Collect. Math. **50**, 3 (1999), 221–227 © 1999 Universitat de Barcelona

A support theorem for the complex Radon transform

A.B. SEKERIN

The Oryol State University, Komsomolskaya 95, 302015, Oryol, Russia E-mail: alex@esc.private.oryol.su

Received October 22, 1997

Abstract

Let $C_c(\mathbb{C}^n)$ be the space of compactly supported continuous functions on \mathbb{C}^n . For $f \in C_c(\mathbb{C}^n)$, \hat{f} denotes the complex Radon transform of f. We say that for a compact set K the support theorem holds if every function $\varphi \in C_c(\mathbb{C}^n)$ with $\operatorname{supp}(\hat{\varphi}) \subset \hat{K}$ vanishes outside K. The goal of this paper is to establish conditions on K under which the support theorem holds for K.

If f is a function defined on $\mathbb{R}^n(\mathbb{C}^n)$, the classical Radon transform of f is a function \hat{f} defined on hyperplanes; the value of \hat{f} at a given hyperplane is the integral of f over that hyperplane. The Radon transform was studied by J. Radon [9], F. John [5, 6], S. Helgason [3, 4], I.M. Gel'fand, M.I. Graev, and N. Ya. Vilenkin [1], D. Ludwig [7]. One of the basic results on the classical Radon transform is Helgason's support theorem [3]: A rapidly decreasing function must vanish outside a ball if its real Radon transform does. This theorem holds for every convex compact set in \mathbb{R}^n [4], [7]. There are many applications of the support theorem. For instance, some of applications in complex analysis are contained in [2], [10]. In the present paper we investigate the relation between the supports of f and \hat{f} in the case of the complex Radon transform.

Notation. For $z, w \in \mathbb{C}^n$ we set $\langle z, w \rangle = \sum z_j w_j$; the standard Lebesgue measure in \mathbb{C}^n is $d\omega_{2n}$, and $S^{2n-1} = \{z \in \mathbb{C}^n | |z| = 1\}$, $B^n(z, R) = \{w \in \mathbb{C}^n | |w - z| < R\}$. $\mathcal{D}(\mathbb{C}^n)$ denotes the space consisting of all infinitely differentiable functions with compact support, and $C_c(\mathbb{C}^n)$ is used to denote the space of compactly supported continuous functions on \mathbb{C}^n . If $\varphi \in C_c(\mathbb{C}^n)$, the standard complex Radon transform of φ (denoted by $\hat{\varphi}$) is defined by

(1)
$$\hat{\varphi}(\xi,s) = \frac{1}{|\xi|^2} \int_{\langle z,\xi\rangle=s} \varphi(z) \, d\lambda(z),$$

where $(\xi, s) \in (\mathbb{C}^n \setminus 0) \times \mathbb{C}$, and $d\lambda(z)$ is the area element on the hyperplane $\{z : \langle z, \xi \rangle = s\}$. For a set $A \subset \mathbb{C}^n$, we denote by \hat{A} the set of all $(\xi, s) \in (\mathbb{C}^n \setminus 0) \times \mathbb{C}$ such that the hyperplane $\{z : \langle z, \xi \rangle = s\}$ meets A.

A set $A \subset \mathbb{C}^n$ is called linearly convex if, for every $w \notin A$, there is a complex hyperplane $\{z : \langle z, \xi \rangle = s\}$ which contains w and does not meet A (see Martineau [8]).

Let $K \subset \mathbb{C}^n$ be a linearly convex compact set. We say that for K the support theorem holds if every function $\varphi \in C_c(\mathbb{C}^n)$ with $\operatorname{supp}(\hat{\varphi}) \subset \hat{K}$ vanishes outside K.

We consider the problem of description of linearly convex compact sets for which the support theorem holds. The following theorem yields the sufficient condition.

Theorem 1

Let $K \subset \mathbb{C}^n$ be a linearly convex compact set. Suppose that for every $z \notin K$ there exists a hyperplane $P = \{\lambda : \langle \lambda, \xi_0 \rangle = s_0\}$ satisfying the following conditions: (i) P contains z.

(ii) P does not meet K.

(iii) The set $\mathbb{C} \setminus K_{\xi_0}$ is connected, where $K_{\xi_0} = \{\langle \lambda, \xi_0 \rangle\}_{\lambda \in K}$ is the projection of K on ξ_0 .

Then the support theorem holds for K.

Corollary

Let $K_j \subset \mathbb{C}$ be a compact set such that $\mathbb{C} \setminus K_j$ is connected, j = 1, ..., n. Then the support theorem holds for

$$K = K_1 \times K_2 \times \ldots K_n.$$

The proof of Theorem 1 is based on the following result:

Theorem 2

Let $\varphi(z) \in C_c(\mathbb{C}^n)$ and let $(\xi_0, s_0) \notin \operatorname{supp} \hat{\varphi}$, where $\hat{\varphi}(\xi, s)$ is the Radon transform of φ . Suppose that there exists a connected unbounded open set $D \subset \mathbb{C}$ such that $s_0 \in D$ and $(\{\xi_0\} \times D) \cap \operatorname{supp} \hat{\varphi} = \emptyset$. Then the function φ vanishes on the hyperplane $\{z : \langle z, \xi_0 \rangle = s_0\}$. Proof of Theorem 2. Let $\psi \in \mathcal{D}(\mathbb{C}^n)$ and let $P(z, \bar{z})$ be a homogeneous polynomial of bidegree (k, m). Denote by $\hat{\psi}(\xi, s)$ and $\widehat{P\psi}(\xi, s)$ respectively the Radon transforms of $\psi(z)$ and $P(z, \bar{z})\psi(z)$. Then

(2)
$$\frac{\partial^{k+m} \widehat{P}\widehat{\psi}(\xi,s)}{\partial s^k \partial \overline{s}^m} = (-1)^{k+m} P\Big(\frac{\partial}{\partial \xi}, \frac{\partial}{\partial \overline{\xi}}\Big) \widehat{\psi}(\xi,s).$$

An analogue of this formula for the real Radon transform is proved in [6, Chapter I]. The same proof is valid in the case of the complex Radon transform.

Suppose that $K \subset \mathbb{C}^n$, $\varphi \in C_c(\mathbb{C}^n)$, $(\xi_0, s_0) \in (\mathbb{C}^n \setminus 0) \times \mathbb{C}$ and $D \subset \mathbb{C}$ satisfy the hypotheses of the theorem. We assume at first that $\varphi \in \mathcal{D}(\mathbb{C}^n)$. For every $(\xi, s) \notin \operatorname{supp} \hat{\varphi}$ the function $\hat{\varphi}$ vanishes on some neighborhood of (ξ, s) . In particular, we have

(3)
$$\frac{\partial^{|\alpha|+|\beta|}\hat{\varphi}(\xi_0,s)}{\partial\xi^{\alpha}\partial\bar{\xi}^{\beta}} = 0, \quad s \in D$$

for all multi-indices α and β .

Let α and β be multi-indices with $|\alpha| + |\beta| > 1$. Assume, without loss of generality, that $|\alpha| > 0$. Let $\varphi_{\alpha\beta}(z) = z^{\alpha} \bar{z}^{\beta} \varphi(z)$. It follows from (2) and (3) that

(4)
$$\frac{\partial^{|\alpha|+|\beta|}\hat{\varphi}_{\alpha\beta}(\xi_0,s)}{\partial s^{|\alpha|}\partial \bar{s}^{|\beta|}} = 0, \quad s \in D.$$

Denote by f(s) the function

$$rac{\partial^{|lpha|-1+|eta|}\hat{arphi}_{lphaeta}(\xi_0,s)}{\partial s^{|lpha|-1}\partialar{s}^{|eta|}}.$$

By (4) the function $f(s) = \operatorname{Re}(f(s)) - i \operatorname{Im}(f(s))$ is holomorphic on D. Since $\varphi \in \mathcal{D}(\mathbb{C}^n)$, there is R > 0 such that $\hat{\varphi}_{\alpha\beta}(\xi, s)$ vanishes on $\{(\xi, s) : |s| \ge R|\xi|\}$. Thus $\bar{f}(s) = 0$ on $\{s : |s| \ge R|\xi_0|\}$. Since the domain D is unbounded, and $\bar{f}(s)$ is holomorphic on D, it follows from the uniqueness theorem that $\bar{f}(s)$ vanishes on D. Therefore

$$\frac{\partial^{|\alpha|-1+|\beta|}\hat{\varphi}_{\alpha\beta}(\xi_0,s)}{\partial s^{|\alpha|-1}\partial \bar{s}^{|\beta|}} = 0, \quad s \in D.$$

It is easy to see that an induction on $|\alpha|$ gives

(5)
$$\frac{\partial^{|\beta|}\hat{\varphi}_{\alpha\beta}(\xi_0,s)}{\partial \bar{s}^{|\beta|}} = 0, \quad s \in D.$$

SEKERIN

Similarly, from (5) we obtain

$$\hat{\varphi}_{\alpha\beta}(\xi_0, s) = 0, \quad s \in D.$$

In particular, $\hat{\varphi}_{\alpha\beta}(\xi_0, s_0) = 0$. Thus, for every polynomial $P(z, \bar{z})$, we have

(6)
$$\int_{\langle \xi_0, z \rangle = s_0} P(z, \bar{z}) \varphi(z) \, d\lambda(z) = 0.$$

Let $\varphi_{\xi_0,s_0}(\mu) \in \mathcal{D}(\mathbb{C}^{n-1})$ be the restriction of φ to the hyperplane $\{z : \langle z, \xi_0 \rangle = s_0\}$. Then (6) implies

$$\int_{\mathbb{C}^{n-1}} \varphi_{\xi_0,s_0}(\mu) Q(\mu,\bar{\mu}) \, d\omega_{2n-2}(\mu) = 0$$

for every polynomial $Q(\mu, \bar{\mu})$. Therefore $\varphi_{\xi_0, s_0}(\mu) \equiv 0$, i.e., $\varphi(z)$ vanishes on $\{z : \langle z, \xi_0 \rangle = s_0\}$.

Now suppose, without the assumption of smoothness, that $\varphi(z) \in C_c(\mathbb{C}^n)$ satisfies the hypotheses of the theorem. Let $\{\chi_m(z)\}_{m=1}^{\infty}$ be a sequence of smooth functions on \mathbb{C}^n with $\operatorname{supp} \chi_m \subset \{z : |z| \leq 1/m\}$ that converges in the space of measures to the delta function at the origin. Then the convolution

$$\varphi_m(z) = (\varphi * \chi_m)(z) = \int_{\mathbb{C}^n} \varphi(w) \chi_m(z-w) \, d\omega_{2n}(w)$$

is a smooth function with compact support on \mathbb{C}^n , and $\varphi_m(z) \to \varphi(z)$ for every $z \in \mathbb{C}^n$. Let $\hat{\varphi}_m(\xi, s)$ be the Radon transform of $\varphi_m(z)$. Then [6, Chapter II]

$$\hat{\varphi}_m(\xi, s) = \int_{\mathbb{C}} \hat{\varphi}(\xi, \lambda) \hat{\chi}_m(\xi, s - \lambda) d\omega_2(\lambda).$$

We shall show that for $m \ge m_0$ the functions φ_m satisfy the hypotheses of the theorem. We have $\operatorname{supp} \varphi \subset B^n(0, R)$ for some R > 1. Then (1) implies that $\hat{\varphi}(\xi, s) = 0$ for $|s|/|\xi| \ge R$. Since D is unbounded, there exists $s_1 \in D$ such that $|s_1|/|\xi_0| > 4R$. Let $\Gamma \subset D$ be a broken line joining s_0 to s_1 . Denote by D_{Γ}^{δ} the set

$$\bigcup_{s\in \Gamma}B^2(s,\delta).$$

Since $(\{\xi_0\} \times \Gamma) \cap \operatorname{supp} \hat{\varphi} = \emptyset$, and since $\{\xi_0\} \times \Gamma$ is a compact subset of $(\mathbb{C}^n \setminus 0) \times \mathbb{C}$, there exists δ $(0 < \delta \leq |\xi_0|/2)$ such that $\hat{\varphi}(\xi, s) = 0$ on $B^n(\xi_0, \delta) \times D_{\Gamma}^{\delta}$. By (1),

224

 $\hat{\chi}_m(\xi, s - \lambda) = 0$ for $|s - \lambda|/|\xi| \ge 1/m$. Therefore, for $\xi \in B^n(\xi_0, \delta)$, we have (since $|\xi| \le 2|\xi_0|$ if $\xi \in B^n(\xi_0, \delta)$)

(7)
$$\begin{aligned} |\hat{\varphi}_{m}(\xi,s)| &\leq \int_{|s-\lambda| \leq |\xi|/m} |\hat{\varphi}(\xi,\lambda)| |\hat{\chi}_{m}(\xi,s-\lambda)| \, d\omega_{2}(\lambda) \\ &\leq \int_{|s-\lambda| \leq 2|\xi_{0}|/m} |\hat{\varphi}(\xi,\lambda)| |\hat{\chi}_{m}(\xi,s-\lambda)| \, d\omega_{2}(\lambda). \end{aligned}$$

Under the conditions $(\xi, s) \in B^n(\xi_0, \delta) \times D_{\Gamma}^{\delta/2}$, $|s - \lambda| \leq 2|\xi_0|/m, 2|\xi_0|/m < \delta/2$, the point (ξ, λ) lies in $B^n(\xi_0, \delta) \times D_{\Gamma}^{\delta}$, i.e., $\hat{\varphi}(\xi, \lambda) = 0$. Then (7) implies that $\hat{\varphi}_m(\xi, s)$ vanishes on $B^n(\xi_0, \delta) \times D_{\Gamma}^{\delta/2}$ for $m > 4|\xi_0|/\delta$. Since $\operatorname{supp} \varphi_m \subset B^n(0, R + 1/m)$, we have $\hat{\varphi}_m(\xi, s) = 0$ for $|s|/|\xi| \geq R + 1/m$. From this it follows that $\hat{\varphi}_m(\xi, s) = 0$ for $(\xi, s) \in B^n(\xi_0, \delta) \times \{s : |s| > 4R|\xi_0|\}$. We set

$$\tilde{D} = D_{\Gamma}^{\delta/2} \cup \{s : |s| > 4R|\xi_0|\}.$$

Since $s_1 \in D_{\Gamma}^{\delta/2} \cap \{s : |s| > 4R|\xi_0|\}$, \tilde{D} is a connected unbounded open set. For $m \ge m_0$ the functions $\hat{\varphi}_m(\xi, s)$ vanish on $B^n(\xi_0, \delta) \times \tilde{D}$. By what has been proved, for $m \ge m_0$ the functions φ_m vanish on the hyperplane $P = \{z : \langle z, \xi_0 \rangle = s_0\}$. Since the sequence $\{\varphi_m(z)\}$ converges to $\varphi(z)$, the function $\varphi(z)$ vanishes on P. The theorem is proved. \Box

Proof of Theorem 1. Let $\hat{\varphi}(\xi, s)$ be the Radon transform of $\varphi(z) \in C_c(\mathbb{C}^n)$. Suppose that $\hat{\varphi}(\xi, s) = 0$ for $(\xi, s) \notin \hat{K}$. Fix $z_0 \notin K$. Then there exists a point $(\xi_0, s_0) \in$ $(\mathbb{C}^n \setminus 0) \times \mathbb{C}$ such that $\{z : \langle z, \xi_0 \rangle = s_0\} \cap K = \emptyset, \langle z_0, \xi_0 \rangle = s_0$ and the set $\mathbb{C} \setminus \{\langle z, \xi_0 \rangle\}_{z \in K}$ is connected. The set $K_{\xi_0} = \{\langle z, \xi_0 \rangle\}_{z \in K}$ is compact because $K_{\xi_0} = f_{\xi_0}(K)$, where $f_{\xi_0}(z) = \langle \xi_0, z \rangle$. Thus $\mathbb{C} \setminus K_{\xi_0}$ is a connected unbounded open set. It is easy to see that \hat{K} is (relatively) closed in $(\mathbb{C}^n \setminus 0) \times \mathbb{C}$. Then $\operatorname{supp} \hat{\varphi} \subset \hat{K}$. Since $(\{\xi_0\} \times (\mathbb{C} \setminus K_{\xi_0})) \cap \hat{K} = \emptyset$, we have $(\{\xi_0\} \times (\mathbb{C} \setminus K_{\xi_0})) \cap \operatorname{supp} \hat{\varphi} = \emptyset$. Then by Theorem 2, $\varphi(z)$ vanishes on the hyperplane $P = \{z : \langle z, \xi_0 \rangle = s_0\}$ that contains the point z_0 . Theorem 1 is proved.

We shall show the need for hypothesis (iii) in Theorem 1. Let $K = \{(z_1, z_2) \in \mathbb{C}^2 | 1 \leq |z_1| \leq 2, |z_2| \leq 2\}$ and let $\operatorname{conv}(K)$ be the convex hull of K. We have $\operatorname{conv}(K) = \{(z_1, z_2) \in \mathbb{C}^2 | |z_1| \leq 2, |z_2| \leq 2\}$. It is easy to see that the hyperplane $P_{\xi,s} = \{z : \langle z, \xi \rangle = s\}$ meets $\operatorname{conv}(K)$ and does not meet K if and only if

(8)
$$|s| < |\xi_1| - 2|\xi_2|.$$

Sekerin

In particular, P_{ξ^0,s_0} contains the origin and does not meet K if and only if $s_0 = 0$ and $0 < |\xi_1^0| - 2|\xi_2^0|$. For such a hyperplane we have

$$K_{\xi^0} = \{ \langle z, \xi^0 \rangle \}_{z \in K} = \{ s \in \mathbb{C} \mid |\xi_1^0| - 2|\xi_2^0| \le |s| \le 2|\xi_1^0| + 2|\xi_2^0| \},\$$

i.e., $\mathbb{C} \setminus K_{\xi^0}$ is not connected. Therefore K is a linearly convex compact set which does not satisfy the condition (iii) of Theorem 1. Fix $0 < \delta < 1$. Let $h(x) \in \mathcal{D}(\mathbb{R})$ be such that $\varphi_1(z_1) = h(|z_1|^2) = 1$ for $|z_1| \leq 2 - 2\delta$ and $\varphi_1(z_1) = 0$ for $|z_1| \geq 2$. Let the function $g(\lambda) \in \mathcal{D}(\mathbb{C})$ be such that $\sup g \subset \{\lambda : |\lambda| \leq 1/2\}$ and $g'(0) = \partial g(0)/\partial \lambda = 1$. We set

$$\varphi(z) = \varphi_1(z_1)g'(z_2), \qquad (z_1, z_2) \in \mathbb{C}^2,$$

where $g'(\lambda) = \partial g(\lambda)/\partial \lambda$. Denote by $\hat{\varphi}(\xi, s)$ the Radon transform of φ . For every hyperplane $P_{\xi,s} = \{z : \langle z, \xi \rangle = s\}$ with $P_{\xi,s} \cap \operatorname{conv}(K) = \emptyset$ we have $\hat{\varphi}(\xi, s) = 0$ because $\operatorname{supp} \varphi \subset \operatorname{conv}(K)$. Let $P_{\xi,s}$ be a hyperplane such that $P_{\xi,s} \cap \operatorname{conv}(K) \neq \emptyset$ and $P_{\xi,s} \cap K = \emptyset$. Then ξ and s satisfy (8). We have

$$\begin{aligned} \hat{\varphi}(\xi,s) &= \frac{1}{|\xi|^2} \int_{\mathbb{C}} \varphi_1 \left(\frac{s\bar{\xi}_1}{|\xi|^2} + \mu \frac{\xi_2}{|\xi|} \right) g' \left(\frac{s\bar{\xi}_2}{|\xi|^2} - \mu \frac{\xi_1}{|\xi|} \right) \, d\omega_2(\mu) \\ (9) &= \frac{1}{|\xi|^2} \int_{\left| \frac{s\bar{\xi}_2}{|\xi|^2} - \mu \frac{\xi_1}{|\xi|} \right| \le c^{\frac{1}{2}}} \varphi_1 \left(\frac{s\bar{\xi}_1}{|\xi|^2} + \mu \frac{\xi_2}{|\xi|} \right) g' \left(\frac{s\bar{\xi}_2}{|\xi|^2} - \mu \frac{\xi_1}{|\xi|} \right) \, d\omega_2(\mu). \end{aligned}$$

If $\left|\frac{s\bar{\xi}_2}{|\xi|^2} - \mu \frac{\xi_1}{|\xi|}\right| \le \frac{1}{2}$, then it follows from (8) that $|\xi_1| > 0$ and $\left|\frac{s\bar{\xi}_1}{|\xi|^2} + \mu \frac{\xi_2}{|\xi|}\right| \le \frac{|s\bar{\xi}_1|}{|\xi|^2} + |\mu| \frac{|\xi_2|}{|\xi|}$

$$\leq \frac{|s\bar{\xi}_1|}{|\xi|^2} + \frac{|s\bar{\xi}_2||\xi_2|}{|\xi|^2|\xi_1|} + \frac{|\xi_2|}{2|\xi_1|} = \frac{|s| + |\xi_2|/2}{|\xi_1|} \leq 1.$$

Since $\varphi_1(z_1) = 1$ for $|z_1| \leq 1$, the integral on the right-hand side of (9) equals

$$\frac{1}{|\xi|^2} \int\limits_{\mathbb{C}} g'\left(\frac{s\bar{\xi}_2}{|\xi|^2} - \mu \frac{\xi_1}{|\xi|}\right) \, d\omega_2(\mu).$$

This integral equals zero because $\xi_1 \neq 0$. Thus, for every $(\xi, s) \notin \hat{K}$, we have $\hat{\varphi}(\xi, s) = 0$. However $\varphi(z) \neq 0$ outside K because $\varphi(0) = 1$. \Box

References

- 1. I.M. Gel'fand, M.I. Graev, and N.Ya. Vilenkin, *Generalized functions*, vol. 5: *Integral geometry and representation theory*, Fizmatgiz, Moscow, 1962; English transl., Academic Press, New York, 1966.
- 2. J. Globevnik and E.L. Stout, Boundary Morera theorems for holomorphic functions of several complex variables, *Duke Math. J.* **64** (1991), 571–615.
- 3. S. Helgason, The Radon transform on Euclidean spaces, compact two-point homogeneous spaces and Grassmann manifolds, *Acta Math.* **113** (1965), 153–180.
- 4. S. Helgason, The Radon transform, Birkhäuser, Boston, 1980.
- 5. F. John, Bestimmung einer Funktion aus ihren Integralen über gewisse Manningfaltigkeiten, *Math. Ann.* **109** (1934), 488–520.
- 6. F. John, Plane waves and spherical means, Interscience Publishers, New York, 1955.
- 7. D. Ludwig, The Radon transform on Euclidean space, *Comm. Pure Appl. Math.* **19** (1966), 49–81.
- 8. A. Martineau, Sur la notion d'ensemble fortement lineellement convexe, An. Acad. Brasil. Ciênc. 40 (1968), 427-435.
- 9. J. Radon, Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Manningfaltigkeiten, *Ber. Verh. Sächs. Akad.* 69 (1917), 262–277.
- 10. J.J.O.O. Wiegerinck, Growth properties of Paley-Wiener functions on \mathbb{C}^n , *Proc. Koni. Nederl.* Akad. Wetensch. 87 (1984), 95–112.