, q)$, as given in [1]. We triangulate
each 4-cell of $K \times I, I=[0,1]$, by taking the join over a complex from an opposite vertex, in some standard way. Then we label the vertices of each 4-cell by the elements of Δ_{4} in a standard way, so that all vertices of each simplex of the previous triangulation are differently labeled. It is not yet convenient to identify the top of $K \times I$ with the bottom of it because the quotient would not be a pseudocomplex. Therefore we consider a copy $K \times J, J=[1,2]$, of $K \times I$, which is triangulated as the previous one and label its vertices by the elements of Δ_{4} too. Then we identify the top of $K \times J$ with the bottom of $K \times I$ in order to obtain a pseudocomplex $\tilde{K}=\tilde{K}(p, q)$ triangulating the topological product $L(p, q) \times \mathbb{S}^{1}$. In Figure 1 we show the 5-colored graphs representing the pseudocomplexes $K \times I$ and $K \times J$ respectively, for the case $(p, q)=(2,1)$.

We obtain now a (noncontracted) 5-colored graph $\Gamma=\Gamma(p, q)$ representing \tilde{K} by using the rules discussed in Section 1 . The graph Γ is isomorphic to the 1 -skeleton of the dual cellular subdivision of \tilde{K}. Thus Γ has exactly $32 p$ vertices, which are the barycenters of the n-cells of \tilde{K}. The coloring of Γ is obtained by assigning to each edge the color of the vertex opposite to its dual 3 -cell in \tilde{K}. For each cyclic permutation ϵ of Δ_{4}, the graph Γ regularly embeds into a closed connected orientable surface of genus g, according to the following table:

ϵ	g
(01234)	$10 p-7$
(01243)	$8 p-3$
(01324)	$8 p-3$
(01342)	$5 p+1$
(01423)	$5 p+1$
(01432)	$4 p+1$
(02134)	$11 p-7$
(02143)	$8 p-3$
(02314)	$8 p-3$
(02413)	$6 p+1$
(03124)	$12 p-7$
(03214)	$11 p-7$.

We simplify now Γ by deleting some dipoles (see [8]) in order to obtain a crystallization of $L(p, q) \times \mathbb{S}^{1}$. Eliminating dipoles of type 1 and the induced dipoles of types 2 and 3 produces a contracted graph (crystallization) representing $L(p, q) \times \mathbb{S}^{1}$, as shown in Figure 2 for the case $(p, q)=(2,1)$.

Now it is very easy to check that the genus of this crystallization equals $6 p-6$ by using the cyclic permutation $\epsilon=(01432)$. This implies that $g\left(L(p, q) \times \mathbb{S}^{1}\right) \leq 6 p-6$.

Fig. 1a: A noncontracted 5-colored graph representing $\mathbb{R P}^{3} \times[0,1]$

In particular, we have $g\left(L(2,1) \times \mathbb{S}^{1}\right) \leq 6$ as claimed. In summary, we have obtained the following result (use also [5] and [9] and Theorem 2 below).

Proposition 1

Let $L(p, q)$ be the lens space of type $(p, q), p>q \geq 1$. Then the regular genus of the topological product $L(p, q) \times \mathbb{S}^{1}$ satisfies the inequalities

$$
6 \leq g\left(L(p, q) \times S^{1}\right) \leq \min \{6 p-6,4 p+1\}
$$

Furthermore, the regular genus of $\mathbb{R P}^{3} \times \mathbb{S}^{1}$ is exactly 6 .

Fig. 1b: A noncontracted 5-colored graph representing $\mathbb{R P}^{3} \times[1,2]$

3. Main results

In this section we shall study the topological structure of closed connected prime orientable (PL) 4-manifolds of genus 5 and 6 . The closed 4-manifolds of genus $g \leq 4$ are completely classified in [3], [4], [5]. Other results concerning the classification of closed connected orientable PL 5-manifolds up to regular genus seven can be found in [2]. We state our main results.

Fig. 2: A genus six crystallization of $\mathbb{R} \mathbf{P}^{\mathbf{3}} \times \mathbb{S}^{\mathbf{1}}$

Theorem 2

Let M be a smooth closed connected orientable prime 4-manifold of genus 5 . Then M is homeomorphic to one of the following manifolds: $\#_{5}\left(\mathbb{S}^{1} \times \mathbb{S}^{3}\right), \#_{3}\left(\mathbb{S}^{1} \times\right.$ $\left.\mathbb{S}^{3}\right) \# \mathbb{C} P^{2}, \mathbb{C} P^{2} \# \mathbb{C} P^{2} \#\left(\mathbb{S}^{1} \times \mathbb{S}^{3}\right),\left(\mathbb{S}^{2} \times \mathbb{S}^{2}\right) \#\left(\mathbb{S}^{1} \times \mathbb{S}^{3}\right),\left(\mathbb{S}^{2} \times \mathbb{S}^{2}\right) \#\left(\mathbb{S}^{1} \times \mathbb{S}^{3}\right)$.

Theorem 3

Let M be a smooth closed connected orientable prime 4-manifold. If $g(M)=6$, then M is homeomorphic to a lens-fiber bundle over the 1 -sphere. If further M is spin, then M is homeomorphic to the topological product $L(p, q) \times \mathbb{S}^{1}, q \neq 0$, possibly including the case $L(0,1)=\mathbb{S}^{1} \times \mathbb{S}^{2}$.

In order to prove these theorems, we recall some constructions and results given in [3], [4], [5]. Let M be a closed connected orientable smooth (or PL) 4-manifold. Let (Γ, γ) be a crystallization of M and $\left\{v_{i} \mid i \in \Delta_{4}\right\}$ the vertex-set of $K=K(\Gamma)$. If $\{i, j\}=\Delta_{4} \backslash\{r, s, t\}$, then $K(i, j)$ (resp. $K(r, s, t)$) represents the subcomplex of K generated by the vertices v_{i}, v_{j} (resp. v_{r}, v_{s}, v_{t}). By $g_{r s t}$ (resp. $g_{i j}$) we denote the number of edges (resp. triangles) of $K(i, j)$ (resp. $K(r, s, t)$). Note that $g_{r s t}$ and $g_{i j}$ also represent the number of components of the subgraphs $\Gamma_{\{r, s, t\}}$ and $\Gamma_{\{i, j\}}$ respectively. If $N=N(i, j)$ and $N^{\prime}=N(r, s, t)$ are regular neighborhoods of $K(i, j)$ and $K(r, s, t)$ respectively, then N and N^{\prime} are complementary bordered 4-manifolds, i.e. $M=N \cup N^{\prime}$ and $N \cap N^{\prime}=\partial N=\partial N^{\prime}$. Following [3] and [4], we can always assume that (Γ, γ) regular embeds into the closed orientable surface of genus $g=g(M)$ and of Euler characteristic $\chi(M)=g_{01}+g_{12}+g_{23}+g_{34}+g_{40}-3 p$, where p is the order of Γ divided by 2 . As proved in [3], we have the following relations:

1) $g_{013}=1+g-g_{\hat{2}}-g_{\hat{4}}$
2) $g_{023}=1+g-g_{\hat{1}}-g_{\hat{4}}$
3) $g_{024}=1+g-g_{\hat{1}}-g_{\hat{3}}$
4) $g_{124}=1+g-g_{\hat{0}}-g_{\hat{3}}$
5) $g_{134}=1+g-g_{\hat{0}}-g_{\hat{2}}$
6) $g_{14}=g_{014}+g-g_{\hat{0}}$
7) $g_{02}=g_{012}+g-g_{\hat{1}}$
8) $g_{13}=g_{123}+g-g_{\hat{2}}$
9) $g_{24}=g_{234}+g-g_{\hat{3}}$
10) $g_{03}=g_{034}+g-g_{\hat{4}}$.

Furthermore, it was also proved that $\chi(M)=2-2 g+\sum_{i} g_{\hat{i}}$, where $g_{\hat{i}}\left(0 \leq g_{\hat{i}} \leq\right.$ $g)$ is the genus of an orientable closed surface into which the subgraph $\Gamma_{\hat{i}}\left(i \in \Delta_{4}\right)$ regularly embeds.

Proof of Theorem 2. If $g=5$, then the sum $R=g_{013}+g_{023}+g_{024}+g_{124}+g_{134}=$ $5+5 g-2 \sum_{i} g_{\hat{i}}$ belongs to the set $\{2 h: 3 \leq h \leq 15, h \in \mathbb{N}\}$. For $12 \leq R \leq 30$, the manifolds are topologically classified in [5]. In particular, if $R=30$, then $M \cong \#_{5} \mathbb{S}^{1} \times \mathbb{S}^{3}$; if $R=20$, then $M \cong \#_{3} \mathbb{S}^{1} \times S^{3} \# \mathbb{C} P^{2}$. The other cases in that range give a contradiction. We are going to consider the cases $R \in\{6,8,10\}$. If $R=6$, then $\sum_{i} g_{\hat{i}}=12$ and $\chi(M)=4$. Because at least one of the $g_{i j k}$'s in R equals 1 , the 4-manifold M is simply-connected, hence $\chi(M)=4$ implies that $\beta_{2}(M)=2$. Here $\beta_{i}(M)$ denotes the i-th Betti number of M. Now we consider the intersection form λ_{M} as a pairing $H^{2}(M) \otimes H^{2}(M) \rightarrow \mathbb{Z}$ so defined: $\lambda_{M}(x, y)=<x \bigcup y,[M]>$, where \cup and $[M]$ denote the cup product and the fundamental class of M respectively. By Donaldson's theorems and Freedman's classification of simply-connected 4-manifolds (see for example [10], [11], [15]), we may have only the following cases:

1) If λ_{M} is positive (resp. negative) definite, then λ_{M} is isomorphic over the integers to $(1) \oplus(1)$ (resp. $(-1) \oplus(-1)$). Thus M is (TOP) homeomorphic to either $\mathbb{C} P^{2} \# \mathbb{C} P^{2}$ or $\left(-\mathbb{C} P^{2}\right) \#\left(-\mathbb{C} P^{2}\right)$ respectively.
2) If λ_{M} is an odd indefinite form, then λ_{M} is isomorphic to $(1) \oplus(-1)$, hence $M \cong \mathbb{C} P^{2} \#\left(-\mathbb{C} P^{2}\right) \cong \mathbb{S}^{2} \times \mathbb{S}^{2}$.
3) If λ_{M} is an even indefinite form, then λ_{M} is isomorphic to the form

$$
\omega=2 a E_{8}+b\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

where $\operatorname{rank}(\omega)=16|a|+2|b|$. Since $\operatorname{rank}\left(\lambda_{M}\right)=\operatorname{rank}(\omega)=\operatorname{rank} H_{2}(M)=2$, we obtain $a=0$ and $b=1$, i.e. $\lambda_{M} \cong\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$. Now the Freedman theorem (see [10], [11]) implies that M is (TOP) homeomorphic to $\mathbb{S}^{2} \times \mathbb{S}^{2}$. All the cases give a contradiction because the above 4 -manifolds have genus 4, as shown in [5].
If $R=8$, then $\sum_{i} g_{\hat{i}}=11$ and $\chi(M)=3$. Because at least one of $g_{i j k}$'s in R equals 1 , the 4 -manifold M is simply-connected. The relation $\chi(M)=3$ implies that $\beta_{2}(M)=1$, i.e. $H_{2}(M) \simeq H^{2}(M) \simeq F H_{2}(M) \simeq \mathbb{Z}$. Thus $\lambda_{M} \cong(\pm 1)$, hence $M \cong \pm \mathbb{C} P^{2}$. This gives a contradiction because $g\left(\mathbb{C} P^{2}\right)=2$, as proved in [4].

If $R=10$, then $\sum_{i} g_{\hat{i}}=10$ and $\chi(M)=2$. If at least one of $g_{i j k}$'s in R equals 1 , then $\Pi_{1}(M)=0$, hence $\chi(M)=2$ and $\beta_{2}(M)=0$. Thus $H_{2}(M)=0, \lambda_{M} \cong 0$ and M is homeomorphic to the 4 -sphere \mathbb{S}^{4}. This gives a contradiction because $g\left(\mathbb{S}^{4}\right)=0$.

If $g_{i j k} \geq 2$, then we obtain $g_{013}=g_{023}=g_{024}=g_{124}=g_{134}=2$. Thus $1 \leq \operatorname{rank} \Pi_{1}(M) \leq 1=g_{013}-1$, i.e. we have either $\Pi_{1}(M) \cong \mathbb{Z}$ or $\Pi_{1}(M) \cong \mathbb{Z}_{n}$. If $\Pi_{1}(M) \cong \mathbb{Z} \cong H_{1}(M)$, then $\chi(M)=2$ implies that $\beta_{2}(M)=2$, hence $H_{2}(M)=$ $\mathbb{Z} \oplus \mathbb{Z}$. By (1), $\cdot \cdots,(5)$ we obtain $g_{\hat{0}}=g_{\hat{1}}=g_{\hat{2}}=g_{\hat{3}}=g_{\hat{4}}=2$. By (6), \cdots, (10)
it follows that $g_{14}=g_{014}+3, g_{02}=g_{012}+3, g_{13}=g_{123}+3, g_{24}=g_{234}+3$ and $g_{03}=g_{034}+3$. Since $g_{024}=2$, then $K(1,3)$ is formed by two vertices joined by exactly two edges, hence $N(1,3)$ is homeomorphic to $\mathbb{S}^{1} \times B^{3}$. Furthermore, $K(0,2)$ and $K(2,4)$ are formed by two edges each one as $g_{134}=g_{013}=2$. Because $g_{13}=$ $g_{123}+3$, the pseudocomplex $K(0,2,4)$ has many triangles, but three, as there are edges in $K(0,4)$. The Mayer-Vietoris sequence of the triple (M, N, N^{\prime}) becomes $0=$ $H_{3}(N) \oplus H_{3}\left(N^{\prime}\right) \rightarrow H_{3}(M) \cong \mathbb{Z} \rightarrow H_{2}(\partial N) \cong \mathbb{Z} \rightarrow H_{2}(N) \oplus H_{2}\left(N^{\prime}\right) \rightarrow H_{2}(M) \cong$ $\mathbb{Z} \oplus \mathbb{Z} \rightarrow H_{1}(\partial N) \cong \mathbb{Z} \rightarrow H_{1}(N) \oplus H_{1}\left(N^{\prime}\right) \rightarrow H_{1}(M) \cong \mathbb{Z} \rightarrow 0$. Since $H_{2}(N) \cong 0$ and $H_{1}(N) \cong \mathbb{Z}$, it follows that $H_{2}\left(N^{\prime}\right) \cong \mathbb{Z}$. Now the arguments discussed in [5] implies that M is homeomorphic to the connected sum $\mathbb{S}^{1} \times \mathbb{S}^{3} \# \mathbb{C} P^{2} \# \mathbb{C} P^{2}$.

If $\Pi_{1}(M) \cong \mathbb{Z}_{n} \cong H_{1}(M)$, then we have $H_{3}(M) \cong H^{1}(M) \cong F H_{1}(M) \oplus$ $T H_{0}(M) \cong 0$. Since $\chi(M)=2$, it follows that $\beta_{2}(M)=0$, hence $H_{2}(M) \cong$ $H^{2}(M) \cong F H_{2}(M) \oplus T H_{1}(M) \cong \mathbb{Z}_{n}$. The Mayer-Vietoris sequence yields $H_{3}(M) \cong$ $0 \rightarrow H_{2}(\partial N) \cong \mathbb{Z} \rightarrow H_{2}(N) \oplus H_{2}\left(N^{\prime}\right) \cong \mathbb{Z} \oplus \mathbb{Z} \rightarrow H_{2}(M) \cong \mathbb{Z}_{n} \xrightarrow{\alpha} H_{1}(\partial N) \cong \mathbb{Z} \rightarrow$ $H_{1}(N) \oplus H_{1}\left(N^{\prime}\right) \cong \mathbb{Z} \oplus \mathbb{Z} \rightarrow \mathbb{Z}_{n} \rightarrow 0$. This easily implies that $\alpha=0$. Now the exact sequence $0 \rightarrow \mathbb{Z} \rightarrow \mathbb{Z} \oplus \mathbb{Z} \rightarrow \mathbb{Z}_{n} \rightarrow 0$ yields $n=1$, i.e. $\Pi_{1}(M) \cong \mathbb{Z}_{1} \cong 0$. It follows that M is homeomorphic to \mathbb{S}^{4}, which is a contradiction. This completes the proof of Theorem 2 .

Proof of Theorem 3. If $g=6$, then the sum $R=5+5 g-2 \sum_{i} g_{\hat{i}}$ belongs to the set $\{2 h+1: 2 \leq h \leq 17, h \in \mathbb{N}\}$. In [5], it was shown that: if $R=35$, then $M \cong \#_{6} \mathbb{S}^{1} \times \mathbb{S}^{3}$; if $R=25$, then $M \cong \#_{4}\left(\mathbb{S}^{1} \times \mathbb{S}^{3}\right) \# \mathbb{C} P^{2}$; if $15<R<35$ and $R \neq 25$, there is a contradiction. So we have only to examine the cases $R \in\{5,7,9,11,13,15\}$.

If $R=5$, then $\sum_{i} g_{\hat{i}}=15$ and $\chi(M)=5$. Because at least one of the $g_{i j k}$'s in R equals 1 , the manifold M is simply-connected, hence $\chi(M)=5$ implies that $\beta_{2}(M)=3$. Thus we have $H_{2}(M) \cong H^{2}(M) \cong F H_{2}(M) \oplus T H_{1}(M)=F H_{2}(M)$, i.e. $H_{2}(M) \cong \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}$. The only possible values for the addendum of R are $g_{013}=g_{023}=g_{024}=g_{124}=g_{134}=1$. Then the relations (1), $\cdots,(5)$ imply that $g_{\hat{0}}=g_{\hat{1}}=g_{\hat{2}}=g_{\hat{3}}=g_{\hat{4}}=3$. By (6), $\cdots,(10)$ we obtain $g_{14}=g_{014}+3, g_{02}=g_{012}+3$, $g_{13}=g_{123}+3, g_{24}=g_{234}+3$ and $g_{03}=g_{034}+3$. Since $g_{023}=1$, the complex $K(1,4)$ consists of one edge, hence $N(1,4)$ is a 4 -cell. Furthermore, $K(0,2)$ and $K(0,3)$ are formed by one edge each one as $g_{134}=g_{124}=1$. Because $g_{14}=g_{014}+3$, the complex $K(0,2,3)$ contains many triangles, but three, as there are edges in $K(2,3)$. The Mayer-Vietoris sequence of the triple $\left(M, N, N^{\prime}\right)$ yields $0 \rightarrow H_{2}(N) \oplus H_{2}\left(N^{\prime}\right) \rightarrow$ $H_{2}(M) \cong \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} \rightarrow H_{1}(\partial N) \cong 0 \rightarrow H_{1}(N) \oplus H_{1}\left(N^{\prime}\right) \rightarrow H_{1}(M) \cong 0$, hence $H_{1}\left(N^{\prime}\right) \cong 0$ and $H_{2}\left(N^{\prime}\right) \cong \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}$. Then the arguments developed in [3], [4] and [5] imply that M is homeomorphic to the connected sum $\#_{3}\left(\pm \mathbb{C} P^{2}\right)$.

If $R=7$, then $\sum_{i} g_{\hat{i}}=14$ and $\chi(M)=4$. Because at least one of $g_{i j k}$'s in R equals 1 , we have $\Pi_{1}(M) \cong 0$, hence $\chi(M)=4$ implies that $\beta_{2}(M)=2$. Thus it
follows that $H_{2}(M) \cong H^{2}(M) \cong \mathbb{Z} \oplus \mathbb{Z}$, and hence M is homeomorphic to $\#_{2}\left(\pm \mathbb{C} P^{2}\right)$ by [10], [11] and [15].

If $R=9$, then $\sum_{i} g_{\hat{i}}=13$ and $\chi(M)=3$. Because at least one of the $g_{i j k}$'s in R equals 1 , we have $\Pi_{1}(M) \cong 0$, hence $\chi(M)=3$ implies that $\beta_{2}(M)=1$. Thus we obtain $H_{2}(M) \cong F H_{2}(M) \cong \mathbb{Z}$. The addendum of R may assume the following values (up to circular permutations):

case	g_{013}	g_{023}	g_{024}	g_{124}	g_{134}
9.1	1	1	1	1	5
9.2	3	3	1	1	1
9.3	3	1	3	1	1
9.4	4	2	1	1	1
9.5	4	1	2	1	1
9.6	3	2	2	1	1
9.7	3	2	1	2	1
9.8	3	1	2	2	1
9.9	3	2	1	1	2
9.10	2	2	2	2	1

Case 9.1). We have the relations $g_{\hat{0}}=g_{\hat{1}}=g_{\hat{2}}=1, g_{\hat{3}}=g_{\hat{4}}=5, g_{14}=$ $g_{014}+5, g_{02}=g_{012}+5, g_{13}=g_{123}+5, g_{24}=g_{234}+1$ and $g_{03}=g_{034}+1$. Since $g_{013}=1$, the pseudocomplex $K(2,4)$ consists of only one edge, hence $N(2,4)$ is a 4-cell. Furthermore, $K(0,3)$ and $K(1,3)$ are also formed by one edge each one as $g_{124}=g_{024}=1$. Thus all triangles of $K(0,1,3)$ have two edges in common. Because $g_{24}=g_{234}+1$, the complex $K(0,1,3)$ has many triangles, but one, as there are edges in $K(0,1)$. Therefore $K(0,1,3)$ collapses to a combinatorial 2 -sphere formed by exactly two triangles T_{1}, T_{2} with common boundary. Thus M is homeomorphic to $\pm \mathbb{C} P^{2}$ as proved in [4]. This gives a contradiction as $g\left(\mathbb{C} P^{2}\right)=2$. Now one can easily verify that the other cases yield the same result.

If $R=11$, then $\sum_{i} g_{\hat{i}}=12$ and $\chi(M)=2$. If at least one of the $g_{i j k}$'s in R equals 1 , then we have $\Pi_{1}(M) \cong 0$, hence $\chi(M)=2$ implies that $\beta_{2}(M)=0$, i.e. $H_{2}(M) \cong$ $F H_{2}(M) \cong 0$. Thus M is homeomorphic to \mathbb{S}^{4} which is a contradiction as $g\left(\mathbb{S}^{4}\right)=0$. If $g_{i j k} \geq 2$, then we have the unique case $g_{013}=g_{024}=g_{124}=g_{134}=2$ and $g_{023}=3$ (up to circular permutations). Thus it follows that $1 \leq \operatorname{rank} \Pi_{1}(M) \leq 1=g_{i j k}-1$, hence we have either $\Pi_{1}(M) \cong \mathbb{Z}$ or $\Pi_{1}(M) \cong \mathbb{Z}_{n}$. If $\Pi_{1}(M) \cong H_{1}(M) \cong \mathbb{Z}$, then $\chi(M)=2$ implies that $\beta_{2}(M)=2$, hence $H_{2}(M) \cong \mathbb{Z} \oplus \mathbb{Z}$. Let M^{\prime} be the closed 4-manifold obtained by killing the generator of $\Pi_{1}(M)$. It is well-known that the intersection forms $\lambda_{M^{\prime}}$ and λ_{M} are isomorphic (see for example[6]). Since $H_{2}\left(M^{\prime}\right) \cong$ $H_{2}(M) \cong \mathbb{Z} \oplus \mathbb{Z}$ and $\Pi_{1}\left(M^{\prime}\right) \cong 0$, the Freedman-Donaldson theorems imply that
either $M^{\prime} \cong\left(\pm \mathbb{C} P^{2}\right) \#\left(\pm \mathbb{C} P^{2}\right)$ or $M^{\prime} \cong \mathbb{S}^{2} \times \mathbb{S}^{2}$. Now it was proved in [7] that M is homeomorphic to the connected sum $M^{\prime} \#\left(\mathbb{S}^{1} \times \mathbb{S}^{3}\right)$. If $\Pi_{1}(M) \cong H_{1}(M) \cong \mathbb{Z}_{n}$, then we have $H_{3}(M) \cong H^{1}(M) \cong F H_{1}(M) \oplus T H_{0}(M)=0$. Since $\chi(M)=2$, we obtain $\beta_{2}(M)=0$, that is $H_{2}(M) \cong H^{2}(M) \cong F H_{2}(M) \oplus T H_{1}(M) \cong \mathbb{Z}_{n}$. These facts produce a contradiction as shown in the proof of Theorem 2.

If $R=13$, then $\sum_{i} g_{\hat{i}}=11$ and $\chi(M)=1$. If at least one of the $g_{i j k}$'s in R equals 1 , then we have $\Pi_{1}(M) \cong 0$ and $H_{3}(M) \cong 0$. Thus it follows that $\chi(M)=$ $2+\beta_{2}(M) \geq 2 \neq 1$, which is a contradiction. Therefore $g_{i j k} \geq 2, \operatorname{rank} \Pi_{1}(M) \leq 1$ and either $\Pi_{1}(M) \cong \mathbb{Z}$ or $\Pi_{1}(M) \cong \mathbb{Z}_{n}$. If $\Pi_{1}(M) \cong \mathbb{Z}_{n}$, then we obtain a contradiction as before. If $\Pi_{1}(M) \cong H_{1}(M) \cong \mathbb{Z}$, then $\chi(M)=1$ implies that $\beta_{2}(M)=1$, hence $H_{2}(M) \cong \mathrm{FH}_{2}(M) \cong \mathbb{Z}$. The addendum of R may only assume the following values:

case	g_{013}	g_{023}	g_{024}	g_{124}	g_{134}
13.1	5	2	2	2	2
13.2	2	2	3	3	3
13.3	2	3	2	3	3
13.4	4	3	2	2	2
13.5	4	2	3	2	2

Case 13.1). We have $g_{\hat{0}}=g_{\hat{1}}=4, g_{\hat{2}}=g_{\hat{3}}=g_{\hat{4}}=1, g_{14}=g_{014}+2, g_{02}=$ $g_{012}+2, g_{13}=g_{123}+5, g_{24}=g_{234}+5$ and $g_{03}=g_{034}+5 . \quad$ Since $g_{023}=2$, the pseudocomplex $K(1,4)$ consists of two edges, hence $N(1,4)$ is homeomorphic to $\mathbb{S}^{1} \times B^{3}$. Furthermore, $K(0,2)$ and $K(0,3)$ are also formed by two edges each one as $g_{134}=g_{124}=2$. Because $g_{14}=g_{014}+2$, the pseudocomplex $K(0,2,3)$ contains many triangles, but two, as there are edges in $K(2,3)$. The Mayer-Vietoris sequence of the triple $\left(M, N, N^{\prime}\right)$ yields $H_{2}\left(N^{\prime}\right) \cong \mathbb{Z}$. Thus $K(0,2,3)$ collapses to a combinatorial 2-sphere \mathbb{S}^{2}, formed by exactly two triangles T_{1}, T_{2} of $K(0,2,3)$ with common boundary plus an edge e such that Int $e \cap \mathbb{S}^{2}=\emptyset$ and $e \cap \mathbb{S}^{2}=\partial e$. Following [4] we obtain that M is homeomorphic to the connected sum $\left(\pm \mathbb{C} P^{2}\right) \#\left(\mathbb{S}^{1} \times \mathbb{S}^{3}\right)$ which is a contradiction as this manifold has genus 3 . Now one can verify that the other cases give the same contradiction.

If $R=15$, then $\sum_{i} g_{\hat{i}}=10$ and $\chi(M)=0$. If all the $g_{i j k}$'s in R are greater than 3 , then $R \geq 20$, which is a contradiction. Thus at least one of the $g_{i j k}$'s in R is less or equal 3 , hence $\beta_{1}(M) \leq 2$ and rank $\Pi_{1}(M) \leq 2$. If $\beta_{1}(M)=0$, then $\chi(M)=2+\beta_{2}(M) \geq 2 \neq 0$ which contradicts the relation $\chi(M)=0$. If $\beta_{1}(M)=1$, then $F H_{1}(M) \cong \mathbb{Z}$ so $\chi(M)=0$ implies $\beta_{2}(M)=0$. Since there is an epimorphism $\Pi_{1}(M) \rightarrow \mathbb{Z}$, the fundamental group $\Pi_{1}(M)$ is an extension of \mathbb{Z} by a normal cyclic (finite or not) subgroup \mathbb{Z}_{n} as rank $\Pi_{1}(M) \leq 2$ (note that $\mathbb{Z}_{0} \cong \mathbb{Z}$). But such an extension splits: a choice of element $t \in \Pi_{1}(M)$ which projects to a generator of
\mathbb{Z} determines a right inverse to the epimorphism $\Pi_{1}(M) \rightarrow \mathbb{Z}$. Let $\theta \in \operatorname{Aut}\left(\mathbb{Z}_{n}\right)$ determined by conjugation by t in $\Pi_{1}(M)$. Then $\Pi_{1}(M)$ is isomorphic to either the semidirect product $\mathbb{Z}_{n} \times_{\theta} \mathbb{Z}, n \neq 0$, or $\mathbb{Z} \times \mathbb{Z}$ as M is orientable. Thus $\Pi_{1}(M)$ has exactly two (resp. one) ends if $\Pi_{1}(M) \cong \mathbb{Z}_{n} \times_{\theta} \mathbb{Z}, n \neq 0$ (resp. $\left.\Pi_{1}(M) \cong \mathbb{Z} \times \mathbb{Z}\right)$. If $\Pi_{1}(M)$ has two ends, then the universal covering space \tilde{M} of M is homotopy equivalent to \mathbb{S}^{3} as $\chi(M)=0$ (see [13], Theorem 10). Let \hat{M} be the n-fold covering space of M. Since \hat{M} is a closed connected orientable 4-manifold with $\chi(\hat{M})=0$, $\Pi_{1}(\hat{M}) \cong \mathbb{Z}$ and $\Pi_{2}(\hat{M}) \cong \Pi_{2}(\tilde{M}) \cong 0$, it was proved in [6] that \hat{M} is homotopy equivalent to $\mathbb{S}^{1} \times \mathbb{S}^{3}$. Now the results of $[7]$ imply that \hat{M} is s-cobordant to $\mathbb{S}^{1} \times \mathbb{S}^{3}$, and hence these manifolds are also topologically homeomorphic by [10]. Now the only possibilities for M are the finite quotients of $\mathbb{S}^{1} \times \mathbb{S}^{3}$, i.e. M is topologically homeomorphic to a lens-fiber bundle over the 1 -sphere as claimed. In particular, if $\Pi_{1}(M) \cong \mathbb{Z}$, then M is homeomorphic to $\mathbb{S}^{3} \times \mathbb{S}^{1}$ by [10]. This fact gives a contradiction as $g\left(\mathbb{S}^{3} \times \mathbb{S}^{1}\right)=1$ (see [3]). If $\beta_{1}(M)=2$, then $\Pi_{1}(M) \cong H_{1}(M) \cong$ $\mathbb{Z} \oplus \mathbb{Z}$ and $\chi(M)=0$ implies $\beta_{2}(M)=2$. Since $\chi(M)=0$ and $\Pi_{1}(M) \cong \mathbb{Z} \oplus \mathbb{Z}$ has one end, it follows from [13] that $H^{1}(M ; \Lambda) \cong H_{3}(M ; \Lambda) \cong H_{3}(\tilde{M}) \cong 0$ and $H^{2}(M ; \Lambda) \cong H_{2}(M ; \Lambda) \cong H_{2}(\tilde{M}) \cong \Pi_{2}(\tilde{M}) \cong \mathbb{Z}$, where $\Lambda=\mathbb{Z}\left[\Pi_{1}\right]$ is the integral group ring of $\Pi_{1}(M)$. Thus the universal covering space \tilde{M} is homotopy equivalent to the standard 2 -sphere \mathbb{S}^{2} (see [13]). Furthermore, the manifold M is homotopy equivalent to an $\left(\mathbb{S}^{1} \times \mathbb{S}^{2}\right)$-bundle over \mathbb{S}^{1}, as shown in [13], Corollary C, p.35. Now the results of $[6]$ and $[7]$ imply that M is also s-cobordant to an $\left(\mathbb{S}^{1} \times \mathbb{S}^{2}\right)$-bundle over \mathbb{S}^{1}. Since $\Pi_{1}(M) \cong \mathbb{Z} \times \mathbb{Z}$ is a polycyclic group, the orientable manifold M is just homeomorphic to the product $\mathbb{S}^{1} \times \mathbb{S}^{2} \times \mathbb{S}^{1}$ since any s-cobordism is topologically a product for this class of fundamental groups. Thus, if M is a prime spin closed orientable 4 -manifold of genus 6 , then M is topologically homeomorphic to the product $L(p, q) \times \mathbb{S}^{1}, q \neq 0$, possibly including the case $L(0,1)=\mathbb{S}^{1} \times \mathbb{S}^{2}$. This completes the proof of Theorem 3 .

Finally, we conjecture that the unique closed connected orientable prime 4manifold of genus six is really the topological product $\mathbb{R} \mathrm{P}^{3} \times \mathbb{S}^{1}$. In fact, nowadays we are not able to construct a genus six crystallization for any lens-fiber bundles over \mathbb{S}^{1} which is different from $\mathbb{R} P^{3} \times \mathbb{S}^{1}$.

References

1. J. Bracho and L. Montejano, The combinatorics of coloured triangulations of manifolds, Geom. Dedicata 22 (1987), 303-328.
2. M.R. Casali and C. Gagliardi, Classifying PL 5-manifolds up to regular genus seven, Proc. Amer. Math. Soc. 120 (1994), 275-283.
3. A. Cavicchioli, A combinatorial characterization of $\mathbb{S}^{3} \times \mathbb{S}^{1}$ among closed 4-manifolds, Proc. Amer. Math. Soc. 105 (1989), 1008-1014.
4. A. Cavicchioli, On the genus of smooth 4-manifolds, Trans. Amer. Math. Soc. 331 (1992), 203-214.
5. A. Cavicchioli and M. Meschiari, On classification of 4-manifolds according to the genus, Cahiers Topologie Géom. Différentielle Catégoriques 34 (1993), 37-56.
6. A. Cavicchioli and F. Hegenbarth, On 4-manifolds with free fundamental group, Forum Math. 6 (1994), 415-429.
7. A. Cavicchioli, F. Hegenbarth and D. Repovš, On stable classification of certain 4-manifolds, Bull. Austral. Math. Soc. 52 (1995), 385-398.
8. M. Ferri, C. Gagliardi and L. Grasselli, A graph-theoretical representation of PL-manifolds. A survey on cristallizations, Aequationes Math. 31 (1986), 121-141.
9. M. Ferri and C. Gagliardi, On the genus of 4-dimensional products of manifolds, Geom. Dedicata 13 (1982), 331-345.
10. M.H. Freedman and F.S. Quinn, Topology of 4-manifolds, Princeton Univ. Press, Princeton, New Jersey, 1989.
11. M.H. Freedman and F. Luo, Selected Applications of Geometry to Low-Dimensional Topology, Marker Lect. in Math. Sciences, Amer. Math. Soc. Providence, Rhode Island, 1989.
12. F. Harary, Graph theory, Addison-Wesley Ed., Reading, Massachussets, 1969.
13. J.A. Hillman, The Algebraic Characterization of Geometric 4-Manifolds, London Math. Soc. Lect. Note Ser. 198, Cambridge Univ. Press, Cambridge, 1994.
14. J.A. Hillman, A homotopy fibration theorem in dimension four, Topology Appl. 33 (1989), 151-161.
15. R.C. Kirby, The topology of 4-manifolds, Springer-Verlag, Berlin-Heidelberg-New York, 1989.
16. C.P. Rourke and B.J. Sanderson, Introduction to piecewise-linear topology, Springer-Verlag, Berlin-Heidelberg-New York, 1972.

[^0]: * Work performed under the auspices of the G.N.S.A.G.A. of the National Research Council of Italy and partially supported by the Ministero per la Ricerca Scientifica e Tecnologica of Italy within the project "Geometria Reale e Complessa".

