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ABSTRACT

We continue the topological classification of closed connected orientable
4-manifolds according to the (regular) genus, as developed in a series of pa-
pers (see[3], [4], [5]). In particular, we prove that any closed prime orientable
PL 4-manifold of genus six istopologically homeomorphic to alens-fiber bun-
dle over the 1-sphere. There are good reasons to conjecture that the genus six
characterizes the topological product RP3 x S of the real projective 3-space
by the 1-sphere among closed connected prime orientable 4-manifolds.

1. Introduction

Through the paper we shall work in the piecewise linear (PL) category [16] and
represent (PL) manifolds by means of edge-colored graphs, as shown for example
in [1] and [8]. We recall now the main concepts and definitions used in the paper.
For more details on graph theory and on the combinatorics of colored triangulations
of manifolds see for example [1], [8] and [12]. An (n+1)-colored graph is a pair (I', ),
where I' = (V, E) is a finite multigraph, regular of degree n + 1, and v: E — A,, =
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{i€Z : 0<i<n}isa coloring of the edges of T, i.e. any two adjacent edges
of T have different colors. An n-pseudocompler K(I') can be associated to (I',7)
by the following rules. We consider an n-simplex ¢”(v) for each vertex v of I' and
label its vertices by A,,. If two vertices v and w are joined in I' by a c-colored edge,
then we identify the (n — 1)-faces of the simplexes 0" (v) and o™ (w) opposite to the
vertex labeled by ¢, so that equally labeled vertices are identified. Let ¢ denote the
set A, \{c}. For any subset B C A,,, we set I'p = (V,771(B)). An (n + 1)-colored
graph (T, ) is said to be a crystallization of a closed connected PL n-manifold M if
I'; is connected for any color ¢ € A,, and the polyhedron |K(T")|, underlying K (T'),
is (PL) homeomorphic to M, ie. |[K(I')] =2 M. We say that K(I') is a contracted
triangulation of M and that I' represents M and every homeomorphic space. It is
well-known that any closed connected PL n-manifold admits a crystallization (see
for example [8]). A 2-cell embedding f : |I'| — F' of an (n + 1)-colored graph (I, ~)
into a closed connected surface F' is called regular if there exists a cyclic permutation
e = (€g, €1, -+, €,) of A, such that each region of f is bounded by a cycle with edges
alternatively colored by €;, €;11 (indices mod n + 1). The genus of I, written g(T'),
is the minimum genus of a closed connected surface into which I' regularly embeds.
The regular genus g(M) of a closed connected PL n-manifold M is the smallest
g(I") over all crystallizations I" of M. In this paper, we construct a 5-colored graph
which represents the topological product RP? x S'. Then eliminating dipoles (see
[8]) from this graph yields a crystallization of RP? x S', which has order 40 and
genus 6. This implies that g(RP? x S') < 6. Then we show that the regular genus
of this manifold equals 6 by using some results proved in [5]. Moreover, we classify
the topological structure of closed connected prime orientable 4-manifolds of genus
six. Indeed, these manifolds are proved to be homeomorphic to lens-fiber bundles
over the 1-sphere. If further the manifold is spin, i.e. the second Stiefel-Whitney
class vanishes, then the bundle is trivial so it is homeomorphic to either L(p, q) x S*,
g # 0, or St x §? x S!. Finally we conjecture that RP3 x S! is the unique, up to
homeomorphism, closed connected prime orientable 4-manifold of genus six.

2. A crystallization of L(p, q) x St

Let L(p,q) be the lens space of type (p,q), where p, ¢ are coprime integers such
that p > ¢ > 1. In this section we shall construct a simple crystallization of the
topological product L(p,q) x S', whose genus is less or equal to 6p — 6. This implies
that g(RP3 x S') < 6 as RP3 = L(2,1). Let K = K(p,q) denote the standard
contracted triangulation of the lens space L(p,q), as given in [1]. We triangulate
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each 4-cell of K x I, I = [0, 1], by taking the join over a complex from an opposite
vertex, in some standard way. Then we label the vertices of each 4-cell by the
elements of A4 in a standard way, so that all vertices of each simplex of the previous
triangulation are differently labeled. It is not yet convenient to identify the top of
K x I with the bottom of it because the quotient would not be a pseudocomplex.
Therefore we consider a copy K x J, J = [1,2], of K x I, which is triangulated as
the previous one and label its vertices by the elements of Ay too. Then we identify
the top of K x J with the bottom of K X I in order to obtain a pseudocomplex
K = K(p, q) triangulating the topological product L(p, ¢) x S'. In Figure 1 we show
the 5-colored graphs representing the pseudocomplexes K x I and K x J respectively,
for the case (p,q) = (2,1).

We obtain now a (noncontracted) 5-colored graph I' = I'(p, ¢) representing K
by using the rules discussed in Section 1. The graph I' is isomorphic to the 1-skeleton
of the dual cellular subdivision of K. Thus I' has exactly 32p vertices, which are
the barycenters of the n-cells of K. The coloring of T is obtained by assigning to
each edge the color of the vertex opposite to its dual 3-cell in K. For each cyclic
permutation € of Ay, the graph I' regularly embeds into a closed connected orientable
surface of genus g, according to the following table:

€ g
(01234) 10p—7
(01243) 8p — 3
(01324) 8p — 3
(01342) 5p+1
(01423) 5p+ 1
(01432) 4p+1
(02134) 11p—7
(02143) 8p — 3
(02314) 8p — 3
(02413) 6p+ 1
(03124) 12p — 7
(03214) 11p — 7.

We simplify now I' by deleting some dipoles (see [8]) in order to obtain a crys-
tallization of L(p,q) x S'. Eliminating dipoles of type 1 and the induced dipoles of
types 2 and 3 produces a contracted graph (crystallization) representing L(p, ¢) x S*,
as shown in Figure 2 for the case (p,q) = (2,1).

Now it is very easy to check that the genus of this crystallization equals 6p—6 by
using the cyclic permutation € = (01432). This implies that g(L(p, q) x S*) < 6p—6.
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Fig. la: A noncontracted 5-colored graph representing RP? x [0, 1]

In particular, we have g(L(2,1) x S!) < 6 as claimed. In summary, we have obtained
the following result (use also [5] and [9] and Theorem 2 below).

Proposition 1

Let L(p, q) be the lens space of type (p,q), p > q > 1. Then the regular genus
of the topological product L(p,q) x S! satisfies the inequalities

6 < g(L(p,q) x S*) < min {6p — 6, 4p + 1}.

Furthermore, the regular genus of RP3 x S! is exactly 6.
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Fig. 1b: A noncontracted 5-colored graph representing RP3 x [1, 2]

3. Main results

In this section we shall study the topological structure of closed connected prime
orientable (PL) 4-manifolds of genus 5 and 6. The closed 4-manifolds of genus g < 4
are completely classified in [3], [4], [5]. Other results concerning the classification of
closed connected orientable PL 5-manifolds up to regular genus seven can be found
in [2]. We state our main results.
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Fig. 2: A genus six crystallization of RP3 x S1
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Theorem 2

Let M be a smooth closed connected orientable prime 4-manifold of genus 5.
Then M is homeomorphic to one of the following manifolds: #5(S* x S3), #3(S! x
S3)#CP2, CP?#CP?#(S' x $?), (823\<JSQ)#(S1 x §?), (S? x S%)#(S* x S3).

Theorem 3

Let M be a smooth closed connected orientable prime 4-manifold. If g(M) = 6,
then M is homeomorphic to a lens-fiber bundle over the 1-sphere. If further M
is spin, then M is homeomorphic to the topological product L(p,q) x St, q # 0,
possibly including the case L(0,1) = S! x §2.

In order to prove these theorems, we recall some constructions and results given
in [3], [4], [5]. Let M be a closed connected orientable smooth (or PL) 4-manifold.
Let (I',7) be a crystallization of M and {v; |i € A4} the vertex-set of K = K(I').
If {i,7} = A4\{r,s,t}, then K(i,j) (resp. K(r,s,t)) represents the subcomplex
of K generated by the vertices v;, v; (resp. vy, vs, v¢). By gret (resp. gij) we
denote the number of edges (resp. triangles) of K(i,7) (resp. K(r,s,t)). Note that
grst and g;; also represent the number of components of the subgraphs I'¢,. ;41 and
I'gi ;3 respectively. If N = N(i,j) and N’ = N(r,s,t) are regular neighborhoods
of K(i,7) and K(r,s,t) respectively, then N and N’ are complementary bordered
4-manifolds, i.e. M = NUN’ and NN N’ = 9N = IN'. Following [3] and [4], we
can always assume that (I',v) regular embeds into the closed orientable surface of
genus g = g(M) and of Euler characteristic x(M) = go1 + g12 + 923 + 934 + 940 — 3p,
where p is the order of I' divided by 2. As proved in [3], we have the following

relations:

Dgois=1+9—95—9; 6) 914 = go1a +9 — gp
2)goz=1+9g—9; — 9 7) go2 = go12 + 9 — 9j
3)go2a=1+9—9i — g3 8)g13 = 9123 +9 — 95
4)g12a =149 — gy — 93 9)g24 = gosa +9 — 93
5)g13¢ =1+ 9 —g5 — 95 10) go3 = go3a + 9 — ;-

4)

Furthermore, it was also proved that x (M) =2—-2g+) , g;, where g; (0 < g; <
g) is the genus of an orientable closed surface into which the subgraph I'; (i € A

regularly embeds.
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Proof of Theorem 2. If g = 5, then the sum R = go13 + go23 + Go24 + g124 + G134 =
5+ 59 —2) . g; belongs to the set {2h : 3 < h <15, h € N}. For 12 < R < 30,
the manifolds are topologically classified in [5]. In particular, if R = 30, then
M =2 #:S'xS3; if R = 20, then M = #3S! x S3#CP?. The other cases in that range
give a contradiction. We are going to consider the cases R € {6, 8, 10}. If R = 6,
then ) . g: = 12 and x(M) = 4. Because at least one of the g;;1’s in R equals 1, the
4-manifold M is simply-connected, hence x(M) = 4 implies that G3(M) = 2. Here
B:(M) denotes the i-th Betti number of M. Now we consider the intersection form
Anr as a pairing H2(M)® H?(M) — Z so defined: A\y/(z,y) =< xJy, [M] >, where
U and [M] denote the cup product and the fundamental class of M respectively. By
Donaldson’s theorems and Freedman’s classification of simply-connected 4-manifolds
(see for example [10], [11], [15]), we may have only the following cases:

1) If Aps is positive (resp. negative) definite, then Ap; is isomorphic over the
integers to (1) @ (1) (resp. (—1) @ (—1)). Thus M is (TOP) homeomorphic to
either CP2#CP? or (—CP?)#(—CP?) respectively.

2) If A\ is an odd indefinite form, then A, is isomorphic to (1) & (—1), hence
M = CP?#(—CP?) = 82582.

3) If Aps is an even indefinite form, then A\j; is isomorphic to the form

0 1
w:2aE8+b<1 0),

where rank (w)=16|a| + 2|b|. Since rank (Ays)= rank(w)= rankHs(M)=2, we
(1) (1)> Now the Freedman theorem (see

[10], [11]) implies that M is (TOP) homeomorphic to S? x S?. All the cases give

a contradiction because the above 4-manifolds have genus 4, as shown in [5].

If R =8, then >, g;: = 11 and x(M) = 3. Because at least one of g;;’s in
R equals 1, the 4-manifold M is simply-connected. The relation (M) = 3 implies
that Bo(M) = 1, i.e. Ho(M) ~ H?*(M) ~ FHo(M) ~ Z. Thus A\j; = (&1), hence
M = +CP?2. This gives a contradiction because g(CP?) = 2, as proved in [4].

If R =10, then ), g; = 10 and x(M) = 2. If at least one of g;;’s in R equals
1, then II1 (M) = 0, hence x(M) = 2 and [2(M) = 0. Thus Ho(M) = 0, App =0
and M is homeomorphic to the 4-sphere S*. This gives a contradiction because
g9(8*) =0.

If gijx > 2, then we obtain go13 = go2s = go2a = 9124 = g13¢ = 2. Thus
1 < rankll; (M) <1 = go13 — 1, i.e. we have either IIy (M) = Z or 111 (M) = Z,.
If 11, (M) =2 Z = Hy{(M), then x(M) = 2 implies that S3(M) = 2, hence Hy(M) =
Z®Z. By (1),---, (5) we obtain g5 = gi = g5 = 935 = g3 = 2. By (6),---, (10)

obtain a =0 and b =1, i.e. A\py =
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it follows that gi4 = go14 + 3, go2 = go12 + 3, g13 = G123 + 3, goa = go34 + 3 and
903 = go3a + 3. Since go24 = 2, then K(1,3) is formed by two vertices joined by
exactly two edges, hence N(1,3) is homeomorphic to S* x B3. Furthermore, K (0, 2)
and K(2,4) are formed by two edges each one as gi34 = go13 = 2. Because g13 =
9123 + 3, the pseudocomplex K(0,2,4) has many triangles, but three, as there are
edges in K(0,4). The Mayer-Vietoris sequence of the triple (M, N, N') becomes 0 =
Z® 7 — Hi(ON) = Z — Hy{(N) @ Hy(N') — H(M)=Z — 0. Since Ha(N) =2
and Hy(N) = Z, it follows that Ho(N') = Z. Now the arguments discussed in
implies that M is homeomorphic to the connected sum S' x S3#CP2#CP2.

If 11, (M) = Z, = Hy(M), then we have H3(M) = HY(M) = FH;(M)
THy(M) = 0. Since x(M) = 2, it follows that G2(M) = 0, hence Ho(M)
H?*(M) = FHy(M)®TH,(M) = Z,,. The Mayer-Vietoris sequence yields Hz(M)
0 — Hy(ON) =7 — Hy(N)® Ho(N') 2 Z &7 — Hy(M) =2 7, >H,(ON) = 7 —
H{(N)® H{(N') 2 Z®7Z — Z,, — 0. This easily implies that « = 0. Now the exact
sequence 0 - Z — Z®Z — Ly, — 0 yields n = 1, ie. II1(M) = Z; = 0. It follows
that M is homeomorphic to S*, which is a contradiction. This completes the proof
of Theorem 2. [J

o |

5

—
—
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Proof of Theorem 3. If g = 6, then the sum R = 5 + 59 — 2) . g; belongs to
the set {2h +1: 2 < h < 17, h € N}. In [5], it was shown that: if R = 35, then
M = #6SPxS3; if R = 25, then M = #,4(S' xS?)#CP?; if 15 < R < 35 and R # 25,
there is a contradiction. So we have only to examine the cases R € {5,7,9,11,13,15}.

If R =25, then ), g; = 15 and x(M) = 5. Because at least one of the g;;i’s
in R equals 1, the manifold M is simply-connected, hence x(M) = 5 implies that
By(M) = 3. Thus we have Hy(M) =2 H2(M) = FHy(M) @ THy (M) = FHy(M),
ie. Hy(M) = Z ®Z @ Z. The only possible values for the addendum of R are
go13 = go23 = Go24 = g124 = J134 = 1. Then the relations (1), ety (5) 1mply that
95 =91 = 95 = 93 = g3 = 3. By (6), -, (10) we obtain gi4 = go14+3, go2 = go12+3,
913 = g123+3, g2a = G234+ 3 and go3 = goza +3. Since gga3 = 1, the complex K (1,4)
consists of one edge, hence N(1,4) is a 4-cell. Furthermore, K(0,2) and K(0,3) are
formed by one edge each one as g134 = gi124 = 1. Because g14 = ¢go14 + 3, the
complex K (0,2,3) contains many triangles, but three, as there are edges in K(2,3).
The Mayer-Vietoris sequence of the triple (M, N, N') yields 0 — Hy(N)® Hy(N') —
Hy M) 2 ZSLZ&Z — Hi(ON) = 0 — Hy(N) @ Hy(N') — Hy(M) = 0, hence
Hy(N') =0 and Hy(N') 2 Z&Z®7Z. Then the arguments developed in [3], [4] and
[5] imply that M is homeomorphic to the connected sum #3(+CP?).

If R=17, then ), g; = 14 and x(M) = 4. Because at least one of g;;,’s in R
equals 1, we have ITy(M) = 0, hence x(M) = 4 implies that G2(M) = 2. Thus it
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follows that Ho(M) = H*(M) = Z®Z, and hence M is homeomorphic to #2(+CP?)
by [10], [11] and [15].

If R=9, then ), g; = 13 and x(M) = 3. Because at least one of the g;;i’s in
R equals 1, we have II; (M) = 0, hence x(M) = 3 implies that G2(M) = 1. Thus
we obtain Hy(M) = FHy(M) = Z. The addendum of R may assume the following
values (up to circular permutations):

case go1s go23 Jo24 9124 9134
9.1 1 1 1 1 5
9.2 3 3 1 1 1
9.3 3 1 3 1 1
9.4 4 2 1 1 1
9.5 4 1 2 1 1
9.6 3 2 2 1 1
9.7 3 2 1 2 1
9.8 3 1 2 2 1
9.9 3 2 1 1 2
9.10 2 2 2 2 1

Case 9.1). We have the relations g5 = g1 = 95 = 1, g5 = g5 = 5, gua =
go14 + 5, go2 = go12 + 5, 913 = g123 + 9, g24 = go34 + 1 and goz = go34 + 1. Since
go1s = 1, the pseudocomplex K(2,4) consists of only one edge, hence N(2,4) is a
4-cell. Furthermore, K(0,3) and K (1,3) are also formed by one edge each one as
9124 = go24 = 1. Thus all triangles of K (0, 1,3) have two edges in common. Because
924 = ga34 + 1, the complex K(0,1,3) has many triangles, but one, as there are
edges in K(0,1). Therefore K(0,1,3) collapses to a combinatorial 2-sphere formed
by exactly two triangles 17, T with common boundary. Thus M is homeomorphic
to +2CP? as proved in [4]. This gives a contradiction as g(CP?) = 2. Now one can
easily verify that the other cases yield the same result.

If R=11, then ), g; = 12 and x(M) = 2. If at least one of the g;;;’s in R equals
1, then we have Iy (M) = 0, hence x (M) = 2 implies that G2(M) = 0, i.e. Ho(M) =
FHy(M) = 0. Thus M is homeomorphic to S* which is a contradiction as g(S*) = 0.
If g;j1 > 2, then we have the unique case go13 = go24 = g124 = g134 = 2 and go23 = 3
(up to circular permutations). Thus it follows that 1 < rankII;(M) <1 = g;, — 1,
hence we have either 11y (M) = Z or 111 (M) = Z,,. If 1I1(M) = H{(M) = Z , then
X(M) = 2 implies that o(M) = 2, hence Hy(M) 2 Z & Z. Let M’ be the closed
4-manifold obtained by killing the generator of IT;(M). It is well-known that the
intersection forms Ay and Aps are isomorphic (see for example[6]). Since Ho (M) =
Hy(M) 2 Z @ Z and II1(M’) = 0, the Freedman-Donaldson theorems imply that
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either M’ =2 (+CP?)#(£CP?) or M’ =2 S? x S2. Now it was proved in [7] that M
is homeomorphic to the connected sum M'#(S! x S3). If Tl (M) = H,(M) 2 Z
then we have H3(M) = HY(M) = FH,(M) ® THo(M) = 0. Since x(M) = 2,
obtain B2(M) = 0, that is Ho(M) = H?(M) = FHy(M) @ TH{(M) &£ Z,. hese
facts produce a contradiction as shown in the proof of Theorem 2.

If R =13, then ), g; = 11 and x(M) = 1. If at least one of the g;;z’s in R
equals 1, then we have II; (M) = 0 and H3(M) = 0. Thus it follows that x(M) =
2+032(M) > 2 # 1, whichisa contradiction Therefore g;j;, > 2, rankIl; (M) < 1 and
either IT; (M) =2 Z or I1; (M) = Z,,. If 111 (M) = Z,,, then we obtain a contradiction
as before. If Iy (M) = Hy(M) = Z, then x(M) = 1 implies that G2(M) = 1, hence
Hy(M) = FHy(M) = Z. The addendum of R may only assume the following values:

case
13.1
13.2

g 024
5
2
13.3 2
4
4

124 134

13.4

9
2
3
2
2
13.5 3

9 9 9
2 2 2
2 3 3
3 3 3
3 2 2
2 2 2

Case 13.1). We have g5 = ¢9; =4, 95 = 93 = 95 = 1, 914 = go14a + 2, go2 =
goi2 + 2, g13 = g123 + 5, g24 = ¢g234 + 5 and goz = gozsa + 5. Since goaz = 2,
the pseudocomplex K (1,4) consists of two edges, hence N(1,4) is homeomorphic
to St x B3. Furthermore, K(0,2) and K(0,3) are also formed by two edges each
one as ¢i34 = gi2a = 2. Because g14 = go14 + 2, the pseudocomplex K(0,2,3)
contains many triangles, but two, as there are edges in K(2,3). The Mayer-Vietoris
sequence of the triple (M, N, N') yields Ho(N’) = Z. Thus K (0,2, 3) collapses to a
combinatorial 2-sphere S?, formed by exactly two triangles Ty, Th of K(0,2,3) with
common boundary plus an edge e such that Int e N S? = () and eNS? = de. Following
[4] we obtain that M is homeomorphic to the connected sum (£CP?)#(S! x S3)
which is a contradiction as this manifold has genus 3. Now one can verify that the
other cases give the same contradiction.

If R =15, then ), g; = 10 and x(M) = 0. If all the g;;1’s in R are greater
than 3, then R > 20, which is a contradiction. Thus at least one of the g;;;’s in
R is less or equal 3, hence §1(M) < 2 and rank II, (M) < 2. If 8;(M) = 0, then
X(M) =2+ B2(M) > 2 # 0 which contradicts the relation x(M) = 0. If 51 (M) =1,
then FHy(M) = Z so x(M) = 0 implies $2(M) = 0. Since there is an epimorphism
IT1; (M) — Z, the fundamental group II; (M) is an extension of Z by a normal cyclic
(finite or not) subgroup Z,, as rank II;(M) < 2 (note that Zy = Z). But such an
extension splits: a choice of element ¢ € II; (M) which projects to a generator of
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Z determines a right inverse to the epimorphism II; (M) — Z. Let 0 € Aut(Z,)
determined by conjugation by ¢ in 1Ty (M). Then II; (M) is isomorphic to either the
semidirect product Z,, X9 Z, n # 0, or Z x Z as M is orientable. Thus II; (M) has
exactly two (resp. one) ends if Iy (M) = Z,, xg9 Z, n # 0 (resp. 1I1(M) = Z x Z).
If TI; (M) has two ends, then the universal covering space M of M is homotopy
equivalent to S3 as x(M) = 0 (see [13], Theorem 10). Let M be the n-fold covering
space of M. Since M is a closed connected orientable 4-manifold with X(M ) =0,
I, (M) = Z and TIy(M) = IIy(M) =2 0, it was proved in [6] that M is homotopy
equivalent to S! x S3. Now the results of [7] imply that M is s-cobordant to S* x S?,
and hence these manifolds are also topologically homeomorphic by [10]. Now the
only possibilities for M are the finite quotients of S' x S3, i.e. M is topologically
homeomorphic to a lens-fiber bundle over the 1-sphere as claimed. In particular,
if II1(M) = Z, then M is homeomorphic to S* x S' by [10]. This fact gives a
contradiction as g(S* x S!) =1 (see [3]). If 31(M) = 2, then II;(M) = Hy(M) =
Z & Z and x(M) = 0 implies f2(M) = 2. Since x(M) =0 and IIL (M) X Z & Z
has one end, it follows from [13] that H'(M;A) = H3(M;A) = H3(M) = 0 and
H2(M;A) = Hy(M;A) = Hy(M) = Iy(M) = Z, where A = Z[II] is the integral
group ring of II; (M). Thus the universal covering space M is homotopy equivalent
to the standard 2-sphere S? (see [13]). Furthermore, the manifold M is homotopy
equivalent to an (S! x S§?)-bundle over S', as shown in [13], Corollary C, p.35. Now
the results of [6] and [7] imply that M is also s-cobordant to an (S! x S?)-bundle over
St. Since I1; (M) = Z x 7Z is a polycyclic group, the orientable manifold M is just
homeomorphic to the product S! x S§? x S! since any s-cobordism is topologically
a product for this class of fundamental groups. Thus, if M is a prime spin closed
orientable 4-manifold of genus 6, then M is topologically homeomorphic to the
product L(p,q) x St, ¢ # 0, possibly including the case L(0,1) = S' x S%2. This
completes the proof of Theorem 3. [J

Finally, we conjecture that the unique closed connected orientable prime 4-
manifold of genus six is really the topological product RP3 x S'. In fact, nowadays
we are not able to construct a genus six crystallization for any lens-fiber bundles
over S! which is different from RP3 x S!.
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