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Abstract

Let Cc(Cn) be the space of compactly supported continuous functions on C
n.

For f ∈ Cc(Cn), f̂ denotes the complex Radon transform of f . We say that
for a compact set K the support theorem holds if every function ϕ ∈ Cc(Cn)
with supp(ϕ̂) ⊂ K̂ vanishes outside K . The goal of this paper is to establish
conditions on K under which the support theorem holds for K .

If f is a function defined on R
n(Cn), the classical Radon transform of f is a function

f̂ defined on hyperplanes; the value of f̂ at a given hyperplane is the integral of f
over that hyperplane. The Radon transform was studied by J. Radon [9], F. John
[5, 6], S. Helgason [3, 4], I.M. Gel′fand, M.I. Graev, and N. Ya. Vilenkin [1], D.
Ludwig [7]. One of the basic results on the classical Radon transform is Helgason′s
support theorem [3]: A rapidly decreasing function must vanish outside a ball if its
real Radon transform does. This theorem holds for every convex compact set in R

n

[4], [7]. There are many applications of the support theorem. For instance, some of
applications in complex analysis are contained in [2], [10]. In the present paper we
investigate the relation between the supports of f and f̂ in the case of the complex
Radon transform.

Notation. For z, w ∈ C
n we set 〈z, w〉 =

∑
zjwj ; the standard Lebesgue measure

in C
n is dω2n, and S2n−1 = {z ∈ C

n| |z| = 1}, Bn(z,R) = {w ∈ C
n| |w − z| < R}.
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D(Cn) denotes the space consisting of all infinitely differentiable functions with
compact support, and Cc(Cn) is used to denote the space of compactly supported
continuous functions on C

n. If ϕ ∈ Cc(Cn), the standard complex Radon transform
of ϕ (denoted by ϕ̂) is defined by

(1) ϕ̂(ξ, s) =
1
|ξ|2

∫
〈z,ξ〉=s

ϕ(z) dλ(z),

where (ξ, s) ∈ (Cn \ 0) × C, and dλ(z) is the area element on the hyperplane {z :
〈z, ξ〉 = s}. For a set A ⊂ C

n, we denote by Â the set of all (ξ, s) ∈ (Cn \ 0) × C

such that the hyperplane {z : 〈z, ξ〉 = s} meets A.
A set A ⊂ C

n is called linearly convex if, for every w /∈ A, there is a complex hy-
perplane {z : 〈z, ξ〉 = s} which contains w and does not meet A (see Martineau [8]).

Let K ⊂ C
n be a linearly convex compact set. We say that for K the support

theorem holds if every function ϕ ∈ Cc(Cn) with supp(ϕ̂) ⊂ K̂ vanishes outside K.
We consider the problem of description of linearly convex compact sets for which

the support theorem holds. The following theorem yields the sufficient condition.

Theorem 1

Let K ⊂ C
n be a linearly convex compact set. Suppose that for every z /∈ K

there exists a hyperplane P = {λ : 〈λ, ξ0〉 = s0} satisfying the following conditions:

(i) P contains z.

(ii) P does not meet K.

(iii) The set C \Kξ0 is connected, where Kξ0 = {〈λ, ξ0〉}λ∈K is the projection of K

on ξ0.

Then the support theorem holds for K.

Corollary

Let Kj ⊂ C be a compact set such that C\Kj is connected, j = 1, . . . , n. Then

the support theorem holds for

K = K1 ×K2 × . . .Kn.

The proof of Theorem 1 is based on the following result:

Theorem 2

Let ϕ(z) ∈ Cc(Cn) and let (ξ0, s0) /∈ supp ϕ̂, where ϕ̂(ξ, s) is the Radon trans-

form of ϕ. Suppose that there exists a connected unbounded open set D ⊂ C such

that s0 ∈ D and ({ξ0} × D) ∩ supp ϕ̂ = ∅. Then the function ϕ vanishes on the

hyperplane {z : 〈z, ξ0〉 = s0}.
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Proof of Theorem 2. Let ψ ∈ D(Cn) and let P (z, z̄) be a homogeneous polynomial of
bidegree (k,m). Denote by ψ̂(ξ, s) and P̂ψ(ξ, s) respectively the Radon transforms
of ψ(z) and P (z, z̄)ψ(z). Then

(2)
∂k+mP̂ψ(ξ, s)

∂sk∂s̄m
= (−1)k+mP

( ∂

∂ξ
,
∂

∂ξ̄

)
ψ̂(ξ, s).

An analogue of this formula for the real Radon transform is proved in [6, Chapter I].
The same proof is valid in the case of the complex Radon transform.

Suppose that K ⊂ C
n, ϕ ∈ Cc(Cn), (ξ0, s0) ∈ (Cn \ 0) × C and D ⊂ C

satisfy the hypotheses of the theorem. We assume at first that ϕ ∈ D(Cn). For
every (ξ, s) /∈ supp ϕ̂ the function ϕ̂ vanishes on some neighborhood of (ξ, s). In
particular, we have

(3)
∂|α|+|β|ϕ̂(ξ0, s)

∂ξα∂ξ̄β
= 0, s ∈ D

for all multi-indices α and β.
Let α and β be multi-indices with |α| + |β| > 1. Assume, without loss of

generality, that |α| > 0. Let ϕαβ(z) = zαz̄βϕ(z). It follows from (2) and (3) that

(4)
∂|α|+|β|ϕ̂αβ(ξ0, s)

∂s|α|∂s̄|β|
= 0, s ∈ D.

Denote by f(s) the function

∂|α|−1+|β|ϕ̂αβ(ξ0, s)
∂s|α|−1∂s̄|β|

.

By (4) the function f̄(s) = Re(f(s)) − i Im(f(s)) is holomorphic on D. Since
ϕ ∈ D(Cn), there is R > 0 such that ϕ̂αβ(ξ, s) vanishes on {(ξ, s) : |s| ≥ R|ξ|}.
Thus f̄(s) = 0 on {s : |s| ≥ R|ξ0|}. Since the domain D is unbounded, and f̄(s) is
holomorphic on D, it follows from the uniqueness theorem that f̄(s) vanishes on D.
Therefore

∂|α|−1+|β|ϕ̂αβ(ξ0, s)
∂s|α|−1∂s̄|β|

= 0, s ∈ D.

It is easy to see that an induction on |α| gives

(5)
∂|β|ϕ̂αβ(ξ0, s)

∂s̄|β|
= 0, s ∈ D.



224 Sekerin

Similarly, from (5) we obtain

ϕ̂αβ(ξ0, s) = 0, s ∈ D.

In particular, ϕ̂αβ(ξ0, s0) = 0. Thus, for every polynomial P (z, z̄), we have

(6)
∫

〈ξ0,z〉=s0

P (z, z̄)ϕ(z) dλ(z) = 0.

Let ϕξ0,s0(µ) ∈ D(Cn−1) be the restriction of ϕ to the hyperplane {z : 〈z, ξ0〉 = s0}.
Then (6) implies ∫

Cn−1

ϕξ0,s0(µ)Q(µ, µ̄) dω2n−2(µ) = 0

for every polynomial Q(µ, µ̄). Therefore ϕξ0,s0(µ) ≡ 0, i.e., ϕ(z) vanishes on {z :
〈z, ξ0〉 = s0}.

Now suppose, without the assumption of smoothness, that ϕ(z) ∈ Cc(Cn) sa-
tisfies the hypotheses of the theorem. Let {χm(z)}∞m=1 be a sequence of smooth
functions on C

n with suppχm ⊂ {z : |z| ≤ 1/m} that converges in the space of
measures to the delta function at the origin. Then the convolution

ϕm(z) = (ϕ ∗ χm)(z) =
∫

Cn

ϕ(w)χm(z − w) dω2n(w)

is a smooth function with compact support on C
n, and ϕm(z) → ϕ(z) for every

z ∈ C
n. Let ϕ̂m(ξ, s) be the Radon transform of ϕm(z). Then [6, Chapter II]

ϕ̂m(ξ, s) =
∫
C

ϕ̂(ξ, λ)χ̂m(ξ, s− λ)dω2(λ).

We shall show that for m ≥ m0 the functions ϕm satisfy the hypotheses of the
theorem. We have suppϕ ⊂ Bn(0, R) for some R > 1. Then (1) implies that
ϕ̂(ξ, s) = 0 for |s|/|ξ| ≥ R. Since D is unbounded, there exists s1 ∈ D such that
|s1|/|ξ0| > 4R. Let Γ ⊂ D be a broken line joining s0 to s1. Denote by Dδ

Γ the set⋃
s∈Γ

B2(s, δ).

Since ({ξ0}×Γ)∩ suppϕ̂ = ∅, and since {ξ0}×Γ is a compact subset of (Cn \0)×C,
there exists δ (0 < δ ≤ |ξ0|/2) such that ϕ̂(ξ, s) = 0 on Bn(ξ0, δ) × Dδ

Γ. By (1),
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χ̂m(ξ, s− λ) = 0 for |s− λ|/|ξ| ≥ 1/m. Therefore, for ξ ∈ Bn(ξ0, δ), we have (since
|ξ| ≤ 2|ξ0| if ξ ∈ Bn(ξ0, δ))

|ϕ̂m(ξ, s)| ≤
∫

|s−λ|≤|ξ|/m

|ϕ̂(ξ, λ)||χ̂m(ξ, s− λ)| dω2(λ)

≤
∫

|s−λ|≤2|ξ0|/m

|ϕ̂(ξ, λ)||χ̂m(ξ, s− λ)|dω2(λ).(7)

Under the conditions (ξ, s) ∈ Bn(ξ0, δ)×D
δ/2
Γ , |s−λ| ≤ 2|ξ0|/m, 2|ξ0|/m < δ/2, the

point (ξ, λ) lies in Bn(ξ0, δ) × Dδ
Γ,i.e., ϕ̂(ξ, λ) = 0. Then (7) implies that ϕ̂m(ξ, s)

vanishes on Bn(ξ0, δ)×D
δ/2
Γ for m > 4|ξ0|/δ. Since suppϕm ⊂ Bn(0, R+ 1/m), we

have ϕ̂m(ξ, s) = 0 for |s|/|ξ| ≥ R + 1/m. From this it follows that ϕ̂m(ξ, s) = 0 for
(ξ, s) ∈ Bn(ξ0, δ) × {s : |s| > 4R|ξ0|}. We set

D̃ = D
δ/2
Γ ∪

{
s : |s| > 4R|ξ0|

}
.

Since s1 ∈ D
δ/2
Γ ∩ {s : |s| > 4R|ξ0|}, D̃ is a connected unbounded open set. For

m ≥ m0 the functions ϕ̂m(ξ, s) vanish on Bn(ξ0, δ) × D̃. By what has been proved,
for m ≥ m0 the functions ϕm vanish on the hyperplane P = {z : 〈z, ξ0〉 = s0}.
Since the sequence {ϕm(z)} converges to ϕ(z), the function ϕ(z) vanishes on P. The
theorem is proved. �

Proof of Theorem 1. Let ϕ̂(ξ, s) be the Radon transform of ϕ(z) ∈ Cc(Cn). Suppose
that ϕ̂(ξ, s) = 0 for (ξ, s) /∈ K̂. Fix z0 /∈ K. Then there exists a point (ξ0, s0) ∈
(Cn \ 0) × C such that {z : 〈z, ξ0〉 = s0} ∩ K = ∅, 〈z0, ξ0〉 = s0 and the set
C \ {〈z, ξ0〉}z∈K is connected. The set Kξ0 = {〈z, ξ0〉}z∈K is compact because
Kξ0 = fξ0(K), where fξ0(z) = 〈ξ0, z〉. Thus C \Kξ0 is a connected unbounded open
set. It is easy to see that K̂ is (relatively) closed in (Cn \ 0)×C. Then supp ϕ̂ ⊂ K̂.
Since ({ξ0} × (C \Kξ0)) ∩ K̂ = ∅, we have ({ξ0} × (C \Kξ0)) ∩ supp ϕ̂ = ∅. Then
by Theorem 2, ϕ(z) vanishes on the hyperplane P = {z : 〈z, ξ0〉 = s0} that contains
the point z0. Theorem 1 is proved.

We shall show the need for hypothesis (iii) in Theorem 1. Let K = {(z1, z2) ∈
C

2| 1 ≤ |z1| ≤ 2, |z2| ≤ 2} and let conv(K) be the convex hull of K. We have
conv(K) = {(z1, z2) ∈ C

2| |z1| ≤ 2, |z2| ≤ 2}. It is easy to see that the hyperplane
Pξ,s = {z : 〈z, ξ〉 = s} meets conv(K) and does not meet K if and only if

(8) |s| < |ξ1| − 2|ξ2|.
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In particular, Pξ0,s0 contains the origin and does not meet K if and only if s0 = 0
and 0 < |ξ01 | − 2|ξ02 |. For such a hyperplane we have

Kξ0 = {〈z, ξ0〉}z∈K = {s ∈ C | |ξ01 | − 2|ξ02 | ≤ |s| ≤ 2|ξ01 | + 2|ξ02 |},

i.e., C \Kξ0 is not connected. Therefore K is a linearly convex compact set which
does not satisfy the condition (iii) of Theorem 1. Fix 0 < δ < 1. Let h(x) ∈ D(R)
be such that ϕ1(z1) = h(|z1|2) = 1 for |z1| ≤ 2 − 2δ and ϕ1(z1) = 0 for |z1| ≥ 2.
Let the function g(λ) ∈ D(C) be such that supp g ⊂ {λ : |λ| ≤ 1/2} and g′(0) =
∂g(0)/∂λ = 1. We set

ϕ(z) = ϕ1(z1)g′(z2), (z1, z2) ∈ C
2,

where g′(λ) = ∂g(λ)/∂λ. Denote by ϕ̂(ξ, s) the Radon transform of ϕ. For every
hyperplane Pξ,s = {z : 〈z, ξ〉 = s} with Pξ,s ∩ conv(K) = ∅ we have ϕ̂(ξ, s) = 0
because suppϕ ⊂ conv(K). Let Pξ,s be a hyperplane such that Pξ,s ∩ conv(K) �= ∅
and Pξ,s ∩K = ∅. Then ξ and s satisfy (8). We have

ϕ̂(ξ, s) =
1
|ξ|2

∫
C

ϕ1

(
sξ̄1
|ξ|2 + µ

ξ2
|ξ|

)
g′

(
sξ̄2
|ξ|2 − µ

ξ1
|ξ|

)
dω2(µ)

=
1
|ξ|2

∫
∣∣ sξ̄2
|ξ|2 −µ

ξ1
|ξ|

∣∣≤c 1
2

ϕ1

(
sξ̄1
|ξ|2 + µ

ξ2
|ξ|

)
g′

(
sξ̄2
|ξ|2 − µ

ξ1
|ξ|

)
dω2(µ).(9)

If
∣∣∣ sξ̄2|ξ|2 − µ ξ1

|ξ|

∣∣∣ ≤ 1
2 , then it follows from (8) that |ξ1| > 0 and

∣∣∣∣ sξ̄1|ξ|2 + µ
ξ2
|ξ|

∣∣∣∣ ≤ |sξ̄1|
|ξ|2 + |µ| |ξ2||ξ|

≤ |sξ̄1|
|ξ|2 +

|sξ̄2||ξ2|
|ξ|2|ξ1|

+
|ξ2|
2|ξ1|

=
|s| + |ξ2|/2

|ξ1|
≤ 1.

Since ϕ1(z1) = 1 for |z1| ≤ 1, the integral on the right-hand side of (9) equals

1
|ξ|2

∫
C

g′
(
sξ̄2
|ξ|2 − µ

ξ1
|ξ|

)
dω2(µ).

This integral equals zero because ξ1 �= 0. Thus, for every (ξ, s) /∈ K̂, we have
ϕ̂(ξ, s) = 0. However ϕ(z) �≡ 0 outside K because ϕ(0) = 1. �
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Ciênc. 40 (1968), 427-435.
9. J. Radon, Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Man-
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