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ABSTRACT

Let w be aweight and F' be a closed proper subset of R™. Then for every
function f on R™ belonging to the non quasi-analytic (w)-class of Beurling
(resp. Roumieu) type, thereis an element g of the same class which is analytic
onR™ \ F and suchthat D® f(z) = D%g(z) forevery o« € Nj andx € F.

1. Introduction and statement of the result

In [18], H. Whitney has established that every C*°-Whitney jet on a closed subset
F of R™ has a C*-extension on R™ which is analytic on R™ \ F'. Since then several

authors have considered the extension problem of jets in different situations; here are
references to some of them [3], [4], [5], [6], [7], [9], [10], [11], [12], [16] and [17] — with
in [4] and [6], a discussion of the previous literature on the subject. In particular,

for the Beurling type, one finds
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74 SCHMETS AND VALDIVIA

a) in [3] (resp. [5] and [12]) conditions on the weight w (resp. on the sequence
(M, )ren,) under which the restriction map

PK: g(w)(Rn) — S(W) (K) (resp. PK: E(MT)(Rn) — E(MT)(K))

is surjective for every compact subset K of R™,

b) in [6] (resp. [5] and [12]) conditions under which this restriction map has a
continuous linear right inverse.

In this paper, we are going to consider this problem in the case of non quasi-
analytic w-Whitney jets of Beurling (resp. Roumieu) type.

In order to make this statement more precise, let us introduce some definitions
and notations.

We use the modification introduced by Braun, Meise and Taylor in [2] to Beur-
ling’s method in [1] in order to define classes of non quasi-analytic functions. So
we consider a weight w, i.e. a function w: [0, +o00[ — [0, +oo[ which is continuous,
increasing and verifies the following conditions:

(wl) there is I > 1 such that w(2t) < (14 w(t)) for every ¢t > 0,

w2) [ 2l dt < oo,

(w2)
(w3) lim U — g
R

(wd)

the function ¢: [0, +oc[ — [0, +o00[, t+— w(e) is convex.

By the Proposition 1.2(b) of [3], there is then a weight ¢ < w such that o(1) =0
and o(t) = w(t) for large ¢t. As in what follows, the values of w(t) are used only for
large t, we are going to suppose moreover that we have w(1) = 0 hence ¢(0) = 0.
Then the Young’s conjugate ¢©* of ¢ is defined as

¢*: [0, 4+00[ — [0, +o0[, y+ Sup (zy — p(x)).

It is a convex and increasing function which verifies ¢*(0) = 0 and ¢*(y)/y is an
increasing function such that lim, .., ¢*(y)/y = .

Moreover the property (wl) of the definition of the weight w gives the existence
of a constant dy such that

olx+1) <do(p(z)+1), V>0,
and by the Lemma 1.4 of [2], there is also a constant yo > 0 such that
@ (y) —y = dow" (y/do) — do, Yy = yo; (1)

of course we may suppose that dg is an integer and that yo > dp.
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We then designate:

a) By &£)(R™) the non quasi-analytic w-class of Beurling type on R", i.e. the set
of the C*°-functions f on R™ such that, for every compact subset K of R™ and
constant h > 1, one has

sup [|[Df]| e~ 1/ < oo,

a€eNgy

b) By &;,)(R™) the non quasi-analytic w-class of Roumieu type on R", i.e. the

set of the C*°-functions f on R" such that, for every compact subset K of R™,
there is a constant A > 1 such that

sup [|[Df]|  e=? Bleb/h < o0,
a€eNgy
In [17], the following results are proved: let K be a compact subset of R™.

(a) If f is an element of E)(R™) [resp. Efy(R™)], then the Whitney jet f|x has
an extension belonging to the same space and analytic on R™ \ K.

(b) If £y (K) and E,y(R™) [resp. Eqy(K) and Eq,y (R™)] are endowed with their
usual topologies and if there is a continuous linear extension map

T: g(w) (K) — g(w) (Rn) [resp. T: g{w}(K) - g{w} (Rn>] 5
then there is a continuous linear extension map
S: € (K) = Ey(R™)  [resp. S: &y (K) — Eroy (R™)]
such that S f is analytic on R™ \ K for every f € £ (K) [resp. €,y (K)].
In [16], similar properties are established for the spaces £,y and Eqpy, 3.
In this paper, we are going to prove that it is possible to adapt the proof of the
result (a) to the case when the compact set K is replaced by a closed subset F' of

R™. As the result (b) is concerned, we do not know whether it generalizes to the
closed subsets setting. So our main result reads as follows.

Theorem 1.1
For every f € £,)(R") [resp. f € Eg,1(R™)] and every closed subset F' of R,
there is g € £,)(R™) [resp. g € £,y (R™)] such that
(a) D*f(x) = D%g(x) for every o € N§j and x € F,
(b) g is analytic on R™ \ F.

In [14] and [15] respectively, one finds similar results for the spaces &,y and
€,y
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2. Proof in the case of the Beurling type

Notations. The proof of the Theorem 1.1 relies very much on the correct value
of the numbers A, for r € N. These values cannot be introduced directly and we
feel more advisable to set up immediately the different notations that will be used
throughout the proof of the Beurling type and that lead to these numbers A,.

So far we have introduced the weight w, the function f € &£, (R"™) as well as the
closed subset F' of R™. Of course we may restrict our attention to the case when the
restriction of f to the open subset 2 = R™ \ F' of R" is not identically 0. Moreover:

(a) For every integer m > dy, let us then denote by p(m) the integer part of m/dy
and let us set g, = sup {e™, 2%/} These numbers will appear in the proof
by use of the following remark: as in [17], we note that we have

9T me” (1r/m) < qmep(m)sﬁ* (r/p(m))

for every r, m € N such that m > dp: in fact on the one hand, if r verifies
r < myp/do, we certainly have

2rem<p* (r/m) < 9myo/do ep(m)w* (r/p(m))

)

- % ¢ Tdg rdg
and on the other hand we always have 27e™#”" (r/m) < g™m/do (o™ (522 /do)+

so for r > myy/dy the use of the inequality (1) for y = rdy/m leads to
oreme” (r/m) < o8 (¢7(5)+do) - gmep(m)e™ (r/p(m))
(b) For every m € N, A,,, designates the ball
Ay, ={zeR":|z| <m+d(0,2)}
where of course d(0, §2) is the distance of the origin to .
(¢) { Ky, : m € N} designates a compact cover of Q such that Ky # () and K, =

(Km)°™ C (Kmy1)®, Kmys C Ay, for every m € N.
(d) As f € &) (R™), we have

11l =14 sup [Df]l,, e 1o/™) <00, Vm eN.
aeN[
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(e) The Proposition 1 of [17] provides a sequence (u,)men of C°(R™) such that,
for every m € N,
0<u,<1,
U, =1 on a neighbourhood of K10\ (Kpnt1)®,

Supp(um) C (Km+3)o \ Kma
gmlale=¢ (D D%, ||pn < dm1, Va € NJ,

|a]

gmlale= (" GED) DUy |gn < dimg, Vo € NB,VE € N,
with, for every m, k € N,
1 <dmr < dmkt1,
2 flly (m+1)d2, < dmg,

2 ||f||k+1 (m + 1)d3n,k:+1 <dmy1k-

Now for every r € N, we set p, = d,,, &, = 27"P+2 and
* —1
6fr = &r (3nqrp3pr+12r+2+pr+262r¢ (pr+2+1)> ‘

(f) Finally, for every p > 0, we set ¥(p) = 7~ "/2 f|y|<p e~ dy. By the Poisson
formula, we have ¥(p) T 1if p T +00. So, for every r € N, there is A, > 0 such

that )
£l pr (1 = W(Ar6r)) < bp,

W*”/Q)\?e*/\ipf mes(K,43) <1
2 —2
qrdodz,mo £l TN mes (K yg) < 277

Now we are all set to start the proof. It consists in the study of the functions

Go, G1, Ga, ... defined on R™ by Go(z) = 0 and the recursion
r—1 , .
G (z) = 7r_"/2/\f/ u,(y) (f(y) -3 Gs(y)> e M=l dy, vreN.
" s=0

In fact, apart the context, these are the functions that H. Whitney consi-

dered in [18]. As the functions u, belong to C*°(R™) and have compact support
2 2

and as the function e~*+1#=¥I" ig the restriction to R™ of the holomorphic function

_\2 n )2
e zjzl(wj )" on C™, the properties of the convolution product tell us directly

that the functions G, Ga, ... are analytic on R™. In our setting a lot more can be
said.
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Notations. In order to simplify the notations, we introduce the following shorthand
r—1
Vp = Uy (f—ZGS>, Vr € N.
s=0

Proposition 2.1

The analytic functions Go, G1, ... on R™ are such that, for every integer
m > dy and o € N, we have

r—1

D(f=D0G) [ < a1l e 20, @
s=0 A
R T I A )
ID°GrlLa,, < o 1l 02?2 /00, @)

Proof. Case r = 1. Of course we have

IDflla,, < 11l @™ 0 < 1] dy o™ 1) (5)

m

hence by use of the Leibniz formula

D01l x, < [ fll 03 D ()27 Bleme™ (181/m)gmee (la=pl/m)
BLla

< |l @2, (14 27 )l gme (al/m) ©
Now as supp(vy) C supp(u;) C A, holds for every m € N, we also have

IDGll g, < (1]l 3 (1427 1)l lemem et/ (7)

m

Case r > 1. We proceed by recursion on r. Suppose that, for some integer r > 2,
we have obtained

DG, < ”f”mdjma 4271 g 2 lalgme (al/m)

for every s € {1,...,7 — 1}, m € N and a € N.
Firstly we get
r—1 r—1
DY (f=D"G)|| < ID°flla, + D ID°Cila,
s=0 A s=1
Sl By (127 g 2 el )
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hence

< %dm(1+2—1 4o 27 lalge(al) ®)
Ay

r—1
(15

s=0
and, for every m € N,

r—1
p*(r-326)

s=0
Next by use of the Leibniz formula we have

D0, 4, < 221 (1 4271 4. 4 277)leleg (o) (10)

< S dp(14 270 oo 2Tl glmi D (al /) (g)

1
2

A7n+1

and, in the same way, for every m € N,

1 *
< = d?,m(l 4oty 4 2—7’)|0<\e(m-|r1)</J (lal/(m+1)) (11)

HDCWUT‘| Appr = 2

Finally:
a) For m > r, we have supp(v,) C A, C A,, hence

DGl 4,, < (D%l 4,
%d72n71(1_|_2—1_|_...+2—T)\04|e¢*(\06|) fm=1
< .
% dg,m(l ) e I 2—T)Ia|emsa*(|a|/m) if m>2

b) For 1 <m < r and every z € A,,, we get

LN </ */ ) D%, (y)| e 7= gy
At K13\ Am+t1

2
Dl + [Drll 4, 7="/2Ae™ mes(K,43)

DG, ()]

IN

IN

m—+1

hence, by use of the formula (11) and of one condition imposed on A,
IDYGrl 4,

1 *
< S, (127 2 lelem e el ()

1 »
+ §p3(1 +27 4 2Tledere (lal/r)w_"/z)\fe_Ai mes(K,3)

% dz’m(l +27 by 4 Q—T)Ia\emw*(la\/m)

IN

1 »
4 3 (14 R Q—T)|a|em90 (lal/m)

dz7m(1+2—1+.‘.+2—T‘)|a|emgp*(|a‘/m)‘

IN
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So the recursion is complete and, for every m, r € N,
a) the inequalities (5), (8) and (9) give
r—1

(- S0

s=0

I dy 2o (al/m),
ATYL

b) the inequalities (6), (10) and (11) give
D04, < N,y di 21l (/)
c) the inequality (7) and the recursion give
rm

HDO‘Gr”Am < fll,n 42 olalgme™(lal/m).

Hence the conclusion by use of the inequality we have obtained in part (a) of
the Notations. [

Lemma 2.2

For every integer m > dy and x, y € A,,, o € Njj, we have
ID%v,.(z) — D0, (y)| < 1|z — y| g || 1]y, A2 e ™€ lFD/Dlm)),

Proof. For every j € {1,...,n}, let us designate by €; the j-th unit vector of R™.
Then comes

D0, (2) = D0, (y)] <oy — y;| D0, |

j=1

A’IYL '

Hence the conclusion by use of the formula (3) of the Proposition 2.1. [J

Lemma 2.3

For every m, r € N and o € Njj such that dy < m < r and |a| < p,42, we have
”DaGT . DaUTHAm < Hme+1 8T(pr+12r+2+pr+2ertp*(pr+2+1))—1'
Proof. For every x € A,,, we get

DG, (z) — DY, ()| < J1 + Jo
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with successively

Ji= 7 2An /| o (ID%v, ()] + D% (y)] Je =¥ dy
T—Y|Z20r

24, HfHTpgep(r)w*(la\/p(r)) (1 _ ‘I/(/\rér))

<
< 24,.6,eP(M)#" (lal/p(r)

and, by Lemma 2.2, as {y : |z —y| < 6,} C A1,

Jo= w2z / ID%0,(y) — D%, (z)] e NI gy
|m7y‘§5'r

IN

N8, Gt Hf||m+1 dim_s_lep(mﬂ)so*((|a|+1)/p(m+1))

16, Grp? || |,y (" (LD /p(m),

IN

Hence the conclusion by the evaluation of ¢, since we have
Ji 4 Jo < 3ng,.6,p? [ - eP(m)e” ((Jal+1)/p(m))

Lemma 2.4

For every m, r € N and o € Njj such that dy < m < r and |a| < p,42, we have

HDOLGT-H”KHQQA,,L < Hf”m.H 5r27(r+1)'

Proof. As the function wu, is identically 1 on a neighbourhood of the set K, o\
(K;41)°, the Lemma 2.3 leads directly to the following auxiliary inequality (x)

(-3

= DGy = Dll k6, o\ (ki) )AL

< [ fllnia er (P12 TH Prezere” (2t )y =1,

(Krp2\(Krg1)°)NAm

Therefore by use of the Leibniz formula we get

HDO"Z)rJrl ||(KT+2\(KT+1)o)mAm
(0] . *
< Z <ﬁ>dr+1,12—(r+1)lﬁlew e, (K2l er(pyig 27T Pre2ere (Pr+2+1))—1
Bl
< Nl €270,
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Now as u,41 vanishes identically on K, 1, these last inequalities are indeed valid on
K12 N A,,. Therefore the Lemma 2.3 leads to

HDaGr+1 HK,,._'_zmAnz

< [DYGria = D%l 4, + ID%0rallk, 04,

IN

”me+1 ETH<pr+22r+3+pr+se(r+1)<p*(pr+3+1))71 + HmeH 87“27(#2)

[ fllpgr 270D, O

IN

Proposition 2.5

For every compact subset K of Q and a € Njj, the series Y - [|[D*G.| s
converges.
Therefore the series G = > °- | G, defines a C*-function on 2 and can be

differentiated term by term.

Proof. Indeed if we choose integers m, r € N such that dy < m < r, |a| < p,42 and
K Cc K.NA,,, the Lemma 2.4 leads to

ID*Gripllx < D Gripli <M lpsr Erep-12” 0P

rp+1NAm

for every p € N. Hence the conclusion. [J

Lemma 2.6

For every m, r € N and o € Njj such that dy < m < r and |a| < p,42, we have

IDYG =D flla, i, 0 S Il &

Proof. Let x be any element of A,, N Q\ K,;1. Then we designate by ¢ the first
positive integer such that x € K, ,; of course we have ¢ > 2. So, on the one hand,
the Lemma 2.4 leads to

|DO‘GT+S($)‘ < ||f||m+1 5r+8—12_(r+s)

for every integer s > ¢ — 1. On the other hand, the auxiliary inequality (x) that
appears at the beginning of the proof of the Lemma 2.4 leads to

r+q—2
D° (f(w) - > Gs(@)

s=1

< ”me+1 €r+qf22_(7’+q)-
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So we get

N

IDG(2) = D*f (@) < || fllp Ersq—22”"H

+ Y M g Erpsm1270F
s=q—1

< [ fllpgrer O

Proposition 2.7
The function g defined on R™ by

B flz) if xeF
g(x)_{G(x) if 1€ Q=R"\F

belongs to £,,)(R™) and is such that D*g(x) = D* f(x) for every o € N§j and x € F.

Proof. By the Proposition 2.5, the Lemma 2.6 and a classical argument, we know
already that g belongs to C°>°(R™) and is such that D%g(x) = D*f(z) for every
a e Njand x € F.

So to conclude, we just need to establish that g belongs to £,)(R™). As f
belongs to &£, (R™), we just need to concentrate our attention to the restriction G
of g to €.

For every integer m such that p(m) > dy, we are going to prove that, if ¢(m)
designates the integer part of p(m)/dy, we have

sup [|[D*Gll 4, ~q e~ a(m)e™(lal/a(m)) o
a€eNg

The conclusion then follows at once.
For this purpose, let us first consider a multi-index o € N such that || < pp,yo.
Two cases are possible:

a) The point x belongs to Ay, N Kpy2. In this case, the formula (4) of the Propo-
sition 2.1 gives the existence of a constant k,, > 0 such that

m—+1
Z ||DQGSHAW < km Hmeep(M)so*(lal/p(m))

s=1
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Then the Proposition 2.5 and the Lemma 2.4 successively give

m—+1 [e’e)
DG(z)| < Y IDGy(z)[+ Y D*Cy()]
s=1 s=m+2

0o
< o | fl,y, VPO N Y]y o127
s=m-+2

< ||f||m+1 (kp + 1)ep(mw*(|a|/p(m))‘
b) The point x belongs to (2N Ayn) \ Kpnt2. In this case, the Lemma 2.6 gives
DG ()] < [D*G(x) — D f(z)] + [D f ()]
< Nl S+ 1l €0 < 2 e,
Let us now consider a multi-index a € Nj} such that |a| > py,12. Then we first

introduce the first positive integer r such that p,11 < |a| < p,42; of course, we have
r > m. Once more two cases are possible:

a’) The point x belongs to A, N K,41. On the one hand, the Lemma 2.4 and the
value of €, 451 lead to

o

S D Grs @) <D N llgs Erbs 127 < g 827"

s=1 s=1
On the other hand, by use the formula (4) of the Proposition 2.1, we also have

T T
YD) < D dm 1l dE e PCmD)
s=1 s=1
rqm || £, d? eP(M)¢” (Jal/p(m))

m m r,m
< g2lelepmiem(al/pim) < g2 qa(m)¢™(lal/a(m))
(to get the inequality (x), we note that r || f||,,, d? ,, < dri1,m < pry1 < 271 <
2lel: to get the inequality (), we use an evaluation made in the part (a) of the
Notations). These two informations put together give

DG < (1 + et /atm),
b’) The point x belongs to (2N A,,) \ K11 Then the Lemma 2.6 leads to
IDG(z)] < [D*f(z)| + D f(x) — D*G(z)|
< F @™ 1N L fl] g er S 201 F gy @™ U
Therefore we finally have
ID*Gllgna,, < Cpetme™(al/atm)) = vy ¢ N2

for Cy, = max {|[ 1 km + 1), 2 fllps1> | fllnsq + @} and the proof is com-
plete. [

IN

—
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Proposition 2.8

The function G has a holomorphic extension on the following open subset 0* =
{u+iv:ue QuelR" v <d(u,dQ)} of C*. Therefore g is analytic on §).

Proof. 1t is clear that Q* is an open subset of C"”.
Let H be any compact subset of 2*. Then as in [16], one establishes immediately
by contradiction the existence of an integer ry € N such that

6% = inf Z((ujfyjffvjz) cu,v,y e R u+ive Hyy g K,y p > 0.
j=1

So for every integer r > max {rg,6~ !} and every point w = u + iv of H with u,
v € R”, the formula (3) of the Proposition 2.1 leads to

\Gr(w)]: 'ﬂ-—n/2)\:/ UT(y)e—Arzjzl(wj—yj) dy

n

IN

a2\ )2 g2
77_n/2>\:~l||vr||Ard/ ¢ ATZj:l((uj ) v])dy
0 JK, 13\ K,

— — 2 —
< Grag 1 llray @ vgem 2NN mes(Krpg) <277
(%)
the inequality (%) comes from the last requirement we imposed on \,.).
q Yy q P
Therefore the series Y | G, converges absolutely and uniformly on H. So

it represents a holomorphic function on Q* since each of the functions G,(w) is
holomorphic on C". Hence the conclusion. [J

Proof of the Theorem 1.1 in the case of the Beurling type. The main result is now
a direct consequence of the Propositions 2.7 and 2.8. [J

3. Proof in the case of the Roumieu type

The pattern of the proof of this case is very much comparable to the one relative to
the Beurling case. Therefore we are going to indicate the intermediate results and
to only mention the differences.

Notations. Let us first set up the different notations that will be used throughout
the proof and that lead, up to a requirement that will appear inside the proof of the
Proposition 3.2, to the definition of the numbers A,.
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So far we have introduced the weight w, the function f € £,;(R™) as well as
the closed subset F' of R™. Of course we may restrict our attention to the case
when the restriction of f to the open subset Q@ = R™ \ F' of R" is not identically 0.
Moreover:

(a) We set ¢/, = max {e'/™,2v0/(mdo)} for every m € N and remark as in [17] that

the inequality
2Tego*(mr)/m < q;nego*(mrdo)/(mdo)

holds for every r, m € N: in fact if r verifies r < yo/(mdy), we certainly have

97" (mr)/m < quo/(mdo) g™ (mdor)/(mdo)

and if r > yo/(mdp), we successively have

27“e<p*(m7’)/m el/(mdo)(dogo*(mdor/do)—l-mdm“)

<
< el/(mdo) (@™ (mdor)+do)  _  ol/mgp" (mdor)/(mdo)

(b) For every r € R, we set A, ={xz € R" : |z| <r+d(0,Q2)}.

(¢) { Ky : m € N} is the same regular compact cover of €.

(d) As f € &y (R™), there is a strictly increasing sequence (n,,)men of positive
integers such that

sup [DYf,, ., e ¢ mleh/mm < vm e N
aeNy

(e) Proposition 1 of [17] provides a sequence (u,),en of C*°(R™) such that, for every

r €N,
0<wu, <1,

ur, =1 on a neighbourhood of K, 2\ (K,11)°,
supp(ur) C (Kr+3)o \KT7

Sup 2T|a‘e_mw*(la|/m) HDQUTHRH S dr,m
aeNy

where, for every r, m € N, d,.,, is a positive integer such that

dT,m S dr—f—l,m,

d'r,m é d’r‘,m+1 )

1
(r+ 1)nmd2’nm < =

dry1,m -
— 3 +1,
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(f) For every m, r € N, {(A42-+1)°,R"* \ A, 9-r+1/2} is an open cover of R™.
So, by use of the Proposition 1 of [17] again and of convolution products, there
is a C*°-partition of unity {¢1 m.r, ¢2.m.r} of R™ such that

supp(@1,m,r) C (Appo—r+1)°,  supp(@a,m,r) C R™\ A, g-ri1/2

and

sup 2'lele=te (el D ], < 00
aeNY

for every j € {1,2} and [ € N. We then set vy, , = Ur@1,m,r and Wy, , =
UrP2,m,r; Of course we get u, = vy, » + Wy, With

sUpp(Vm,r) C Krq3 N (Apgo-r+1)° and  supp(wm,r) C Kryg \ Ay po-ri1/2.

Moreover we may suppose, up to a modification of the numbers d,. ,,, that we
have

sup orlal o —le* (lal/1) ||Dawm7r||]R" < dym.
aeNy

for some positive numbers d,.,,; verifying dr m m = dy m.

)

(g) For every r € N, we set p, = dyp,., &, = 27"P7+2 and
. -1
5 =¢, (3n%pgpr+ (2722 20 (nrdo(pr+2+1))/(nrdo)> ‘

(h) For every r € N, there is then A > 0 such that

nrpg(l - \IJ()‘(ST)) < 67‘7
w_"/Qanrd,%’nT)\”e_/\QT72mes(KT+3) < 27"
for every A > A/. This will allow us to fix the value of numbers A\, > X/

satisfying one more requirement inside the proof of the Proposition 3.2.

Remark. The existence of a function such as u; in the case n = 1 allows to get an
evaluation of how fast the sequence (eﬂo*(”)reNO grows to +oo.

Lemma 3.1

For every C' > 0, the sequence (r!C"e=%" (")), cy, converges to 0.



88 SCHMETS AND VALDIVIA

Proof. In order to simplify the notations, let us set M, = e? (") for every r € Ny. As
©* is a convex and increasing function on [0, +-o00[ such that ¢*(0) = 0, we certainly
get My =1 as well as M,. > 1 and Mf < My_1/M;41 for every r € N. Moreover we
have 2:11 M, _1/M, < oo: as, in the case n = 1, the non-zero function u; belongs

to C*°(R), has compact support and verifies
HD’"ulﬂR S d1712_TMT, Vr e NO,

the class £y, )(R) is non quasi-analytic, hence the conclusion by the Denjoy-
Carleman-Mandelbrojt theorem.

Now we conclude as in the Lemma 1.1 of [15]: the series Y 2, M,_1 /M, is
converging and the sequence (M, _1/M,),cn decreases to 0 therefore it is well known
that the sequence (rM,_1/M,),en tends to 0. Hence, by the ratio test, for every
C > 0, the series > >~ r!C" /M, converges. Hence the conclusion. [J

Now we are all set to start the proof. It consists in the study of the same
functions Gg, G1, G2, ... and to simplify the notations, we introduce the same
shorthand wv,..

Proposition 3.2

The analytic functions Gy, Go, ... on R"™ are such that, for every m, r € N and
o € Ny, we have

r—1
Da (f o ZGS> S qmnmd,r7n’7neg0*(nmd0|a|)/(nMdO)7 (12)
s=0 A
ID%0rlLa, < Gmimd?,, e mdoloD (o), (13)
ID*Grll,, < amnmdz,,, e dolel/ o), (14)

Proof. First of all we are going to prove by recursion that
IDGrlla -, < mundi,,, (14271 4 277 lele? (imla/nm

holds for every m, r € N and a € Nj.

Case r = 1. For every m € N and a € Njj, we clearly have

HDafHAW < ||DafHAm+1 < nmego*(nm|a|)/nm (15)

+2—1 T
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and, as supp(v1) C supp(u1) C K143 C Ay C Ay,

IN

D%l < i e S (O‘>r'ﬁlew*<lﬁl/nm>ew<nma—m/nm

B<a

< nmdl,nm(l+2_1)‘a|ew*(nm|a‘)/nm (16)
()

(the inequality () comes from e™m ¢ (I81/mm) < e¢"(I8) < o¢" (nmlBl)/nm) hence
IDYG1lgn < Nmdip,, (1+ 2—1)\a|ew*(nm|a\)/nm7 (17)
i.e. the case r = 1 is certainly established.

Case r > 1. Suppose that, for some integer r > 2 and every s € {1,...,r — 1},
m € N and a € Njj, we have obtained

ID°Gulla, ., < 2, (14270 o 275) el (nle /o,
’VVL+2_S sfem

Then, for every m € N and o € Njj, we certainly have

r—1

(s 5

s=0

A'm+27"‘+1

r—1

A'm+1 + Z HDaGs”Am

s=1
Py, (14270 4 oo 27 lolge () /i
1

< gdrn, (14 271 4 ... g o7rHhlalge (mlal)/nm. (18)

D f

28

IN

A

Therefore for every m € N and o € N, if we designate by k any of the functions
Uy OF Wy, the Leibniz formula leads to

A pa—rt1

< ldQ 1+27 4.+ Q*T)Iale%v*(nmla\)/nm. (19)

- 3 TNm
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Now for every m € N and a € Nj}, we evaluate | DG, || , . Let us consider
m+2—T

any point z € A, o-+. As supp(u,) C K,43, we get

DG, (z) = 7T_"/2)\f/ D%, (y) e Arla—yl? dy

Kr43NA, L o—rt1

+ 7T_n/2)\:f/ D%, (y) e~ Mle—yl? dy
Kr43\A,,  o—rt1

where the inequality (19) implies that the absolute value of the first term of the
second member is

TMm

1 ol o
<Sd,, (1427 4oy 27r) 1 gg” (nmlal)/min (20)

To evaluate the second term, we remark first that, on K, 3\ A4,, 2-r+1, the functions
u, and wy, , coincide. So it is equal to

r—1
_ ﬂ_—n/2>\;r} / D« <U}m,r(y) <f(y) —Z Gs (y))) e_>\r|ff—y| dy
KrgsNA, o—rs1\A, o7 5=0
r—1
RN / D <wm,r<y> COEDS Gs<y>))ekr'” dy
Kri3\A, fo—r s=0

where again the inequality (19) implies that the absolute value of the first term is
1 al
<3 A2, (1+27 '+ 4 277) 1 gg” (nmlal)/min (21)

To evaluate the second term, as w,, , has its support contained in the set K, i3 \
A yo-rt1/2, we may as well integrate on R™. So, by use of a standard property of
the convolution product, we find that it is equal to

r—1

L [ e 0) ()~ X Gulw) Do 0 dy, (2)

s=0

To evaluate the value of this last integral (22), we first set

r—1 r—1
b'r = ﬂ-_n/2 f - Z Gs Z 7T_n/2 wm,'r (f - Z Gs)
s=0 K,i3 s=0 Rn
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Next we note that for a = 21/ — 1 > 0, the compact subsets A, io-- and
By = {w eC™: [Rw| < d(0,Q) +m+ 27"/ |Sw| < 2_Ta}
of C™ are of course such that
{w e C":d(w,Apyo-r) < 2_Ta} C Bpr
Moreover for every w € B, , and y € supp(Wm,r) C K13\ A,, 1 9-r+1/2, We have

A2 wimy)? | o AT (Rwy—yy)* = (Swy)?)

e

< e_Ai272r((21/2_21/4)2_a2) <

e—2*2ra2Ai(\/§—1)_

So, by use of the Cauchy inequality, we get

’nge_/\%l’”—y|2 < al (2rna_1)‘O‘le_g_w“z)‘i(ﬂ_l)

for every y € supp(wy,,). Taking all these informations into account, we get that
the absolute value of the expression (22) is

< bymes(K,3)A"e 2 @AV2D) g1 (9rpg 1)l (23)
At this stage, we note that, by the Lemma 3.1, there is a constant C,. > 0 such that
12 na™t) < Cre? W), VjeN.

This allows us to formulate our last requirement fixing A, > A/: we choose A, large

enough so that
o 1
C,be? ’ a2)‘$(\/§_1)>\:}mes(KT+3) < 3

Then with the help of the evaluations (20), (21) and (23), we finally get
DG, (x)| < d?,, (14271 ... 4 277)lalee (mlaD/nm

TMm

i.e. the recursion is complete.

It is now a direct matter to check that the formulae (15) and (18), (resp. (16)
and (19); (17) and the recursion formula) lead directly to the formulae (2) (resp.
(13); (14)) respectively. O

Lemma 3.3
For every m, r € N, a € Njy and z, y € A,,, we have

D0, () = D0, (y)| < 1|z =yl gmnmd; ,, e P dolalTDI (nmdo),

Proof. Using (13) instead of (3), the proof of the Lemma 2.2 applies. O
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Lemma 3.4

For every m, r € N and o € Njj such that m < r and |a| < p,42, we have
-1
DGy — D%y < Nynyarer (Pr+12r+2+p’”+2e“0*(""do(p"'”“))/(nrd())) .

Proof. Following the lines of the proof of the Lemma 2.3 leads to

2q,n,pre?” (rdolel/(edo) (1 _w(),6,)) < 2g.8,e (mrdolal)/(nrdo)
e (nmirdo(Jal+1))/(nm+1do)

Ji

<
2
Jo < nér‘]m+1nm+1dr7nm+1

hence the conclusion by use of the evaluation of ¢,.. [J

Lemma 3.5

For every m, r € N and o € Nij such that m < r and |a| < p,42, we have

< nm+15r27(r+1).

HDaGT‘f‘l HAmﬂKr+2 —

Proof. Using Lemma 3.4 in the proof of the Lemma 2.4 applies. [J

Proposition 3.6

For every compact subset K of Q and a € N{, the series > - |[D*G,|

converges.
Therefore the series G = >~ G, defines a C*-function on Q and can be
differentiated term by term.

Proof. Using Lemma 3.5 in the proof the Proposition 2.5 applies. [

Lemma 3.7

For every m, r € N and o € Njj such that m < r and |a| < p,42, we have

DG =D fll 4, nen i

Proof. Using Lemma 3.5 in the proof of the Lemma 2.6 applies. [J

. < Nm+1Er-

Proposition 3.8
The function g defined on R"™ by

B flx) if xeF
(x_{G@)ﬁerZRwF

belongs to £, (R™) and is such that D*g(z) = D* f(x) for every a € N and x € F.
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Proof. By the Proposition 3.6, the Lemma 3.7 and a classical argument, we know
already that g belongs to C°°(R™) and is such that D%g(x) = D*f(x) for every
a €Ny and z € F.

To establish that g belongs to a3 (R™), we just need to prove that, for every
m € N, there is a constant C,, > 0 such that

HDag”Qr‘]A < Cme%’*(nmdg‘al)/(”mdg)? Ya € Ng

To get this we just have to follow the steps of the proof of the Proposition 2.7,
making the obvious modifications. Indeed for m € N fixed, this leads to the following
evaluations. For a multi-index o € Nj verifying |a| < pi,42, we get the existence of
a constant k,, > 0 such that

||DQG||A NK. k»rneW*(nTndOIOtl)/(n*me)7

IN

m—+2

HDO‘GHQﬁAm\Km+2 S 2nm+1e¢*(nm‘al)/n7n'

For a multi-index a € Nj verifying |a| > pm42, we introduce r as the first
positive integer such that p,11 < |a| < pr42. This leads to

||DaG||AmmK (N1 —l—q?n)ego*(nmdgml)/(nmdg)’

ID*Gllgna,n\k,u < 7me? (mloaD/mm g 18, < 2npygge® tmlal/mm

<
r4+1 —

Therefore the constant C,, = sup {km, 2nm+1, Nm+1 + 2, } suits our goal. [J

Proposition 3.9

The function G has a holomorphic extension on the following open subset 0* =
{u+iv:ueQueR" v <d(u,dQ)} of C". Therefore g is analytic on §Q.

Proof. One has just to reproduce the proof of the Proposition 2.8 making the obvious
modifications. [J

Proof of the Theorem 1.1 in the case of the Roumieu type. The main result is now
a direct consequence of the Propositions 3.8 and 3.9.
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