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Abstract

Let ω be a weight and F be a closed proper subset of R
n. Then for every

function f on R
n belonging to the non quasi-analytic (ω)-class of Beurling

(resp. Roumieu) type, there is an element g of the same class which is analytic
on R

n \ F and such that Dαf(x) = Dαg(x) for every α ∈ N
n
0 and x ∈ F .

1. Introduction and statement of the result

In [18], H. Whitney has established that every C∞-Whitney jet on a closed subset
F of R

n has a C∞-extension on R
n which is analytic on R

n \ F . Since then several
authors have considered the extension problem of jets in different situations; here are
references to some of them [3], [4], [5], [6], [7], [9], [10], [11], [12], [16] and [17] — with
in [4] and [6], a discussion of the previous literature on the subject. In particular,
for the Beurling type, one finds
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a) in [3] (resp. [5] and [12]) conditions on the weight ω (resp. on the sequence
(Mr)r∈N0) under which the restriction map

ρK : E(ω)(Rn) → E(ω)(K)
(
resp. ρK : E(Mr)(Rn) → E(Mr)(K)

)
is surjective for every compact subset K of R

n,

b) in [6] (resp. [5] and [12]) conditions under which this restriction map has a
continuous linear right inverse.
In this paper, we are going to consider this problem in the case of non quasi-

analytic ω-Whitney jets of Beurling (resp. Roumieu) type.
In order to make this statement more precise, let us introduce some definitions

and notations.
We use the modification introduced by Braun, Meise and Taylor in [2] to Beur-

ling’s method in [1] in order to define classes of non quasi-analytic functions. So
we consider a weight ω, i.e. a function ω: [0,+∞[ → [0,+∞[ which is continuous,
increasing and verifies the following conditions:

(ω1) there is l ≥ 1 such that ω(2t) ≤ l(1 + ω(t)) for every t ≥ 0,

(ω2)
∫ ∞
1

ω(t)
1+t2 dt < ∞,

(ω3) lim
t→+∞

ln(1+t)
ω(t) = 0,

(ω4) the function ϕ: [0,+∞[ → [0,+∞[ , t 	→ ω(et) is convex.

By the Proposition 1.2(b) of [3], there is then a weight σ ≤ ω such that σ(1) = 0
and σ(t) = ω(t) for large t. As in what follows, the values of ω(t) are used only for
large t, we are going to suppose moreover that we have ω(1) = 0 hence ϕ(0) = 0.
Then the Young’s conjugate ϕ∗ of ϕ is defined as

ϕ∗: [0,+∞[ → [0,+∞[ , y 	→ sup
x≥0

(xy − ϕ(x)).

It is a convex and increasing function which verifies ϕ∗(0) = 0 and ϕ∗(y)/y is an
increasing function such that limy→∞ ϕ∗(y)/y = ∞.

Moreover the property (ω1) of the definition of the weight ω gives the existence
of a constant d0 such that

ϕ(x + 1) ≤ d0(ϕ(x) + 1), ∀x ≥ 0,

and by the Lemma 1.4 of [2], there is also a constant y0 > 0 such that

ϕ∗(y) − y ≥ d0ϕ
∗(y/d0) − d0, ∀y ≥ y0; (1)

of course we may suppose that d0 is an integer and that y0 > d0.
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We then designate:
a) By E(ω)(Rn) the non quasi-analytic ω-class of Beurling type on R

n, i.e. the set
of the C∞-functions f on R

n such that, for every compact subset K of R
n and

constant h ≥ 1, one has

sup
α∈Nn

0

‖Dαf‖K e−hϕ
∗(|α|/h) < ∞.

b) By E{ω}(Rn) the non quasi-analytic ω-class of Roumieu type on R
n, i.e. the

set of the C∞-functions f on R
n such that, for every compact subset K of R

n,
there is a constant h ≥ 1 such that

sup
α∈Nn

0

‖Dαf‖K e−ϕ
∗(h|α|)/h < ∞.

In [17], the following results are proved: let K be a compact subset of R
n.

(a) If f is an element of E(ω)(Rn) [resp. E{ω}(Rn)], then the Whitney jet f |K has
an extension belonging to the same space and analytic on R

n \K.
(b) If E(ω)(K) and E(ω)(Rn) [resp. E{ω}(K) and E{ω}(Rn)] are endowed with their

usual topologies and if there is a continuous linear extension map

T : E(ω)(K) → E(ω)(Rn)
[
resp. T : E{ω}(K) → E{ω}(Rn)

]
,

then there is a continuous linear extension map

S: E(ω)(K) → E(ω)(Rn)
[
resp. S: E{ω}(K) → E{ω}(Rn)

]
such that Sf is analytic on R

n \K for every f ∈ E(ω)(K) [resp. E{ω}(K)].

In [16], similar properties are established for the spaces E(Mr) and E{Mr}.
In this paper, we are going to prove that it is possible to adapt the proof of the

result (a) to the case when the compact set K is replaced by a closed subset F of
R
n. As the result (b) is concerned, we do not know whether it generalizes to the

closed subsets setting. So our main result reads as follows.

Theorem 1.1
For every f ∈ E(ω)(Rn) [resp. f ∈ E{ω}(Rn)] and every closed subset F of R

n,
there is g ∈ E(ω)(Rn) [resp. g ∈ E{ω}(Rn)] such that

(a) Dαf(x) = Dαg(x) for every α ∈ N
n
0 and x ∈ F ,

(b) g is analytic on R
n \ F .

In [14] and [15] respectively, one finds similar results for the spaces E(Mr) and
E{Mr}.
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2. Proof in the case of the Beurling type

Notations. The proof of the Theorem 1.1 relies very much on the correct value
of the numbers λr for r ∈ N. These values cannot be introduced directly and we
feel more advisable to set up immediately the different notations that will be used
throughout the proof of the Beurling type and that lead to these numbers λr.

So far we have introduced the weight ω, the function f ∈ E(ω)(Rn) as well as the
closed subset F of R

n. Of course we may restrict our attention to the case when the
restriction of f to the open subset Ω = R

n \ F of R
n is not identically 0. Moreover:

(a) For every integer m ≥ d0, let us then denote by p(m) the integer part of m/d0

and let us set qm = sup {em, 2my0/d0}. These numbers will appear in the proof
by use of the following remark: as in [17], we note that we have

2remϕ∗(r/m) ≤ qmep(m)ϕ∗(r/p(m))

for every r, m ∈ N such that m ≥ d0: in fact on the one hand, if r verifies
r ≤ my0/d0, we certainly have

2remϕ∗(r/m) ≤ 2my0/d0ep(m)ϕ∗(r/p(m))

and on the other hand we always have 2remϕ∗(r/m) ≤ em/d0

(
d0ϕ

∗(
rd0
m /d0)+

rd0
m

)
so for r > my0/d0 the use of the inequality (1) for y = rd0/m leads to

2remϕ∗(r/m) ≤ e
m
d0

(
ϕ∗(

rd0
m )+d0

)
≤ emep(m)ϕ∗(r/p(m)).

(b) For every m ∈ N, Am designates the ball

Am = {x ∈ R
n : |x| ≤ m + d(0,Ω)}

where of course d(0,Ω) is the distance of the origin to Ω.
(c) {Km : m ∈ N} designates a compact cover of Ω such that K1 �= ∅ and Km =

(Km)◦− ⊂ (Km+1)◦, Km+3 ⊂ Am for every m ∈ N.
(d) As f ∈ E(ω)(Rn), we have

‖f‖m = 1 + sup
α∈Nn

0

‖Dαf‖Am
e−mϕ∗(|α|/m) < ∞, ∀m ∈ N.
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(e) The Proposition 1 of [17] provides a sequence (um)m∈N of C∞(Rn) such that,
for every m ∈ N,

0 ≤ um ≤ 1,

um ≡ 1 on a neighbourhood of Km+2 \ (Km+1)◦,

supp(um) ⊂ (Km+3)◦ \Km,

2m|α|e−ϕ
∗(|α|) ‖Dαum‖

Rn ≤ dm,1, ∀α ∈ N
n
0 ,

2m|α|e−(k+1)ϕ∗(
|α|
k+1 ) ‖Dαum‖

Rn ≤ dm,k, ∀α ∈ N
n
0 ,∀k ∈ N,

with, for every m, k ∈ N,

1 ≤ dm,k ≤ dm,k+1,

2 ‖f‖1 (m + 1)d2
m,1 ≤ dm+1,1,

2 ‖f‖k+1 (m + 1)d2
m,k+1 ≤ dm+1,k .

Now for every r ∈ N, we set pr = dr,r, εr = 2−rpr+2 and

δr = εr

(
3nqrp2

rpr+12r+2+pr+2e2rϕ∗(pr+2+1)
)−1

.

(f) Finally, for every ρ > 0, we set Ψ(ρ) = π−n/2 ∫
|y|≤ρ e−|y|2 dy. By the Poisson

formula, we have Ψ(ρ) ↑ 1 if ρ ↑ +∞. So, for every r ∈ N, there is λr > 0 such
that

‖f‖r p2
r(1 − Ψ(λrδr)) ≤ δr,

π−n/2λnr e−λ
2
rp2

r mes(Kr+3) ≤ 1

qrd0d
2
r,rd0

‖f‖rd0
π−n/2λnr e−λ

2
rr

−2
mes(Kr+3) ≤ 2−r.

Now we are all set to start the proof. It consists in the study of the functions
G0, G1, G2, . . . defined on R

n by G0(x) = 0 and the recursion

Gr(x) = π−n/2λnr

∫
Rn

ur(y)

(
f(y) −

r−1∑
s=0

Gs(y)

)
e−λ

2
r|x−y|2 dy, ∀r ∈ N .

In fact, apart the context, these are the functions that H. Whitney consi-
dered in [18]. As the functions ur belong to C∞(Rn) and have compact support
and as the function e−λ

2
r|x−y|2 is the restriction to R

n of the holomorphic function

e−λ
2
r

∑n

j=1
(wj−yj)2 on C

n, the properties of the convolution product tell us directly
that the functions G1, G2, . . . are analytic on R

n. In our setting a lot more can be
said.
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Notations. In order to simplify the notations, we introduce the following shorthand

vr = ur

(
f −

r−1∑
s=0

Gs

)
, ∀r ∈ N .

Proposition 2.1

The analytic functions G0, G1, . . . on R
n are such that, for every integer

m ≥ d0 and α ∈ N
n
0 , we have∥∥∥∥∥Dα
(
f −

r−1∑
s=0

Gs

)∥∥∥∥∥
Am

≤ qm ‖f‖m dr,mep(m)ϕ∗(|α|/p(m)), (2)

‖Dαvr‖Am
≤ qm ‖f‖m d2

r,mep(m)ϕ∗(|α|/p(m)), (3)

‖DαGr‖Am
≤ qm ‖f‖m d2

r,mep(m)ϕ∗(|α|/p(m)). (4)

Proof. Case r = 1. Of course we have

‖Dαf‖Am
≤ ‖f‖m emϕ∗(|α|/m) ≤ ‖f‖m d1,memϕ∗(|α|/m) (5)

hence by use of the Leibniz formula

‖Dαv1‖Am
≤ ‖f‖m d2

1,m

∑
β≤α

(
α
β

)
2−|β|emϕ∗(|β|/m)emϕ∗(|α−β|/m)

≤ ‖f‖m d2
1,m(1 + 2−1)|α|emϕ∗(|α|/m). (6)

Now as supp(v1) ⊂ supp(u1) ⊂ Am holds for every m ∈ N, we also have

‖DαG1‖Am
≤ ‖f‖m d2

1,m(1 + 2−1)|α|emϕ∗(|α|/m). (7)

Case r > 1. We proceed by recursion on r. Suppose that, for some integer r ≥ 2,
we have obtained

‖DαGs‖Am
≤ ‖f‖m d2

s,m(1 + 2−1 + · · · + 2−s)|α|emϕ∗(|α|/m)

for every s ∈ {1, . . . , r − 1}, m ∈ N and α ∈ N
n
0 .

Firstly we get∥∥∥∥∥Dα
(
f −

r−1∑
s=0

Gs

)∥∥∥∥∥
Am

≤ ‖Dαf‖Am
+

r−1∑
s=1

‖DαGs‖Am

≤ r ‖f‖m d2
r−1,m(1 + 2−1 + · · · + 2−r+1)|α|emϕ∗(|α|/m)
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hence ∥∥∥∥∥Dα
(
f −

r−1∑
s=0

Gs

)∥∥∥∥∥
A1

≤ 1
2
dr,1(1 + 2−1 + · · · + 2−r+1)|α|eϕ

∗(|α|) (8)

and, for every m ∈ N,∥∥∥∥∥Dα
(
f −

r−1∑
s=0

Gs

)∥∥∥∥∥
Am+1

≤ 1
2
dr,m(1 + 2−1 + · · ·+ 2−r+1)|α|e(m+1)ϕ∗(|α|/(m+1)). (9)

Next by use of the Leibniz formula we have

‖Dαvr‖A1
≤ 1

2 d2
r,1(1 + 2−1 + · · · + 2−r)|α|eϕ

∗(|α|) (10)

and, in the same way, for every m ∈ N,

‖Dαvr‖Am+1
≤ 1

2
d2
r,m(1 + 2−1 + · · · + 2−r)|α|e(m+1)ϕ∗(|α|/(m+1)). (11)

Finally:
a) For m ≥ r, we have supp(vr) ⊂ Ar ⊂ Am hence

‖DαGr‖Am
≤ ‖Dαvr‖Am

≤
{

1
2 d2

r,1(1 + 2−1 + · · · + 2−r)|α|eϕ
∗(|α|) if m = 1

1
2 d2

r,m(1 + 2−1 + · · · + 2−r)|α|emϕ∗(|α|/m) if m ≥ 2

}
.

b) For 1 ≤ m < r and every x ∈ Am, we get

|DαGr(x)| ≤ π−n/2λnr

(∫
Am+1

+
∫
Kr+3\Am+1

)
|Dαvr(y)| e−λ

2
r|x−y|2 dy

≤ ‖Dαvr‖Am+1
+ ‖Dαvr‖Ar

π−n/2λnr e−λ
2
r mes(Kr+3)

hence, by use of the formula (11) and of one condition imposed on λr,

‖DαGr‖Am

≤ 1
2
d2
r,m(1 + 2−1 + · · · + 2−r)|α|e(m+1)ϕ∗(|α|/(m+1))

+
1
2
p2
r(1 + 2−1 + · · · + 2−r)|α|erϕ

∗(|α|/r)π−n/2λnr e−λ
2
r mes(Kr+3)

≤ 1
2
d2
r,m(1 + 2−1 + · · · + 2−r)|α|emϕ∗(|α|/m)

+
1
2

(1 + 2−1 + · · · + 2−r)|α|emϕ∗(|α|/m)

≤ d2
r,m(1 + 2−1 + · · · + 2−r)|α|emϕ∗(|α|/m).
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So the recursion is complete and, for every m, r ∈ N,

a) the inequalities (5), (8) and (9) give

∥∥∥∥∥Dα
(
f −

r−1∑
s=0

Gs

)∥∥∥∥∥
Am

≤ ‖f‖m dr,m2|α|emϕ∗(|α|/m),

b) the inequalities (6), (10) and (11) give

‖Dαvr‖Am
≤ ‖f‖m d2

r,m2|α|emϕ∗(|α|/m),

c) the inequality (7) and the recursion give

‖DαGr‖Am
≤ ‖f‖m d2

r,m2|α|emϕ∗(|α|/m).

Hence the conclusion by use of the inequality we have obtained in part (a) of
the Notations. �

Lemma 2.2

For every integer m ≥ d0 and x, y ∈ Am, α ∈ N
n
0 , we have

|Dαvr(x) − Dαvr(y)| ≤ n |x− y| qm ‖f‖m d2
r,mep(m)ϕ∗((|α|+1)/p(m)).

Proof. For every j ∈ {1, . . . , n}, let us designate by εj the j-th unit vector of R
n.

Then comes

|Dαvr(x) − Dαvr(y)| ≤
n∑

j=1

|xj − yj |
∥∥Dα+εjvr

∥∥
Am

.

Hence the conclusion by use of the formula (3) of the Proposition 2.1. �

Lemma 2.3

For every m, r ∈ N and α ∈ N
n
0 such that d0 ≤ m < r and |α| ≤ pr+2, we have

‖DαGr − Dαvr‖Am
≤ ‖f‖m+1 εr(pr+12r+2+pr+2erϕ

∗(pr+2+1))−1.

Proof. For every x ∈ Am, we get

|DαGr(x) − Dαvr(x)| ≤ J1 + J2
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with successively

J1 = π−n/2λnr

∫
|x−y|≥δr

(
|Dαvr(x)| + |Dαvr(y)|

)
e−λ

2
r|x−y|2 dy

≤ 2qr ‖f‖r p2
re

p(r)ϕ∗(|α|/p(r))(1 − Ψ(λrδr)
)

≤ 2qrδrep(r)ϕ
∗(|α|/p(r))

and, by Lemma 2.2, as { y : |x− y| ≤ δr} ⊂ Am+1,

J2 = π−n/2λnr

∫
|x−y|≤δr

|Dαvr(y) − Dαvr(x)| e−λ2
r|x−y|2 dy

≤ nδrqm+1 ‖f‖m+1 d
2
r,m+1e

p(m+1)ϕ∗((|α|+1)/p(m+1))

≤ nδrqrp
2
r ‖f‖m+1 ep(m)ϕ∗((|α|+1)/p(m)).

Hence the conclusion by the evaluation of δr since we have

J1 + J2 ≤ 3nqrδrp2
r ‖f‖m+1 ep(m)ϕ∗((|α|+1)/p(m)). �

Lemma 2.4

For every m, r ∈ N and α ∈ N
n
0 such that d0 ≤ m < r and |α| ≤ pr+2, we have

‖DαGr+1‖Kr+2∩Am
≤ ‖f‖m+1 εr2

−(r+1).

Proof. As the function ur is identically 1 on a neighbourhood of the set Kr+2 \
(Kr+1)◦, the Lemma 2.3 leads directly to the following auxiliary inequality (∗)∥∥∥∥∥Dα

(
f −

r∑
s=1

Gs

)∥∥∥∥∥
(Kr+2\(Kr+1)◦)∩Am

= ‖DαGr − Dαvr‖(Kr+2\(Kr+1)◦)∩Am

≤ ‖f‖m+1 εr(pr+12r+2+pr+2erϕ
∗(pr+2+1))−1.

Therefore by use of the Leibniz formula we get

‖Dαvr+1‖(Kr+2\(Kr+1)◦)∩Am

≤
∑
β≤α

(
α

β

)
dr+1,12−(r+1)|β|eϕ

∗(|β|) ‖f‖m+1 εr(pr+12r+2+pr+2erϕ
∗(pr+2+1))−1

≤ ‖f‖m+1 εr2
−(r+2).
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Now as ur+1 vanishes identically on Kr+1, these last inequalities are indeed valid on
Kr+2 ∩Am. Therefore the Lemma 2.3 leads to

‖DαGr+1‖Kr+2∩Am

≤ ‖DαGr+1 − Dαvr+1‖Am
+ ‖Dαvr+1‖Kr+2∩Am

≤ ‖f‖m+1 εr+1(pr+22r+3+pr+3e(r+1)ϕ∗(pr+3+1))−1 + ‖f‖m+1 εr2
−(r+2)

≤ ‖f‖m+1 2−(r+1). �

Proposition 2.5

For every compact subset K of Ω and α ∈ N
n
0 , the series

∑∞
r=1 ‖DαGr‖K

converges.

Therefore the series G =
∑∞

r=1 Gr defines a C∞-function on Ω and can be

differentiated term by term.

Proof. Indeed if we choose integers m, r ∈ N such that d0 ≤ m < r, |α| ≤ pr+2 and
K ⊂ Kr ∩Am, the Lemma 2.4 leads to

‖DαGr+p‖K ≤ ‖DαGr+p‖Kr+p+1∩Am
≤ ‖f‖m+1 εr+p−12−(r+p)

for every p ∈ N. Hence the conclusion. �

Lemma 2.6

For every m, r ∈ N and α ∈ N
n
0 such that d0 ≤ m < r and |α| ≤ pr+2, we have

‖DαG− Dαf‖Am∩Ω\Kr+1
≤ ‖f‖m+1 εr.

Proof. Let x be any element of Am ∩ Ω \ Kr+1. Then we designate by q the first
positive integer such that x ∈ Kr+q; of course we have q ≥ 2. So, on the one hand,
the Lemma 2.4 leads to

|DαGr+s(x)| ≤ ‖f‖m+1 εr+s−12−(r+s)

for every integer s ≥ q − 1. On the other hand, the auxiliary inequality (∗) that
appears at the beginning of the proof of the Lemma 2.4 leads to

∣∣∣∣∣Dα

(
f(x) −

r+q−2∑
s=1

Gs(x)

)∣∣∣∣∣ ≤ ‖f‖m+1 εr+q−22−(r+q).
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So we get

|DαG(x) − Dαf(x)| ≤ ‖f‖m+1 εr+q−22−(r+q)

+
∞∑

s=q−1

‖f‖m+1 εr+s−12−(r+s)

≤ ‖f‖m+1 εr. �

Proposition 2.7

The function g defined on R
n by

g(x) =

{
f(x) if x ∈ F

G(x) if x ∈ Ω = R
n \ F

belongs to E(ω)(Rn) and is such that Dαg(x) = Dαf(x) for every α ∈ N
n
0 and x ∈ F .

Proof. By the Proposition 2.5, the Lemma 2.6 and a classical argument, we know
already that g belongs to C∞(Rn) and is such that Dαg(x) = Dαf(x) for every
α ∈ N

n
0 and x ∈ F .

So to conclude, we just need to establish that g belongs to E(ω)(Rn). As f

belongs to E(ω)(Rn), we just need to concentrate our attention to the restriction G

of g to Ω.
For every integer m such that p(m) ≥ d0, we are going to prove that, if q(m)

designates the integer part of p(m)/d0, we have

sup
α∈Nn

0

‖DαG‖Am∩Ω e−q(m)ϕ∗(|α|/q(m)) < ∞.

The conclusion then follows at once.
For this purpose, let us first consider a multi-index α ∈ N

n
0 such that |α| ≤ pm+2.

Two cases are possible:

a) The point x belongs to Am ∩Km+2. In this case, the formula (4) of the Propo-
sition 2.1 gives the existence of a constant km > 0 such that

m+1∑
s=1

‖DαGs‖Am
≤ km ‖f‖m ep(m)ϕ∗(|α|/p(m)).
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Then the Proposition 2.5 and the Lemma 2.4 successively give

|DαG(x)| ≤
m+1∑
s=1

|DαGs(x)| +
∞∑

s=m+2

|DαGs(x)|

≤ km ‖f‖m ep(m)ϕ∗(|α|/p(m)) +
∞∑

s=m+2

‖f‖m+1 εs−12−s

≤ ‖f‖m+1 (km + 1)ep(m)ϕ∗(|α|/p(m)).

b) The point x belongs to (Ω ∩Am) \Km+2. In this case, the Lemma 2.6 gives

|DαG(x)| ≤ |DαG(x) − Dαf(x)| + |Dαf(x)|
≤ ‖f‖m+1 εm+1 + ‖f‖m emϕ∗(|α|/m) ≤ 2 ‖f‖m+1 emϕ∗(|α|/m).

Let us now consider a multi-index α ∈ N
n
0 such that |α| > pm+2. Then we first

introduce the first positive integer r such that pr+1 < |α| ≤ pr+2; of course, we have
r > m. Once more two cases are possible:
a’) The point x belongs to Am ∩Kr+1. On the one hand, the Lemma 2.4 and the

value of εr+s−1 lead to
∞∑
s=1

|DαGr+s(x)| ≤
∞∑
s=1

‖f‖m+1 εr+s−12−(r+s) ≤ ‖f‖m+1 εr2
−r.

On the other hand, by use the formula (4) of the Proposition 2.1, we also have
r∑

s=1

|DαGs(x)| ≤
r∑

s=1

qm ‖f‖m d2
s,mep(m)ϕ∗(|α|/p(m))

≤ rqm ‖f‖m d2
r,mep(m)ϕ∗(|α|/p(m))

≤
(∗)

qm2|α|ep(m)ϕ∗(|α|/p(m)) ≤
(∗∗)

q2
meq(m)ϕ∗(|α|/q(m))

(to get the inequality (∗), we note that r ‖f‖m d2
r,m ≤ dr+1,m ≤ pr+1 ≤ 2pr+1 ≤

2|α|; to get the inequality (∗∗), we use an evaluation made in the part (a) of the
Notations). These two informations put together give

|DαG(x)| ≤ (‖f‖m+1 + q2
m)eq(m)ϕ∗(|α|/q(m)).

b’) The point x belongs to (Ω ∩Am) \Kr+1. Then the Lemma 2.6 leads to

|DαG(x)| ≤ |Dαf(x)| + |Dαf(x) − DαG(x)|
≤ ‖f‖m emϕ∗(|α|/m) + ‖f‖m+1 εr ≤ 2 ‖f‖m+1 emϕ∗(|α|/m).

Therefore we finally have

‖DαG‖Ω∩Am
≤ Cmeq(m)ϕ∗(|α|/q(m)), ∀α ∈ N

n
0

for Cm = max {‖f‖m+1 (km + 1), 2 ‖f‖m+1 , ‖f‖m+1 + q2
m} and the proof is com-

plete. �
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Proposition 2.8

The function G has a holomorphic extension on the following open subset Ω∗ =
{u + iv : u ∈ Ω, v ∈ R

n, |v| < d(u, ∂Ω)} of C
n. Therefore g is analytic on Ω.

Proof. It is clear that Ω∗ is an open subset of C
n.

Let H be any compact subset of Ω∗. Then as in [16], one establishes immediately
by contradiction the existence of an integer r0 ∈ N such that

δ2 = inf




n∑
j=1

(
(uj − yj)2 − v2

j

)
: u, v, y ∈ R

n;u + iv ∈ H; y �∈ Kr0


 > 0 .

So for every integer r > max {r0, δ−1} and every point w = u + iv of H with u,
v ∈ R

n, the formula (3) of the Proposition 2.1 leads to

|Gr(w)| =
∣∣∣∣π−n/2λnr

∫
Rn

vr(y)e
−λ2

r

∑n

j=1
(wj−yj)2 dy

∣∣∣∣
≤ π−n/2λnr ‖vr‖Ard0

∫
Kr+3\Kr

e−λ
2
r

∑n

j=1
((uj−yj)2−v2

j )
dy

≤ qrd0 ‖f‖rd0
d2
r,rd0

π−n/2λnr e−λ
2
rr

−2
mes(Kr+3) ≤

(∗)
2−r

(the inequality (∗) comes from the last requirement we imposed on λr).
Therefore the series

∑∞
r=1 Gr converges absolutely and uniformly on H. So

it represents a holomorphic function on Ω∗ since each of the functions Gr(w) is
holomorphic on C

n. Hence the conclusion. �

Proof of the Theorem 1.1 in the case of the Beurling type. The main result is now
a direct consequence of the Propositions 2.7 and 2.8. �

3. Proof in the case of the Roumieu type

The pattern of the proof of this case is very much comparable to the one relative to
the Beurling case. Therefore we are going to indicate the intermediate results and
to only mention the differences.

Notations. Let us first set up the different notations that will be used throughout
the proof and that lead, up to a requirement that will appear inside the proof of the
Proposition 3.2, to the definition of the numbers λr.
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So far we have introduced the weight ω, the function f ∈ E{ω}(Rn) as well as
the closed subset F of R

n. Of course we may restrict our attention to the case
when the restriction of f to the open subset Ω = R

n \ F of R
n is not identically 0.

Moreover:

(a) We set q′m = max {e1/m, 2y0/(md0)} for every m ∈ N and remark as in [17] that
the inequality

2reϕ
∗(mr)/m ≤ q′meϕ

∗(mrd0)/(md0)

holds for every r, m ∈ N: in fact if r verifies r ≤ y0/(md0), we certainly have

2reϕ
∗(mr)/m ≤ 2y0/(md0)eϕ

∗(md0r)/(md0),

and if r > y0/(md0), we successively have

2reϕ
∗(mr)/m ≤ e1/(md0)(d0ϕ

∗(md0r/d0)+md0r)

≤ e1/(md0)(ϕ
∗(md0r)+d0) = e1/meϕ

∗(md0r)/(md0).

(b) For every r ∈ R, we set Ar = {x ∈ R
n : |x| ≤ r + d(0,Ω)}.

(c) {Km : m ∈ N} is the same regular compact cover of Ω.
(d) As f ∈ E{ω}(Rn), there is a strictly increasing sequence (nm)m∈N of positive

integers such that

sup
α∈Nn

0

‖Dαf‖Am+1
e−ϕ

∗(nm|α|)/nm ≤ nm, ∀m ∈ N .

(e) Proposition 1 of [17] provides a sequence (ur)r∈N of C∞(Rn) such that, for every
r ∈ N,

0 ≤ ur ≤ 1,

ur ≡ 1 on a neighbourhood of Kr+2 \ (Kr+1)◦,

supp(ur) ⊂ (Kr+3)◦ \Kr,

sup
α∈Nn

0

2r|α|e−mϕ∗(|α|/m) ‖Dαur‖Rn ≤ dr,m

where, for every r, m ∈ N, dr,m is a positive integer such that

dr,m ≤ dr+1,m,

dr,m ≤ dr,m+1,

(r + 1)nmd2
r,nm

≤ 1
3
dr+1,m .
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(f) For every m, r ∈ N, {(Am+2−r+1)◦,Rn \ Am+2−r+1/2} is an open cover of R
n.

So, by use of the Proposition 1 of [17] again and of convolution products, there
is a C∞-partition of unity {ϕ1,m,r, ϕ2,m,r} of R

n such that

supp(ϕ1,m,r) ⊂ (Am+2−r+1)◦, supp(ϕ2,m,r) ⊂ R
n \Am+2−r+1/2

and
sup
α∈Nn

0

2r|α|e−lϕ
∗(|α|/l) ‖Dαϕj,m,r‖Rn < ∞

for every j ∈ {1, 2} and l ∈ N. We then set vm,r = urϕ1,m,r and wm,r =
urϕ2,m,r; of course we get ur = vm,r + wm,r with

supp(vm,r) ⊂ Kr+3 ∩ (Am+2−r+1)◦ and supp(wm,r) ⊂ Kr+3 \Am+2−r+1/2 .

Moreover we may suppose, up to a modification of the numbers dr,m, that we
have

sup
α∈Nn

0

2r|α|e−lϕ
∗(|α|/l) ‖Dαwm,r‖Rn ≤ dr,m,l

for some positive numbers dr,m,l verifying dr,m,m = dr,m.

(g) For every r ∈ N, we set pr = dr,nr
, εr = 2−rpr+2 and

δr = εr

(
3nqrp2

rpr+12r+2+pr+2e2ϕ∗(nrd0(pr+2+1))/(nrd0)
)−1

.

(h) For every r ∈ N, there is then λ′
r > 0 such that

nrp
2
r

(
1 − Ψ(λδr)

)
≤ δr,

π−n/2qrnrd
2
r,nr

λne−λ
2r−2

mes(Kr+3) ≤ 2−r

for every λ ≥ λ′
r. This will allow us to fix the value of numbers λr ≥ λ′

r

satisfying one more requirement inside the proof of the Proposition 3.2.

Remark. The existence of a function such as u1 in the case n = 1 allows to get an
evaluation of how fast the sequence (eϕ

∗(r))r∈N0 grows to +∞.

Lemma 3.1

For every C > 0, the sequence (r!Cre−ϕ
∗(r))r∈N0 converges to 0.
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Proof. In order to simplify the notations, let us set Mr = eϕ
∗(r) for every r ∈ N0. As

ϕ∗ is a convex and increasing function on [0,+∞[ such that ϕ∗(0) = 0, we certainly
get M0 = 1 as well as Mr ≥ 1 and M2

r ≤ Mr−1/Mr+1 for every r ∈ N. Moreover we
have

∑∞
r=1 Mr−1/Mr < ∞: as, in the case n = 1, the non-zero function u1 belongs

to C∞(R), has compact support and verifies

‖Dru1‖R
≤ d1,12−rMr, ∀r ∈ N0,

the class E(Mr)(R) is non quasi-analytic, hence the conclusion by the Denjoy-
Carleman-Mandelbrojt theorem.

Now we conclude as in the Lemma 1.1 of [15]: the series
∑∞

r=1 Mr−1/Mr is
converging and the sequence (Mr−1/Mr)r∈N decreases to 0 therefore it is well known
that the sequence (rMr−1/Mr)r∈N tends to 0. Hence, by the ratio test, for every
C > 0, the series

∑∞
r=1 r!C

r/Mr converges. Hence the conclusion. �

Now we are all set to start the proof. It consists in the study of the same
functions G0, G1, G2, . . . and to simplify the notations, we introduce the same
shorthand vr.

Proposition 3.2

The analytic functions G1, G2, . . . on R
n are such that, for every m, r ∈ N and

α ∈ N
n
0 , we have

∥∥∥∥∥Dα
(
f −

r−1∑
s=0

Gs

)∥∥∥∥∥
Am

≤ qmnmdr,nmeϕ
∗(nmd0|α|)/(nmd0), (12)

‖Dαvr‖Am
≤ qmnmd2

r,nm
eϕ

∗(nmd0|α|)/(nmd0), (13)

‖DαGr‖Am
≤ qmnmd2

r,nm
eϕ

∗(nmd0|α|)/(nmd0). (14)

Proof. First of all we are going to prove by recursion that

‖DαGr‖Am+2−r
≤ nmd2

r,nm
(1 + 2−1 + . . . + 2−r)|α|eϕ

∗(nm|α|)/nm

holds for every m, r ∈ N and α ∈ N
n
0 .

Case r = 1. For every m ∈ N and α ∈ N
n
0 , we clearly have

‖Dαf‖Am+2−1
≤ ‖Dαf‖Am+1

≤ nmeϕ
∗(nm|α|)/nm (15)
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and, as supp(v1) ⊂ supp(u1) ⊂ K1+3 ⊂ A1 ⊂ Am+1,

‖Dαv1‖Rn ≤ nmd1,nm

∑
β≤α

(
α

β

)
2−|β|enmϕ∗(|β|/nm)eϕ

∗(nm|α−β|)/nm

≤
(∗)

nmd1,nm(1 + 2−1)|α|eϕ
∗(nm|α|)/nm (16)

(the inequality (∗) comes from enmϕ∗(|β|/nm) ≤ eϕ
∗(|β|) ≤ eϕ

∗(nm|β|)/nm) hence

‖DαG1‖Rn ≤ nmd1,nm
(1 + 2−1)|α|eϕ

∗(nm|α|)/nm , (17)

i.e. the case r = 1 is certainly established.

Case r > 1. Suppose that, for some integer r ≥ 2 and every s ∈ {1, . . . , r − 1},
m ∈ N and α ∈ N

n
0 , we have obtained

‖DαGs‖Am+2−s
≤ nmd2

s,nm
(1 + 2−1 + · · · + 2−s)|α|eϕ

∗(nm|α|)/nm .

Then, for every m ∈ N and α ∈ N
n
0 , we certainly have

∥∥∥∥∥Dα
(
f −

r−1∑
s=0

Gs

)∥∥∥∥∥
Am+2−r+1

≤ ‖Dαf‖Am+1
+

r−1∑
s=1

‖DαGs‖Am+2−s

≤ rnmd2
r−1,nm

(1 + 2−1 + · · · + 2−r+1)|α|eϕ
∗(nm|α|)/nm

≤ 1
3
dr,nm

(1 + 2−1 + · · · + 2−r+1)|α|eϕ
∗(nm|α|)/nm. (18)

Therefore for every m ∈ N and α ∈ N
n
0 , if we designate by k any of the functions

ur or wm,r, the Leibniz formula leads to

∥∥∥∥∥Dα

(
k
(
f −

r−1∑
s=0

Gs

))∥∥∥∥∥
Am+2−r+1

≤ 1
3
d2
r,nm

(1 + 2−1 + · · · + 2−r)|α|eϕ
∗(nm|α|)/nm . (19)
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Now for every m ∈ N and α ∈ N
n
0 , we evaluate ‖DαGr‖Am+2−r

. Let us consider
any point x ∈ Am+2−r . As supp(ur) ⊂ Kr+3, we get

DαGr(x) = π−n/2λnr

∫
Kr+3∩Am+2−r+1

Dαvr(y) e−λ
2
r|x−y|2 dy

+ π−n/2λnr

∫
Kr+3\Am+2−r+1

Dαvr(y) e−λ
2
r|x−y|2 dy

where the inequality (19) implies that the absolute value of the first term of the
second member is

≤ 1
3
d2
r,nm

(
1 + 2−1 + · · · + 2−r

)|α|
eϕ

∗(nm|α|)/nm . (20)

To evaluate the second term, we remark first that, on Kr+3\Am+2−r+1 , the functions
ur and wm,r coincide. So it is equal to

− π−n/2λnr

∫
Kr+3∩Am+2−r+1\Am+2−r

Dα

(
wm,r(y)

(
f(y)−

r−1∑
s=0

Gs(y)
))

e−λ
2
r|x−y|2dy

+ π−n/2λnr

∫
Kr+3\Am+2−r

Dα

(
wm,r(y)

(
f(y) −

r−1∑
s=0

Gs(y)
))

e−λ
2
r|x−y|2dy

where again the inequality (19) implies that the absolute value of the first term is

≤ 1
3
d2
r,nm

(
1 + 2−1 + · · · + 2−r

)|α|
eϕ

∗(nm|α|)/nm . (21)

To evaluate the second term, as wm,r has its support contained in the set Kr+3 \
Am+2−r+1/2 , we may as well integrate on R

n. So, by use of a standard property of
the convolution product, we find that it is equal to

π−n/2λnr

∫
Rn

wm,r(y)
(
f(y) −

r−1∑
s=0

Gs(y)
)

Dα
xe−λ

2
r|x−y|2 dy. (22)

To evaluate the value of this last integral (22), we first set

br = π−n/2

∥∥∥∥∥f −
r−1∑
s=0

Gs

∥∥∥∥∥
Kr+3

≥ π−n/2

∥∥∥∥∥wm,r

(
f −

r−1∑
s=0

Gs

)∥∥∥∥∥
Rn

.
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Next we note that for a = 21/4 − 1 > 0, the compact subsets Am+2−r and

Bm,r =
{
w ∈ C

n : |�w| ≤ d(0,Ω) + m + 2−r+1/4, |�w| ≤ 2−ra
}

of C
n are of course such that{

w ∈ C
n : d(w,Am+2−r ) ≤ 2−ra

}
⊂ Bm,r.

Moreover for every w ∈ Bm,r and y ∈ supp(wm,r) ⊂ Kr+3 \Am+2−r+1/2 , we have∣∣∣∣e−λ2
r

∑n

j=1
(wj−yj)2

∣∣∣∣ = e−λ
2
r

∑n

j=1
((�wj−yj)2−(�wj)

2)

≤ e−λ
2
r2−2r((21/2−21/4)2−a2) ≤ e−2−2ra2λ2

r(
√

2−1).

So, by use of the Cauchy inequality, we get∣∣∣Dα
xe−λ

2
r|x−y|2

∣∣∣ ≤ α! (2rna−1)|α|e−2−2ra2λ2
r(

√
2−1)

for every y ∈ supp(wm,r). Taking all these informations into account, we get that
the absolute value of the expression (22) is

≤ brmes(Kr+3)λnr e−2−2ra2λ2
r(

√
2−1)α!(2rna−1)|α|. (23)

At this stage, we note that, by the Lemma 3.1, there is a constant Cr > 0 such that

j! (2rna−1)j ≤ Creϕ
∗(j), ∀j ∈ N .

This allows us to formulate our last requirement fixing λr ≥ λ′
r: we choose λr large

enough so that

Crbre−2−2ra2λ2
r(

√
2−1)λnrmes(Kr+3) ≤

1
3
.

Then with the help of the evaluations (20), (21) and (23), we finally get

|DαGr(x)| ≤ d2
r,nm

(1 + 2−1 + · · · + 2−r)|α|eϕ
∗(nm|α|)/nm ,

i.e. the recursion is complete.
It is now a direct matter to check that the formulae (15) and (18), (resp. (16)

and (19); (17) and the recursion formula) lead directly to the formulae (2) (resp.
(13); (14)) respectively. �

Lemma 3.3
For every m, r ∈ N, α ∈ N

n
0 and x, y ∈ Am, we have

|Dαvr(x) − Dαvr(y)| ≤ n |x− y| qmnmd2
r,nm

eϕ
∗(nmd0(|α|+1))/(nmd0).

Proof. Using (13) instead of (3), the proof of the Lemma 2.2 applies. �
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Lemma 3.4

For every m, r ∈ N and α ∈ N
n
0 such that m < r and |α| ≤ pr+2, we have

‖DαGr − Dαvr‖Am
≤ nm+1εr

(
pr+12r+2+pr+2eϕ

∗(nrd0(pr+2+1))/(nrd0)
)−1

.

Proof. Following the lines of the proof of the Lemma 2.3 leads to

J1 ≤ 2qrnrp2
re

ϕ∗(nrd0|α|)/(nrd0)
(
1 − Ψ(λrδr)

)
≤ 2qrδreϕ

∗(nrd0|α|)/(nrd0),

J2 ≤ nδrqm+1nm+1d
2
r,nm+1

eϕ
∗(nm+1d0(|α|+1))/(nm+1d0)

hence the conclusion by use of the evaluation of δr. �

Lemma 3.5

For every m, r ∈ N and α ∈ N
n
0 such that m < r and |α| ≤ pr+2, we have

‖DαGr+1‖Am∩Kr+2
≤ nm+1εr2−(r+1).

Proof. Using Lemma 3.4 in the proof of the Lemma 2.4 applies. �

Proposition 3.6

For every compact subset K of Ω and α ∈ N
n
0 , the series

∑∞
r=1 ‖DαGr‖K

converges.

Therefore the series G =
∑∞

r=1 Gr defines a C∞-function on Ω and can be

differentiated term by term.

Proof. Using Lemma 3.5 in the proof the Proposition 2.5 applies. �

Lemma 3.7

For every m, r ∈ N and α ∈ N
n
0 such that m < r and |α| ≤ pr+2, we have

‖DαG− Dαf‖Am∩Ω\Kr+1
≤ nm+1εr.

Proof. Using Lemma 3.5 in the proof of the Lemma 2.6 applies. �

Proposition 3.8

The function g defined on R
n by

g(x) =

{
f(x) if x ∈ F

G(x) if x ∈ Ω = R
n \ F

belongs to E{ω}(Rn) and is such that Dαg(x) = Dαf(x) for every α ∈ N
n
0 and x ∈ F .
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Proof. By the Proposition 3.6, the Lemma 3.7 and a classical argument, we know
already that g belongs to C∞(Rn) and is such that Dαg(x) = Dαf(x) for every
α ∈ N

n
0 and x ∈ F .

To establish that g belongs to E{Mr}(R
n), we just need to prove that, for every

m ∈ N, there is a constant Cm > 0 such that

‖Dαg‖Ω∩Am
≤ Cmeϕ

∗(nmd2
0|α|)/(nmd2

0), ∀α ∈ N
n
0 .

To get this we just have to follow the steps of the proof of the Proposition 2.7,
making the obvious modifications. Indeed for m ∈ N fixed, this leads to the following
evaluations. For a multi-index α ∈ N

n
0 verifying |α| ≤ pm+2, we get the existence of

a constant km > 0 such that

‖DαG‖Am∩Km+2
≤ kmeϕ

∗(nmd0|α|)/(nmd0),

‖DαG‖Ω∩Am\Km+2
≤ 2nm+1eϕ

∗(nm|α|)/nm .

For a multi-index α ∈ N
n
0 verifying |α| > pm+2, we introduce r as the first

positive integer such that pr+1 < |α| ≤ pr+2. This leads to

‖DαG‖Am∩Kr+1
≤ (nm+1 + q2

m)eϕ
∗(nmd2

0|α|)/(nmd2
0),

‖DαG‖Ω∩Am\Kr+1
≤ nmeϕ

∗(nm|α|)/nm + nm+1εr ≤ 2nm+1eϕ
∗(nm|α|)/nm .

Therefore the constant Cm = sup {km, 2nm+1, nm+1 + q2
m} suits our goal. �

Proposition 3.9

The function G has a holomorphic extension on the following open subset Ω∗ =
{u + iv : u ∈ Ω, v ∈ R

n, |v| < d(u, ∂Ω)} of C
n. Therefore g is analytic on Ω.

Proof. One has just to reproduce the proof of the Proposition 2.8 making the obvious
modifications. �

Proof of the Theorem 1.1 in the case of the Roumieu type. The main result is now
a direct consequence of the Propositions 3.8 and 3.9. �
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