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Abstract

We continue the topological classification of closed connected orientable
4-manifolds according to the (regular) genus, as developed in a series of pa-
pers (see [3], [4], [5]). In particular, we prove that any closed prime orientable
PL 4-manifold of genus six is topologically homeomorphic to a lens-fiber bun-
dle over the 1-sphere. There are good reasons to conjecture that the genus six
characterizes the topological product RP3 × S

1 of the real projective 3-space
by the 1-sphere among closed connected prime orientable 4-manifolds.

1. Introduction

Through the paper we shall work in the piecewise linear (PL) category [16] and
represent (PL) manifolds by means of edge-colored graphs, as shown for example
in [1] and [8]. We recall now the main concepts and definitions used in the paper.
For more details on graph theory and on the combinatorics of colored triangulations
of manifolds see for example [1], [8] and [12]. An (n+1)-colored graph is a pair (Γ, γ),
where Γ = (V,E) is a finite multigraph, regular of degree n + 1, and γ : E → ∆n =
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{i ∈ Z : 0 ≤ i ≤ n} is a coloring of the edges of Γ, i.e. any two adjacent edges
of Γ have different colors. An n-pseudocomplex K(Γ) can be associated to (Γ, γ)
by the following rules. We consider an n-simplex σn(v) for each vertex v of Γ and
label its vertices by ∆n. If two vertices v and w are joined in Γ by a c-colored edge,
then we identify the (n− 1)-faces of the simplexes σn(v) and σn(w) opposite to the
vertex labeled by c, so that equally labeled vertices are identified. Let ĉ denote the
set ∆n\{c}. For any subset B ⊂ ∆n, we set ΓB = (V, γ−1(B)). An (n + 1)-colored
graph (Γ, γ) is said to be a crystallization of a closed connected PL n-manifold M if
Γĉ is connected for any color c ∈ ∆n and the polyhedron |K(Γ)|, underlying K(Γ),
is (PL) homeomorphic to M , i.e. |K(Γ)| ∼= M . We say that K(Γ) is a contracted
triangulation of M and that Γ represents M and every homeomorphic space. It is
well-known that any closed connected PL n-manifold admits a crystallization (see
for example [8]). A 2-cell embedding f : |Γ| → F of an (n + 1)-colored graph (Γ, γ)
into a closed connected surface F is called regular if there exists a cyclic permutation
ε = (ε0, ε1, · · · , εn) of ∆n such that each region of f is bounded by a cycle with edges
alternatively colored by εi, εi+1 (indices mod n + 1). The genus of Γ, written g(Γ),
is the minimum genus of a closed connected surface into which Γ regularly embeds.
The regular genus g(M) of a closed connected PL n-manifold M is the smallest
g(Γ) over all crystallizations Γ of M . In this paper, we construct a 5-colored graph
which represents the topological product RP3 × S

1. Then eliminating dipoles (see
[8]) from this graph yields a crystallization of RP3 × S

1, which has order 40 and
genus 6. This implies that g(RP3 × S

1) ≤ 6. Then we show that the regular genus
of this manifold equals 6 by using some results proved in [5]. Moreover, we classify
the topological structure of closed connected prime orientable 4-manifolds of genus
six. Indeed, these manifolds are proved to be homeomorphic to lens-fiber bundles
over the 1-sphere. If further the manifold is spin, i.e. the second Stiefel-Whitney
class vanishes, then the bundle is trivial so it is homeomorphic to either L(p, q)×S

1,
q �= 0, or S

1 × S
2 × S

1. Finally we conjecture that RP3 × S
1 is the unique, up to

homeomorphism, closed connected prime orientable 4-manifold of genus six.

2. A crystallization of L(p,q) × S
1

Let L(p, q) be the lens space of type (p, q), where p, q are coprime integers such
that p > q ≥ 1. In this section we shall construct a simple crystallization of the
topological product L(p, q)×S

1, whose genus is less or equal to 6p− 6. This implies
that g(RP3 × S

1) ≤ 6 as RP3 ∼= L(2, 1). Let K = K(p, q) denote the standard
contracted triangulation of the lens space L(p, q), as given in [1]. We triangulate
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each 4-cell of K × I, I = [0, 1], by taking the join over a complex from an opposite
vertex, in some standard way. Then we label the vertices of each 4-cell by the
elements of ∆4 in a standard way, so that all vertices of each simplex of the previous
triangulation are differently labeled. It is not yet convenient to identify the top of
K × I with the bottom of it because the quotient would not be a pseudocomplex.
Therefore we consider a copy K × J , J = [1, 2], of K × I, which is triangulated as
the previous one and label its vertices by the elements of ∆4 too. Then we identify
the top of K × J with the bottom of K × I in order to obtain a pseudocomplex
K̃ = K̃(p, q) triangulating the topological product L(p, q)×S

1. In Figure 1 we show
the 5-colored graphs representing the pseudocomplexes K×I and K×J respectively,
for the case (p, q) = (2, 1).

We obtain now a (noncontracted) 5-colored graph Γ = Γ(p, q) representing K̃

by using the rules discussed in Section 1. The graph Γ is isomorphic to the 1-skeleton
of the dual cellular subdivision of K̃. Thus Γ has exactly 32p vertices, which are
the barycenters of the n-cells of K̃. The coloring of Γ is obtained by assigning to
each edge the color of the vertex opposite to its dual 3-cell in K̃. For each cyclic
permutation ε of ∆4, the graph Γ regularly embeds into a closed connected orientable
surface of genus g, according to the following table:

ε g
(01234) 10p− 7
(01243) 8p− 3
(01324) 8p− 3
(01342) 5p + 1
(01423) 5p + 1
(01432) 4p + 1
(02134) 11p− 7
(02143) 8p− 3
(02314) 8p− 3
(02413) 6p + 1
(03124) 12p− 7
(03214) 11p− 7.

We simplify now Γ by deleting some dipoles (see [8]) in order to obtain a crys-
tallization of L(p, q) × S

1. Eliminating dipoles of type 1 and the induced dipoles of
types 2 and 3 produces a contracted graph (crystallization) representing L(p, q)×S

1,
as shown in Figure 2 for the case (p, q) = (2, 1).

Now it is very easy to check that the genus of this crystallization equals 6p−6 by
using the cyclic permutation ε = (01432). This implies that g(L(p, q)×S

1) ≤ 6p−6.
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Fig. 1a: A noncontracted 5-colored graph representing RP3 × [0, 1]

In particular, we have g(L(2, 1)×S
1) ≤ 6 as claimed. In summary, we have obtained

the following result (use also [5] and [9] and Theorem 2 below).

Proposition 1
Let L(p, q) be the lens space of type (p, q), p > q ≥ 1. Then the regular genus

of the topological product L(p, q) × S
1 satisfies the inequalities

6 ≤ g(L(p, q) × S1) ≤ min {6p− 6, 4p + 1}.
Furthermore, the regular genus of RP3 × S

1 is exactly 6.
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Fig. 1b: A noncontracted 5-colored graph representing RP3 × [1, 2]

3. Main results

In this section we shall study the topological structure of closed connected prime
orientable (PL) 4-manifolds of genus 5 and 6. The closed 4-manifolds of genus g ≤ 4
are completely classified in [3], [4], [5]. Other results concerning the classification of
closed connected orientable PL 5-manifolds up to regular genus seven can be found
in [2]. We state our main results.
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Fig. 2: A genus six crystallization of RP3 × S
1
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Theorem 2

Let M be a smooth closed connected orientable prime 4-manifold of genus 5.

Then M is homeomorphic to one of the following manifolds: #5(S1 × S
3), #3(S1 ×

S
3)#CP 2, CP 2#CP 2#(S1 × S

3), (S2×∼S
2)#(S1 × S

3), (S2 × S
2)#(S1 × S

3).

Theorem 3

Let M be a smooth closed connected orientable prime 4-manifold. If g(M) = 6,

then M is homeomorphic to a lens-fiber bundle over the 1-sphere. If further M

is spin, then M is homeomorphic to the topological product L(p, q) × S
1, q �= 0,

possibly including the case L(0, 1) = S
1 × S

2.

In order to prove these theorems, we recall some constructions and results given
in [3], [4], [5]. Let M be a closed connected orientable smooth (or PL) 4-manifold.
Let (Γ, γ) be a crystallization of M and {vi | i ∈ ∆4} the vertex-set of K = K(Γ).
If {i, j} = ∆4\{r, s, t}, then K(i, j) (resp. K(r, s, t)) represents the subcomplex
of K generated by the vertices vi, vj (resp. vr, vs, vt). By grst (resp. gij) we
denote the number of edges (resp. triangles) of K(i, j) (resp. K(r, s, t)). Note that
grst and gij also represent the number of components of the subgraphs Γ{r,s,t} and
Γ{i,j} respectively. If N = N(i, j) and N ′ = N(r, s, t) are regular neighborhoods
of K(i, j) and K(r, s, t) respectively, then N and N ′ are complementary bordered
4-manifolds, i.e. M = N ∪N ′ and N ∩N ′ = ∂N = ∂N ′. Following [3] and [4], we
can always assume that (Γ, γ) regular embeds into the closed orientable surface of
genus g = g(M) and of Euler characteristic χ(M) = g01 + g12 + g23 + g34 + g40 − 3p,
where p is the order of Γ divided by 2. As proved in [3], we have the following
relations:

1) g013 = 1 + g − g2̂ − g4̂ 6) g14 = g014 + g − g0̂

2) g023 = 1 + g − g1̂ − g4̂ 7) g02 = g012 + g − g1̂

3) g024 = 1 + g − g1̂ − g3̂ 8) g13 = g123 + g − g2̂

4) g124 = 1 + g − g0̂ − g3̂ 9) g24 = g234 + g − g3̂

5) g134 = 1 + g − g0̂ − g2̂ 10) g03 = g034 + g − g4̂.

Furthermore, it was also proved that χ(M) = 2−2g+
∑

i gî, where gî (0 ≤ gî ≤
g) is the genus of an orientable closed surface into which the subgraph Γî (i ∈ ∆4)
regularly embeds.
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Proof of Theorem 2. If g = 5, then the sum R = g013 + g023 + g024 + g124 + g134 =
5 + 5g − 2

∑
i gî belongs to the set {2h : 3 ≤ h ≤ 15, h ∈ N}. For 12 ≤ R ≤ 30,

the manifolds are topologically classified in [5]. In particular, if R = 30, then
M ∼= #5S

1×S
3; if R = 20, then M ∼= #3S

1×S3#CP 2. The other cases in that range
give a contradiction. We are going to consider the cases R ∈ {6, 8, 10}. If R = 6,
then

∑
i gî = 12 and χ(M) = 4. Because at least one of the gijk’s in R equals 1, the

4-manifold M is simply-connected, hence χ(M) = 4 implies that β2(M) = 2. Here
βi(M) denotes the i-th Betti number of M . Now we consider the intersection form
λM as a pairing H2(M)⊗H2(M) → Z so defined: λM (x, y) =< x

⋃
y, [M ] >, where

∪ and [M ] denote the cup product and the fundamental class of M respectively. By
Donaldson’s theorems and Freedman’s classification of simply-connected 4-manifolds
(see for example [10], [11], [15]), we may have only the following cases:
1) If λM is positive (resp. negative) definite, then λM is isomorphic over the

integers to (1) ⊕ (1) (resp. (−1) ⊕ (−1)). Thus M is (TOP) homeomorphic to
either CP 2#CP 2 or (−CP 2)#(−CP 2) respectively.

2) If λM is an odd indefinite form, then λM is isomorphic to (1) ⊕ (−1), hence
M ∼= CP 2#(−CP 2) ∼= S

2×∼S
2.

3) If λM is an even indefinite form, then λM is isomorphic to the form

ω = 2aE8 + b

(
0 1
1 0

)
,

where rank (ω)=16|a| + 2|b|. Since rank (λM )= rank(ω)= rankH2(M)=2, we

obtain a = 0 and b = 1, i.e. λM
∼=

(
0 1
1 0

)
. Now the Freedman theorem (see

[10], [11]) implies that M is (TOP) homeomorphic to S
2×S

2. All the cases give
a contradiction because the above 4-manifolds have genus 4, as shown in [5].
If R = 8, then

∑
i gî = 11 and χ(M) = 3. Because at least one of gijk’s in

R equals 1, the 4-manifold M is simply-connected. The relation χ(M) = 3 implies
that β2(M) = 1, i.e. H2(M) � H2(M) � FH2(M) � Z. Thus λM

∼= (±1), hence
M ∼= ±CP 2. This gives a contradiction because g(CP 2) = 2, as proved in [4].

If R = 10, then
∑

i gî = 10 and χ(M) = 2. If at least one of gijk’s in R equals
1, then Π1(M) = 0, hence χ(M) = 2 and β2(M) = 0. Thus H2(M) = 0, λM

∼= 0
and M is homeomorphic to the 4-sphere S

4. This gives a contradiction because
g(S4) = 0.

If gijk ≥ 2, then we obtain g013 = g023 = g024 = g124 = g134 = 2. Thus
1 ≤ rankΠ1(M) ≤ 1 = g013 − 1, i.e. we have either Π1(M) ∼= Z or Π1(M) ∼= Zn.
If Π1(M) ∼= Z ∼= H1(M), then χ(M) = 2 implies that β2(M) = 2, hence H2(M) =
Z ⊕ Z. By (1), · · · , (5) we obtain g0̂ = g1̂ = g2̂ = g3̂ = g4̂ = 2. By (6), · · · , (10)
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it follows that g14 = g014 + 3, g02 = g012 + 3, g13 = g123 + 3, g24 = g234 + 3 and
g03 = g034 + 3. Since g024 = 2, then K(1, 3) is formed by two vertices joined by
exactly two edges, hence N(1, 3) is homeomorphic to S

1×B3. Furthermore, K(0, 2)
and K(2, 4) are formed by two edges each one as g134 = g013 = 2. Because g13 =
g123 + 3, the pseudocomplex K(0, 2, 4) has many triangles, but three, as there are
edges in K(0, 4). The Mayer-Vietoris sequence of the triple (M,N,N ′) becomes 0 =
H3(N) ⊕H3(N ′) → H3(M) ∼= Z → H2(∂N) ∼= Z → H2(N) ⊕H2(N ′) → H2(M) ∼=
Z ⊕ Z → H1(∂N) ∼= Z → H1(N) ⊕H1(N ′) → H1(M) ∼= Z → 0. Since H2(N) ∼= 0
and H1(N) ∼= Z, it follows that H2(N ′) ∼= Z. Now the arguments discussed in [5]
implies that M is homeomorphic to the connected sum S

1 × S
3#CP 2#CP 2.

If Π1(M) ∼= Zn
∼= H1(M), then we have H3(M) ∼= H1(M) ∼= FH1(M) ⊕

TH0(M) ∼= 0. Since χ(M) = 2, it follows that β2(M) = 0, hence H2(M) ∼=
H2(M) ∼= FH2(M)⊕TH1(M) ∼= Zn. The Mayer-Vietoris sequence yields H3(M) ∼=
0 → H2(∂N) ∼= Z → H2(N) ⊕H2(N ′) ∼= Z ⊕ Z → H2(M) ∼= Zn

α−→H1(∂N) ∼= Z →
H1(N)⊕H1(N ′) ∼= Z⊕Z → Zn → 0. This easily implies that α = 0. Now the exact
sequence 0 → Z → Z ⊕ Z → Zn → 0 yields n = 1, i.e. Π1(M) ∼= Z1

∼= 0. It follows
that M is homeomorphic to S

4, which is a contradiction. This completes the proof
of Theorem 2. �

Proof of Theorem 3. If g = 6, then the sum R = 5 + 5g − 2
∑

i gî belongs to
the set {2h + 1 : 2 ≤ h ≤ 17, h ∈ N}. In [5], it was shown that: if R = 35, then
M ∼= #6S

1×S
3; if R = 25, then M ∼= #4(S1×S

3)#CP 2; if 15 < R < 35 and R �= 25,
there is a contradiction. So we have only to examine the cases R ∈ {5, 7, 9, 11, 13, 15}.

If R = 5, then
∑

i gî = 15 and χ(M) = 5. Because at least one of the gijk’s
in R equals 1, the manifold M is simply-connected, hence χ(M) = 5 implies that
β2(M) = 3. Thus we have H2(M) ∼= H2(M) ∼= FH2(M) ⊕ TH1(M) = FH2(M),
i.e. H2(M) ∼= Z ⊕ Z ⊕ Z. The only possible values for the addendum of R are
g013 = g023 = g024 = g124 = g134 = 1. Then the relations (1), · · · , (5) imply that
g0̂ = g1̂ = g2̂ = g3̂ = g4̂ = 3. By (6), · · · , (10) we obtain g14 = g014+3, g02 = g012+3,
g13 = g123 +3, g24 = g234 +3 and g03 = g034 +3. Since g023 = 1, the complex K(1, 4)
consists of one edge, hence N(1, 4) is a 4-cell. Furthermore, K(0, 2) and K(0, 3) are
formed by one edge each one as g134 = g124 = 1. Because g14 = g014 + 3, the
complex K(0, 2, 3) contains many triangles, but three, as there are edges in K(2, 3).
The Mayer-Vietoris sequence of the triple (M,N,N ′) yields 0 → H2(N)⊕H2(N ′) →
H2(M) ∼= Z ⊕ Z ⊕ Z → H1(∂N) ∼= 0 → H1(N) ⊕ H1(N ′) → H1(M) ∼= 0, hence
H1(N ′) ∼= 0 and H2(N ′) ∼= Z⊕Z⊕Z. Then the arguments developed in [3], [4] and
[5] imply that M is homeomorphic to the connected sum #3(±CP 2).

If R = 7, then
∑

i gî = 14 and χ(M) = 4. Because at least one of gijk’s in R

equals 1, we have Π1(M) ∼= 0, hence χ(M) = 4 implies that β2(M) = 2. Thus it
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follows that H2(M) ∼= H2(M) ∼= Z⊕Z, and hence M is homeomorphic to #2(±CP 2)
by [10], [11] and [15].

If R = 9, then
∑

i gî = 13 and χ(M) = 3. Because at least one of the gijk’s in
R equals 1, we have Π1(M) ∼= 0, hence χ(M) = 3 implies that β2(M) = 1. Thus
we obtain H2(M) ∼= FH2(M) ∼= Z. The addendum of R may assume the following
values (up to circular permutations):

case g013 g023 g024 g124 g134

9.1 1 1 1 1 5
9.2 3 3 1 1 1
9.3 3 1 3 1 1
9.4 4 2 1 1 1
9.5 4 1 2 1 1
9.6 3 2 2 1 1
9.7 3 2 1 2 1
9.8 3 1 2 2 1
9.9 3 2 1 1 2
9.10 2 2 2 2 1

Case 9.1). We have the relations g0̂ = g1̂ = g2̂ = 1, g3̂ = g4̂ = 5, g14 =
g014 + 5, g02 = g012 + 5, g13 = g123 + 5, g24 = g234 + 1 and g03 = g034 + 1. Since
g013 = 1, the pseudocomplex K(2, 4) consists of only one edge, hence N(2, 4) is a
4-cell. Furthermore, K(0, 3) and K(1, 3) are also formed by one edge each one as
g124 = g024 = 1. Thus all triangles of K(0, 1, 3) have two edges in common. Because
g24 = g234 + 1, the complex K(0, 1, 3) has many triangles, but one, as there are
edges in K(0, 1). Therefore K(0, 1, 3) collapses to a combinatorial 2-sphere formed
by exactly two triangles T1, T2 with common boundary. Thus M is homeomorphic
to ±CP 2 as proved in [4]. This gives a contradiction as g(CP 2) = 2. Now one can
easily verify that the other cases yield the same result.

If R = 11, then
∑

i gî = 12 and χ(M) = 2. If at least one of the gijk’s in R equals
1, then we have Π1(M) ∼= 0, hence χ(M) = 2 implies that β2(M) = 0, i.e. H2(M) ∼=
FH2(M) ∼= 0. Thus M is homeomorphic to S

4 which is a contradiction as g(S4) = 0.
If gijk ≥ 2, then we have the unique case g013 = g024 = g124 = g134 = 2 and g023 = 3
(up to circular permutations). Thus it follows that 1 ≤ rank Π1(M) ≤ 1 = gijk − 1,
hence we have either Π1(M) ∼= Z or Π1(M) ∼= Zn. If Π1(M) ∼= H1(M) ∼= Z , then
χ(M) = 2 implies that β2(M) = 2, hence H2(M) ∼= Z ⊕ Z. Let M ′ be the closed
4-manifold obtained by killing the generator of Π1(M). It is well-known that the
intersection forms λM ′ and λM are isomorphic (see for example[6]). Since H2(M ′) ∼=
H2(M) ∼= Z ⊕ Z and Π1(M ′) ∼= 0, the Freedman-Donaldson theorems imply that
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either M ′ ∼= (±CP 2)#(±CP 2) or M ′ ∼= S
2 × S

2. Now it was proved in [7] that M
is homeomorphic to the connected sum M ′#(S1 × S

3). If Π1(M) ∼= H1(M) ∼= Zn,
then we have H3(M) ∼= H1(M) ∼= FH1(M) ⊕ TH0(M) = 0. Since χ(M) = 2, we
obtain β2(M) = 0, that is H2(M) ∼= H2(M) ∼= FH2(M) ⊕ TH1(M) ∼= Zn. These
facts produce a contradiction as shown in the proof of Theorem 2.

If R = 13, then
∑

i gî = 11 and χ(M) = 1. If at least one of the gijk’s in R

equals 1, then we have Π1(M) ∼= 0 and H3(M) ∼= 0. Thus it follows that χ(M) =
2+β2(M) ≥ 2 �= 1, which is a contradiction. Therefore gijk ≥ 2, rankΠ1(M) ≤ 1 and
either Π1(M) ∼= Z or Π1(M) ∼= Zn. If Π1(M) ∼= Zn, then we obtain a contradiction
as before. If Π1(M) ∼= H1(M) ∼= Z, then χ(M) = 1 implies that β2(M) = 1, hence
H2(M) ∼= FH2(M) ∼= Z. The addendum of R may only assume the following values:

case g013 g023 g024 g124 g134

13.1 5 2 2 2 2
13.2 2 2 3 3 3
13.3 2 3 2 3 3
13.4 4 3 2 2 2
13.5 4 2 3 2 2

Case 13.1). We have g0̂ = g1̂ = 4, g2̂ = g3̂ = g4̂ = 1, g14 = g014 + 2, g02 =
g012 + 2, g13 = g123 + 5, g24 = g234 + 5 and g03 = g034 + 5. Since g023 = 2,
the pseudocomplex K(1, 4) consists of two edges, hence N(1, 4) is homeomorphic
to S

1 × B3. Furthermore, K(0, 2) and K(0, 3) are also formed by two edges each
one as g134 = g124 = 2. Because g14 = g014 + 2, the pseudocomplex K(0, 2, 3)
contains many triangles, but two, as there are edges in K(2, 3). The Mayer-Vietoris
sequence of the triple (M,N,N ′) yields H2(N ′) ∼= Z. Thus K(0, 2, 3) collapses to a
combinatorial 2-sphere S

2, formed by exactly two triangles T1, T2 of K(0, 2, 3) with
common boundary plus an edge e such that Int e ∩ S

2 = ∅ and e∩S
2 = ∂e. Following

[4] we obtain that M is homeomorphic to the connected sum (±CP 2)#(S1 × S
3)

which is a contradiction as this manifold has genus 3. Now one can verify that the
other cases give the same contradiction.

If R = 15, then
∑

i gî = 10 and χ(M) = 0. If all the gijk’s in R are greater
than 3, then R ≥ 20, which is a contradiction. Thus at least one of the gijk’s in
R is less or equal 3, hence β1(M) ≤ 2 and rank Π1(M) ≤ 2. If β1(M) = 0, then
χ(M) = 2+β2(M) ≥ 2 �= 0 which contradicts the relation χ(M) = 0. If β1(M) = 1,
then FH1(M) ∼= Z so χ(M) = 0 implies β2(M) = 0. Since there is an epimorphism
Π1(M) → Z, the fundamental group Π1(M) is an extension of Z by a normal cyclic
(finite or not) subgroup Zn as rank Π1(M) ≤ 2 (note that Z0

∼= Z). But such an
extension splits: a choice of element t ∈ Π1(M) which projects to a generator of
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Z determines a right inverse to the epimorphism Π1(M) → Z. Let θ ∈ Aut(Zn)
determined by conjugation by t in Π1(M). Then Π1(M) is isomorphic to either the
semidirect product Zn ×θ Z, n �= 0, or Z × Z as M is orientable. Thus Π1(M) has
exactly two (resp. one) ends if Π1(M) ∼= Zn ×θ Z, n �= 0 (resp. Π1(M) ∼= Z × Z).
If Π1(M) has two ends, then the universal covering space M̃ of M is homotopy
equivalent to S

3 as χ(M) = 0 (see [13], Theorem 10). Let M̂ be the n-fold covering
space of M . Since M̂ is a closed connected orientable 4-manifold with χ(M̂) = 0,
Π1(M̂) ∼= Z and Π2(M̂) ∼= Π2(M̃) ∼= 0, it was proved in [6] that M̂ is homotopy
equivalent to S

1×S
3. Now the results of [7] imply that M̂ is s-cobordant to S

1×S
3,

and hence these manifolds are also topologically homeomorphic by [10]. Now the
only possibilities for M are the finite quotients of S

1 × S
3, i.e. M is topologically

homeomorphic to a lens-fiber bundle over the 1-sphere as claimed. In particular,
if Π1(M) ∼= Z, then M is homeomorphic to S

3 × S
1 by [10]. This fact gives a

contradiction as g(S3 × S
1) = 1 (see [3]). If β1(M) = 2, then Π1(M) ∼= H1(M) ∼=

Z ⊕ Z and χ(M) = 0 implies β2(M) = 2. Since χ(M) = 0 and Π1(M) ∼= Z ⊕ Z

has one end, it follows from [13] that H1(M ; Λ) ∼= H3(M ; Λ) ∼= H3(M̃) ∼= 0 and
H2(M ; Λ) ∼= H2(M ; Λ) ∼= H2(M̃) ∼= Π2(M̃) ∼= Z, where Λ = Z[Π1] is the integral
group ring of Π1(M). Thus the universal covering space M̃ is homotopy equivalent
to the standard 2-sphere S

2 (see [13]). Furthermore, the manifold M is homotopy
equivalent to an (S1 × S

2)-bundle over S
1, as shown in [13], Corollary C, p.35. Now

the results of [6] and [7] imply that M is also s-cobordant to an (S1×S
2)-bundle over

S
1. Since Π1(M) ∼= Z × Z is a polycyclic group, the orientable manifold M is just

homeomorphic to the product S
1 × S

2 × S
1 since any s-cobordism is topologically

a product for this class of fundamental groups. Thus, if M is a prime spin closed
orientable 4-manifold of genus 6, then M is topologically homeomorphic to the
product L(p, q) × S

1, q �= 0, possibly including the case L(0, 1) = S
1 × S

2. This
completes the proof of Theorem 3. �

Finally, we conjecture that the unique closed connected orientable prime 4-
manifold of genus six is really the topological product RP3 × S

1. In fact, nowadays
we are not able to construct a genus six crystallization for any lens-fiber bundles
over S

1 which is different from RP3 × S
1.
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