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ABSTRACT

Let C'.(C™) bethe space of compactly supported continuous functions on C™.
For f € C.(C™), f denotes the complex Radon transform of f. We say that
for acompact set K the support theorem holdsiif every function o € C.(C™)
with supp(¢) C K vanishes outside K. The goal of this paper is to establish
conditions on K under which the support theorem holds for K.

If f is a function defined on R™(C"™), the classical Radon transform of f is a function
f defined on hyperplanes; the value of f at a given hyperplane is the integral of f
over that hyperplane. The Radon transform was studied by J. Radon [9], F. John
[5, 6], S. Helgason [3, 4], LM. Gel'fand, M.I. Graev, and N. Ya. Vilenkin [1], D.
Ludwig [7]. One of the basic results on the classical Radon transform is Helgason’s
support theorem [3]: A rapidly decreasing function must vanish outside a ball if its
real Radon transform does. This theorem holds for every convex compact set in R™
[4], [7]. There are many applications of the support theorem. For instance, some of
applications in complex analysis are contained in [2], [10]. In the present paper we
investigate the relation between the supports of f and f in the case of the complex
Radon transform.

Notation. For z,w € C™ we set (z,w) = ) z;w;; the standard Lebesgue measure
in C" is dway,, and S?"~1 = {» € C"| |2| = 1}, B"(2,R) = {w € C"| |w — 2| < R}.
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D(C™) denotes the space consisting of all infinitely differentiable functions with
compact support, and C.(C") is used to denote the space of compactly supported
continuous functions on C". If ¢ € C.(C™), the standard complex Radon transform
of ¢ (denoted by ¢) is defined by
(1) de=rz [ elDne),
(2,6)=s

where (£,s) € (C™\ 0) x C, and d\(z) is the area element on the hyperplane {z :
(2,€) = s}. For a set A C C", we denote by A the set of all (¢,s) € (C*\ 0) x C
such that the hyperplane {z : (z,£) = s} meets A.

A set A C C" is called linearly convex if, for every w ¢ A, there is a complex hy-
perplane {z : (z,&) = s} which contains w and does not meet A (see Martineau [8]).

Let K C C™ be a linearly convex compact set. We say that for K the support
theorem holds if every function ¢ € C,(C") with supp(p) C K vanishes outside K.

We consider the problem of description of linearly convex compact sets for which
the support theorem holds. The following theorem yields the sufficient condition.

Theorem 1
Let K C C™ be a linearly convex compact set. Suppose that for every z ¢ K
there exists a hyperplane P = {\ : (\,&y) = so} satisfying the following conditions:

(i) P contains z.
(ii) P does not meet K.
(iii) The set C\ K¢, is connected, where K¢, = {(\,&o) }ack is the projection of K

on 50-
Then the support theorem holds for K.

Corollary

Let K; C C be a compact set such that C\ K is connected, j =1,...,n. Then
the support theorem holds for

K:Kl XK2 X Kn
The proof of Theorem 1 is based on the following result:

Theorem 2

Let ¢(z) € C.(C™) and let (&, so) ¢ supp ¢, where $(&, s) is the Radon trans-
form of ¢. Suppose that there exists a connected unbounded open set D C C such
that sg € D and ({&} x D) Nsuppp = (. Then the function ¢ vanishes on the

hyperplane {z : (z,&0) = So}-
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Proof of Theorem 2. Let 1) € D(C") and let P(z, Z) be a homogeneous polynomial of
bidegree (k,m). Denote by 1(§, s) and P (&, s) respectively the Radon transforms
of ¥(z) and P(z,z)Y(z). Then

PPy, s) A
(2) ~adkoam (=1)*F P<8_§’8_§>¢(§’8)'

An analogue of this formula for the real Radon transform is proved in [6, Chapter I].
The same proof is valid in the case of the complex Radon transform.

Suppose that K C C", ¢ € C.(C"), (&,s0) € (C"\0) x Cand D C C
satisfy the hypotheses of the theorem. We assume at first that ¢ € D(C™). For
every (&,s) ¢ supp ¢ the function ¢ vanishes on some neighborhood of (£,s). In
particular, we have

8‘°‘|+|5|¢(§0,s) _

© S =0

for all multi-indices a and (.
Let a and # be multi-indices with |a| 4+ |3] > 1. Assume, without loss of
generality, that |a| > 0. Let ,5(2) = 2%2°p(2). Tt follows from (2) and (3) that

alaHlﬁI@a[}(é‘O’ s)
sl 9glsl

(4) =0, seD.

Denote by f(s) the function

91 P15 05(80, 5)
dslol— 19508l

By (4) the function f(s) = Re(f(s)) — i Im(f(s)) is holomorphic on D. Since
@ € D(C™), there is R > 0 such that $ns(§,s) vanishes on {(&,s) : |s| > R[¢|}.
Thus f(s) = 0 on {s: |s| > R|¢|}. Since the domain D is unbounded, and f(s) is
holomorphic on D, it follows from the uniqueness theorem that f(s) vanishes on D.
Therefore
ol =1+1815  5(&o, 5)
85|a|—18§|5|

It is easy to see that an induction on || gives

=0, sebD.

8Iﬁ|@aﬁ(§07 8)

(5) 55171 =0, seD.
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Similarly, from (5) we obtain

®ap(0,8) =0, seD.

In particular, ¢,3(&o, so) = 0. Thus, for every polynomial P(z, Z), we have

(6) / P(z,2)p(z) d\(z) = 0.

(€0,2)=50

Let ¢, s, (1) € D(C™1) be the restriction of ¢ to the hyperplane {z : (z,&) = so}-
Then (6) implies

/ Péo,s0 (M)Q(M? ﬁ) dw2n—2(,u) =0
Ccn—1

for every polynomial Q(u, ft). Therefore ¢, s, (1) = 0, i.e., ¢(z) vanishes on {z :
(2,&0) = so}-

Now suppose, without the assumption of smoothness, that ¢(z) € C.(C") sa-
tisfies the hypotheses of the theorem. Let {xm(2)}5_; be a sequence of smooth
functions on C" with supp x,, C {z : |z|] < 1/m} that converges in the space of
measures to the delta function at the origin. Then the convolution

om(2) = (0 % xm)(2) = / (W)X (2 — ) dwzn (1)
d

is a smooth function with compact support on C", and ¢,,(2) — ¢(z) for every
z € C". Let ¢, (&, s) be the Radon transform of ¢,,(z). Then [6, Chapter 1]

omlErs) = / H(E N T (605 — Nioa(V).

C

We shall show that for m > mg the functions ¢,, satisfy the hypotheses of the
theorem. We have suppy C B"(0,R) for some R > 1. Then (1) implies that
o(&,s) = 0 for |s|/|¢] > R. Since D is unbounded, there exists s; € D such that
|s1|/|€0| > 4R. Let T' C D be a broken line joining sy to s;. Denote by D% the set

U B%(s,6).

Since ({&o} x T') Nsuppp = (), and since {£o} x T is a compact subset of (C™\ 0) x C,
there exists § (0 < § < |€|/2) such that ¢(&,s) = 0 on B"(&,6) x Di. By (1),
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Xm(§,s —A) =0 for |s — A|/|¢] > 1/m. Therefore, for £ € B" (&, ), we have (since
€] < 2|&0] if & € B™ (0, 6))

(Bm(E.8)] < / B(6 M| R (6,5 — N)] doz(N)
[s=AI<[E]/m

IN

(7) [B(& MIXm (&, 5 = A)|dw2(A).

[s—=A[<2[€o[/m

Under the conditions (£, s) € B™(&p,6) X Df/z, ls — A < 2[&|/m, 2|&0|/m < /2, the
point (£, ) lies in B"(&,8) x Diji.e., $(&,\) = 0. Then (7) implies that $,, (&, s)
vanishes on B™ (&, ) % D§/2 for m > 4|&y|/6. Since supp ¢, C B™(0, R+ 1/m), we
have ¢,,,(§,s) = 0 for |s|/|¢] > R+ 1/m. From this it follows that ¢,,(§,s) = 0 for
(&,8) € B™(&0,0) x {s: |s| > 4R|&|}. We set

D=D*U{s: |s| > 4R|&|}.

Since s1 € D§/2 N{s: |s| > 4R|&|}, D is a connected unbounded open set. For
m > myg the functions @, (&, s) vanish on B™(&,8) x D. By what has been proved,
for m > mg the functions ¢, vanish on the hyperplane P = {z : (2,&) = so}-
Since the sequence {y,,(z)} converges to ¢(z), the function ¢(z) vanishes on P. The
theorem is proved. [

Proof of Theorem 1. Let ¢(&, s) be the Radon transform of p(z) € C.(C™). Suppose
that @(£,s) = 0 for (£,s) ¢ K. Fix zp ¢ K. Then there exists a point (£, s) €
(C™\ 0) x C such that {z : (2,&) = so} N K = 0, (20,&) = so and the set
C\ {(2,&)}:ex is connected. The set K¢, = {(2,60)}.ex is compact because
K¢y = feo (K), where fe,(2) = (&0, 2). Thus C\ K¢, is a connected unbounded open
set. It is easy to see that K is (relatively) closed in (C™\ 0) x C. Then supp ¢ C K.
Since ({&} x (C\ K¢,)) N K = 0, we have ({€} x (C\ K¢,)) Nsupp @ = . Then
by Theorem 2, ¢(z) vanishes on the hyperplane P = {z : (z,£,) = so} that contains
the point zg. Theorem 1 is proved.

We shall show the need for hypothesis (iii) in Theorem 1. Let K = {(21, 22) €
C? 1 < |z1] < 2,|22] < 2} and let conv(K) be the convex hull of K. We have
conv(K) = {(z1, 22) € C?| |21| < 2,|22| < 2}. Tt is easy to see that the hyperplane
Pe s ={z:(z,& = s} meets conv(K) and does not meet K if and only if

(8) |s] < [&1] = 2/&2]-
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In particular, Peo 4, contains the origin and does not meet K if and only if s = 0
and 0 < |€)] — 2|£9|. For such a hyperplane we have

Keo = {(2,6") }oex = {s € C| &} - 21€3] < Is| < 21&7] +21&31},

i.e., C\ Ko is not connected. Therefore K is a linearly convex compact set which
does not satisfy the condition (iii) of Theorem 1. Fix 0 < § < 1. Let h(z) € D(R)
be such that ¢1(z1) = h(|z1|?) = 1 for |21] < 2 — 26 and ¢1(21) = 0 for |z1| > 2.
Let the function g(A\) € D(C) be such that suppg C {A: |\ <1/2} and ¢/(0) =
0g(0)/0X = 1. We set

©(2) = p1(21)9/(22), (21,22) € C?,

where g/(A\) = 9g(A)/OX. Denote by ¢(&,s) the Radon transform of . For every
hyperplane P¢ ; = {z : (2,€) = s} with Pz 4 Nconv(K) = 0 we have ¢(£,s) = 0
because supp ¢ C conv(K). Let P s be a hyperplane such that Pg ¢ N conv(K) # ()
and P: s N K = (). Then ¢ and s satisfy (8). We have

. _ 1 ﬁ &) é_ &
@(5’5)152@/ o (g i) o (68 i) dento

_ 1 s€1 52> (55_2 51)
9 - L s G,
) e el ) (G i) e
\556\22_”%‘36%
If % - ,uf—ll < 1, then it follows from (8) that |¢;| > 0 and
s& & < | sé1 S]]
e el = e e
< Is&l | [s&llél | 16l _ lsl+1%l/2
SR Trlal el T el S

Since ¢1(z1) =1 for |2z1] < 1, the integral on the right-hand side of (9) equals
1 / / (852 &1 )
o o (5 (1)
e ) ¢\l e

This integral equals zero because & # 0. Thus, for every (£,s) ¢ K, we have
©(&,s) = 0. However ¢(z) # 0 outside K because ¢(0) =1. O
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