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Abstract

We consider the Clifford algebraC(q) of a regular quadratic space (V, q) over
a field K with its structure of Z/2Z-graded K-algebra. We give a characteri-
zation of the group of graded automorphisms of C(q).

In the last section we introduce the Z/nZ-graded algebras and we study
as well as the group of graded automorphisms for some of them.

1. Introduction

We begin recalling the definitions.
Let K be a field with charK �= 2. For a K-vector space V, let T (V ) denote its

tensor algebra. We recall that

T (V ) =
∞⊕
i=0

T i(V ) for T i(V ) = V⊗K
i). . . ⊗KV.

Given a quadratic form q over V, its Clifford’s algebra C(q) is the quotient algebra
T (V )/I(q) for I(q) the two-sided ideal of T (V ) generated by elements of the form
x⊗x− q(x) ∈ T (V ), x ∈ V. We note that V = T 1(V ) maps injectively into C(q); we
shall view this injection as an identification. From now on, multiplication in C(q)
will be expressed by juxtaposition. Note that V generates C(q) as a K-algebra.
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We can define a Z/2Z-gradation on C(q). The even part of C(q), which is the
image of

⊕
i even

T i(V ) under the quotient map, will be denoted by C0(q). Similarly,

the odd part of C(q) is the image of
⊕
i odd

T i(V ) and will be denoted by C1(q). The

subalgebra C0(q) is usually called the “even Clifford algebra” of q. The elements of
C0(q) are called even elements and the elements of C1(q) are called odd elements.
It can be proved that C(q) is a central simple Z/2Z-graded algebra [3, Chap. 5,
Th. 2.1].

Let {e1, . . . , en} be an orthogonal basis on V (with respect to q) such that
q(ei) = ai, i = 1 . . . n. Then C(q) is the K-algebra spanned by {e1, . . . , en} with
the relations:

e2i = ai, 1 ≤ i ≤ n; eiej = −ejei, 1 ≤ i �= j ≤ n .

The products eε11 e
ε2
2 . . . eεnn , where εi = 0 or 1 constitute a basis for C(q) as K-vector

space. Then the dimension of C(q) over K is 2n.

Examples:

1. Let q =< a > be the one-dimensional quadratic space with matrix (a), and
basis {e}. Then C(q) = K[x]/(x2 − a).

2. Let q =< a, b >, a, b �= 0 be a binary quadratic space relative to an orthog-
onal basis. Then, as graded algebras, C(q) 	 < a,b

K > where < a,b
K > is the

quaternion algebra.

We denote by Z(A) the center of the algebra A.
A morphism between two graded algebras is called graded if it preserves the

gradation.

Acknowledgment. I would like to thank Teresa Crespo for suggesting this subject
to me and for her constant help and support.

2. Automorphisms of C(q)

If dim(V ) is odd, then C0(q) is a central simple algebra (CSA) over K. If dim(V )
is even, then C(q) is a central simple algebra over K. We put

C :=

{
C0(q) if dim(V ) is odd

C(q) if dim(V ) is even
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So, C is a central simple algebra overK and the Skolem-Noether theorem [3, Chap. 4,
Th. 1.8] determines the group of automorphisms of C. We have

Proposition 2.1

We can define a surjective group morphism:

C∗ ϕ−→ Aut(C)

s −→ fs

where fs(x) = sxs−1. The kernel of this morphism is K∗.
So, Aut(C) = C∗/K∗.

We recall now the definition of the Clifford group [1. pag. 151].

Definition 2.2. The Clifford group of q, denoted G(q) (respectively the special
Clifford group, G+(q)), is the multiplicative group of invertible elements s ∈ C(q)
(resp. s ∈ C0(q)) such that sV s−1 = V .

Note that G+(q) = G(q) ∩ C0(q).

We note that an element of O(q) extends to a graded automorphism of C(q)
and conversely, the inner automorphism given by an element of G(q) restricts to an
element of O(q).

We have:

1. If the dimension of V is even, then ϕ(G(q)) = O(q) by [1. Th. 5.4], so

G(q)/K∗ ∼= O(q) .

We obtain
C(q)∗/K∗

G(q)/K∗
∼= C(q)∗/G(q) ∼= Aut(C(q))

O(q)
.

2. If the dimension of V is odd, ϕ(G+(q)) = SO(q) by [1, Th. 5.4], so

G+(q)/K∗ ∼= SO(q) .

We obtain

(C0(q))∗/K∗

G+(q)/K∗
∼= (C0(q))∗/G+(q) ∼= Aut(C0(q))

SO(q)
.
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3. Graded automorphisms for dim(V ) odd

In this section we want to study the structure of the group of graded automorphisms
of C(q) when dim(V ) is odd.

Let (V, q) be a regular quadratic space over K with dim(V ) odd. Let f :
C(q) −→ C(q) be a graded K-algebras automorphism.

As C(q) is a Z/2Z-graded algebra, we have C(q) = C0(q) ⊕ C1(q) and C0(q) is
a central simple algebra over K. By the structure theorem for central simple graded
algebras of odd type [3, Chap. 4 Th. 3.6], there exists an element z ∈ Z(C(q))∩C1(q)
such that:

– C1(q) = C0(q)z.
– z2 = a ∈ K∗ (the square class of a does not depend on the choice of
z ∈ Z(C(q)) ∩ C1(q) − {0}).

– Z(C(q)) = K ⊕Kz.

So, as C1(q) = C0(q)z, knowing f is equivalent to knowing f |C0(q) and f(z).
As f is a graded automorphism, then:

f |C0(q) : C0(q) −→ C0(q)

is an automorphism of C0(q), a central simple algebra. So, by the Skolem-Noether
theorem, there exists an s ∈ C0(q)∗ such that f(v) = svs−1 ∀v ∈ C0(q) and s is
determined up to a factor in K∗.

We determine now f(z).

Proposition 3.1

With the preceding notations f(z) = ±z and the sign of f(z) is independent of

the chosen z.

Proof. The element z ∈ Z(C(q)) ∩ C1(q). So, f(z) ∈ Z(C(q)) = K ⊕Kz and, as f
is graded, f(z) ∈ Kz. Then, f(z) = αz for some α ∈ K.

Since z2 = a, we have that a = f(z2) = (f(z))2 = αzαz = α2z2 = α2a. Then
α2 = 1 and α = ±1. So, f(z) = ±z.

Let z′ be another element with the same properties of z. Since
z′ ∈ Z(C(q)) ∩ C1(q) = (K ⊕Kz) ∩ C1(q), then z′ = λz with λ ∈ K. So, f(z′) =
λf(z).

If f(z) = z ⇒ f(z′) = λz = z′ and if f(z) = −z ⇒ f(z′) = −λz = −z′. �
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We observe that if g : C0(q) −→ C0(q) is an automorphism of C0(q), it extends
to two graded automorphisms of C(q) sending z to z and −z, respectively.

Let Autgr(C(q)) denote the group of graded automorphisms of C(q).

Proposition 3.2

We can define a surjective group morphism:

Autgr
(
C(q)

) ϕ−→
(
C0(q)

)∗
/K∗

f −→ s

where s is the element corresponding to the inner automorphism f |C0(q). The kernel

of this morphism is a group isomorphic to {±1}.
Hence, we have the exact sequence:

0 → {±1} → Autgr
(
C(q)

) ϕ→
(
C0(q)

)∗
/K∗ → 0

and then, the isomorphism:

Autgr(C(q))
{±1}

∼= (C0(q))∗

K∗ .

Proof.

1. ϕ is a morphism if and only if ϕ(ff ′) = ϕ(f)ϕ(f ′). Let s, s′ be the corres-
ponding elements to the inner automorphisms f |C0(q) and f ′|C0(q) respec-
tively. Then ϕ(f)ϕ(f ′) = ss′.
We have to study ff ′|C0(q). Let u ∈ C0(q). Then, (f ◦f ′)(u)=f(s′us′−1)=
ss′us′−1s−1 = (ss′)u(ss′)−1.
So ϕ(ff ′) = ss′ = ϕ(f)ϕ(f ′) .

2. It is surjective, because for each s we have one (actually two) graded au-
tomorphism of C(q):

f(u) = sus−1 if u ∈ C0(q) and f(z) = z

f(u) = sus−1 if u ∈ C0(q) and f(z) = −z .

3. We now compute the kernel: Two graded automorphism f, f ′ are mapped
to the same s by ϕ if and only if f |C0(q) ≡ f ′|C0(q), that is, if and only if

f ≡ f ′ or

f |C0(q) ≡ f ′|C0(q) and f(z) = z, f ′(z) = −z ,

i.e. if they are equal or if they have the same restriction to C0(q) and differ
in the sign of the image of z. �
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By determining the graded automorphisms of C(q) such that the corresponding
s lies in G+(q) we obtain:

Proposition 3.3

Autgr(C(q))/{±1}
O(q)/{±1}

∼= (C0(q))∗/K∗

G+(q)/K∗

and then,
Autgr(C(q))

O(q)
∼= (C0(q))∗

G+(q)
.

Proof. From the group homomorphism of [1, Th. 5.4] we can define the following
group homomorphism: If f ∈ SO(q), then there exists s ∈ (G+(q))∗ such that:

f : V −→ V

v −→ f(v) = svs−1.

So, we can define:
SO(q) −→ G+(q)/K∗

f −→ s

where s is the preceding.
Given s ∈ G+(q), we have two automorphisms f in Autgr(C(q)) such that

ϕ(f) = s.
1. If f(z) = z and f |C0(q) ≡ s()s−1, then

f |V : V −→ V

v −→ svs−1.

2. If f(z) = −z and f |C0(q) ≡ s()s−1, then

f |V : V −→ V

v −→ −svs−1.

We note that f |V is in O(q) in the two cases, but in SO(q) in exactly one case,
since dim(V ) is odd.

We have, then
O(q)
{±1}

∼= G+(q)
K∗

and connecting with the results of Proposition 3.2 we finish the proof. �
Now, we want to give another characterization for Autgr(C(q)).
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If t is an homogeneous element of (C(q))∗, we can write t = z∂(t)s where
s ∈ C0(q) with ∂(t) = 0 if t ∈ C0(q) and ∂(t) = 1 if t ∈ C1(q).

Proposition 3.4

The two graded automorphisms of C(q), fs ≡ s()s−1 and ft ≡ t()t−1 are equal.

Proof. If x ∈ C(q), then txt−1 = z∂(t)sx(z∂(t)s)−1 = z∂(t)sxs−1z−∂(t) =
z∂(t)−∂(t)sxs−1 = sxs−1 because z ∈ Z(C(q)). �

So, we can define the map:

ψ :
{
Homogeneous elements of

(
C(q)

)∗} −→ Autgr
(
C(q)

)
s −→ fs : C(q) → C(q)

where fs|C0(q) ≡ s()s−1 and fs(z) = (−1)∂(s)z. If we put I(s) = (−1)∂(s), we have
equivalently:

fs : C(q) −→ C(q)

x(homogeneous) −→ I(s)∂(x)sxs−1.

Proposition 3.5

ψ is a surjective group morphism and kerψ = K∗.
We have, then, the exact sequence:

1 → K∗ → {Homogeneous elements of C(q)∗} → Autgr
(
C(q)

)
→ 1 .

Proof.

1. ψ is a morphism if and only if ψ(ss′) = ψ(s) ◦ ψ(s′).
Let x ∈ C(q) be homogeneous.
ψ(ss′)(x) = I(ss′)∂(x)ss′x(ss′)−1 = [I(s)I(s′)]∂(x)ss′xs′−1s−1.
ψ(s)[ψ(s′)(x)] = ψ(s)(I(s′)∂(x)s′xs′−1) = I(s)∂(x)I(s′)∂(x)ss′xs′−1s−1 =
[I(s)I(s′)]∂(x)ss′xs′−1s−1.
And the two, are the same.

2. ψ is surjective, obviously.
3. We now compute the kernel. Let s ∈ C(q)∗, homogeneous.
s ∈ ker(ψ) ⇔ fs(x) = x ∀x ∈ C(q) ⇔ I(s)∂(x)sxs−1 = x ∀x ∈ C(q).
In particular, if x ∈ C0(q), we have sx = xs ⇒ s ∈ CC(q)(C0(q)) =
Z(C(q)) = K ⊕Kz [3, Chap. 4,Th. 3.6].
Then, x = fs(x) = I(s)∂(x)sxs−1 = I(s)∂(x)x ∀x ∈ C(q). So,
I(s) = 1 ⇒ ∂(s) = 0 ⇒ s ∈ C0(q). Since s ∈ Z(C(q)) ∩ C0(q) ⇒ s ∈ K.
And it is invertible. �
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4. Graded automorphisms for dim(V ) even

In this section we want to study the structure of graded automorphisms of C(q)
when dim(V ) is even.

Let (V, q) be a regular quadratic space over K with dim(V ) even. In this case,
it is known that C(q) is a central simple algebra over K, so, every automorphism of
C(q) is an inner automorphism and then

Aut
(
C(q)

) ∼= C(q)∗/K∗.

We now study the graded automorphisms.
Let f ∈ Autgr(C(q)). In particular f ∈ Aut(C(q)) and so, there exists an

s ∈ C(q)∗ such that f(x) = sxs−1 ∀x ∈ C(q). We are going to characterize the
elements s giving graded automorphisms.

Proposition 4.1

If fs ≡ s()s−1 is graded, then s is an homogeneous element of C(q).

Proof. We put s = s0 + s1 where si ∈ Ci(q). Let {e1, . . . , en} be an orthogonal
basis with respect to the quadratic space and denote f(ei) = vi. We note that
vi ∈ C1(q), i = 1, . . . , n (because ei is odd and f is graded). As f(ei) = vi ∀i, we
have seis−1 = vi ⇒ sei = vis⇒ (s0+s1)ei = vi(s0+s1) ⇒ s0ei+s1ei = vis0+vis1.
In the last equality, s0ei, vis0 ∈ C1(q) and s1ei, vis1 ∈ C0(q). Then s0ei = vis0 and
s1ei = vis1. We can write s0ei = vis0 = (seis−1)s0. Then s−1s0ei = eis

−1s0∀i. So
s−1s0 ∈ Z(C(q)) = K and s−1s0 = λ. Then s0 = λs.

1. If λ = 0 ⇒ s0 = 0 ⇒ s = s1 ∈ C1(q) .
2. If λ �= 0 ⇒ s = 1

λs0 ⇒ s1 = 0 ⇒ s ∈ C0(q). �

Proposition 4.2

We can define a surjective group morphism:

{
Homogeneous elements of C(q)∗

} ϕ−→ Autgr
(
C(q)

)
s −→ fs

where fs(x) = sxs−1 ∀x ∈ C(q). The kernel of this morphism is K∗. Hence, we

have the exact sequence:

1 → K∗ →
{
Homogeneous elements of C(q)∗

} ϕ→ Autgr
(
C(q)

)
→ 1 .
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Proof.

1. To prove that ϕ is morphism just a similar argument as before is needed.
2. ϕ is surjective because in this case, C(q) is central simple algebra over K

and then we can take the s corresponding to f ∈ Aut(C(q)). We know
that s is homogeneous by 4.1.

3. We now compute the kernel of ϕ. Let s ∈ C(q)∗, since s ∈ ker(ϕ) ⇔ fs =
Id⇒ x = fs(x) = sxs−1 ∀x ∈ C(q) ⇒ sx = xs ∀x ∈ C(q) ⇒
s ∈ Z(C(q)) ∩ C(q)∗ ⇒ s ∈ K∗. Then ker(ϕ) = K∗. �

5. Graded automorphisms of some Z/nZ-graded algebras

We will study now the automorphisms of some Z/nZ-graded algebras. So, we begin
with the definition of these algebras.

We note that for central simple Z/2Z-graded algebras, we have the structure
theorem. This is an essential result to study the automorphisms of these algebras.
For Z/nZ-graded algebras a similar theorem is not yet known. So, in the examples
studied here, we will determine some properties of these particular algebras that
allow us to study its graded automorphisms.

5.1 Some examples of Z/nZ-graded algebras

Let n be a fixed integer number n ≥ 2 and K be a field of characteristic different
to p, ∀p | n, which contains the group of nth roots of unity. We fix ω a primitive
nth root of unity.

Definition 5.1. A Z/nZ-graded K-algebra A is a finite-dimensional K-algebra
given in the form A0 ⊕ · · · ⊕An−1, such that

K = K · 1 ⊆ A0

AiAj ⊆ Ai+j where the subscripts are taken modulo n .

In particular, A0 is a subalgebra. Sometimes we say just graded algebras if n is
clear.

A Z/nZ-graded algebra A is said to be concentrated at degree 0 if
Ai = 0 ∀i∈ {1, . . . , n− 1}.
For a graded algebra A as above, the elements in h(A) = A0 ∪ . . . ∪ An−1 will

be called the homogeneous elements of A. If a ∈ h(A), we write ∂(a) = i if a ∈ Ai.
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A subspace S ⊂ A is called graded if it is the direct sum of the intersections
Si = S∩Ai. This means if s ∈ S and s = s0 + · · ·+sn−1 si ∈ Ai, then each si ∈ S.
Graded ideal has the obvious meaning.

Definition 5.2. Let A be a Z/nZ-graded algebra.

1. We shall call A a central graded algebra (CGA) over K if Z(A)∩A0 = K where
Z(A) is the center of A as non-graded algebra.

2. A is called a simple graded algebra (SGA) over K if A has no proper graded
(two-sided) ideals.

3. If A is central graded algebra and simple graded algebra, we say A is central
simple graded algebra.

Definition 5.3. Let A = A0 ⊕ · · · ⊕An−1 be a Z/nZ-graded algebra and
f : A −→ A be an automorphism. We say f is a graded automorphism if f(Ai) ⊂
Ai ∀i∈ {0, . . . , n− 1}.

We shall now look at some examples of central simple graded algebras. We will
afterwards study its automorphisms.

Example 1: Consider A = K( n
√
a) a extension of K with a ∈ K such that a /∈

Kd, ∀d | n. So, [A : K] = n (degree of the extension). We can make A into a
Z/nZ-graded K-algebra by declaring

A0 = K, A1 = K n
√
a, . . . , Ai = K n

√
ai, . . . , An−1 = K n

√
an−1 .

We shall use the notation A = K < n
√
a > to indicate the fact that A is made into

a graded algebra in this way.

– A is commutative, so Z(A) = A. We have Z(A) ∩A0 = A ∩A0 = K.
Then A is a central graded algebra.

– Since A is a field, it is simple.

It follows that A is, in fact, a central simple graded algebra.

Example 2: For a, b ∈ K∗, let A = (a,bK )ω be the K-algebra which is generated
by elements {i, j} which satisfy { in = a, jn = b, ij = ωji} . A basis for A as
vector space over K consists of {irjs : 0 ≤ r, s < n}. So A has dimension n2 as
K-algebra. You can find the definition and properties of these algebras, for example
in [4, Section 15.4] and [2, Exercise 4.28]. This is a generalization of the quaternion
algebras.

We can make A into a Z/nZ-graded K-algebra by setting

Al =< ikjm | k +m ≡ l (mod n) >K .
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We shall use the notation A = K < a,b
K >ω to indicate the fact that A is made

into a graded algebra in this way. As we have fixed the field K and the nth root of
unity ω , we sometimes just write A =< a, b >.

In [2, Exercise 4.28] it is proved that A is central simple over K. So it is a
central simple graded algebra.

Example 3: For a1, a2, a3 ∈ K∗, let A = (a1, a2, a3) be the K-algebra which is
generated by elements {e1, e2, e3} which satisfy

{
eni = ai i = 1, 2, 3, eiej = ωejei if i < j

}
.

We can make A into a Z/nZ-graded K-algebra by setting

Al =< eε11 e
ε2
2 e

ε3
3 | ε1 + ε2 + ε3 ≡ l (mod n), 0 ≤ εi ≤ n− 1 >

We shall use the notation A = K < a1, a2, a3 > to indicate the fact that A is made
into a graded algebra in this way.

Proposition 5.4

Let A be the algebra of the Example 3. Then

1. A is a central simple Z/nZ-graded algebra over K.

2. Let z = e1e
−1
2 e3 ∈ A. Then z ∈ Z(A) ∩A1 and we have

Z(A) = K ⊕Kz ⊕ · · · ⊕Kzn−1. We put a = zn = (−1)n−1a1a
−1
2 a3.

3. Ai = A0z
i ∀i∈ {0, . . . , n− 1}.

4. A0 is a central simple algebra over K.

Proof. 1. We prove first Z(A) ∩A0 = K. Given an element e ∈ Z(A) ∩A0 we want
to show that e ∈ K. We can put it in the form

e =
∑

ε1+ε2+ε3≡0(n)

λε1ε2ε3e
ε1
1 e

ε2
2 e

ε3
3 .

As e ∈ Z(A), in particular ee1 = e1e. So

λε1ε2ε3e
ε1+1
1 eε22 e

ε3
3 = λε1ε2ε3e

ε1
1 e

ε2
2 e

ε3
3 e1 = λε1ε2ε3ω

−(ε2+ε3)eε1+1
1 eε22 e

ε3
3 .

Then ε2 + ε3 ≡ 0 (mod n) and so, ε1 ≡ 0 (mod n) ⇒ ε1 = 0.
In the same way, we prove ε2 = ε3 = 0 and then e ∈ K.
We want to prove now that A is simple graded. Let I �= 0 be a two-sided graded

ideal in A. Our goal is to show that 1 ∈ I. Each homogeneous element x ∈ I of
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degree k can certainly be put in the form x =
r∑

i=1

λie
εi1
1 e

εi2
2 e

εi3
3 with εi1 + εi2 + εi3 ≡ k

(mod n). Among all nonzero homogeneous elements in I, let us pick x as above,
such that r is as small as possible. Multiplying this by e−k

1 we can suppose x ∈ A0.
We consider now the element

x′ =
ρ

λ1
e
−ε11
1 e

−ε12
2 e

−ε13
3 x = 1 +

r∑
i=2

λ′ie
δi1
1 e

δi2
2 e

δi3
3 ∈ I

where ρ is a suitable nth root of unity and δij = εij − ε1j .

We calculate now e1x
′ − x′e1 =

r∑
2

λ′ie
δi1+1
1 (1 − ω−(δi2+δi3)e

δi2
2 e

δi3
3 ∈ I. By the

choice of r we conclude that λ′i(1 − ω−(δi2+δi3)) = 0. If δi1 �= 0 then λ′i = 0. If δi1 = 0
we can proceed in the same way by calculating ejx′ − x′ej , if δij �= 0. We conclude
λ′i = 0, ∀i and then 1 ∈ I.

2. Let z = e1e
−1
2 e3 ∈ A1. We want to see that z ∈ Z(A) and to this end,

we need just to check eiz = zei for i = 1, 2, 3. It is a simple computation. So,
z ∈ Z(A) ∩A1 and then zk ∈ Z(A) ∩Ak.
Therefore, we have K ⊕Kz ⊕ · · · ⊕Kzn−1 ⊂ Z(A). Now if y ∈ Z(A) ∩Ai, we have
yzn−i ∈ Z(A) ∩A0 = K. So, y = kzi for some k ∈ K.

Computing zn, we obtain zn = (−1)n−1a1a
−1
2 a3 ∈ K.

3. Ai = Aiz
n = Aiz

n−izi ⊆ A0z
i. The another inclusion is clear.

4. As Ai = A0z
i we have that Z(A0) = Z(A) ∩ A0 = K. So A0 is a central

algebra.
Let 0 �= I ⊆ A0 be a two-sided ideal of A0. Then J = I ⊕ Iz ⊕ · · · ⊕ Izn−1 is

a two-sided graded ideal in A, and so equals A. Thus I = A0, proving that A0 is
simple. �

5.2. Graded automorphisms of K < a, b >

We want to study now the structure of the group of graded automorphisms of
the algebra A = K < a, b > when a ∈ K, b ∈ K . This case is similar to the case of
Section 4. We change the notation and we put e1 = i and e2 = j.

In this case, A is a central simple algebra over K. Let f ∈ Autgr(A), in
particular f ∈ Aut(A) and by the Skolem-Noether theorem, there exists an s ∈ A∗

such that f(x) = sxs−1, x ∈ A.

Proposition 5.5

If fs ≡ s()s−1 is graded, then s is an homogeneous element of A.
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We put s = s0 + · · · sn−1 where si ∈ Ai and f(ei) = seis
−1 = vi for i = 1, 2.

As ei ∈ A1 and f is graded, vi ∈ A1. We have for i = 1, 2, seis−1 = vi ⇒
sei = vis ⇒ (s0 + · · · + sn−1)ei = vi(s0 + · · · + sn−1) ⇒ s0ei + · · · sn−1ei =
vis0 + · · · visn−1. In this equality, the parts of the same degree have to be equal, so
skei = visk ∀k∈ {0, . . . , n− 1}, i = 1, 2.

In particular s0ei = vis0 and by definition vi = seis
−1. Then, s0ei = seis

−1s0
and s−1s0ei = eis

−1s0, i = 1, 2. So, s−1s0 ∈ Z(A) = K ⇒ s0 = λ0s with λ0 ∈ K.
If λ0 �= 0, then s = 1

λ0
s0 ∈ A0 is homogeneous of degree 0. If λ0 = 0, then s0 = 0

and s = s1 + · · · sn−1. We can do the same process for k = 1, 2, . . . until we find
a λk �= 0. If λk = 0, ∀k = 0, . . . , n − 2, then s = sn−1 which is homogeneous of
degree n− 1. �

Theorem 5.6
We can define a surjective group morphism

{Homogeneous elements of A∗} ϕ−→ Autgr(A)

s −→ fs

where fs(x) = sxs−1 ∀x ∈ A. The kernel of this morphism is K∗. Hence, we have
the exact sequence:

1 → K∗ → {Homogeneous elements of A∗} ϕ→ Autgr(A) → 1.

Proof. Is similar to the proof of 4.2.

5.3. Graded automorphisms of K < a1, a2, a3 >

We want to study now the structure of the group of graded automorphisms of
the algebra A = K < a1, a2, a3 > when ai ∈ K. This case is similar to the case of
Section 3.

Let f : A −→ A be a graded automorphism (as K-algebras). By the Proposi-
tion 5.4, A0 is a central simple algebra over K and putting
z = e1e

−1
2 e3, we have Ai = A0z

i ∀i∈ {0, . . . , n− 1}. As f is graded, f(Ai) ⊂ Ai,
so knowing f is equivalent to knowing f | A0 and f(z).

As f is a graded automorphism, then:

f |A0 : A0 −→ A0

is an automorphism of A0, a central simple algebra. So, by the Skolem-Noether
theorem, there exists an s ∈ A∗

0 such that ∀v ∈ A0, f(v) = svs−1 and s is determined
up to a factor in K∗.

We determine now f(z).

Proposition 5.7
With the preceding notations f(z) = 2nz with 2nn = 1.
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Proof. Similarly to the case n = 2, we just have to observe that since z ∈ Z(A)∩A1,
then f(z) ∈ Z(A) ∩ A1 = Kz. So, f(z) = αz with α ∈ K. Since zn = ( n

√
a)n = a,

we have that a = f(zn) = f(z)n = αna. So, αn = 1. We put α = 2n to note that it
depends on n. �

We observe that if g : A0 −→ A0 is an automorphism of A0, it extends to n

graded automorphisms of A sending z to ωiz for i∈ {0, . . . , n− 1}.

Proposition 5.8

We can define a surjective group morphism:

Autgr(A)
ϕ−→ (A0)∗/K∗

f −→ s

where s is the element corresponding to the inner automorphism f |A0. The kernel

of this morphism is a group isomorphic to Z/nZ.

Hence, we have the exact sequence:

0 → Z/nZ → Autgr(A)
ϕ→ (A0)∗/K∗ → 0

and then, the isomorphism:

Autgr(A)
Z/nZ

∼= (A0)∗

K∗ .

Proof.

1. It is similar to 1 in the proof of Proposition 3.2.
2. It is surjective, because for each s we have one (actually n) graded auto-

morphism of A:
f(u) = sus−1 if u ∈ A0 and f(z) = ωiz for i∈ {0, . . . , n− 1}

3. We now compute the kernel: Two graded automorphism f, f ′ are mapped
to the same s by ϕ if and only if f |A0 ≡ f ′|A0, that is, if and only if

f |A0 ≡ f ′|A0 and f(z) = ωif ′(z)

for some i∈ {0, . . . , n− 1} i.e. if they are equal or if they have the same
restriction to A0 and differ in the image of z by a nth root of unity. �

Now, we want to give another characterization for Autgr(A).
If t is an homogeneous element of A∗, we can write t = z∂(t)s where s ∈ A0

with ∂(t) = i if t ∈ Ai.

Proposition 5.9

The two graded automorphisms of A, fs ≡ s()s−1 and ft ≡ t()t−1 are equal.
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Proof. If x ∈ A, then txt−1 =z∂(t)sx(z∂(t)s)−1=z∂(t)sxs−1z−∂(t) =z∂(t)−∂(t)sxs−1 =
sxs−1 because z ∈ Z(A). �

So, we can define the map:

ψ : {Homogeneous elements of A∗} −→ Autgr(A)

s −→ fs : A→ A

where fs|A0 ≡ s()s−1 and fs(z) = ω∂(s)z. If we put I(s) = ω∂(s), we have equiva-
lently:

fs : A −→ A

x( homogeneous ) −→ I(s)∂(x)sxs−1.

Theorem 5.10

ψ is a surjective group morphism and kerψ = K∗.

We have, then, the exact sequence:

1 → K∗ → {Homogeneous elements of A∗} → Autgr(A) → 1 .

Proof.

1. ψ is a morphism similarly to the proof of Proposition 3.5.
2. ψ is surjective, obviously.
3. We now compute the kernel. Let s ∈ A∗, homogeneous. We have s ∈
ker(ψ) ⇔ fs(x) = x ∀x ∈ A⇔ I(s)∂(x)sxs−1 = x ∀x ∈ A.

In particular, if x ∈ A0, we have sx = xs. So s ∈ Z(A) = K⊕Kz⊕· · ·⊕Kzn−1.

Then, x = fs(x) = I(s)∂(x)sxs−1 = I(s)∂(x)x ∀x ∈ A. So, I(s) = 1 ⇒ ∂(s) = 0 ⇒
s ∈ A0. Since s ∈ Z(A) ∩A0 ⇒ s ∈ K. And it is invertible. �

These examples can be seen as a generalization of Clifford algebras. In a sim-
ilar way as in Example 3, we could define a generalized Clifford algebra with m

generators, e1, . . . , em.
In the same way that the structure theorem for central simple Z/2Z-graded

algebras, in particular for Clifford algebras [3, Chap. 5 Thm. 2.4, 2.5], implies that
the group of graded automorphisms is determined according to the parity of the
number of generators asK-algebra, an analogous structure theorem for Z/nZ-graded
algebras, should give, using the techniques described above, the same assertion for
the group of graded automorphisms for generalized Clifford algebras.
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